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Abstract: Kalman filter inversions with multipollutant may improve the accuracy of inversion results and model 15 

performance. A joint inversion of VOCs and NOx emissions was conducted using the HCHO and NO2 column data from 16 

the TROPOspheric Monitoring Instrument and the simulated sensitivities of VOCs and NOx from an air quality model from 17 

June to September 2019. The results showed that joint inversion results typically outperformed that of separate inversion 18 

in reducing model bias and error and regional variations of emission estimates under satellite data constraints. The inversed 19 

NOx emissions over China decreased from a priori by approximately 30%, and the inversed VOCs emissions over China 20 

increased from a priori by around 50%. Joint inversion results aligned more closely with satellite-observed NO2 and HCHO 21 

columns, capturing the unique belt-like distribution of HCHO and stabilizing maximum NO2 column at approximately 22 

15molec/cm². The accuracy of simulated ground-level ozone concentrations was enhanced by the joint inversion, with the 23 

mean bias decreased by 11.6μg/m³ overall. Meanwhile, ozone sensitivities prevalently shifted towards NOx-limited 24 

conditions during summer after the joint inversion. 25 
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1. Introduction 28 

Tropospheric ozone (O3), a secondary pollutant, is formed mainly through complex nonlinear photochemical reactions 29 

between NOx and VOCs in sunlight. Investigating the nonlinear formation of O3 and its precursors is complex and difficult. 30 

Since 1990s, countries in Europe and North America have adopted scientific emission control measures for the O3 31 

precursors (NOx and VOCs), resulting in significant decrease in the levels of O3 concentration (Jiang et al., 2020). 32 

Meanwhile, O3 precursor emissions from anthropogenic sources have increased significantly in Asia, particularly in China, 33 

along with accelerated urbanization and industrialization. The maximum daily 8h O3 concentration in summer has gradually 34 

increased, with an average growth rate of up to 3.73μg/m3 per year in China overall from 2013−2019 (Li et al., 2020). The 35 

Chinese government has implemented various control measures to reduce NOx and VOC emissions in alleviating O3 36 

pollution. With stringent emission control policies, the total amount of NOx and VOC emissions from various sectors of 37 

anthropogenic sources in China were reduced significantly every year, which changes O3 control strategies simultaneously. 38 

Hence, it is important to have a refined, accurate, and responsive anthropogenic emission inventory.  39 

Earlier Chinese emission inventories were derived from a bottom-up statistical approach with continually updated local 40 

emission data. However, NOx emissions have a relatively short lifetime and react quickly in the atmosphere, and the bottom-41 

up inventories are mostly overestimated, even by a factor of approximately 2, compared to monitored or satellite-observed 42 

NO2 data (Silver et al., 2020). In addition, there is also significant uncertainty occurred in the estimates of VOCs emissions, 43 

leading to inaccurate modeling of O3 concentrations (Lu et al., 2023). Furthermore, the bottom-up inventories rely on 44 

estimated emission activities to infer the spatial distribution, which can also generate significant uncertainties. 45 

A top-down approach is an alternative way to estimate emissions based on observed air pollutant concentrations and source 46 

characteristics, and can be scientifically and objectively validated and improved through in situ observations, satellite data, 47 

and inverse modeling. Inverse modeling is a mathematical method has been widely used to estimate emission inventory by 48 

minimizing the difference between modeled and observed concentrations (Trombetti et al., 2018). As early as the mid-49 

1960s, meteorologists applied the least squares method as a basic principle to construct atmospheric inversion models to 50 

reduce the bias between models and observations (Smagorjnsky, 1983). Martin et al. (2003) used a mass balance approach 51 

to invert regional NOx emission intensities in conjunction with changes in NO2 column concentrations from satellite data. 52 

However, since nonlinearity between NOx emissions and NO2 concentrations, this inversion method might underestimate 53 

NOx emissions. 54 

Many studies have been using various inversion methods to estimate emission inventories in combination with highly 55 

spatially covered satellite observations. Gerbig et al. (2003) and Khattatov et al. (1999) conducted Bayesian-based 56 
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estimation of emission inventories using satellite data and simulated pollutant sensitivities. Müller en Stavrakou, (2005) 57 

proposed a method that can invert multiple chemical species simultaneously, considering the interactions between chemical 58 

species as one of interacted pollutant undergo changes. Jung et al. (2022), Souri et al. (2020), and Wang et al. (2020) 59 

conducted several studies on joint inversion of multiple species such as NOx and VOCs, SO2 and NOx, and CO and NOx 60 

emissions. However, the Jacobian matrix settings in previous studies incorporated only the sensitivities of multiple 61 

pollutant concentrations to self-emissions during inversion process, without considering the cross-sensitivities of species 62 

interactions. It is important to include interspecies interactions from chemical transport models to deal with the nonlinear 63 

relationships in the iterative inversions. 64 

The selection of NOx and VOCs as focal precursors in this study is driven by their dominant roles in near-surface O3 65 

formation over China. While TROPOspheric monitoring instrument (TROPOMI) provides observations for multiple ozone 66 

precursors (e.g., CO with lower retrieval uncertainty), NO2 and HCHO offer superior diagnostic value for local emission 67 

adjustments due to their short atmospheric lifetimes (hours to days) and direct participation in rapid photochemical O3 68 

production. In contrast, CO (lifetime ~2 months) influences O3 indirectly through atmospheric oxidation capacity 69 

modulation, exhibiting lagged and nonlinear effects.  70 

The uncertainties in VOCs and NOx emission inventory in China pose a challenge for achieving relatively accurate 71 

predictions of O3 levels. In this study, a discrete Kalman filter (DKF) inversion method of Tang et al. (2013) combined 72 

with the European TROPOMI satellite HCHO and NO2 data was used to generate a top-down VOCs and NOx emission 73 

inventory. The cross-sensitivities of NO2 and HCHO concentrations to NOx and VOC emissions computed by the 74 

Comprehensive Air Quality Model with Extensions (CAMx v7.10)-decoupled direct method (DDM) were also 75 

incorporated into the inversion framework. The joint DKF inversions allowed us quantify NOx and VOCs emissions 76 

simultaneously, providing more accurately O3 precursor emissions to simulate the O3 formation and its control strategy. 77 

2. Inverse modeling method and materials 78 

2.1 TROPOMI NO2 and HCHO column retrievals  79 

TROPOMI on the Sentinel-5 precursor, launched in October 2017, is to continue measuring atmospheric trace gas (e.g., 80 

NO2, O3, and HCHO) from the ozone monitoring instrument (OMI) (Levelt et al., 2006), which is still operating after its 81 

launch in July 2004 (Veefkind et al., 2012). Like OMI, the TROPOMI satellite crosses the equator in a sun-synchronous 82 

polar orbit at approximately 13:30 local time with near-UV visible (270 to 500 nm) spectrometers. It has almost global 83 

daily coverage and a wavelength window from 405 to 465 nm. The ground pixel size of the TROPOMI data is 84 
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7 km × 3.5 km (5.5 km × 3.5 km after 6 August 2019). It has a higher spatial resolution than previous instruments, a signal-85 

to-noise ratio improvement of approximately 1 to 5 times, and a slant-column density error for individual pixels 30% lower 86 

than that for OMI retrievals (20% after 6 August 2019). The TROPOMI data has been well validated and used for top-87 

down emission estimates (Vigouroux et al., 2020). 88 

TROPOMI S-5P level 2 data products for NO2 and HCHO from June to September 2019 were used in this study. Retrievals 89 

with quality assurance values greater than 0.7 were extracted and regridded to a resolution of 0.1° × 0.1° in molec./cm2, 90 

and remapped to matching the modeling grids (units converted to 1015 molec./cm2). 91 

2.2 Model settings 92 

The CAMx model version 7.10 (ENVIRON, 2021) was used in this study. The model master grid (36 × 36 km) covered all 93 

provinces of China with longitudes of 57°E−161°E and latitudes of 1°N–59°N, with 20 vertical layers and the top height 94 

of approximately 20 km, and contained grids of 200 columns × 160 rows (Fig. 1). The meteorological data used for the 95 

simulations were obtained from the Weather Research and Forecast (WRF) v3.9.1.1 model (Skamarock et al., 2019). The 96 

modeled meteorological parameters were verified and demonstrated in the Supplementary Note 3. The chemical 97 

mechanism, SAPRC07 was chosen for the gas phase chemistry. Photolysis rates used in the CAMx model were calculated 98 

using O3 column data from OMI.  99 

The emission inventory of China integrating CO2 with air pollutants, as reported by Zhi et al. (2024) was chosen as the 100 

base emission inventory in this study. The emission data used outside of China was from the Regional Emission inventory 101 

in Asia, version 2.1 (REAS2.1; Kurokawa en Ohara, 2019). The Sparse Matrix Operator Kernel Emissions (SMOKE) was 102 

used to facilitate the allocation of emissions by sector and the categorization of VOCs and particulate matter. The emissions 103 

from natural sources were modeled by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) v3.1. 104 

(Guenther et al., 2019). 105 
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 106 

Figure 1: 36 km × 36 km domain for the CAMx simulation (different regions shown in various colours). 107 

 108 

High-order DDM (Hakami et al., 2005) is a widely used method for the forward sensitivity analysis, and was used in this 109 

study to simulate changes in O3 concentrations due to NOx and VOCs emission perturbations. This method effectively 110 

calculated semi-normalized sensitivity coefficients by solving sensitivity equations and the model equations simultaneously. 111 

It also has been used as one of the key methods for preparing emission reduction plans and state air quality implementation 112 

plans (Liao and Hou, 2015). The sensitivity factor 𝑆𝑖𝑗
∗  is defined as 113 

𝑆𝑖𝑗
∗ = 𝑆𝑖,𝑗
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where 𝑖  and 𝑗  are air pollutant types, 𝑆𝑖,𝑗
(1)

  and 𝑆𝑖,𝑗
(2)

  are the semi-normalized first- and second-order sensitivity 116 

coefficients, 𝐶 is the pollutant concentration, 𝑃𝑖,𝑗 is the sensitivity parameter in the base case, 𝑝𝑖,𝑗 is the base value of 117 

source emissions, and ∈𝑖,𝑗 is the perturbation ratio (between 0 and 1).  118 

2.3 Inverse modeling  119 

2.3.1 Discrete Kalman filter 120 

The Kalman filter theory developed by Kalman (1960) has been widely used from as early as 1983 when Cunnold et al. 121 

(1994) applied the Kalman filter to a 2D model to predict the atmospheric lifetime of freon-11 (CFCl3). Haas‐Laursen 122 

et al. (1996) then compared and tested various correction methods for the Kalman filter, showing that the adaptive iterative 123 
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approach gave the most accurate simulation results. Following that, a DKF using discrete recursive optimal linear filtering 124 

was conducted, directly using the sensitivities of pollutant concentrations to emissions to calculate the nonlinear relation 125 

between pollutants and sources through a multiple iteration algorithm (Gilliland and Abbitt, 2001; Prinn, 2013). Using the 126 

DKF method combined with satellite observations to derive top-down air pollutant emission inventories and to calculate 127 

their possible biases, has recently been performed (Napelenok et al., 2008; Tang et al., 2013). The DKF method is described 128 

as 129 

𝐸̅𝑖+1 = 𝐸̅𝑖 + 𝐺𝑖(𝐶𝑖̅
𝑜𝑏𝑠 − 𝐶𝑖̅

𝑚𝑜𝑑)                   (2) 130 

𝐺𝑖 = A𝑖S𝑖
𝑇(𝑆𝑖A𝑖S𝑖

𝑇 + R𝑖)
−1                    (3) 131 

A𝑖+1 = A𝑖 − 𝐺𝑖𝑆𝑖A𝑖                    (4) 132 

where 𝐸̅𝑖+1 is the updated emission regulator, 𝐸̅𝑖 is the emission regulator at the time of the baseline simulation scenario, 133 

A𝑖+1 is the updated emission-related covariance, A𝑖 is the covariance on emissions at the time of the baseline simulation 134 

scenario, 𝐶̅𝑜𝑏𝑠 and 𝐶̅𝑚𝑜𝑑 are the observed (satellite data or station monitoring data) and modelled concentrations of an 135 

air pollutant respectively, the calculated 𝐺𝑖 is the Kalman gain, 𝑆𝑖 is the sensitivity of the pollutant to emissions at the 136 

time of the baseline simulation scenario, and R𝑖 is the covariance of the observed data. Combining the equations gives 137 

𝐸̅𝑖+1 = 𝐸̅𝑖 + A𝑖S𝑖
𝑇(S𝑖A𝑖S𝑖

𝑇 + R𝑖)
−1(𝐶𝑖̅

𝑜𝑏𝑠 − 𝐶𝑖̅
𝑚𝑜𝑑 − S𝑖𝐸̅𝑖)                                                (5) 138 

At observation correction step time step i, the inversion process corrects the predicted emissions (𝐸̅𝑖) and the predicted 139 

emission covariance (A𝑖) by taking the observations (𝐶̅𝑜𝑏𝑠) and inverts them to obtain the Kalman gain (𝐺𝑖), then generates 140 

the corrected emissions (𝐸̅𝑖+1 ) and the corrected emission covariance (A𝑖+1 ). The iteration stops when the regulation 141 

parameter is extremely close to the present value (
𝐸̅𝑖+1−𝐸̅𝑖

𝐸̅𝑖
< 0.01). 142 

2.3.2 Joint inversion for NOx and VOC emissions 143 

Joint inversion considers multiple pollutants within a matrix framework, involving cross-sensitivity coefficients (𝑆𝑖,𝑗
(2)

) and 144 

incorporating both simulated (𝐶𝑖̅
𝑚𝑜𝑑) and observed  (𝐶𝑖̅

𝑜𝑏𝑠) pollutant concentrations, as detailed in Eq. (6) to Eq. (8). 145 

The variables in Eq. (5) update as follows: 146 

𝐸̅𝑖+1 = 𝐸̅𝑖 + 𝐴𝑖𝑆𝑚𝑎𝑡𝑟𝑖𝑥
𝑇 (𝑆𝑚𝑎𝑡𝑟𝑖𝑥𝐴𝑖𝑆𝑚𝑎𝑡𝑟𝑖𝑥

𝑇 + 𝑅𝑖)
−1

(𝐶𝑚̅𝑎𝑡𝑟𝑖𝑥
𝑜𝑏𝑠 − 147 

 𝐶𝑚̅𝑎𝑡𝑟𝑖𝑥
𝑚𝑜𝑑 − 𝑆𝑚𝑎𝑡𝑟𝑖𝑥𝐸̅𝑖)                                                                      (6) 148 

The detailed variables in Eq. (6) are as follows: 149 
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𝑠𝑚𝑎𝑡𝑟𝑖𝑥 =

[
 
 
 
 
 
 𝑆𝑁𝑂𝑥

𝑁𝑂2(1,1)
𝑆𝑉𝑂𝐶

𝑁𝑂2(1,1)

𝑆𝑁𝑂𝑥
𝑁𝑂2(1,2)

𝑆𝑉𝑂𝐶
𝑁𝑂2(1,2) 

⋮ ⋮

𝑆𝑁𝑂𝑥
𝐻𝐶𝐻𝑂(1,1)

𝑆𝑉𝑂𝐶
𝐻𝐶𝐻𝑂(1,1) 

𝑆𝑁𝑂𝑥
𝐻𝐶𝐻𝑂(1,2)

𝑆𝑉𝑂𝐶
𝐻𝐶𝐻𝑂(1,1)

⋮ ⋮
 
]
 
 
 
 
 
 

                                                                    (7) 150 

𝐶𝑚𝑎𝑡𝑟𝑖𝑥 =

[
 
 
 
 
 

𝑁𝑂2(1,1)

𝑁𝑂2(1,1)

⋮
𝐻𝐶𝐻𝑂(1,1)

𝐻𝐶𝐻𝑂(1,1)

⋮ ]
 
 
 
 
 

                                                                        (8) 151 

In 𝑠𝑚𝑎𝑡𝑟𝑖𝑥 we considered the sensitivity of NO2 and HCHO concentrations to NOx and VOC emissions 𝑆𝑁𝑂𝑥
𝑁𝑂2(1,1)

 and 152 

𝑆𝑉𝑂𝐶
𝐻𝐶𝐻𝑂(1,1)

  and the sensitivity of NO2 concentrations to VOC emissions 𝑆𝑉𝑂𝐶
𝑁𝑂2(1,1)

  and HCHO concentrations to NOx 153 

emissions 𝑆𝑁𝑂𝑥
𝐻𝐶𝐻𝑂(1,1)

. In Eq. (7) and Eq. (8),  (1,1) in the upper right corner indicates the first row and first column of 154 

the simulation grid. The joint inversion approach considered not only the nonlinear chemical feedbacks between NO2 155 

concentration and NOx emission and HCHO concentrations and VOCs emissions, respectively, but also the mutual 156 

influence between NO2 concentration and VOCs emission and HCHO concentration and NOx emission, respectively.  157 

The emission-related covariance matrix A𝑖 for the baseline simulation scenario followed a reference setting (H. Souri 158 

et al., 2020), with a set of a priori error of 50% for NOx emissions, 𝜎𝑖
𝐸𝑁𝑂𝑥, 150% for VOCs emissions, 𝜎𝑖

𝐸𝑉𝑂𝐶 , and A𝑖 =159 

𝜎𝑖
𝐸2

. An important assumption of the inversion methodology is that inconsistencies between satellite observations and 160 

model outputs arise mainly from emission inventories. Whereas the observed data covariance R𝑖 can also introduce other 161 

errors, it ultimately limits only the extent to which the final inversion results are close to the observed values. The error 162 

𝜎𝑖
𝑜𝑏𝑠 in the satellite data product includes instrumental errors and other uncertainties that were difficult to quantify. In this 163 

study, to prevent data instability, R𝑖 = 𝑀𝑎𝑥[𝜎𝑚𝑖𝑛
𝑜𝑏𝑠 , 𝐶𝑚̅𝑎𝑡𝑟𝑖𝑥

𝑜𝑏𝑠 × 𝜒𝑜𝑏𝑠]
2
 , with 𝜎𝑚𝑖𝑛

𝑜𝑏𝑠   being a minimum value of 0.8 × 1015 164 

molec./cm2 and 1.0 × 1015 molec./cm2 for the TROPOMI NO2 and HCHO column concentration, respectively. 𝜒𝑜𝑏𝑠 165 

represents the satellite data uncertainty and was set to 35% for NO2 and 20% for HCHO column concentrations, respectively. 166 

It assumed that both covariance matrices were diagonal matrices. Since the satellite data used in this study were monthly 167 

averages, the correction factors were also monthly averages for each month from June to September 2019. 168 

2.3.3 Pseudodata test 169 

Before formally inverting the emission inventory with satellite data, a pseudodata test was performed to evaluate the 170 

effectiveness of the inversion approach and to ensure that the joint inversion was accurate within the study area. To 171 

determine the inversion performance more quickly for a given change in emissions, the pseudodata test was randomly 172 
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selected for 10 days (July 1st to July10th) with the first 3 days as the model start-up and excluded from the calculation. The 173 

principle of the pseudodata test was to add a known perturbation to the existing inventory, and the perturbation values for 174 

the test varied randomly from 0.5 to 1.6 (Table S1). The simulated concentrations in the baseline scenario were used as 175 

observed concentrations to invert the perturbed inventory, testing whether the inversion could restore the perturbed 176 

inventory to its original values. 177 

As previously mentioned, the pseudodata test also required the emission-related covariance matrix A𝑖 and the observed 178 

data covariance R𝑖. The a priori errors 𝜎𝑖
𝐸𝑁𝑂𝑥 and 𝜎𝑖

𝐸𝑉𝑂𝐶  for all source regions were assumed to be consistent with the 179 

formal inversion, setting at 50% and 150% respectively. The observed data covariance R𝑖 was determined in the formal 180 

inversion based on the uncertainty of the satellite data product. However, in the pseudodata test, the inversion was used the 181 

simulated concentrations as the observed concentrations, and the overall process was fully controllable. Hence, 𝜒𝑜𝑏𝑠 was 182 

therefore set to 0, and the 𝜎𝑚𝑖𝑛
𝑜𝑏𝑠  for the simulated NO2 and HCHO column concentrations were set to match the formal 183 

inversion at 0.8 × 1015 molecules·cm-2 and 1 × 1015 molecules·cm-2 respectively. 184 

The pseudodata test results for different regions showed in Fig. 2. The inversion approach successfully and simultaneously 185 

reset the NOx and VOCs emissions from the baseline scenario for each region within a few iterations. The corresponding 186 

NO2 and HCHO column concentrations were well reproduced, and the inversion converged closely to the original emission 187 

adjustment factors, indicating that the inversion approach was feasible for this study (Fig. S1). 188 

 189 

 190 
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Figure 2: Pseudodata analysis for region-based DKF inversion for HCHO (top) and NO2 (bottom) column concentrations 191 

3. Results  192 

3.1 Comparisons of emission changes under satellite data constraints 193 

A quantitative analysis of NOx and VOCs emissions was conducted in different regions in China to assess the effects of 194 

inversions on emission estimates (Table 1). The trends in NOx emissions varied across regions. In the North China (NC) 195 

region, the NOx emissions decreased from a prior estimate of 622 tons to 428 tons after joint inversion (a reduction of 196 

31.2%) and further to 412 tons after individual inversion (a reduction of 33.8%). However, in the Central China (CC) 197 

region, despite the decrease in NOx emissions to 462 tons after individual inversion (a reduction of 34.5%), the emissions 198 

increased to 1,029 tons after joint inversion (an increase of 45.9%), indicating that interaction between NOx and VOCs in 199 

the inversion may lead to various estimates of emissions. In terms of VOCs emissions, the regional inversion produced 200 

diverse results as well. In the NC region, the VOCs emissions slightly increased after joint inversion (787 tons, an increase 201 

of 13.6%) but surged to 1,231 tons via individual inversion (an increase of 77.6%), which might have stemmed from the 202 

diversity and complexity of VOCs emission sources. Overall, significant variations observed in both inversed NOx and 203 

VOC emission estimates in different regions under different inversion approaches. The inversed NOx emissions over China 204 

decreased from a priori by 39% and 17% via individual and joint inversions, respectively, and the inversed VOCs emissions 205 

over China increased from a priori by 45% and 55% via individual and joint inversions, respectively. 206 

Table 1. A priori and a posteriori NOx and VOCs emissions in different regions in China 207 

Region 

NOx emissions VOCs emissions 

Posteriori 

(joint) 

Posteriori 

(individual) 
Priori 

Posteriori 

(joint) 

Posteriori 

(individual) 
Priori 

NC 428 412 622 787 1,231 693 

CC 1,029 462 705 2,604 1,465 1,099 

EC 1,408 846 1,172 4,634 3,929 3,059 

SC 613 405 619 1,516 1,473 962 

NWC 740 770 1,776 654 1,250 606 

SWC 899 755 1,382 1,295 1,301 960 

NEC 847 722 937 1,573 1,521 1,021 

Spatial distribution analysis of VOCs emissions (Fig.3) showed that a priori VOCs emissions were concentrated 208 

predominantly in densely populated areas such as the Beijing–Tianjin–Hebei (BTH) and its surrounding areas, the Yangtze 209 

River delta (YRD), and the Pearl River delta (PRD). VOCs emissions in NC and EC regions increased substantially after 210 

individual inversion. Urban VOCs emissions in CC and Eastern China (EC) significantly increased via joint inversion.  211 
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 212 

Figure 3. Spatial distribution of (a) a priori, (b) individual inversed, and (c) joint inversed VOCs emissions with TROPOMI 213 

constraints 214 

In contrast, the spatial distribution of a priori NOx emissions was more dispersed than that of VOCs emissions (Fig.4). 215 

There was a marked decrease in China’s total NOx emissions after individual inversion, while joint inversion has led a 216 

reduction of NOx emissions mostly in Western China.  217 

 218 

Figure 4. Spatial distributions of (a) a priori, (b) individual inversed, and (c) joint inversed NOx emissions with TROPOMI 219 

constraints 220 

 221 

3.2 Effects of inversed emissions on column concentrations 222 

A comprehensive analysis of the NO2 and HCHO column concentrations in China was conducted. The modeled results of 223 

a priori emissions, individual inversed emissions, and joint inversed emissions were compared with the TROPOMI satellite 224 

data to assess the effects of different inversion approaches on column concentrations. The spatial distribution of NO2 225 

column concentrations (Fig. 5) showed that modeled results by the a priori emissions significantly overestimated NO2 226 

levels across central, eastern and northwestern China, with regional maxima up to twice the values observed by TROPOMI. 227 

In contrast, the NO2 column concentrations obtained through joint inversion showed a spatial distribution more consistent 228 

with TROPOMI, aligning with the range of observed concentrations and stabilizing at a maximum of approximately 229 

15molec./cm2. However, there were slight overestimations persisted in Henan and Shandong Province, possibly due to the 230 

application of uniform emission adjustment coefficients in urban areas of the CC and EC regions. On the other hand, a 231 
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marked reduction in NO2 column concentrations across China was led by the individual inversion, particularly pronounced 232 

in the BTH and the YRD regions. 233 

 234 
Figure 5. Spatial distribution of tropospheric NO2 column concentrations from (a) TROPOMI satellite data, (b) a priori 235 

emissions simulation, (c) individual inversed emissions simulation (d) joint inversed emissions simulation for June to September 236 

2019 237 

 238 

The spatial distribution of the HCHO column concentrations (Fig. 6) showed that the HCHO levels observed by TROPOMI 239 

in central EC were considerably higher than those predicted by the a priori emissions, with most areas exceeding 240 

15molec./cm2, whereas the simulated values generally fell below 12molec./cm2. The simulated HCHO column 241 

concentrations were significantly increased by both individual and joint inversions, with the maximum value reaching 242 

approximately 19molec./cm2 after individual inversion, closely matching the peak values from TROPOMI. However, a 243 

tendency towards underestimation remained across the overall distribution. Notably, the HCHO column concentrations in 244 

NC, CC, and EC regions yielded by the joint inversion closely resembled the satellite data, successfully capturing the belt-245 

like distribution characteristic of the TROPOMI HCHO column. Although both individual and joint inversions have 246 

improved the a priori emission estimates, joint inversions have demonstrated a superior alignment with the TROPOMI 247 

observations.  248 

 249 
Figure 6. Spatial distribution of tropospheric HCHO column concentrations from (a) TROPOMI satellite data, (b) a priori 250 

emissions simulation, (c) individual inversed emissions simulation (d) joint inversed emissions simulation for June to September 251 

2019 252 

 253 
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3.3 Effects of inversed emissions on ground-level concentrations 254 

The inverse modeling adjusted NOx and VOCs emissions to bring simulated tropospheric NO2 and HCHO column 255 

concentrations closer to the TROPOMI satellite retrievals. To verify the accuracy of the inversed emission inventory and 256 

its performance on ground-level O3 simulations, ground-monitoring data was used to validate the model outputs. A priori 257 

and a posteriori emissions-based simulations of ground-level O3 concentrations were compared with observed data (Fig.7, 258 

NO2 comparisons are in Supplementary Note 4). The joint inversed emission-based simulation significantly improved the 259 

modeled surface O3 concentrations across China (Fig. 7), particularly in the NEC and CC regions, where a priori and 260 

individual inversed-based emission simulations substantially underestimated O3 concentrations. The model performance 261 

of O3 simulation in the NWC region improved insignificantly, possibly because the spatial distribution of emissions in the 262 

NWC region were concentrated in certain areas, while the adjustments were applied for the entire region. 263 

The model performance statistics were shown in Table 2. The correlation coefficient (R) is generally high for both a priori 264 

and a posteriori emissions-based simulations. (More statistical results are in Figs. S10 and S11.). In most regions, the joint 265 

inversion outperformed the individual inversion and a priori simulation in terms of normalized mean bias (NMB) and 266 

normalized mean error (NME). Especially in the EC region, the joint inversion achieved NMB and NME values of 0.5% 267 

and 8.7%, respectively, significantly lower than the other two simulations, demonstrating the effectiveness of the joint 268 

inversion in reducing model bias and error. Moreover, the joint inversion simulation also showed significant reductions in 269 

mean bias (MB) and mean error (ME), indicating that the model predictions were very close to the actual observations. 270 

The joint inversion simulation had lower root mean square error (RMSE) than that of the individual inversion and a priori 271 

simulation in most regions, showing better performance in improving model accuracy. The observation mean and the model 272 

mean served as an indicator for the model predictive precision. In various regions, the model mean derived from the joint 273 

inversion approach had a closer correspondence to the observation mean, particularly pronounced in the NC, EC, and SC 274 

regions of China, thereby reinforcing the advantage of the joint inversion approach in improving the model performance. 275 
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 276 
Figure 7. Simulated ground-level MDA8 O3 concentrations by a priori, individual inversed, and joint inversed emissions against 277 

the ground monitored data at different regions in China 278 
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Table 2. Model performance of simulated MDA8 O3 concentrations against observations in different regions in China. (R – 279 

correlation, NMB – normalized absolute bias, NME – normalized absolute error, MB – mean bias, ME – mean error, RMSE – 280 

root mean square error, Obs. – observation mean, Mod. – model mean) 281 

  R 
NMB 

(%) 

NME 

(%) 

MB 

(μg/m3) 

ME 

(μg/m3) 

RMSE 

(μg/m3) 

Obs. 

(μg/m3) 

Mod. 

(μg/m3) 

Individual 

NEC 

0.79 -12.9 15.4 -13.2 15.6 19.5 100 87 

Joint 0.79 -9.9 13.7 -10.2 14.0 17.8 100 90 

a Priori 0.79 -13.9 15.6 -14.0 15.8 20.0 100 86 

Individual 

NC 

0.88 -17.7 18.3 -26.4 27.1 29.6 146 119 

Joint 0.86 -10.4 12.8 -16.3 19.4 22.3 146 129 

a Priori 0.87 -17.9 18.0 -26.6 26.7 29.4 146 119 

Individual 

EC 

0.90 -13.9 14.3 -17.8 18.4 20.9 128 110 

Joint 0.89 0.5 8.7 0.2 11.0 13.3 128 128 

a Priori 0.90 -13.5 13.9 -17.5 18.0 20.8 128 110 

Individual 

SC 

0.86 -15.8 16.8 -15.2 16.2 20.2 99 83 

Joint 0.86 -4.7 12.3 -3.7 11.6 14.2 99 95 

a Priori 0.86 -17.9 18.4 -16.9 17.5 21.4 99 82 

Individual 

CC 

0.89 -15.4 15.5 -20.9 21.1 24.5 136 115 

Joint 0.89 5.9 10.7 8.0 14.5 17.3 136 144 

a Priori 0.89 -12.7 13.0 -17.5 17.8 21.4 136 118 

Individual 

NWC 

0.75 -17.1 17.2 -21.0 21.1 22.7 120 99 

Joint 0.67 -15.6 15.9 -19.3 19.6 21.8 120 100 

a Priori 0.77 -14.9 14.9 -18.1 18.2 20.2 120 102 

Individual 

SWC 

0.93 -8.8 11.9 -9.0 11.6 14.6 94 85 

Joint 0.90 -0.4 12.2 -1.1 11.3 14.4 94 93 

a Priori 0.93 -1.4 9.0 -1.9 8.5 10.4 94 92 

3.4 Effects of inversed emissions on O3 sensitivities 282 

To explore the effect of different inversion approaches on the O3 sensitivities, the spatial distributions of the O3 formation 283 

regimes derived from OMI satellite data and various inversion approach simulations were analysed for June to September 284 

2019 (Fig. 8). OMI satellite-based O3 sensitivity showed that most regions in China are predominantly NOx-limited for O3 285 

formation during the summer, with VOC-limited or transitional regime present in some key areas such as BTH, YRD, and 286 

PRD. This pattern is consistent with the findings from Wang et al. 2023. 287 

In addition, the a priori emission simulation results shown in Fig. 8b illustrated a broader range of transitional regimes in 288 

NC and EC, especially in key areas such as BTH, YRD, and PRD, which was more extensive compared to those 289 

demonstrated by the satellite-based results in Fig. 8a. However, O3 sensitivities simulated by the individual inversed (Fig. 290 

8c) and the joint inversed (Fig. 8d) emissions showed significant differences compared to that from a priori emission 291 

simulation. Although some systematic noise in the central region of China were observed in both inversion simulations, 292 

the sensitivities indicated that most regions in China had shifted to NOx-limited regimes. 293 
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 294 

 295 

 296 

Figure 8. Spatial distributions of O3 sensitivities from (a) satellite data-derived, (b) a priori emissions, (c) individual inversed 297 

emissions, and (d) joint inversed emissions simulations for June–September 2019  298 

4. Conclusion and discussion 299 

The findings of this study offered critical insights into the effects of inversion approaches on the top-down NOx and VOCs 300 

emission estimates, and the consequential influences on O3 sensitivity simulations in China. The analysis emphasized the 301 

significant regional variability in the a priori and a posteriori emission estimates, with the NC region demonstrating a 302 

substantial reduction in NOx emissions, reaching 31.2% after joint inversion and further to 33.8% following individual 303 

inversion. However, contrasting results were observed in the CC region, where the joint inversion increased NOx emissions 304 

by 45.9%, while the individual inversion decreased NOx emissions by 34.4%. Although the NC region was observed a 305 

slight increase of VOCs emissions after the joint inversion, individual inversion led to a significant boost of VOCs emission 306 

estimates, indicating that various estimates of emissions may resulted in different inversion approaches, and the mutual 307 

influence of NOx and VOCs cannot be neglected in the inversion process.  308 

Overall, the inversion brought down NOx emissions over China by approximately 30% and brought up VOCs emissions 309 

over China by around 50%. This NOx reduction trend aligns with prior multi-species inversion studies, which consistently 310 

report decreasing NOx emissions over eastern China (Qu et al., 2017; Souri et al., 2020; Wang et al., 2020). Satellite-311 
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constrained inversions, including ours, show steeper declines than a priori inventories, especially in industrial hotspots like 312 

the North China Plain (NCP) and Yangtze River Delta. Notably, Wang et al. (2020) documented smaller national decreases 313 

(5.8%–6.5%) but similarly large localized drops (up to 40% in the NCP). Discrepancies emerge in central and western 314 

China: while our results show local NOx increases, Wang et al. (2020) reported 3%–8% decreases, potentially due to 315 

differences in a priori inventories or satellite data limitations (Qu et al., 2022). For VOCs, our inferred ~50% national 316 

increase is consistent with evidence of widespread underestimation in East Asia. Souri et al. (2020) found a 25% post-317 

inversion rise in the NCP, and Choi et al. (2022) reported a 47% total increase using hybrid inversion methods, supporting 318 

the robustness of VOCs underestimation. 319 

The joint inversion simulation generally outperformed that of individual inversion in reducing model bias and error and 320 

improving the correlation coefficients between model predictions and observations. In EC, the joint inversion simulation 321 

achieved a NMB of 0.5% and a NME of 8.7% compared to the observed data, which were significantly lower than those 322 

of the individual inversion and a prior emission-based simulations. In addition, the joint inversion approach had a closer 323 

alignment with TROPOMI-observed NO2 and HCHO column concentrations, effectively capturing the the belt-like 324 

distribution of HCHO, and with a stabilized maximum column concentration of approximately 15molec./cm² for NO2. The 325 

model performance of ground-level O3 concentration simulations were significantly enhanced by the joint inversion 326 

approach, especially in the regions like NEC and CC, where a priori emission-based simulations significantly 327 

underestimated O3 levels. Furthermore, the O3 formation regimes over China predominantly shifted towards NOx-limited 328 

conditions during the summer using inversed emissions. 329 

Notwithstanding these findings, several limitations warrant consideration: (1) Satellite data uncertainties (coarse resolution 330 

masking urban sources; monthly TROPOMI averaging obscuring short-term variability) coupled with inversion sensitivity 331 

constraints; (2) Chemical interference (e.g., NH3 uncertainty propagating NOx errors via nitrate chemistry); (3) Temporal 332 

and spatial mismatches in a priori inventory leading to biased adjustments; (4) Targeting total VOC emissions rather than 333 

individual species may affect model simulations of secondary organic aerosols, thereby impacting inversion accuracy. 334 

To sum up, this study emphasized the critical role of inversion approaches in refining emission estimates and enhancing 335 

the accuracy of atmospheric models. Although the joint DKF inversion approach appears to offer several advantages over 336 

individual DKF inversion, it is crucial to continue exploring and refining these methods to address the remaining 337 

uncertainties and improve our understanding of air pollution dynamics. Furthermore, we quantitatively assess the causal 338 

impacts of these emission adjustments on regional O₃ sensitivity regime transitions. Future research could focus on 339 

integrating various observational data sources into the inversion process, such as satellite data, ground-based and aircraft 340 

https://doi.org/10.5194/egusphere-2025-2687
Preprint. Discussion started: 27 August 2025
c© Author(s) 2025. CC BY 4.0 License.



17 

 

measurements, to further enhance the accuracy and reliability of inversion-derived emission estimates and their 341 

implications for air quality management and policy-making.  342 
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