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Abstract. Determining the effective permittivity of snow and firn is essential for the accurate estimation of liquid water amount 

(LWA). Here, we compare ten commonly used microwave dielectric mixing models for estimating LWA in wet snow and firn 

using L-band radiometry. We specifically focus on the percolation zone of the Greenland Ice Sheet (GrIS), where the average 

volume fraction of liquid water is approximately 6 percent. We used L-band brightness temperature (TB) observations from 

the NASA Soil Moisture Active Passive (SMAP) mission in an inversion-based framework to estimate LWA, applying 25 

different dielectric mixing formulations in forward simulation. We compared the effective permittivities of the mixing models 

over a range of conditions and evaluated their impacts on the LWA retrieval. We also compared the LWA retrievals to the 

corresponding LWA from two state-of-the-art Surface Energy and Mass Balance (SEMB) models. Both SEMB models were 

forced with in situ measurements from automatic weather stations (AWS) of the Programme for Monitoring of the Greenland 

Ice Sheet (PROMICE) and Greenland Climate Network (GC-Net) located in the percolation zone of the GrIS and initialized 30 

with relevant in situ profiles of density, stratigraphy, and sub-surface temperature measurements. The results show that the 

mixing models produce substantially different real and imaginary parts of the dielectric constant. The choice of mixing model 

has a, significantly impacting on the LWA retrieved from the TB. The correspondence with the SEMB-derived LWA varied 

by model and site, ; with correlation coefficients ranging from 0.67 to 0.98 and RMSD values between 5.4 and 23.9 mm. 

Overall, the power law-based models demonstrated better performance the Sihvola power-law based mixing model showed an 35 
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overall better performance than the other models for 2023 melt season. The analysis facilitates supports an appropriate 

informed choice selection of dielectric mixing models on thefor improved LWA retrieval algorithmaccuracy.  

1 Introduction 

Surface melting and consequent runoff/refreezing play an increasingly major role in the Greenland Ice Sheet (GrIS) surface 

mass balance (SMB) and its contribution to the global sea-level rise (Greene et al., 2024; Khan et al., 2022; Khan et al., 2015; 40 

Mouginot et al., 2019; Otosaka et al., 2023; Shepherd et al., 2020). The column-integrated amount of liquid water (LWA) at 

the surface and percolated within layers of the surface snowpack is a key variable for understanding processes related to 

meltwater on the ice sheet surface, and is thus an important quantity for diagnostic study, modeling, and prediction. Currently, 

there is no direct means of measuring LWA in the ice sheet. In situ AWS provides surface meteorological observations for 

limited locations over the ice sheet, which are translated to LWA estimates using coupled surface energy balance and sub-45 

surface hydrology and heat transfer models (Fausto et al., 2021; Samimi et al., 2021; Vandecrux et al., 2020). Regional climate 

models provide pan-ice sheet estimates of LWA (Fettweis et al., 2020), but uncertainty results from the significant differences 

in the configuration and physical process representations in these models (Thompson-Munson et al., 2023; Fettweis et al., 

2020; Vandecrux et al., 2020; Verjans et al., 2019). Spaceborne microwave radiometers have also been used for large-scale 

mapping of polar ice sheet melt (Picard et al., 2022; Tedesco, 2007; Tedesco et al., 2007; Abdalati and Steffen, 1997; Mote 50 

and Anderson, 1995; Zwally and Fiegles, 1994). However, shallow penetration into the wet snow restricts the conventional 

high frequency radiometers (i.e., greater than 6 GHz) to providing only surface and near-surface binary melt status, and not 

the actual volumetric amount of liquid water in the snow/firn (Leduc-leballeur et al., 2025; Colliander et al., 2022a, b, 2023; 

Mousavi et al., 2022). 

The higher penetration of L-band radiometry offers a promising new tool for quantifying the total surface-to-subsurface 55 

LWA in the firn, in addition to providing the areal extent and duration of seasonal surface snow melt (Houtz et al., 2019, 2021; 

Mousavi et al., 2021; Schwank and Naderpour, 2018; Colliander et al., 2022a; Colliander et al., 2022b; Miller et al., 2020a, 

2022a, b; Mousavi et al., 2022). Houtz et al. (2019 and 2021) used L-band brightness temperature (TB) from the European 

Space Agency’s Soil Moisture and Ocean Salinity (SMOS) mission for simultaneous estimation of snow liquid water content 

and density in the GrIS. They used the Microwave Emission Model of Layered Snowpacks Version 3 (MEMLS V3; Mätzler 60 

and Wiesmann, 2012) with L-band specific modifications (LS-MEMLS; Schwank et al., 2014) in an inversion-based retrieval 

framework. By default, MEMLS V3 uses the Mätzler (1996) and Mätzler and Wiesmann, (2007) formulations for dielectric 

mixing of dry and wet snow, respectively. Naderpour et al. (2021) used the same algorithm to quantify LWA at the Swiss 

Camp location (70°N, 49°W) with  close-range (CR) single-angle L-band microwave radiometer measurements. Mousavi et 

al. (2021) developed an L-band specific snow/firn radiative transfer model that uses the Mätzler (2006) and Ulaby et al. (2014) 65 

dielectric mixing model for dry and wet snow, respectively, to estimate LWA. Hossan et al. (2024) used the same approach to 

quantify and validate the LWA with two surface energy balance models forced with in situ observations and reanalysis data 
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products. Additionally, Moon et al. (2024) compared the Hossan et al. (2024) retrieval with LWA values derived from 

subsurface thermal measurements. The study showed mixed correspondence of the L-band retrievals to the alternative LWA 

estimates.  70 

The L-band TB responds to the real and imaginary parts of the firn dielectric constant, which increases markedly with 

volumetric liquid water content (snow wetness or the volume fraction of liquid water in the snow mixture, 𝑣𝑤  hereafter, 

expressed as a percentageLWC) in the firn (Picard et al., 2022; Samimi et al., 2021; and references therein). The measured 

dielectric constant is translated into LWA using a model between snow 𝑣𝑤LWC and the dielectric constant. The formulation 

of the effective dielectric constant of the ice, air, and water mixture is key to accurately quantifying LWA. As it is independent 75 

of the radiometer measurement, it adds an uncertainty component to the LWA retrieval that is solely dependent on the accuracy 

of this dielectric mixing model. Picard et al. (2022) demonstrated large differences in commonly used wet snow dielectric 

mixing models for both the real and imaginary parts.  

In this manuscript, we assess the performance of ten commonly used microwave dielectric mixing models in quantifying 

the seasonal LWA using L-band (1.4 GHz) enhanced-resolution (rSIR) TB observations data products from the Soil Moisture 80 

Active Passive (SMAP) mission. For this, we confine our attention to the GrIS percolation zone where the average volume 

fraction liquid water inclusions in the snow/firn environment is within about 6 percent of the total volume (Colbeck, 1974; 

Coléou and Lesaffre, 1998), and L-band TB during melting is mainly dominated by absorption (increasing trend compared to 

frozen season; Hossan et al., 2024).  

2 Methods 85 

Snow and firn (the transitional snow that survivsurvivesed at least a summer season) is generally a three-phase porous dielectric 

mixture of air, ice, and liquid water, where dry snow is a special case having no liquid water. Here we briefly discuss the 

dielectric properties of snow and firn.  

2.1 Dielectric Mixing Formulas 

Dielectric mixing rules attempt to approximate tThe effective macroscopic dielectric constant (permittivity) 𝜀𝑒𝑓𝑓 of snow/firn 90 

mixture that relates the average electric flux density 𝑫  to the incident or emitting electric field 𝑬 and the average polarization 

𝑷 of the mixer (Sihvola, 1999; Jones and Friedman, 2000), 

𝑫 = 𝜀𝑒𝑓𝑓𝑬 =  𝜀𝑒𝑬 + 𝑷            (1) 

wWhere 𝜀𝑒 is the complex dielectric constant of the background medium. The polarization term, 𝑷, represents the number of 

dipole moments per unit volume in the mixture and is a function of inclusion geometry.  𝜀𝑒𝑓𝑓 thus, depends on the individual 95 

dielectric constant of the constituent materials, their respective volume fractions, and their size, shape, and orientations. For a 
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two phase mixture,The a generalized mixing formula can be derived from the Maxwell Garnett (MG) mixing rule (Garnett, 

1904), 

𝜀𝑒𝑓𝑓 = 𝜀𝑒 + 3𝑣𝜀𝑒
𝜀𝑖 − 𝜀𝑒

𝜀𝑖 + 2𝜀𝑒 − 𝑣(𝜀𝑖− 𝜀𝑒)
            (2) 

where 𝜀𝑒  and 𝜀𝑖  is the arecomplex dielectric constants of the background environment (host) and inclusion (guest), 100 

respectively, and 𝑣  is the volume fraction of the inclusion. However, tThe fundamental MG rule considers only dilute 

concentration of spherical inclusions (𝑣 ≪ 1) (Jones and Friedman, 2000) and assumes homogeneous inclusionsmixtures, 

ignoring the second-order effects due to the mutual interactions between the inclusions. When the inclusions are arbitrarily 

spread within the host material, the fields within the inclusions are a function of the mutual interactions of the inclusions 

(through their polarization fields 𝑷). The interactions among the inclusions are dependent on their relative geometry and 105 

alignment, which are both taken into account by a parameter called the depolarization factor. For an ellipsoid, the 

depolarization factor along its u axis is given by (Jones and Friedman, 2000; Sihivola, 1999), 

𝑁𝑢 = 
𝑎𝑏𝑐

2
∫

𝑑𝑠

(𝑠 + 𝑢2) √(𝑠 + 𝑎2)(𝑠 + 𝑏2)(𝑠 + 𝑐2)

∞

0
   𝑢 = 𝑎, 𝑏, 𝑐         (3) 

where 𝑁𝑎 + 𝑁𝑏 + 𝑁𝑐 = 1. Aspect ratios of the axial dimensions (𝑢) of the particle describe the shape of the particle, 𝑎: 𝑏 = 1 

defines the spherical inclusions whereas 𝑎: 𝑏  < 1 and 𝑎: 𝑏   > 1 describe oblate and prolate inclusions, respectively. The 110 

depolarization factor 𝑁𝑢 is commonly included in the more general mixing formula described below. 

The Bruggeman mixing rule (Long and Ulaby, 2015; Sihvola, 1999) considers mixing phases to be symmetric to 

describe the effective permittivity of a mixture as an implicit function of unknown effective permittivity of the mixture, which 

for the case of randomly oriented ellipsoidal inclusions (Sihvola, 1999) reads as, 

𝜀𝑒𝑓𝑓 = 𝜀𝑒 +
𝑣

3
(𝜀𝑖  −  𝜀𝑒) ∑ [

𝜀𝑒𝑓𝑓

𝜀𝑒𝑓𝑓 + 𝑁𝑢 (𝜀𝑖−𝜀𝑒𝑓𝑓)
]   𝑢=𝑎,𝑏,𝑐         (4) 115 

Polder and van Santen (1946) (PVS hereafter) derived similar implicit formulation for a two-phase mixture with 

randomly oriented ellipsoidal inclusions. Loor (1968) extended the work as follows, 

𝜀𝑒𝑓𝑓 = 𝜀𝑒 +
𝑣

3
(𝜀𝑖  −  𝜀𝑒) ∑ [

1

1 + 𝑁𝑢 (
𝜀𝑖
𝜀∗
−1)

]   𝑢=𝑎,𝑏,𝑐                (5) 

where ε∗is the effective dielectric constant of the region surrounding inclusions. For 𝑣 ≤ 0.1, ε∗ ≈  𝜀𝑒  and for higher value of 

𝑓, ε∗ approaches to 𝜀𝑖 (Loor, 1968).  120 

Another widely used mixing rule is the Coherent Potential (CP here after) formula (Tsang et al., 1985), which for the 

case of randomly oriented ellipsoidal inclusions is given by (Sihvola, 1999), 

𝜀𝑒𝑓𝑓 = 𝜀𝑒 +
𝑣

3
(𝜀𝑖  −  𝜀𝑒) ∑ [

(1+ 𝑁𝑢)𝜀𝑒𝑓𝑓− 𝑁𝑢𝜀𝑒

𝜀𝑒𝑓𝑓 + 𝑁𝑢(𝜀𝑖−𝜀𝑒𝑓𝑓)
]   𝑢=𝑎,𝑏,𝑐         (6) 
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For dilute inclusion (𝑣 ≪ 1), all of these formulas (Eq. 4 - 6) provide the same results as the MG mixing rule (Sihvola, 

1999). However, as 𝑣 increases the MG formula usually predicts 𝜀𝑒𝑓𝑓 closer to 𝜀𝑒 (dielectric constant of host or background 125 

environment) which is lower than that estimated by both the PVS and CP formulations. This is because, as mentioned above, 

MG neglects the second-order effects due to the mutual interactions between neighbouring inclusions. The CP formula 

considers the effective medium instead of the background to find the local field and, therefore, estimates higher 𝜀𝑒𝑓𝑓 compared 

to 𝜀𝑒. The PVS formula, on the other hand, represents a balance between MG and CP, as it treats both the inclusions and the 

surrounding environment symmetrically, resulting in an equal influence from the permittivity of the two phases  (Jones and 130 

Friedman, 2000; Sihivola, 1999). However, a computational difficulty of PVS and CP formulae is that they are both implicit 

in 𝜀𝑒𝑓𝑓.  

Tinga et al. (1973) derived an explicit formula for 𝜀𝑒𝑓𝑓  by considering a two-phase mixture composing of two 

randomly oriented confocal ellipsoids with an inner ellipsoid representing the inclusion and an outer ellipsoidal shell 

representing the host material.  135 

𝜀𝑒𝑓𝑓 = 𝜀𝑒 +
𝑣

3
(𝜀𝑖  −  𝜀𝑒) ∑ [

1

1 +(𝑁𝑢2− 𝑓𝑁𝑢1) (
𝜀𝑖
𝜀𝑒

−1)
]   𝑢=𝑎,𝑏,𝑐                                          (7) 

where 𝑁𝑢2 and 𝑁𝑢1 are the depolarization factors of the inner and outer ellipsoids, respectively. It is noted that for spherical 

inclusions ( 𝑁𝑢2 = 𝑁𝑢1 = 
1

3
), Eq. 7 also reduces to the MG mixing rule, but any deviations from the spherical shape increase 

the 𝜀𝑒𝑓𝑓 if 𝜀𝑖 > 𝜀𝑒 (and vice versa). 

Another group of mixing formulas follows power-law relations, where a certain power of effective permittivity of a 140 

multi-phase mixture relates to the linear combination of components raised to the same power and weighted by their respective 

volume fractions,  𝑣  (Sihvola et al., 1985; Sihvola, 1999). These exponential models do not explicitly consider the 

microstructure shapes (i.e. through depolarization factor, N), but) but take into account the higher order mutual interactions 

through the power-law averaging. The general form of these models takes the form, 

𝜀𝑒𝑓𝑓
𝛽  =  ∑  𝑣𝑗  𝜀𝑗

𝛽 𝑗            (8) 145 

where 𝑣𝑗  and 𝜀𝑗  are the volume fraction and dielectric constant of the jth constituent, respectively, and ∑  𝑣𝑗 = 1 𝑗 . The 

exponent 𝛽 controls the degree of nonlinearity of the model (Sihvola et al., 1985), which is bounded by  0 < 𝛽 ≤ 1. The lower 

the value of 𝛽, the higher the influence of the background (dominant volume fraction).  

The effective dielectric constant of a mixture is also calculated in the frequency domain using dispersion models. In 

case of inclusions with permanent electric dipole moments, like liquid water in wet snow, the Debye relaxation model is best 150 

suited (Hallikainen et al., 1986; Sihvola, 1999). Wet snow shows a distinct Debye relaxation spectrum in the microwave range 

(Ulaby and Long, 2014). The Debye-like semi-empirical models are of the form (Hallikainen et al., 1986), 
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𝜀′𝑒𝑓𝑓 =  𝐴 + 
𝐵𝑣𝑤

𝑥

1+ (
𝑓

𝑓0
)2

            (9.1) 

𝜀′′𝑒𝑓𝑓 = 
𝐶(

𝑓

𝑓0
)𝑣𝑤

𝑥

1+ (
𝑓

𝑓0
)
2                                  (9.2) 

where 𝜀𝑒𝑓𝑓′ and 𝜀𝑒𝑓𝑓′′ are the real and imaginary parts of the effective dielectric constant of the mixture and 𝑣𝑤 is the volume 155 

fraction of liquid water in snow. 𝑓 and 𝑓0 are the operational and relaxation frequencies respectively and A, B, C, and x are 

constants that are determined empirically by fitting experimental data. 

There are numerous models and formulas in the literature describing the dielectric behaviour of mixtures. 

Comprehensive reviews on the topic can be found in Sihvola (1999) and the references therein. Many of these formulas are 

special cases or modifications of the above basic mixing rules. Some others are empirical in nature. In the following section, 160 

we will briefly describe some specific wet snow mixing models that we evaluated in this study. 

2.2 Dielectric Constant of Dry Snow 

Dry snow is a two-phase mixture of ice and air. Since the real part of the dielectric constant of ice, 𝜀𝑖
′, is independent of 

frequency and almost independent of temperature, it is assumed that the real part of the dielectric constant of dry snow, 𝜀𝑑𝑠
′  is 

also independent of both frequency and temperature (Hallikainen et al., 1986). 𝜀𝑑𝑠
′  is thus fully determined by the density of 165 

the dry snow (Denoth, 1989; Denoth et al., 1984; Tiuri et al., 1984). However, the imaginary part of ice dielectric constant, 

𝜀𝑖
′′, and thus the dry snow 𝜀′′𝑑𝑠 are strongly sensitive to both frequency and temperature (Ulaby and Long, 2014). With known 

dielectric constants of air and ice, the above dielectric mixing models, such as two phase PVS mixing rule, can be applied to 

find the effective dielectric constant of dry snow. Empirical formulations based on experimental data also provide good results 

(e.g.,  Mätzler, 2006).  170 

For the real part of dry snow permittivity, we follow the empirical relation presented in Mätzler (2006), 

 

𝜀′𝑑𝑠 = {
1 + 1.4667𝑣𝑖 + 1.435𝑣𝑖

3         𝑓𝑜𝑟 0 ≤ 𝑣𝑖 ≤ 0.45

(1 + 0.4759𝑣𝑖)
3                                    𝑓𝑜𝑟 𝑣𝑖 ≥ 0.45  

                          (108) 

where 𝑣𝑖 is the volume fraction of ice in snow given by the ratio of snow and ice density.  

FAnd for the imaginary part, 𝜀′′𝑑𝑠, we follow the Hallikainen et al., (1986) formulation based on Tinga mixing model 175 

(Eq. 7), 

𝜀′′𝑑𝑠 = 
0.34𝑣𝑖𝜀′′𝑖

(1−0.42𝑣𝑖)
2 

           (119) 

where 𝜀′′𝑖  is the imaginary part of the dielectric constant of ice determined based on Mätzler (2006)..  
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Various formulations are available for the effective dielectric constant of dry snow. Since our focus in this manuscript 

is wet snow mixing models, we apply the same dry snow model (Eqs. 8-9)(Mätzler, 2006) in all following cases for the mixture 180 

where the host is dry snow.              

2.3 Dielectric Constant of Wet Snow 

In this subsection, we discuss ten commonly used dielectric mixing models for estimating the complex dielectric constant of 

wet snow. Mätzler model (Mätzler and Wiesmann, 2012; used in MEMLS V3) uses the MG rule to compute the effective 

dielectric constant of wet snow as a two-phase mixture of liquid water inclusions in a dry snow background (host) with 185 

experimentally determined depolarization factors 𝑁𝑎 = 0.005, 𝑁𝑏 = 𝑁𝑐 = 0.4975 (representing a prolate spheroidal shape of 

the inclusion) from Hallikainen et al. (1986) and Matzler et al. (1984), 

𝜀𝑒𝑓𝑓 =  
(1−𝑣𝑤)𝜀𝑑𝑠+ 𝑣𝑤𝜀𝑤𝐾

(1−𝑣𝑤)+ 𝑣𝑤𝐾
           (12.1) 

𝐾 =   
1

3
 (𝐾𝑎 + 𝐾𝑏 + 𝐾𝑐)                                                      (12.2) 

𝐾𝑢 =  
𝜀𝑑𝑠

𝜀𝑑𝑠 + 𝑁𝑢 (𝜀𝑤 − 𝜀𝑑𝑠) 
    𝑢 = 𝑎, 𝑏, 𝑐                                               (12.3) 190 

where 𝜀𝑤 is the dielectric constant of pure water which is determined from Liebe et al. (1991) relaxation formula.2.3.5 Tinga 

Model 

The Tinga model (Tinga et al., 1973)  also considers wet snow as a three-phase mixture (air-snow-liquid water) where 

air is the background and water is a spherical shell surrounding another confocal shell (ice). The effective dielectric constant 

is then determined following Eq. 7.  195 

 

2.3.1 Debye-like Model 

The frequency dependence of the wet snow mixture is highly influenced by the dispersion property of water 

(Hallikainen et al., 1986; Sihivola, 1999). It shows a distinct Debye relaxation spectrum in the microwave range (Ulaby and 

Long, 2014). Hence a Debye-like semi-empirical model is often used to describe the polarization response of liquid water in 200 

wet snow. The models are of the form (Hallikainen et al., 1986), 

 

𝜀′𝑒𝑓𝑓 =  𝐴 + 
𝐵𝑣𝑤

𝑥

1+ (
𝑓

𝑓0
)2

           (10.1) 

𝜀′′𝑒𝑓𝑓 = 
𝐶(

𝑓

𝑓0
)𝑣𝑤

𝑥

1+ (
𝑓

𝑓0
)
2                                 (10.2) 
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where 𝜀𝑒𝑓𝑓′ and 𝜀𝑒𝑓𝑓′′ are the real and imaginary parts of the effective dielectric constant of the mixture and where 205 

𝑣𝑤 is the volume fraction of liquid water in snow. 𝑓 and 𝑓0 are the operational and relaxation frequencies respectively and A, 

B, C, and x are constants that are determined empirically by fitting experimental data. One such approach (Hallikainen et al., 

(1986) first proposed a Debye-like model for wet snow recommends with the following expression for the constants in Eq. 9.  

𝐴 = 1 + 1.83 𝜌𝑑𝑠 + 0.02 𝐴1𝑣𝑤
1.015 + 𝐵1           (131.1) 

𝐵 = 0.073 𝐴1                                                                        (131.2) 210 

𝐶 = 0.073 𝐴2                                                                        (131.3) 

𝑥 = 1.31                                                                                     (131.4) 

𝑓0 = 9.07 GHz                                                                      (131.5) 

where for the original Debye-like model, 𝐴1 = 𝐴2 = 1, and 𝐵1 = 0. 

2.3.2 Modified Debye-like Model (Hallikainen et al., 1986) 215 

Hallikainen et al., (1986) derived the expressions below for the constants 𝐴1, 𝐴2, and 𝐵1 in Eq. 113 as a function of 

frequency by fitting Eq. 131 to the field measurements of  volumetric 𝑣𝑤LWC with a range 0 - 12 percent, a density range of 

0.09 - 0.42 g cm−3, a temperature range of −15°C - 0°C, grain radius covering 0.5 - 1.5 mm at the frequency range of 3 to 37 

GHz (see Hallikainen et al., 1986). 

𝐴1 = 0.78 + 0.03𝑓 − 0.58 × 10−3𝑓2         (124.1) 220 

𝐴2 = 0.97 −  0.39𝑓 × 10−2 + 0.39 × 10−3𝑓2                    (124.2) 

𝐵1 = 0.31 − 0.05𝑓 + 0.87 × 10−3𝑓2                                   (124.3) 

where f is in GHz. Here we test the applicability of this model for L-band and full possible density range in the percolation 

zone of the GrIS. For 𝑓 = 1.4 GHz (L-band), the values of 𝐴1, 𝐴2, and 𝐵1 are 0.82, 0.96, and 0.24 respectively. Hereafter, we 

refer to this model as Hallikainen model for simplicity.  225 

2.3.3 Modified Debye-like Model (Ulaby et al., 2014) 

Ulaby et al. (2014) used the same formulation (Eqs. 13 1- 124) from Hallikainen et al., (1986), except they scaled the 𝐴 

parameter in Eq. 131.1 (i.e., the real part of the 𝜀𝑒𝑓𝑓) with the 𝐴1 factor (<1) from Eq. 124.1, as follows. The imaginary part, 

𝜀′′𝑒𝑓𝑓 , of Ulaby et al. (2014) and Hallikainen et al. (1986) remained the same. Here, this model is referred to as the ‘Ulaby 

model’. 230 

, 



9 

 

𝐴 = 𝐴1(1 + 1.83 𝜌𝑑𝑠 + 0.02 𝐴1𝑣𝑚𝑤𝑣
1.015) +  𝐵1                        (153) 

The imaginary part, 𝜀′′𝑒𝑓𝑓 , of Ulaby et al. (2014) and Hallikainen et al. (1986) remained the same. Here, this model 

is referred to as the ‘Ulaby model’. 

2.3.4 MEMLS Version 3 (MEMLS V3) 235 

MEMLS V3 uses the MG rule to compute the effective dielectric constant of wet snow as a two-phase mixture of liquid water 

inclusions in a dry snow background (host). It uses experimentally determined depolarization factors 𝑁𝑎 = 0.005, 𝑁𝑏 = 𝑁𝑐 = 

0.4975 (a prolate spheroidal shape of the inclusion) from Hallikainen et al. (1986) and   Matzler et al. (1984) 

𝜀𝑒𝑓𝑓 =  
(1−𝑣)𝜀𝑑𝑠+ 𝑣𝜀𝑤𝐾

(1−𝑓)+ 𝑣𝐾
          (14.1) 

𝐾 =   
1

3
 (𝐾𝑎 + 𝐾𝑏 + 𝐾𝑐)                                                     (14.2) 240 

𝐾𝑢 =  
𝜀𝑑𝑠

𝜀𝑑𝑠 + 𝑁𝑢 (𝜀𝑤 − 𝜀𝑑𝑠) 
    𝑢 = 𝑎, 𝑏, 𝑐                                              (14.3) 

 

where 𝜀𝑤 is the dielectric constant of pure water. Here, this model is referred to as MEMLS3. 

2.3.5 Tinga Model 

The Tinga model (Tinga et al., 1973) considers wet snow as a three-phase mixture (air-snow-liquid water) where air is the 245 

background and water is a spherical shell surrounding another confocal shell (ice). The effective dielectric constant is then 

determined following Eq. 7.  

2.3.6 Colbeck Model 

Based on observations, Colbeck (1980) revised the PVS mixing theory to derive the dielectric constant of wet snow 

for three distinct cases. The salient feature of this model is that it permits air, ice, and liquid water to form the continuum 250 

environment depending on their volume fraction. When both the density and liquid inclusion are low (𝜌𝑑𝑠< 550 kg m−3 and 

𝑣𝑤LWC < 7 % percent), air is the continuous environment throughout the medium. This regime (Colbeck (1980) case I) called 

the ‘pendular regime’ where ice grains form clusters and isolated liquid water resides in the fillets and veins of the grain 

contacts, describes well the liquid water inclusion in the percolation zone of GrIS. The shape of the fillets (thin and longer) 

and veins (shorter) is represented by their aspect ratio (𝑛 =   
𝑐

𝑎
 =   

𝑐

𝑏
), which can lie between 1 (spherical) and 10 (needle 255 

shaped). However, comparing with the measurements, Colbeck (1980) suggested an average value of 𝑛 = 3.5 for this case 

(𝑣𝑤LWC < 7 % percent).  
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As the liquid water inclusions increase beyond 7 percent and there is enough pore space (𝜌𝑑𝑠< 550 kg m−3 and thus 

porosity, ɸ > 0.4), grain clusters break down, and a transition from the pendular regime to another regime called the ‘funicular 260 

regime’ occurs when liquid water becomes continuous throughout the pore space containing isolated air bubbles and rounded 

ice grains. Although other studies (Denoth, 1982, 1989, 1994; Denoth et al., 1984) report that this transition can occur at lower 

𝑣𝑤LWC (< 7 % percent), we do not consider this case (Colbeck (1980) case II) as it is not representative of typical melt 

conditions in the percolation zone. It may represent saturated snow or slush in the GrIS ablation zone.                         

However, if the density is high (𝜌𝑑𝑠  > 550 kg m−3, high ice fraction and thus low porosity, ɸ < 0.4), ice forms the 265 

continuum medium and air becomes spherical isolated bubbles, while liquid water still resides in the fillets and veins of the 

grain clusters for low liquid inclusions (𝑣𝑤LWC < 7 % percent). This case (Colbeck, 1980; case III) is also relevant to 

percolation zone firn, especially at depth below the seasonal snow. Therefore, we implement Colbeck (1980) cases I (pendular 

regime) and III (low porosity) using 3 component PVS mixing theory in the following form.    

 270 

        𝜀𝑒𝑓𝑓 = 
Three-phase PVS mixing with air background   𝜌𝑑𝑠  ≤ 550 kg/𝑚3 

       (165.1) 
Three-phase PVS mixing with ice background 𝜌𝑑𝑠  >  550 kg/𝑚3 

For n = 3.5, we used m = 0.072 following Picard et al. (2022), where m is the ratio of the depolarization factors.  

𝑚 =  
𝑁𝑐

𝑁𝑎
 =   

𝑁𝑐

𝑁𝑏
           

  (156.21) 

 2.3.7 Tiuri Model 

Tiuri et al. (1984) used experimental data to measure the complex dielectric constant of wet snow for frequencies 859 MHz – 275 

12.6 GHz. Their results suggest that the complex dielectric constant of snow is largely unaffected by the snow structure. In 

dry snow, the dielectric constant is primarily determined by the density. For wet snow, both the imaginary part (𝜖𝑠
′′) and the 

increase in the real part due to liquid water (𝜖𝑠′) show a similar dependence on volumetric wetness, which were empirically 

modeled as, 

𝜖𝑠
′ = 1 + 1.7 𝜌𝑑 + 0.7 𝜌𝑑

2 + 8.7 𝑊 + 70 𝑊2                                            (16.1) 280 

𝜖𝑠′′ =
𝑓

109
(0.9 𝑊 + 7.5 𝑊2),  𝑓 = 500 − 1000 𝑀𝐻𝑧       (16.2) 

Among the power-law based models, we considered following three well known models. 2.3.8 Birchak Model 

The Birchak et al. (1974) model follows a form of a widely usesd power-law relation (Eq. 8) withan exponent, 𝛽 = 
1

2
 in the 

power-law relation of Eq. 8, and hence this model is also known as ‘refractive mixing model’. Sihvola et al. (1985) used a 

similar model based on Cummings (1952) results and obtained a best fit with 𝛽 = 0.4. The Looyenga model (Looyenga, 1965) 285 
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also follows the power-law relations of the form in Eq. 8. Specifically, it uses 𝛽 = 
1

3
. We will refer these models as Birchak, 

Sihvola, and Looyenga models, respectively.  

𝜀𝑒𝑓𝑓
𝛽 =  (1 − 𝑓)𝜀𝑒

1

2 +  𝑓𝜀𝑖
1

2                                                                   (17) 

To determine the effective dielectric constant of wet snow, Eq. 178 can be extended for a three-component mixing 

with respective volume fraction, but we used Mätzler (2006) model PVS mixing of air and ice for the dielectric mixing offor 290 

dry snow, then used Eq. 178 for water inclusion in a dry snow environment. 

 Aside from above models, we considered purely empirical 2.3.9 Sihvola Model 

Sihvola et al. (1985) used an exponential model based on (Cummings, 1952) results and obtained a best fit with 𝛽 = 0.4 (in 

Eq. 8). For wet snow as a three-component mixture, we considered water inclusion in a dry snow environment (i.e., two phase 

mixture), where the dry snow dielectric constant was derived using PVS mixing of air and ice.  295 

𝜀𝑒𝑓𝑓
𝛽 =  (1 − 𝑓)𝜀𝑒

0.4 +  𝑓𝜀𝑖
0.4                                                     (18) 

2.3.10 Looyenga Model 

The Looyenga model (Looyenga, 1965) also follows the power-law relations of the form in Eq. 8. Specifically, it uses 𝛽 = 
1

3
, 

𝜀𝑒𝑓𝑓
 
1

3 =  (1 − 𝑓)𝜀𝑒
 
1

3 +  𝑓𝜀𝑖
 
1

3                                                                                 (19) 

Similar to the Birchak model, we used PVS mixing rule to determine dry snow dielectric constant, which is used as the host 300 

medium in Eq. 19 for liquid water inclusions. 

Tiuri et al. (1984) model that used experimental data to measure the complex dielectric constant of wet snow for frequencies 

859 MHz – 12.6 GHz. Their results suggest that the complex dielectric constant of snow is largely unaffected by the snow 

structure. In dry snow, the dielectric constant is primarily determined by the density. For wet snow, both the imaginary part 

(𝜀𝑠
′′) and the increase in the real part due to liquid water (𝜀𝑠′) show a similar dependence on volumetric wetness, which were 305 

empirically modelled as, 

𝜀𝑠
′ = 1 + 1.7 𝜌𝑑 + 0.7 𝜌𝑑

2 + 8.7 𝑣𝑤 + 70 𝑣𝑤
2                                             (17.1) 

𝜀𝑠′′ =
𝑓

109
(0.9 𝑣𝑤 + 7.5 𝑣𝑤

2),  𝑓 = 500 − 1000 𝑀𝐻𝑧       (17.2) 

 

A summary of the above-mentioned wet snow dielectric mixing models is given in Table 1. 310 
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Table 1: Salient features of the ten selected dielectric mixing models. 

Models Mixing rule Host Key parameters References 

MätzlerMEMLS V3 
Maxwell Garnett 

(MG) 
Dry snow 

Depolarization factors 

𝑁𝑎 = 0.005, 𝑁𝑏 = 𝑁𝑐 = 0.4975 

Mätzler and 

Wiesmann, (2012) 

Tinga 
Tinga-Voss-

Blossey (TVB) 
Air 

Multi-phase mixture of 

randomly dispersed confocal 

ellipsoids described by  

the depolarization factors of 

the inner and outer ellipsoids. 

Tinga et al., (1973) 

Debye-like 

Bruggeman Symmetric 

Eq. 910 – 11, with 𝐴1 =

 𝐴2 = 1, and 𝐵1 = 0 (Eq. 13) 

Hallikainen et al. 

(1986) 

Hallikainen 

(Modified Debye-

like) 

Eq. 910 – 11, with 𝐴1, 𝐴2, 

and 𝐵1 were determined from 

empirical fit (Eq. 142) 

Hallikainen et al. 

(1986) 

Ulaby (Modified 

Debye-like) 

Same as Hallikainen et al., 

(1986), with scaled A by Eq. 

153 

Ulaby et al., (2014) 

Colbeck 
Polder–van Santen 

(PVS) 

Air, or ice, or 

liquid water 

depending on their 

volume fraction 

Pendular regime and low 

porosity cases defined by Eq. 

165, with aspect ratio, n = 3.5 

Colbeck (1980) 

Picard et al. (2022) 

Birchak Power-law relation 

(Eq. 8), used with 

PVS mixing 

Dry snow 

𝛽 = 
1

2
 

Birchak et al. 

(1974) 

Sihvola 𝛽 = 0.4 Sihvola et al. (1985) 

Looyenga 𝛽 = 
1

3
 Looyenga, (1965) 

Tiuri Empirical fit Dry snow 
Assumed to be independent of 

the snow structure. Eq. 176. 
Tiuri et al. (1984) 

 

2.4 Theoretical Penetration Depth 

An important quantity of interest for liquid water quantification is the depth of penetration (also known as e-folding depth, 

𝛿𝑝), a depth at which the signal power drops to 
1

𝑒
 times (~37 percent%) of its initial power at a reference location due to 315 

absorption and scattering in the snow and firn. The effective depth from which microwave radiometers receive emissions is 

usually higher depending on the medium properties although the signal strengths progressively diminish (less than 3 %percent 

and 5 %percent of theirits initial value at depths 5𝛿𝑝 and 3𝛿𝑝,  respectively). The actual depth of penetration also depends on 
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the signal to noise ratio (SNR) as well as the precision of the radiometer instruments. To estimate the total liquid water amount, 

the radiometer should receive emissions from the full wet layer. The signal power of an electromagnetic wave propagating 320 

through snow/firn is determined by the extinction coefficient κe of the medium, which is the sum of the volume absorption 

and scattering coefficient respectively, κe = κa + κs. Since the snow grains are much smaller than the L-band wavelength, 

κs  ≪  κas, the absorption coefficient dominates the extinction, κa ≈  κe. Therefore, neglecting scattering losses at L-band for 

a low volume fraction of liquid water (𝜀𝜖" ≪ 𝜀𝜖′) in snow/firn, the penetration depth can be approximated following Elachi 

and Zyl (2021) and Ulaby et al. (2014) as: 325 

𝛿𝑝 =
1

𝜅𝑎
              (1820) 

where 𝜅𝑎 is the wet snow power absorption coefficient given by 𝜅𝑎 = 2𝛼 and 𝛼 is the attenuation coefficient (Np m−1) defined 

by, 

𝛼 = − 𝑘0  ∙ 𝐼𝑚(√𝜀𝑒𝑓𝑓)           (2190) 

where 𝑘0 is the wave number in vacuum,  𝑘0 = 
2𝜋𝑓

𝑐
, c is the speed of light, and f is the frequency in Hz. Therefore, for a given 330 

frequency, 𝛿 is determined by the effective dielectric constant, depending on the average volume fraction of liquid water 

content and the density of snow/firn. For L-band, the penetration depth in dry snow is significantly higher (> 100m) (Matzler 

et al., 1984) depending on the density. However, in wet snow, the liquid water inclusion significantly increases absorption 

(𝜀𝜖") thus decreasing 𝛿.  

2.5 Liquid Water Amount 335 

For a volume fraction of liquid water vw (percent%) with a wet layer thickness of twet, (m), the LWA is calculated by the product 

of the two,  

𝐿𝑊𝐴 =  𝑣𝑤𝑡𝑤𝑒𝑡   m.w. e           (210) 

We chose to express the LWA in [mm], which is equivalent to [kgm-2] (because the density of water is 1000 kg m−3). The LWA 

represents the vertically integrated liquid water content within the SMAP grid point at that timestamp, corresponding to the 340 

SMAP effective sensing depth. 

 

2.6 Liquid Water Retrieval Algorithm 

For the LWA retrieval, we iteratively used an inversion-based framework, first minimizing a cost function between the 

simulated and mean observed TB measured at vertical (p = V) polarization during the frozen season which we considered to 345 

span Jan 1 – Mar 31 and Nov 1 - Dec 31 for the pre- and post-summer seasons, respectively, across for the GrIS percolation 
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zone. For the observations, we used the SMAP enhanced-resolution data products generated using the radiometer form of the 

Scatterometer Image Reconstruction (rSIR) algorithm (Long et al., 2019; Brodzik et al., 2021) posted on the EASE-2 3.125 

km grid (Brodzik et al., 2012; 2014). The rSIR technique utilizes the measurement response function (MRF) of each sample 

and combines the overlapping (at close but different acquisition times) MRFs to reconstruct an enhanced-resolution TB image 350 

(Early and Long, 2001; Long, 2019; Long et al., 1993; Long and Brodzik, 2016; Long and Daum, 1998). The data product 

provides the twice daily sampling of GrIS in the form of combined morning and evening passes. The advantage of this rSIR 

processing is that it improves the overall effective resolution of the measurements of about 30 percent compared to the original 

data products (Long et al., 2023; Zeiger et al., 2024). The radiometric precision of the SMAP original data is within 0.5 K 

(Chaubell et al., 2018, 2020; Piepmeier et al., 2017). 355 

Using the average measured density from the top 3 meters of snow as recorded from the PROMICE or GC-Net AWS, 

the algorithm first optimizes the pre-summer baseline scattering coefficient using the pre-summer mean frozen season (Jan 1 

– Mar 31) TBs. If the post-summer mean frozen-season TB (November 1 – December 31) is lower than the pre-summer mean 

frozen-season TB—such as due to crust formation caused by refreezing—the post-summer frozen-season TB is used in the 

optimization to determine a separate reference for the late melt season. The transition between frozen references is identified 360 

by the day on which the maximum TB is observed, as refreezing becomes the dominant process thereafter. However, if the 

post-summer mean frozen-season TB is higher than the pre-summer mean, indicating a warmer background from remnant melt 

or latent heat, the pre-melt frozen reference is used throughout the year.  With these initial conditions, the melting TB in the 

summer season is a nonlinear function of the wet layer thickness (𝑡𝑤𝑒𝑡), liquid water content (𝑣𝑤), and melt-related and other 

snow firn metamorphisms.  Here, we dido not account for melt induced snow metamorphism in the forward simulation, except 365 

for the adjustments in the reference TBs. We then used the melt season observed TBs to derive an average wet layer thickness 

(𝑡𝑤𝑒𝑡) and liquid water content (𝑣𝑤) in a two-step optimization process. To remove any spurious melt during frozen season, 

we also derived a threshold-based binary melt flag. The threshold was determined by an algorithm following (Torinesi et al., 

(2003):  

𝑇ℎ =  𝑇𝐵𝑟𝑒𝑓 +  𝑚 ∗  𝜎            (21) 370 
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where 𝑇𝐵𝑟𝑒𝑓 is frozen reference, σ is the standard deviation of the TB during the pre-summer reference period, and 𝑚 is an 

empirically derived constant. For SMAP V-pol TBs over the Greenland percolation zone, we found 𝑚 = 10 to be optimal. 

 

Figure 1: Configuration of a simplified three-layer ice sheet model to represent equivalent snow and firn stratigraphy for forward 

modeling of the brightness temperature. 375 

The near-surface density profile in the percolation zone is highly variable and characterized by multi-scale 

fluctuations (Rennermalm et al., 2022; (Johnson et al., 2014) and the references therein). Seasonal melting and refreezing 

further complicate this structure, leading to the formation of features such as random ice layers and ice pipes. Accurately 

modeling these effects across the percolation zone remains a significant challenge due to the lack of detailed ancillary data 

(e.g., temperature, density) and is an ongoing area of research. These sub-grid-scale structural variabilities contribute to the 380 

substantial scattering of L-band TBs, particularly during the frozen season (Hossan et al., 2024). Even with measured ice core 

profiles, simulating L-band TBs remains difficult due to these complexities. 

We implemented a simplified three-layer ice sheet configuration (Figure 1) to simulate TB based on MEMLS V3 

(Mätzler and Wiesmann, 2012). In this setup (Figure 1), tThe top layer holds the dry snow/firn during frozen season and liquid 

water during melt season. The bottom layer of the three-layer configuration is defined as semi-infinite ice. In the upper layers 385 

of the percolation zone, the density profile is highly variable with discrete ice layers and ice pipes (Rennermalm et al., 2022), 

that cause significant scattering (internal reflections) of frozen season microwave emissions. To account for the combined 

reflective effects by the complex stratigraphy due to ice layers, , we designate the middle layer (underneath the dry/wet snow 

layer) as a highly reflective layer by specifying its dielectric constant with a high real part (𝜀𝑟) that varies spatially.  introduced 

a middle layer modelled as an equivalent dielectric slab with a high, spatially variable real permittivity. This layer is designed 390 

to represent the bulk reflectivity caused by complex firn stratigraphy, following a similar approach by Mousavi et al. (2022). 

It does not contain liquid water and is not intended to reflect any specific physical layer, but rather to simulate the integrated 

(Dry Wet Snow)

(Highly Reflective  irn 

Layers)

(Semi-infinite  ce)

    

       

          

  ,  ,      
 = 0 ppt, pe = 0 mm

  + 0.0002i,    

 W  = 0 ,  2 = 5 m,  = 0 ppt, pe = 0 mm

 ice = 917 kg m 3,  0 ,  W  = 0 

 = 0 ppt,  pe = 0 mm

 gn = 270  

(Semi-infinite Air  Transparent)
 cosmic= 2.7 K
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dielectric contrast beneath the seasonal snowpack. Its properties remain constant over time at each grid point and have 

negligible influence on liquid water retrievals, which are governed by the top layer's dynamic properties.  

In MEMLS each layer is defined by its thickness (d), physical temperature (T), density (ρ), volumetric liquid-water 395 

content (𝑣𝑤), exponential correlation length (lex), and salinity (S). Since our objective is to evaluate the relative behaviours of 

dielectric mixing models, we tried to make the model as simple as possible by assuming reasonable ranges and fixed values of 

possible parameters. The top layer has thickness 0.1 - 20 m, volumetric liquid-water content of 0 - 6 percent, and a fixed 

temperature of 250 K and 273.15 K when mv = 0 (dry) and mv > 0 (melt) respectively.  

While, L-band TB is sensitive to dry snow density (Hossan et al., 2024; Houtz et al., 2019), we used the average 400 

measured density in the top 3 m to better constrain the retrievals. Considering the insensitivity of L-band measurements to 

snow microstructure, we set lex = 0 mm for all three layers (Schwank et al., 2014). Planar interfaces and specular reflection are 

assumed.  For ice sheets, the salinity can also be set to 0 ppt. The range of volume fraction of liquid water was determined 

based on earlier Experiments (Coléou and Lesaffre, 1998; Colbeck, 1974), which suggest that the irreducible water saturation 

because of capillary retention ranges between 6.5 - 8.5 percent of the pore volume depending on the density. Considering 405 

snow/firn density in the percolation zone, we determined the maximum volume fraction is within 6 percent. Exceptions to this 

are the saturated water such as buried and open lakes (Dunmire et al., 2021), firn aquifers (Miller et al., 2022b, 2018, 2020b), 

which are atypical for this area and we did not include these cases into our consideration  

The middle layer has a fixed thickness of 5 m. It shares the same physical temperature as the top layer during the 

frozen season and uses a fixed temperature of 265 K when the top layer contains liquid water (at melting point). The real part 410 

of its relative dielectric constant varies between 5-26is tuned while the imaginary part is fixed 0.0002 (same as ice loss factor). 

The bottom layer is semi-infinite ice with fixed density (917 kg m−3) and physical temperature of 255 K regardless of dry and 

melt season. We also considered the cosmic background radiation (Tc = 2.7 K). However, we did not consider any correction 

for the atmospheric contribution, because it is small compared to the melt signal (approximately at most 2 K at L-band 

frequencies (Houtz, et al. 2019)). For a fixed location, the same layer characteristics were applied to all the models. 415 

MEMLS utilizes the six-flux theory to model volume scattering and absorption. It also accounts for the effects of 

radiation trapping due to internal reflection, along with the coherent and incoherent reflections at the layer interfaces (Mätzler 

and Wiesmann, 2012). The model uses an empirical approach to compute the scattering coefficient, while the absorption 

coefficient, refraction, and reflection at layer boundaries are derived using physical models. For effective permittivity, by 

default, the updated latest version (V3) of MEMLS considers wet snow as a two-phase mixture of prolate ellipsoidal liquid 420 

water inclusions in a dry snow background and uses the MG dielectric mixing rule with depolarization factors from Hallikainen 

et al. (19864) as mentioned in the previous section. We refer to this default configuration of MEMLS V3 as simply Mätzler 

modelMEMLS3. For other models, we used the same setup and input parameters, except we changed the formulations for the 

complex wet snow dielectric constants (Sec. 2.3).   
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2.7 LWA Estimates from a Surface Energy and Mass Balance Model  425 

As references, we considered independent LWA estimates from two ice sheet SEMB models, namely the Samimi et al., (2021) 

SEMB model, which was locally calibrated (Samimi et al., 2020, 2021; Ebrahimi and Marshall, 2016;) and the Glacier Energy 

and Mass Balance (GEMB) model  (Gardner et al., 2023), within the NASA Ice-sheet and Sea-Level System Model (ISSM). 

Both models were forced with the in situ automatic weather stations (AWS) measurements from the Programme for Monitoring 

of the Greenland Ice Sheet (PROMICE) and Greenland Climate Network (GC-Net) located in the percolation zone of the GrIS. 430 

These models used averaged hourly observations of air temperature, air pressure, upwelling and downwelling short and 

longwave radiation fluxes, snow-surface height, wind speeds (Fausto et al., 2021) along with subsurface profiles of 

temperature, density, and stratigraphy for initializations (Vandecrux et al., 2023). The SEMB models determine the net energy 

available for melting if the surface temperature is at the melting point, otherwise for warming or cooling the snow in the upper 

layer. The subsurface temperature and density then evolve within a one-dimensional model, which is coupled with hydrological 435 

processes like meltwater infiltration, refreezing, and retention within the firn. Although the two models under consideration 

used the same forcing, they use separate parameterizations for these physical processes and a separate model configuration. 

We refer the reader to Samimi et al., (2021), and Gardner et al., (2023), for specific model details. Despite limitations, these 

SEMB models are currently the most viable way of validating satellite retrievals. For comparison, we consider these two 

models individually as well as their ensemble (average). 440 

3 Results 

3.1 Effective Complex Dielectric Constant 

Liquid water increases both the real and imaginary part of the dielectric constant of snow/firn. Since the dry snow has negligible 

loss factors at microwave frequencies, almost all the changes in imaginary parts come from liquid water inclusion. Figure 2 

shows the change of the complex dielectric constant at a fixed density of 400 kg m−3 as function of the volume fraction (𝑣𝑤) 445 

of liquid water inclusions for up to 6 percent as appropriate for the percolation zone.  

There are large spreads between the models for both the real (Fig. 2a and 2b) and imaginary parts (Fig 2c and 2d); 

this spread increases as 𝑣𝑤LWC increases. The deviations between the models are higher for the imaginary part than in the 

real part.  For 𝑣𝑤LWC < 2 percent, the models’ agreements for the real part ( ig. 2ab) are consistent within two tenths of the 

relative dielectric constant, except the Hallikainen model (dark greendashed black line), which appeared an outlier. The Ulaby 450 

model (red solid blue line) uses a scaling factor of A<1, resulting in the lowest 𝑣𝑤LWC estimate among the models up to about 

2 percent (Fig. 2ba); at higher 𝑣𝑤LWC values it provides an intermediate estimate (Fig. 2ab). The Ulaby, Tinga, and Debye-

like models provide real part of dielectric constant lower than that of even dry snow (the dashed grey line indicates the 

permittivity of dry snow at -0.5 C with the Mätzler, 2006 model) for up to 𝑣𝑤LWC 1.2, 0.7, and 0.4 percent, respectively. The 

Debye-like model and the low frequency approximate of the Hallikainen model closely agree with the empirical Tiuri model, 455 
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and both lie in the upper end for the 𝑣𝑤LWC > 2 percent range, while the Mätzler model (solid black line)MEMLS3 predicts 

an intermediate result for the entire 𝑣𝑤LWC range. The exponential models (Looyenga, Sihvola, and Birchak) reasonably 

agree with the median model (e.g., MätzlerMEMLS3) for low 𝑣𝑤LWC (< 2 percent%) and stay in the lower end of the curves 

for the higher 𝑣𝑤LWC. Among the structure dependent models, the Colbeck and Tinga models provide relatively lower 

estimates of the real part of the dielectric constant and agree with the exponential models, especially for 𝑣𝑤LWC > 2 percent. 460 

 

 

Figure 2: Change of real (top panel) and imaginary (bottom panel) parts of complex dielectric constant of snow/firn of a fixed density 

of 400 kg m−3 as function of volume fraction (𝒗𝒘) of liquid water content. The rightleft panel shows a zoomed version of the right 

panel for LWA range 0 - 2 percent. As reference, real (top) and imaginary (bottom) parts of complex dielectric constant of dry snow 465 
at the same density and snow temperature of -0.5 C are shown by horizontal grey dashed lines. 

For the imaginary part of the snow/firn dielectric constant, the Debye-like, Hallikainen, and Ulaby models, which are 

the same group of models with modifications for frequency dependencies, generally follow the empirically derived Tiuri model 

almost for the entire range of 𝑣𝑤LWC under consideration. However, it is worth noting that small differences in the loss factor, 

especially in the lower end, can result in significant differences in terms of TB and depth of penetration. The Hallikainen and 470 
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Ulaby models are the same for the imaginary part, overlapping with each other. The Tinga model provides the highest estimate 

of the loss factor for 𝑣𝑤LWC up to about 2 percent, then it falls exponentially for the higher end. Mätzler modelMEMLS3 

again provides an intermediate estimate of the loss factor for the entire 𝑣𝑤LWC range under consideration. The exponential 

models stay in the lower end, as in the case of the real part, with the lower value of 𝛽, giving the lower estimate. The Colbeck 

model results consistently in the lowest value of the imaginary part of the dielectric constant for the entire range of 𝑣𝑤LWC. 475 

Since the density is less than 550 kg m−3 for these curves, it included only Case I (pendular regime) of Colbeck (1980). 

 

 

 

Figure 3: Penetration depth at L-band (1.41 GHz) for a snow/firn density of 400 kg m−3 as function of volume fraction (𝒗𝒘) of liquid 480 
water content (a). (b) a zoomed version of (a) for LWA range 3 – 6 percent %. 

3.2 Penetration Depth 

The differences in the imaginary part of the dielectric constants are manifested in the penetration depth, an important 

variable for liquid water quantification. Figure 3 illustrates the effective penetration depth of L-band (1.41 GHz) signals 
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estimated by the models for a snow/firn density of 400 kg m−3 as a function of the 𝑣𝑤LWC in the 0 - 6 percent range (Fig. 3a) 485 

and the 3 - 6 percent range (Fig. 3b). All models predict an exponential decay of effective penetration, but they exhibit 

substantial differences with respect to one another, though the range generally reduces with increasing 𝑣𝑤LWC. For 𝑣𝑤LWC 

of 1, 3, and 5% percent, the model estimates of penetration depth range between 2.8 - 12.8 m, 1 - 4 m, 0.5 - 2.3 m respectively. 

The Tinga and Ulaby models provide the lowest estimate of penetration depth for 𝑣𝑤LWC < 2 percent, and 𝑣𝑤LWC > 2 percent 

ranges respectively, while the Colbeck model gives the highest estimate for the entire 𝑣𝑤LWC range as it estimates the lowest 490 

loss factor among all the models. The Debye-like, Hallikainen, and Ulaby models closely follow each other. Mätzler 

modelMEMLS3 provides an intermediate estimate of penetration depth. The empirical Tiuri model aligns with Mätzler 

modelMEMLS3 for low 𝑣𝑤LWC (< 1 % percent); however, it matches better with Debye-like, Hallikainen, and Ulaby models 

for higher 𝑣𝑤LWC (> 2 % percent). The exponential models, consistent with their complex dielectric constant, lie in between. 

3.3 Simulated Brightness Temperature 495 

TB simulated with these models for a typical representative snowpack in the percolation zone are illustrated as 

function of 𝑣𝑤LWC (bottom x-axis) and LWA (top x-axis) in Figure 4 for wet layer thicknesses of 1 m (Fig. 4a, 4d), 2 m (Fig. 

4b, 4e), and 3 m (Fig. 4c, 4f), respectively. For the V-pol, the Tinga model appears to be the most sensitive for low 𝑣𝑤LWC 

and LWA, then it gradually slows down as the LWA increases, when the Ulaby model provides the highest TB. The Debye-

like model closely follows the Ulaby model; the Hallikainen model, which uses the same imaginary part as the Ulaby model, 500 

but a higher real part of the dielectric constant, shows lower TB estimates. The difference that is also function of LWA, is 

more obvious in the H-pol results (Fig. 4d - 4f). The Tiuri and MätzlerMEMLS3 models produce higher TB projections than 

the Ulaby and Debye-like models for the lower range of LWA, but it flipped for higher range of LWA, and the transition 

depends on the thickness of the wet layer. In line with the complex dielectric constant, the Colbeck model provides the lowest 

estimates for almost the entire LWA range under consideration (except for LWA > 150 mm, H-pol), and the Birchak, Sihvola, 505 

and Looyenga models offer moderate values for all cases. Although, the changes are more pronounced in the H-pol TB, the 

trends with the LWA are similar except that the saturation in TB occurs for relatively lower LWA compared to the V-pol 

signals, especially for thicker wet layers (Fig. 4e - 4f).  

The results depend on the density of the dry snow (porosity), which are shown for three different densities (200 kg 

m−3 (Fig. 5a, 5d), 400 kg m−3 (Fig. 5b, 5e), and 600 kg m−3 (Fig. 5c, 5f)) for a fixed thickness of wet layer (2 m) in Figure 5. 510 

The Debye-based models (Debye-like, Hallikainen, and Ulaby) along with the Tiuri model show significantly higher sensitivity 

with 𝑣𝑤LWC and thus provide lower estimates of LWA than the MätzlerMEMLS3 and Tinga models for the low snow density 

(200 kg m−3) at both V- and H-pol results. However, for high snow density (600 kg m−3), this is reversed, Tinga and Mätzler 

modelsMEMLS3 exhibit higher sensitivity and provide lower estimates of LWA than the Debye-based and Tiuri models, while 

at intermediate density (400 kg m−3), they agree closer for both V- and H-pol TB. Although the sensitivity of the rest of the 515 

models varies with the dry snow density, they consistently demonstrate lower sensitivity and provide higher estimates of LWA 

than the above-mentioned models across the complete density range.  
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Figure 6 depicts simulated TB, like Figure 4, but as a function of wet layer thickness in (bottom x-axis) and LWA 

(top x-axis) at a fixed snow/firn density of 400 kg m−3 for three cases of fixed 𝑣𝑤LWC of 1 percent (Fig. 6a and 6d), 2 percent 

(Fig. 6b and 6e), and 3 percent (Fig. 6c and 6f). In a broader perspective, the trends of TB with the thickness of the wet layer 520 

at a fixed 𝑣𝑤 are similar to the TB trends with 𝑣𝑤 at the fixed thickness of the wet layer, as presented in Fig. 4. TB grows 

exponentially with both 𝑣𝑤 and 𝑡𝑤𝑒𝑡, where each model has a different growth factor, which also depends on 𝑣𝑤 and 𝑡𝑤𝑒𝑡  

themselves along with dry snow density and other background conditions.  

 

Figure 4: Vertically (a-c) and horizontally (d-f) polarized  brightness temperature at L-band for a snow/firn density of 400 kg m−3 525 
as function of volume fraction (𝒗𝒘) of liquid water content in percent (bottom x-axis) and total liquid water amount in mm (top x-

axis) simulated with Mätzler modelMEMLS3 using different wet snow mixing models for three wet layer thickness: 1 m (a and d), 

2 m (b and e), and 3 m (c and f). 
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Figure 5: Vertically (a-c) and horizontally (d-f) polarized  brightness temperature at L-band for a wet layer thickness of 2 m as 530 
function of volume fraction (𝒗𝒘) of liquid water content in percent % (bottom x-axis) and total liquid water amount in mm (top x-

axis) simulated with Mätzler modelMEMLS3 using different wet snow mixing models for three snow/firn densities: 200 kg m−3 (a 

and d), 400 kg m−3 (b and e), and 600 kg m−3 (c and f). 
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Figure 6: Vertically (a-c) and horizontally (d-f) polarized  brightness temperature at L-band for a snow/firn density of 400 kg m−3 535 
as function of wet layer thickness (bottom x-axis) and total liquid water amount in mm (top x-axis) simulated with Mätzler 

modelMEMLS3 using different wet snow mixing models for three fixed volume fraction (𝒗𝒘) of liquid water content: 1 percent (a 

and d), 2 percent (b and e), and 3 percent (c and f). 

3.4 Brightness Temperature Sensitivity to Liquid Water Change 

The sensitivity of TB to LWA change decreases with increasing LWA. We compute the change of TB for every 1 540 

mm change in LWA, which is shown for V- and H-pol TB in Figure 7. Here we considered a 𝑣𝑤LWC of 3 percent, and 

increased the wet layer thickness from 0.1 m to 5 m. The sensitivities at H-pol are higher than at V-pol for all models. The 

sensitivity of TB to the change of LWA decays exponentially across all models, falling below 1 K mm−1 at < 50 mm of LWA 

for V- and H-pol. For models that demonstrate higher sensitivity for lower LWA, the sensitivity declines more sharply and 

saturates at relatively lower LWA (after which they show negative sensitivity, i.e., TB decreases as LWA increases; however, 545 

we did not consider negative sensitivity regime in this manuscript as this happens at oversaturated LWA LWC amounts not 

typical for the percolation zone of the Greenland Ice Sheet, see Section 1).  

The Ulaby and Tiuri models show the highest sensitivity at lower LWA, closely followed by the Hallikainen, Tinga, 

and MätzlerMEMLS3 models. The sensitivities of these models fall below tenths of K mm−1 for LWA > 70 mm for both V- 
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and H-pol. The Birchak, Sihvola, and Looyenga models demonstrate moderate sensitivities, while the Colbeck model presents 550 

the lowest sensitivity among the models for lower LWA; however, their sensitivities also decrease slowly with LWA, and they 

remain reasonably sensitive for the higher end of the LWA. Although, the first group of models shows almost negligible 

sensitivities close to or beyond 100 mm of LWA, no models showed perfect 0 or negative sensitivities within 150 mm of LWA. 

However, it is obvious that for a majority of the models the uncertainty of the retrievals at LWA > 60 - 70 mm will be 

significantly higher. 555 

 

 

Figure 7: L-band vertically (a) and horizontally (b) polarized brightness temperature sensitivity (change of TB in K per mm change 

in liquid water amount) at a snow/firn density of 400 kg m−3 as of total liquid water amount in mm simulated with Mätzler 

modelMEMLS3 using different wet snow mixing models for a fixed 3 percent volume fraction (𝒗𝒘) of liquid water content with 560 
varying wet layer thickness. Top panel shows the results for a LWA range 0-50 mm, and the bottom panel shows the results for an 

extended range (0-100 mm). 

3.5 LWA Retrievals 

Figure 8 presents compares the simulated V-pol TBs with the observed V-pol SMAP TB time series (blue dash-

dottedack solid line) compared toalong with the mean frozen season TB references (dotted bluedashed grey lines), during the 565 

2023 melt season at six PROMICE and GC-Net AWS. The  locations AWS were selected based on their varying geographic 
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locations in the percolation zone, climatic record of melt, and in situ data availability for the validation.  Table 2 shows the 

geographic locations, elevations along with the mean 2 m air temperature, the mean dry snow density of the upper 3- m, and 

the mean pre-summer frozen season V-pol L-band TB at these sites.  

570 
Figure 8: L-band vertically polarized observed and simulated brightness temperature time series observations during 2023 melt 

season at six selected PROMICE and GC-Net within the GrIS automatic weather stations (AWS) locations within the percolation 

areazone. Frozen season TB references are shown as dashed grey lines. 

The 2023 melt year experienced above average melting (Poinar et al., 2023), though the annual average temperatures 

reflect both a cooler accumulation period and warmer melt season (Poinar et al., 2023). All sites have very stable but different 575 

frozen season TB, representative of their different subsurface backgrounds. Some occasionally decreasing spikes before and 

after the melt season at SDM site are noise because of rSIR processing (Long and Brodzik 2024, confirmed through personal 

communications). Since the simulated TBs were optimized with the mean observed TBs during frozen season, they are less 

affected by these noise during frozen season. Throughout the summer season at each of the AWS location, the simulations 

with different models closely align with the observations with no significant bias. The agreements are so close that the 580 

simulated TBs are almost overlaid by the observed TBs (Fig. 8). But this was obtained with different combinations of 𝑡𝑤𝑒𝑡and 

𝑣𝑤, resulting different LWA. 

CP1 and DY2 are both perfect representatives of the Greenland percolation zone, with moderate upper layer density 

and numerous ice layers and pipes due to annual refreezing of seasonal melt (Jezek et al., 2018; Vandecrux et al., 2023). These 
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ice layers significantly attenuate microwave emissions from deeper layers giving very low frozen season TBs (~148 and 144 585 

K, respectively). At the same time, these sites also provide high TB sensitivity to liquid water during peak melt season as the 

effective emissions approaches close to unity (>0.95, see Fig. 8a-b). At both AWS locations, the TBs remained elevated 

through October compared to their pre-summer frozen references. 

 

 590 

Table 2. Summary of the six selected PROMICE and GC-Net automatic weather station (AWS) locations. The location 

information was adopted from PROMICE and GC-Net Automatic Weather Station metadata, available at https://promice.dk, 

last accessed on 11/27/2024. Mean annual, summer (June – August) air temperature, mean dry snow density, and mean frozen 

season brightness temperature were calculated using 2023 data. 

SitesSite ID 
Latitude 
(degrees 

north) 

Longitude 
(degrees 

east) 

The altitude 

above mean 

sea level 
(m) 

Annual 

Mean    of 2 
m air 

temperature 

(°C) 

Summer 
(JJA) 

Mean    of 2 

m air 
temperature 

(°C) 

Mean dry 

snow 

density of 
upper 3 m 

Mean 

frozen 

season V-
pol TB (K) 

Maximum 
summer V-

pol TB (K) 

(kg m−3)   

CP1 69.87 -47.04 1950 -17.41 -4.84 440 148.5 259 

DY2 66.48 -46.3 2127 -16.8 -4.35 460 144.5 258.5 

KAN_U 67 -47.04 1848 -10.79 -2.20 480 204 251.7 

NSE 66.48 -42.5 2387 -16.22 -5.90 440 195 252.7 

SDL 66 -44.5 2475 -14.73 -5.55 420 167 254.4 

SDM 63.15 -44.82 2898 -13.79 -6.02 420 185 254.2 

 595 

Table 3. Average thickness of wet layer (in cm) during 2023 melt season (May – Sept) retrieved by ten dielectric mixing 

models with SMAP observations and two surface energy and mass balance models forced by in situ observations at the six 

selected PROMICE and GC-Net automatic weather station (AWS) locations.  

Sites Mätzler Tinga Debye-like Hallikainen Ulaby Colbeck Birchak Sihvola Looyenga Tiuri SAM M  GEMB 

CP1 117 8392 205155 141137 205161 315277 151180 160228 170223 122 193 179 

DY2 177 100113 173161 177226 239194 281317 131163 201221 272236 194 177 169 

KAN_U 149 6290 152188 175200 134212 180226 165145 187165 202257 139 99 79 

NSE 114 8891 20898 288193 158244 268231 184208 181163 231200 104 77 100 

SDL 116 143136 153158 258252 165142 345299 212195 169250 273331 172 185 122 

SDM 117 87108 156174 164154 225158 294276 140156 165222 214189 154 119 79 

 

 600 

 

https://promice.dk/
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Table 4. Maximum summer melt (in mm) during 2023 melt season (May – Sept) estimated by ten dielectric mixing models 

with SMAP observations and two surface energy and mass balance models forced by in situ observations at the six selected 

PROMICE and GC-Net automatic weather station (AWS) locations.  

Sites Mätzler Tinga Debye-like Hallikainen Ulaby Colbeck Birchak Sihvola Looyenga Tiuri SAM M  GEMB 

CP1 44 5055 3938 4142 3938 114116 6060 8686 102110 37 76 97 

DY2 37 3936 3737 4143 3837 101104 5455 7677 9699 36 64 91 

KAN_U 21 2117 2426 2829 2426 6062 3132 4546 5758 23 30 45 

NSE 25 2223 2724 3230 2529 7375 3537 5254 6670 23 32 70 

SDL 33 2526 3030 3636 3029 9595 4546 6767 8485 28 77 69 

SDM 31 3327 2929 3232 3029 9090 4444 6463 8282 27 52 55 

 605 

KAN_U is located at the lowest elevation (1848 m) of all the sites close to the equilibrium line in the southwestern 

Greenland. Air temperatures are often above freezing during the melt season (Table 2), and the region experiences substantial 

surface melting. As a result, ice layers are thicker, and the near surface densities are high with low variability. Frozen season 

TB is the highest of all sites examined, and during 2023 melt season (Table 2), TB is possibly saturated due to extensive 

persistent melt that keeps TB elevated beyond the end of SeptemberOctober (Fig. 8c).  610 

NSE, SDL, and SDM are located at high elevation in southeast Greenland. These locations generally receive more 

accumulation and less melt than the other stations examined here (Fausto et al., 2021). Upper layer densities are low to 

moderate with lesser number of ice layers. This is revealed by their moderate means frozen season TBs (Table 2). 

Contemporaneous large summer peaks of TB at these three sites in 2023 are indicative of melt events (Hossan et al., 2024). 

However, the duration of the melt events at these AWS locations is substantially shorter than at the previous three AWS 615 

locations. In addition, the post-summer mean frozen-season TBs drop below their pre-summer frozen references (note the 

changes in the reference TBs, Fig. 8d-f), unlike at the previous three sites. This is because the post-melt temperature at these 

locations drops sharply, possibly due to crust formation that enhances internal reflections. 

 

Table 5. Pearson linear correlation coefficient between LWA estimate by each of the dielectric mixing model and their 620 

ensemble with SMAP observations during 2023 melt season (May – Sept) and corresponding LWA estimate obtained by 

averaging Samimi and GEMB surface energy and mass balance models forced by in situ observations at the six selected 

PROMICE and GC-Net automatic weather station (AWS) locations.  

Sites Mätzler Tinga 
Debye-

like 
Hallikainen Ulaby Colbeck Birchak Sihvola Looyenga Tiuri Ensemble 

CP1 0.79 0.740.74 0.840.84 0.830.83 0.850.84 0.800.80 0.790.79 0.800.79 0.800.80 0.81 0.800.80 

DY2 0.97 0.950.96 0.980.98 0.980.98 0.980.98 0.980.98 0.970.97 0.970.98 0.970.98 0.98 0.980.98 

KAN_U 0.70 0.710.71 0.670.68 0.680.68 0.670.67 0.700.70 0.700.71 0.700.71 0.700.71 0.70 0.700.70 
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NSE 0.92 0.900.88 0.930.91 0.930.91 0.930.91 0.920.90 0.920.90 0.920.90 0.920.90 0.92 0.920.90 

SDL 0.83 0.830.82 0.850.84 0.850.84 0.850.84 0.840.83 0.840.83 0.840.83 0.840.83 0.84 0.840.83 

SDM 0.92 0.900.90 0.930.93 0.930.93 0.940.93 0.920.92 0.920.91 0.920.91 0.920.91 0.92 0.920.92 

Overall 0.86 0.840.84 0.870.86 0.870.86 0.870.86 0.860.86 0.860.85 0.860.85 0.860.85 0.86 0.860.86 

 

LWA retrieved from L-band TB using different dielectric mixing models and two SEMB models for 2023 melt season 625 

at the selected AWS locations are presented in Figure 9. For all the mixing models, the retrieved average thicknesses of wet 

layer used in the LWA retrieval are given in Table 3.  

Regarding the onset of melt season at CP1, the satellite retrievals with different mixing models are the same (Jun 24th) 

and reasonably contemporary with the SEMB models considering noise levels ofin in situ instruments. We used the SMAP 

melt flags (see Sec. 2) to remove spurious melts in winter. Similar flagging for SEMB models is difficult to find. Some studies 630 

have used thresholds in LWA (e.g., > 2 mm in Hossan et al., 2024; Zhang et al., 2023; Leduc-Leballeur et al., 2020; Van Den 

Broeke et al., 2010). However, we did not use such threshold because dielectric mixing models that show higher sensitivity 

for light melt events can result LWA within 2 mm. Hence, here we rather focus on relative intensities and durations of 

significant and consistent melt events qualitatively, ignoring suspicious melt events, like one in early June at CP1 where GEMB 

estimated a short-lived melt (~2.5 mm in amount) but the SAMIMI model like all the satellite retrievals indicates no melt even 635 

when both models used the same in situ measurements.  

 

Table 6. Mean root mean squared differences (RMSD in mm) between LWA estimate by each of the dielectric mixing model 

and their ensemble with SMAP observations during 2023 melt season (May – Sept) and corresponding LWA estimate obtained 

by averaging Samimi and GEMB surface energy and mass balance models forced by in situ observations at the six selected 640 

PROMICE and GC-Net automatic weather station (AWS) locations.  

Sites Mätzler Tinga Debye-like Hallikainen Ulaby Colbeck Birchak Sihvola Looyenga Tiuri Ensemble 

CP1 23 2324 2223 2222 2223 1919 2020 1818 1818 24 2020 

DY2 15 1717 1413 1211 1313 1415 99 56 1112 15 87 

KAN_U 8 99 88 99 89 2020 88 1313 1818 8 99 

NSE 10 1111 910 88 99 88 88 66 77 10 77 

SDL 21 2323 2121 1920 2121 1616 1818 1516 1516 22 1818 

SDM 10 1111 99 99 99 1011 77 67 89 10 77 

Overall 15 1615.90 1414.06 1313.13 1413.88 1414.98 1211.87 1110.82 1313.38 15 1111.48 

 

All three methods (SAMIMI, GEMB, and satellite retrievals) agreed qualitatively on three main persistent melt events 

in terms of relative intensities and duration at CP1 during the melt season: a small one in late June, followed by the major melt 
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event that sustained whole July through late August, and a moderate one that begun in late August (on top of the sub-surface 645 

remnant melt), lasting through mid-September based on SMAP or early October based on the SEMB models (Figure 9a). For 

the early and late season melt events (light to moderate amount), the SEMB models estimated more LWA than any of the 

satellite retrievals with GEMB surpassing SAMIMI. However, during the peak melt event, we observed mixed results with the 

dielectric mixing models when comparing them to the SEMB models: the Colbeck and Looyenga models estimate higher 

LWA (Table 4) than the SEMB models, while the  Tiuri, Ulaby, Debye-like, Hallikainen, MätzlerMEMLS3, and Birchak 650 

models show lower estimates of LWA compared to the SEMB models (Table 4). These retrievals are lower than the ones 

Hossan et al. (2023) presented using the Ulaby model at this site during the same melt season. Wider Different constrains in 

frozen and melt season parameters, mainly density and background temperatures, explain some of these differences.  

The Sihvola model was found to be in closest agreement with the SEMB models at CP1 until the peak of the melt 

season. Afterward, when active melting at the surface stops (as evidenced by gradual loss of LWA) and meltwater percolates 655 

deeper and refreezes, the satellite retrievals and the SEMB models exhibit more substantial differences (Table 6), which 

impacted the overall correlation and RMSD (0.74 ≤ r ≤ 0.84 and 18 mm ≤ RMSD ≤ 28 mm; see Table 5 - 6). All the 

satellite retrievals consistently indicate a faster refreezing rate of the subsurface liquid water than in case of both the SEMB 

models, where the refreezing is determined by the evolution of the density profile and thermal conduction. 

 660 
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Figure 9: Comparison of the total daily liquid water amount (LWA) estimated from SMAP L-band TB observations with ten 

dielectric mixing models (solid lines), by the SAMIMI EBM (orange dash-dotted line) and GEMB (pink dotted line) forced with 

PROMICE and GC-Net AWS in situ measurements for Jun 1 – Oct 31, 2023. 

The melt trends at DY2 (Fig. 9b) are similar to CP1 with some differences (Tables 3 - 6). The early season melt in 665 

late June is minor, while the late season peak is relatively higher with gradual loss of persistent subsurface melt that extended 

even beyond the end of September in consensus with the mixing models and with the SEMB models. Under such persistent 

liquid water and warmer subsurface background, while the surface recommences melting, liquid water is expected to infiltrate 

deeper and form a thicker wet layer. Satellite retrievals of average wet layer thickness by majority of the mixing models support 

this (Table 3). The overall agreement between the SEMB models and satellite retrieval with different mixing models is better 670 

at this site (0.956 ≤ r ≤ 0.98 and 56 mm ≤ RMSD ≤ 17 mm; see Tables 5-6). 

KAN_U is known to undergo extensive LWA throughout the summer (Hossan et al. 2023). However, all the mixing 

models, including SEMB models, report relatively lower LWA but prolonged melting conditions (Fig. 9c). Allmong the mixing 

models, except theMEMLS3 and Tinga model estimated higher averageprovide the thickness of the wet layer (~1 m) in close 

agreement with than the SEMB models (Table 3). T which is reasonable since the snowfall at this site is climatologically lower 675 

(MacFerrin et al., 2019; Machguth et al., 2016) and thicker ice layers underneath ought to prevent deeper infiltration. Regarding 

LWA, Tthe SEMB models showed better alignment with the Colbeck, Looyenga, and Sihvola model-based retrievals at the 

beginning of the peak melt (early July). However, as the melt season progresses and the snow/firn profile evolves, the 

differences intensify with the previous models, rather they better match with the rest of the models which claim lower estimates 

of LWA throughout. Firn models push the liquid water out of the system (called runoff) if the water balance exceeds certain 680 

limit (irreducible water saturation) determined by the available pore space. In reality, this excluded liquid water must still exist 

somewhere, which may explain some of these misalignments (Table 4 - 6). Nevertheless, the spread of maximum summer 

melts between the mixing models (satellite retrievals) is large (min 2117 mm by Tinga  and Mätzler models to max 602 mm 

by Colbeck model with STD = 154 mm; see Table 43). 

Since NSE is located at higher elevation (Table 1), historically it receives less frequent and less intense melt. In the 685 

2023 melt season, we, however, observed similar melt trends with shorter duration compared toas the previous three sites 

(Figure 9d). Only the GEMB model detected the early season melt in late June. Both GEMB and SAMIMI models estimate 

the presence of liquid water (max. 18 and 7 mm respectively) in the late melt season, which were completely ignoredalso 

detected by all the satellite retrievals (mixing models) despite enhanced emissions in the TB time series in Figure 8dthat better 

align with the estimate of SAMIMI model. This is because we used a spatially uniform thresholding technique (mean frozen 690 

season TB plus 10 STD; details in Sec. 2) that missed the detection. Compared to the pre-summer mean winter frozen TB used 

in the thresholding, the post-melt mean fallfrozen TB dropped around 5 K at this site due to possibly from ice layers formed 

by refreezing of summer melt exacerbating the falls negative problem, common in this higher elevation areas (Hossan et al 

2024). Without dynamic thresholding, these late-season, less intense melt events would have been missed as false negatives. 

Other than this, although lesser in intensities, the order of magnitude of the satellite retrievals remains the same. However, the 695 
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results of the SAMIMI model better match with the group of mixing models that provide a lower estimate of LWA while the 

GEMB model provides the upper limit and better aligns with the models that indicate higher LWA. The GEMB model also 

refreezes noticeably more slowly than the SAMIMI model, refreezing faster and aligning better with the satellite retrievals. 

Though all the satellite retrievals and SEMB models estimated an overall slightly higher LWA at SDL site in 2023, 

the trends closely replicated that of NSE (Figure 9e). The late season melt is however now stronger at this site, and the threshold 700 

algorithm detected melt and LWA was quantified by all the mixing models with the similar sequence – the Tinga model giving 

the lowest and the Colbeck model giving the highest maximum summer LWA (Table 4). Compared to the maximum summer 

LWA, the average thickness of the wet layer (Table 3) was found to be overall higher at this site, similar to NSE, which is 

anticipated since there is enough pore space but a lower number of ice layers allowing liquid water to percolate deeper. The 

SEMB models, despite differences between them, better align with the Sihvola, Looyenga, and Colbeck models than the rest 705 

of the others (Table 6), but both retain subsurface liquid water for elongated periods in the fall and but indicate a thinner 

thickness of wet layer compared to the satellite retrieval with the majority of the mixing models (Table 3). 

At the SDM site, only a single persistent melt event was observed; no significant melt was determined until the 

beginning of July;July, neither by the satellite retrievals nor by the SEMB models. The late season melt was also insignificant, 

only detected by SEMB models.  We nevertheless see two minor spikes in the TB time series (Fig. 8), which were probably 710 

too small to be detected by the thresholding algorithm. The two SEMB models closely resemble at this site in phase and 

magnitude, but again they disagree with all mixing models in the satellite retrievals in the rate of subsurface refreezing in the 

late melt season, which impacted the comparison metrics in Table 5 and 6. 

4 Discussion 

The strong dielectric contrast between dry snow background and liquid water inclusion causes the complex dielectric constant 715 

of wet snow to significantly change with 𝑣𝑤LWC [m3 m−3], which can vary over a wide range depending on the density 

(porosity) of the dry snow. Here, we focused on the GrIS percolation zone, where typical 𝑣𝑤LWC is known to be approximately 

0 - 6 percent. Selected dielectric mixing models were found to vary widely over this narrow range, giving large uncertainties 

in modelling the effective depth of penetrations, TB, and consequently, in quantifying LWA based on the dielectric constant 

retrieved from satellite measurements. Differences of depolarization factors that describe the shape and orientation of the liquid 720 

water inclusion with respect to the emitting EM field mainly contribute to these differences for the structure dependent models. 

For the power law models, their degree controls the higher order local interactions in lieu of depolarization factor. There are 

significant uncertainties in the effective penetration depth, or emission contribution depths, between the models, especially 

when the 𝑣𝑤LWC (and hence the absorption) is low (pendular regime). 

MWR TB is on the other hand a non-linear function of multiple parameters that gradually or abruptly vary with depth. 725 

Therefore, with limited knowledge of detailed snowpack properties and their evolution, modelling and interpretation of 

snow/firn microwave radiation, especially at L-band, which is sensitive from the surface to deeper layers, is difficult. Here we 
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used a simplified profile of temperature, density, and stratigraphy to simulate frozen and melt season TB at L-band. 

Nevertheless, LWA estimation with a single frequency is an underdetermined problem – even with constrained frozen 

background parameters, numerous combinations of volume fraction of melt and wet layer thickness can produce the same or 730 

close TB, but with different LWA. By using average measured dry snow density and parameterizing the wet layer thickness 

with an average retrieved thickness over melting days, we attempted to minimize some of the uncertainties. 

 

The Debye-like, Hallikainen, and Ulaby models show higher TB sensitivity to lower 𝑣𝑤LWC at low density snow/firn 

background and provide lower estimates of overall LWA. The opposite results were observed when the background density is 735 

higher (see Fig. 4). This is counterintuitive because when the background density is low, there should be enough pore space in 

the snow to either hold more 𝑣𝑤LWC or to support deeper percolation or vice versa. The results of these models, however, 

align most closely with the empirical Tiuri model. This is encouraging in the sense that the Hallikainen and Ulaby models 

were originally derived and validated for measurements in the 3–37 GHz range and for a limited density range; these 

agreements support their applicability to L-band applications. 740 

The Tinga model, on the other hand, shows more consistency with the change of dry snow density, yet it is highly 

nonlinear with 𝑣𝑤and provided the lowest LWA at five of the six AWS sites considered (except CP1, Fig. 4 and 59). The 

MätzlerMEMLS3 model provided an overall intermediate result in terms of effective dielectric constants (these results are in 

line with Picard et al. 2022 results), depth of penetration, TB, and LWA, and showed a reasonable fidelity over a wide range 

of density (Fig. 4). But compared to the SEMB models, which were forced by AWS measurements, Mätzler modelMEMLS3, 745 

along with the above-mentioned models, provided the lowerst LWA in all six AWS (Figure 9 and Table 4).  

So, if these models represent TB realistically, saturation at relatively low LWA would limit the liquid water estimation 

at L-band within a certain limit (approximately no more than 60 - 70 mm). The Colbeck model has a convincing theoretical 

and experimental basis, nevertheless this model consistently stayed apart from other models and provided the low end of the 

effective dielectric constant (and TB), and the high end of the LWA and penetration depth. The power-law dependent models, 750 

Birchak, Sihvola, and Looyenga, provided consistent estimates of the LWA and penetration depth throughout (dielectric 

constant and TB w.r.t. 𝑣𝑤LWC) in the order of lower to higher (higher to lower), respectively. Sihvola model was found to be 

the best match with SEMB models for the AWS and melt season considered (the overall RMSD at six AWS was ~ 11 mm; 

see Table 6). The advantage of these power law models is that they are easily configurable based on the degree of the model 

(a single parameter to fit - 𝛽) and can easily be fit to the available ground truth (or SEMB estimates). 755 

However, we refrain from recommending any particular model in this article, except exploring and demonstrating 

their individual and comparative characteristics under different 𝑣𝑤LWC, density, and other firn conditions, because caution 

should be taken when considering SEMB models as the reference for validating LWA estimates since they have their own 

limitations. Difference between the SEMB models when forced with the same inputs partly explains this. Consistent delayed 

refreezing in both the models (SAMIMI and GEMB) when melting at the upper surface ceases is an apparent indication of 760 
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inaccurate thermal conduction, affecting the overall LWA. Thermal conductivity of wet snow and wet-dry interface is probably 

lower. Future work should better parametrize these processes to refine the models. 

Satellite derived LWA can be attributed to infiltrating water, occurring through two distinct modes of unsaturated 

flow: the downward propagation of a wetting front and the movement of water through preferential flow paths (also called 

pipes or flow fingers) (Marsh and Woo, 1984). Under sustained melting, wetting fronts typically form and propagate downward 765 

from the surface into the underlying cold firn (Colbeck, 1975), although their advancement can be hindered by nightly 

refreezing or by snowfall events. Additionally, structural features in the firn, such as ice layers or microstructure contrasts, can 

trap water. However, as water accumulates, it occasionally breaks through in highly heterogenous locations. The resulting 

preferential flow paths allow large volumes of water to infiltrate deep below the wetting front, bypassing the cold firn layers 

(Marsh and Woo, 1984); Pfeffer and Humphrey, 2022). The partitioning of meltwater between infiltration via wetting fronts 770 

versus preferential flow paths is highly variable and inherently difficult to predict due to its sensitivity to subtle firn structural 

and thermal conditions. 

Several factors suggest that twice-daily LWA retrievals are more likely to reflect the water associated with the surface 

wetting front than liquid water contained within deeper preferential flow paths. First, the signal from water in subsurface pipes 

must propagate through the overlying wet layer, which has a stronger and more coherent L-band response due to its proximity 775 

to the surface and higher spatial continuity. Second, flow through preferential pathways is typically event-driven, with the 

breakthrough of accumulated water quickly penetrating deep into colder firn, where it often refreezes within hours rather than 

persisting for days or weeks (Humphrey et al., 2012). Finally, the L-band signal inherently averages over broad spatial 

footprints on the order of kilometres, favouring detection of the spatially extensive and homogeneous surface wet layer over 

the centimetre- to decimetre-scale, highly heterogeneous pipe structures. Therefore, future work should better understand and 780 

parametrize these processes to refine the algorithmmodel.  

 

Parametrizations in the retrieval framework—such as the assumption of simplistic stratigraphy and liquid water 

distributions—may affect the absolute LWA estimates. However, these factors are likely to impact all models in a similar 

proportion. Therefore, the relative differences between the model estimates are more likely attributable to the specific 785 

formulations and assumptions of each model. Nevertheless, future work should aim to incorporate more advanced algorithms 

capable of resolving vertical profiles. AdditionallyAmong others, a spatially and temporally dependent threshold should also 

be considered in future work to account for not only the ice layers due to refreezing but also the seasonal evolution of the 

snowpack that obviously contributed to the uncertainty in the results. The challenge would be the sensitivity and saturation of 

TB with increasing LWA. As shown, the signal power/field intensity decreases exponentially with depth and 𝑣𝑤LWC at a rate 790 

determined by the absorption and scattering coefficients (Fig. 3 and 7). Over absorption dominated regions, LWA estimates 

beyond ~60 - 70 mm would be highly uncertain. Future retrievals should consider a wider range of 𝑣𝑤LWC to incorporate the 

negative sensitivity (scattering dominated regions). To handle the inherent nonlinearities and dimensions of the problem, 
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advanced techniques (such as deep learning) may be beneficialhelp. Upcoming lower frequency missions (e.g., CryoRad: 

Macelloni et al., 2018) would also create offer new opportunities to sense deeper and enhance the capabilities). 795 

5 Conclusion 

We investigated performances of ten dielectric mixing models for modelling wet snow TB at L-band to estimate the LWA in 

snow/firn column in the percolation zone of Greenland ice sheet. Six of the models (Tinga, Debye-like, Hallikainen, Ulaby, 

MätzlerMEMLS3, and Colbeck) are derivatives of fundamental mixing models (either MG or more generally, PVS) with 

empirically derived depolarization factors that account for the shape and orientation of the liquid water inclusions in dry snow 800 

background with respect to the emitting electromagnetic field. Except for the Colbeck model in this group, all models show 

overall relatively higher sensitivity of the effective dielectric constant to LWA, and thus TB, and generally produce lower 

estimates of LWA compared to the SEMB models. Colbeck model displays the lowest sensitivity of LWA to the effective 

dielectric constant and TB and, hence, yields the highest LWA of all models.  

The differences among these models mostly originate from their depolarization factors that depend on multiple factors 805 

including density and LWA; they are deemed to be very difficult to quantify. Another group of models that follows power law 

relationships (Birchak, Sihvola, and Looyenga), not explicitly considering the depolarization factor, exhibit intermediate 

sensitivity of LWA to the effective dielectric constant and TB, and offer higher LWA than the former group of models (Tinga, 

Debye-like, Hallikainen, Ulaby, MätzlerMEMLS3, and Colbeck). A lower exponent (𝛽) results in a lower sensitivity and a 

higher LWA, since a lower exponent allows the background to dominate in the mixing model. The results of the Tiuri model, 810 

which is fully based on empirical fitting to the field measurements at around 1 GHz, generally lie with that of the former group 

of models that explicitly consider the higher order interactions between the liquid water inclusions through depolarization 

factors. While the Hallikainen and Ulaby models were originally derived and verified for measurements made at 3 - 37 GHz, 

these agreements with Tiuri model support their applicability to L-band applications. 

Compared to the SEMB models (SAMIMI and GEMB) driven by in situ observations, the first group of mixing 815 

models (Tinga, Debye-like, Hallikainen, Ulaby, MätzlerMEMLS3, and Tiuri) estimated consistently lower LWA in five of the 

six PROMICE GC-Net sites (except KAN_U) which are more typical of percolation zone snow/firn physical conditions. 

Colbeck and Looyenga models measured consistently higher LWA than the SAMIMI and GEMB models in all six sites. In 

general, the Sihvola model aligned best with the SAMIMI and GEMB models for 2023 melt season. However, the best match 

does not imply correctness in the absence of an actual truth estimate. The SAMIMI and GEMB models disagree widely in 820 

certain cases; in general, the SEMB models have been found to produce diverging LWA estimates with the same in situ 

meteorological measurementsforcing (e.g., Vandecrux et al., 2020; (Hossan et al., 2024; Moon et al., 2024)). 

Despite the satellite retrievals using the different mixing models showing a wide variance in the total and maximum 

summer LWA, no significant discrepancies were observed in the timing of the onset and refreezing melt, which is based on 

the observed TB change. However, although satellite retrieval agrees well with the onset of melt with SEMB models, 825 
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significant disagreements were found in timing of complete refreezing of sub-surface liquid water in snow/firn. While all L-

band retrievals indicate a sharper refreezing in all sites except KAN_U, the SAMIMI and GEMB models seemed to refreeze 

slowly and retain sub-surface liquid water for an elongated period in post melt season. This was attributed to low thermal 

conductivity and slow heat transmission in the firn models. The differences between SAMIMI and GEMB models, even when 

they were run by the same set of in situ observations, are also indicative of the differences in their process representations. 830 

This study sheds light on the behaviour of wet snow dielectric mixing models and consequent TB in presence of low 

liquid water (vw: 0 - 6 percent %, or LWA: 0 - 120 mm). The sensitivity and saturation behaviour of the models were broadly 

explored that gives an idea about the uncertainty associated with translating the L-band retrieved effective dielectric constant 

to LWA. Further work is required to better understand the melt water process in the snow and firn and their interactions with 

the microwave emissions. More sites specific in situ measurements of firn profiles under various conditions will be the next 835 

step to calibrate and validate these models to make better recommendation about using a group of specific mixing models. 
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