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Abstract.

Despite ongoing efforts to reduce pollution, persistent ozone pollution in China remains a public health concern. To better
understand the causes of ozone pollution in China and to assess and evaluate the effectiveness of past, current, and planned
targeted pollution control strategies, estimates of the amounts of pollutants emitted from various sources are needed. To this
end, we have developed harmonized and integrated anthropogenic emission inventories for China, incorporating information
from the existing national inventory for mainland China (MEIC) and three global inventories (CEDS, CAMS, HTAP) to cover
areas outside of China. The newly developed China INtegrated Emission Inventory (CINEI) includes emissions in China from
sectors currently omitted from the MEIC (ships, aviation, waste, and agriculture) that we incorporate from the global inven-
tories. To ensure harmonized emissions data, we performed mapping between different inventories, a process used to achieve
consistency between sectors, spatial resolution, and speciation of non-methane volatile organic compounds (NMVOCs). These
harmonized and integrated inventories for China were used to drive WRF-Chem simulations for January (winter) and July 2017
(summer). Through a detailed evaluation of model results against available observations, we show that while the direct use of
global inventories alone can lead to severe over- or underestimation of pollutant mixing ratios, CINEI inventories perform
satisfactorily in simulating ozone (12% in summer and 43% in winter normalized mean bias) and its precursors, including
nitrogen dioxide (NO;, -0.5% in summer and 40% in winter) and carbon monoxide (CO, -50% in both seasons). Based on
the comparison and modeling of this study, valuable insights into the spatio-temporal variability of ozone and the subsequent

design of future ozone mitigation strategies in China were provided.
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1 Introduction

China’s air quality has improved rapidly since 2013 in response to the implementation of mitigation strategies (Zhang et al.,
2019). Concentrations of particulate matter (PM5 5) and primary pollutants (e.g., nitrogen oxides, sulfur dioxide, and carbon
monoxide) have decreased (Wang et al., 2019; Liu and Wang, 2020; Wang et al., 2023). However, ground-level ozone pollution
remains severe. In 2017, the population-weighted exposure-averaged mixing ratio of ozone in China reached 68.2 parts per
billion by volume (ppbv) (Yin et al., 2020), exceeding the World Health Organization (WHO) air quality standard of 50 ppbv
(Lyu et al., 2023; WHO, 2021). Ground-level ozone is a secondary pollutant formed in complex photochemical reaction chains
from its precursors, including nitrogen oxides (NOx = NO + NO,), carbon monoxide (CO), and non-methane volatile organic
compounds (NMVOC:s). Therefore, the amounts of emitted precursors based on different anthropogenic emission inventories
may lead to different estimates of ozone mixing ratios. To investigate near-surface ozone pollution, its multi-year changes,
and the effects of sectoral emissions of precursors on ozone distribution over China, it is essential to accurately represent
the amount and spatiotemporal variations of anthropogenic emissions of ozone precursors in emission inventories (Li et al.,
2017; Chang et al., 2022; Smith et al., 2022; Monks et al., 2015). Therefore, emission inventories are essential to provide the
information needed to formulate effective strategies to further improve air quality (Hoesly et al., 2018).

Over the past decade, anthropogenic emissions in China have undergone rapid changes due to air pollution reduction strate-
gies (Fig.Sta Sla). In particular, since 2013 during the implementation of 12th Five-Year Plan period (12 Five-Year Plan,
2011), there were significant reductions in anthropogenic emissions of -27% for NOx and -17% for CO (Zheng et al., 2018).
These reductions were due to measures such as setting ultra-low emission standards for vehicles and factories, improving air
quality control technologies, and phasing out high-emitting factories (Li et al., 2017; Lu et al., 2020). After 2010, CO and NO,
mixing ratios gradually fell below the WHO standards of 0.4 parts per million by volume (ppmv) for CO and 20 ppbv for NO,
(Text $+S1 and Fig. Stb S1b). Despite these significant improvements in air quality (Zhang et al., 2019), there is growing
concern about unintended increases in ozone levels (Li et al., 2019; Lu et al., 2020)., which may result from the co-effects of
reduced NOy emissions and increased NMVOC emissions (Li et al., 2019). As a result, specific strategies targeting NMVOC
emissions were introduced in 2015, especially in the petrochemical and organic chemical industries. Despite these measures,
maximum daily 8-h average ozone levels remained high in 2022 (Fig.S+b S1b) and frequently exceeded the WHO thresholds
during the warm season (April to October, Fig.5+b S1b). Although total NMVOC emissions have decreased in China, some
studies attribute the observed increase in ozone over the past decade to the increasing contribution of anthropogenic NMVOC
emissions, especially aromatics, alkenes, and oxygenated VOCs (OVOCs), mainly from the petrochemical industry and solvent
use, to the total NMVOC:s (Li et al., 2014; Zhang et al., 2020, 2021; McDonald et al., 2018). In order to investigate the drivers
of recent changes in ozone pollution in China, it is crucial to develop accurate emission inventories that reflect policy-driven
changes in anthropogenic emissions.

However, existing anthropogenic emission inventories encounter discrepancies in sectoral emission (Solazzo et al., 2021).
The discrepancy raises concerns about their accuracy and reliability (Crippa et al., 2021; McDonald et al., 2018). Anthro-

pogenic emission inventories are typically constructed in a bottom-up manner, with sectoral emissions quantified using activity
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data and emission factors (Solazzo et al., 2021). Activity data are mainly derived from official statistics (see Text S2- 2 for
details). Emission factors provide the amount of emissions released per activity (Text $2S2). To obtain gridded emissions with
specified NMVOC speciation and high spatiotemporal resolution, we need more detailed NMVOC speciation profiles, tempo-
ral profiles, and associated source proxies to distribute emissions in space. Discrepancies in anthropogenic emissions between
global, regional, and national emission inventories in describing emissions within a region can be attributed to differences in
all of the aforementioned data. Regional and national inventories often use updated and more localized activity data, emission
factors, and spatial proxies (Text S3S3). Thus, they are likely to better quantify emissions within the region or nation of in-
terest and better describe their multi-year changes and spatial distributions compared to global inventories. However, national
inventories that are limited to the region of interest do not capture air pollutants transported from regions outside the national
territory. In addition, some emission sectors may be missing. The use of different NMVOC speciation profiles can also lead to
differences in ozone simulations, and its influence must be considered (Rowlinson et al., 2024).

The integration of local or regional emissions into larger scale emissions, called MOSAIC emissions (Li et al., 2024b),
can improve the accuracy of emission inventories in reproducing the amounts and variations of emissions. This approach
has been applied in many studies, including the integration of metropolitan-regional emissions into national emissions (Wu
et al., 2024), national emissions into continental emissions (Li et al., 2024a), and continental emissions into global emissions
{Crippa-etal52023)(Crippa et al., 2023; Guizzardi et al., 2025). The use of these integrated emission inventories in chemical
transport models (CTMs) leads to improved model performance in reproducing pollutant concentrations. A comprehensive
comparison between the results of the simulations and the observations can demonstrate the improvements achieved in pollutant
simulations.

In this study, we aim to construct a comprehensive anthropogenic emissions inventory for China (CINEI) by integrating the
emissions data from mainland China’s inventory (Multi-resolution Emission Inventory model for China, MEIC) with various
global emission inventories within our integrated (harmonized) emissions system (Fig. 1a). Our goal is to develop an emis-
sion inventory that integrates emissions from all sectors, well-defined localized NMVOC speciation, and provides a spatial
distribution of emissions consistent with the framework of global emission inventories. The processing method is presented in
section 2.2. We discuss the results of CINEI emissions in terms of emission sectors (Section 3.1), NMVOC speciation (Sec-
tion 3.1), and spatial distributions (Section 3.1), and compare them with existing emission inventories. In order to assess the
reliability of the new CINEI inventory, we performed numerical WRF-Chem regional experiments based on CINEI, MEIC
(harmonized inventories) and three global inventories, as described in Section 3.1. The model performance is evaluated and
discussed in Section 3.1. Based on the discussion of this study, we make recommendations for future emissions and modeling

studies (Section 4).
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Figure 1. Representation of the framework of an integrated (harmonized) emission inventory system (top two panels) and its evaluation
scheme (bottom panel). Figure 1a illustrates the procedure for the construction of the harmonized and integrated (CINEI) emission invento-

ries, which is explained in Section 2.2. Figure 1b shows the WRF-Chem experiments performed to validate the emission inventories, with
detailed explanations in Section 2.2.
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2 Methodology

2.1 Selection of anthropogenic emission inventories

For the purpose of developing the CINEI, we selected emission inventories based on the following criteria:

Data availability: We prioritized emission inventories that are easily accessible and widely used by the scientific com-

munity.

Multi-annual coverage: The anthropogenic emission inventories need to span multiple years and accurately reproduce

emission changes within the recent 10-12 years.

High temporal resolution: We selected emission inventories with monthly or higher temporal resolution to account for

seasonal variations.
Gridded emissions: Gridded emissions are essential for simulation using CTM.

NMVOC speciation: NMVOC:s is tropospheric ozone precursors and as such their they are crucial for ozone simulations
in CTM and understanding their potential impact on ozone formation, hence their emissions need to be adequately

speciated.

Avoiding data duplication and unnecessary integrations: As some regional inventories are included in global inven-

tories, only global inventories were selected for this study.

Based on the above considerations, we selected four anthropogenic emission inventories (Table 1) that include one regional

(national) and three global emission inventories. These are:

1.

The Multi-resolution Emission Inventory for China (MEIC version 1.4): MEIC is a national inventory for mainland
China developed by Tsinghua University and updated to the year 2020 (Zheng et al., 2018, 2021a). Due to the 22
emission sectors provided in the newer version 1.4 (released in 2023), we use MEICv1.4 to improve sectoral comparisons
in our study. The previous version, MEICv1.3, has been widely used in a number of research studies to date (Liu and
Wang, 2020; Wang et al., 2024). We also provide comparisons of emission amounts (NOy, CO, and NMVOCs) between
MEICv1.3 and MEICv1.4 in Fig. $2 S2. MEICv1.4 data used in this study are provided in Zenodo (Zhang, 2025b).
Absolute differences of annual averages (MEICv1.3 values minus latest MEICv1.4 values over MEICv1.3 values) were
calculated and then expressed as percentages with respect to the annual average emissions in the more recent emission
inventory. The differences in total pollutant emissions in China between the two versions were found to be less than 5%,

and differences between other versions of inventories follow the same calculation.

The Community Emissions Data System (CEDS, version 2021): This is a global emission inventory for the Coupled
Model Intercomparison Project Phase 6 (CMIP6) (Hoesly et al., 2018; Feng et al., 2020; Smith et al., 2022). CEDSv2021

provides detailed descriptions of emission sectors and IPCC sector codes, which facilitates inter-comparison of sectoral
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emissions (Hoesly et al., 2024). Comparisons between CEDSv2021 and the previous version, CEDSv2019, suggest that
there are only slight differences (< 3%) in the emissions of ozone precursors in China (Fig.54 S4), therefore CEDSv2019

is not included in further analysis.

3. The Copernicus Atmosphere Monitoring Service emissions (CAMS, version 5.3): This dataset is based on the Emis-
sion Database for Global Atmospheric Research (EDGAR version 5) until 2018, and projected to 2022 by using the
linear slopes of CEDS sectoral emissions from 2015 to 2019 (Granier et al., 2019; Doumbia et al., 2021; Soulie et al.,
2023). We also compared pollutant emissions in China in CAMSv5.3 and the latest version of EDGAR, EDGAR v6.1
(Fig.S3 S3). CAMSv5.3 data used in this study are provided in Zenodo (Zhang, 2025b). Results indicate the similarity
between the two emission inventories, with differences ranging from 4 to 7% for total annual emission for China, from

2008 to 2020. The uncertainties of CAMs extrapolation method will also be discussed in Section 3.1. Thus, EDGAR

v6.1 was not selected for this study.

4. Hemispheric Transport of Air Pollution (HTAP, version 3): HTAP is a newly published global emissions inven-
tory {2023)-that incorporates the Regional Emission Inventory of Asia (REAS, version 3.2.1) for pollutant emissions in
East, Southeast, and South Asia (including China) (Kurokawa and Ohara, 2020; Crippa et al., 2023). HTAPv3 includes
more comprehensive sectoral emissions than REASv3.2.1, including domestic and international aviation and shipping,
waste emissions, and agricultural waste burning from EDGAR (Monica, 2023). HTAPv3 reports higher emissions than
REASv3.2.1,by 2.5 Tg (8.8%) for NOy and by 2.5 Tg (8.7%) for NMVOC, while the difference in CO emissions between

the two inventories is less than 0.5% (Fig. MM%@MWMMMW
inventory (Guizzardi et al., 2025) and MIXv2 inventory (Li et al., 2024b) incorporates the MEICv1.4 inventory. Our
final dataset-CINEI aims at methodological improvements and provide a more comprehensive coverage of emission
sectors than MIXv2 and HTAPv3. 1, especially with the inclusion of the agriculture and aviation sectors. In addition,

over China among CINEI, MIXv2, and HTAPv3.1 inventories for the overlapping period (2010-2017), demonstrates
her than CINEI (rangin

only minor discrepancies among the inventories. Annual emissions in HTAPv3.1 are 2.1% hi

from -0.8% to +5.8% across different species), while MIXv2 emissions are consistently 3.2% lower (ranging from -1.6%
to -6.1%) (see further discussion in Text S5).

2.2 Harmonizing and integrating emission inventories

In order to improve comparability and build on the strengths of national (MEIC) and global emission inventories, our goal was
to develop an integrated emissions was to develop an integrated emission inventory for China (CINEI) based on harmonized

emission inventories, but with emissions from all activity sectors in China following the IPCC definitions of emission sectors
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Table 1. List of emission inventories considered for integrated inventory

Acronym Version Period Spatial Resolution = Website Last Access Time
MEIC 1.4 2008 to 2020  0.25° http://meicmodel.org.cn/?page_id=1772&lang=en  March 2025
CAMS 53 2008 to 2020  0.1° https://eccad.sedoo.fr/#/metadata/479 May 2024

CEDS 2021 2008 to 2019  0.5° https://data.pnnl.gov/dataset/CEDS-4-21-21 May 2024

HTAP 3 2008 to 2018  0.1° https://edgar.jrc.ec.europa.eu/dataset_htap_v3 May 2024

and updated NMVOC speciation with observation-based, localized profiles. To do this, we harmonized the emission inventories
by unifying the definition of emission sectors, spatial resolutions, and NMVOC speciation between the MEIC and global
emissions. The framework for creating the harmonized CINEI is shown in Fig. 1a, and the Python code for this processing can
be accessed on the Zenodo website (https://zenodo.org/records/15000795) and archived by Zhang (2025a). Further details are
provided below:

[Step 1 - Sectoral mapping]: Harmonizing emission sectors between the national and global emission inventories.
The classification of emission sectors often differs between different emission inventories. To compare sectoral emissions and
harmonize emission sectors, we first need to use emission sector mapping tables to establish the correspondence between the
emission sector definitions in the selected emission inventories and the standard sub-sector codes of the IPCC (Intergovern-
mental Panel on Climate Change; IPCC, 2006), as shown in Fig.56 S8. The correspodance of emission sectors is based on their
definitions for each inventory, which are collected through extensive literature and data documentation on the official website
(Granier et al., 2019; Li et al., 2024b; Crippa et al., 2023). Eight sectors are defined in the harmonized and integrated emission

inventories, including:

1. Transportation: Emissions from both road and non-road transport. Emissions are quantified based on fuel consumption,
and vehicles contributing to such emissions include heavy and light trucks, rail vehicles, passenger cars and motorcycles,

etc. Emissions from international shipping and aviation are excluded from this emission sector.

2. Residential: Emissions from small-scale residential and commercial activities, including heating, cooling, lighting and

cooking, as well as auxiliary engines used in houses, commercial buildings, service institutes, etc.

3. Power: Emissions from electricity generation, commonly driven by large-scale intensive fuel combustion. The incinera-

tion of waste in waste-to-energy plants is also included.

4. Industry: Emissions from by-product industrial processes, including emissions from solvent volatilization, cement, iron

and steel production, fugitive emissions, refinery emissions and other fuel-related emissions. This sector also covers

emissions from volatile chemical products (VCPs) such as petrochemical products, coatings, and printing inks. These

sources emit high-reactivity species such as m/p-xylene, propene, and toluene, which are important contributors to ozone
formation.
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5. Agriculture: Emissions from agricultural soil, manure management, cultivation, and agriculture waste burning. Agricul-
ture waste burning includes straw burning, and excludes savannah burning (Crippa et al., 2023). Besides, transportation

emissions due to the usage of agricultural vehicles (such as fishing boats) are also included here.
6. Waste: Emissions related to solid waste disposal and wastewater treatment.
7. Aviation: Emissions from aviation activities, including the take-off, cruising and landing of aircraft.

8. Ships: Emissions from shipping activities on both oceans and inland waterways.

Table 2 lists the data sources for CINEI’s sectoral emissions and the missing sectors in the-existing inventories. By following
the IPCC sector definitions, we were able to identify sectors that were omitted from certain emission inventories (Fig—S6)-
. S8). We selected the emission sectors from different inventories based on three principles, in the followin

order: (1) whether the sectors included complete sources (sub-sector) and species, as indicated by "Completion of sub-sectors
in Table 2; (2) whether the sector used high-qualit

see Fi

and species" and updated underlying data for calculating emissions

as indicated by "Better underlying data" in Table 2; and (3) whether the emission estimations for the sectors considered

the mitigation measures implemented in China (as which is indicated by "Incorporation of pollution

mitigation measures” in Table 2.
For CINEI, we kept-the-emisstons—for retained the emissions from the four existing sectors (transportation, residential,
industry, and energy) used-in-the MEIC-and-for-the-four-missing sectors;-we-added-that were utilized in MEIC, as these sectors

a parameter for abatement estimation (Text S2 and Table S1). The emission peak year is consistent with the year of mitigation

implementation (see Text S9).

We integrated emissions from various global emissien-inventories for the four missing sectors to ensure comprehensive

sectoral coverage and consistency between national and global emission inventories. Specifically, we used emissions from
HTAP for aviation and domestic shippingemissionsfrom-HTAP-and-. We opted for HTAP’s data for domestic shipping because
its inventory provides an independent sub-sector for inland shipping, whereas inland shipping emissions from CAMS are not
very complete due to the limited use and coverage of the Automatic Identification System (AIS) on inland waterways. We
incorporated ocean shipping emissions from CAMS, which refines data using the Ship Traffic Emission Assessment Model

STEAM3), providing a more detailed representation of shipping routes and emissions (Johansson et al., 2017). For the agri-

culture and waste sectors, we tsed-the-corresponding-utilized data from CEDS —npartieutar-agricultural-emissions—in-the

D
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discussed in Text S2)

3

—because its agricultural emissions are more comprehensive than those of MEIC (which only considers NHs, and its waste
emissions are more complete than those from sources from other inventories (Fig. S7).



Table 2. Data sources of CINEI sectoral emissions and mapping with global emission inventories

If provided by existing inventories

Sectors CINEI Data Source  Selection Principles™**
MEIC CEDS” CAMS HTAP*
MEIC CEDS*CEDS* CAMS HTAP“HTAP*
Power MEIEvH4-v v e N and MEICy1.4 (2 (3)
Industry MEIEvH4-v v s N annd MEICy1.4 (2 3)
Residential MEICv4-v v v v MEICv1.4 M 2)3)
Aviation HTAPv3-missing missing missing v HTAPv3 @)
Transportation MEICvi4-v v v v MEICv1.4 M 2)3)
International Ships  EAMS¥53-missing v v v CAMSVS5.3 2).
Domestic Ships HFAPv3-missing missing v v HTAPv3 2
Agriculture HFAPY3-v ™ N g v v HTAPv3 2
Waste CEDSv202+-missing v v v _CEDSv2021 Q)

#As* As emissions from HTAP and CEDS are not extended to 2020, we use a linear regression of the emissions from 2008 to 2018

(2019) for HTAP (CEDS) and extrapolate to 2020 for CINEI.

** indieates-Indicates that the emissions inventory provides parts of the sectoral emissions -but misses some subsectors suggested by the

IPCC report. Details on IPCC subsectors and a comparison to each inventory are listed in Fig. S6-S8.

and (3) Incorporation of mitigation.

*#** The selection principles are prioritized in the following order: (1) Completion of sub-sectors and species, (2) Better underlying data,
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We also analyzed the changes in ozone precursor emissions in China. The trend in emissions from a sector x is calculated

for the studied period of 2008 to 2020 using the Equation ( 1).

k=1 k=1
E: 2008 y E;2020 —Es200s >0, Er2020 =2, Ek200s

=1 h=1
> Ek 2008 Ez 2008 > Ek 2008

r =

; 6]

where:

T, is the relative changes of emissions from the emission sector x in the end years for global inventories that stops at

2018 for HTAP and 2019 for CEDS, we extrapolate the data to year of 2020 through linear regression,

- ﬁ is the relative changes of emissions from the emission sector x in the end years for global inventories that
k=1 ’

stops at 2018 for HTAP and 2019 for CEDS, we extrapolate the data to year of 2020 through linear regression,
_ Ez.2020=Exz 2008

Eq 2008

_ i1 Br2020=3 07 Ek,2008
2 k=1 Ek,2008

gives the relative change in emission from sector x from 2008 to 2020,

gives the relative change in total emissions from 2008 to 2020.

We defined key sectors as those with an obvious influence on changes in total national emissions of a pollutant. We identified
key sectors based on the following two criteria: (1) they show a clear increasing or decreasing trend in line with total emissions;
(2) the total contributions of the key sectors can explain more than 95% of the total emissions changes. We have adopted this
calculation from Intergovernmental Panel on Climate Change (IPCC) (2006).

[Step 2 — Uniform spatial resolution]: Re-gridding emission data to the same spatial resolution. The global inventories
under consideration have different horizontal resolutions, ranging from 0.1° to 0.5° in both longitude and latitude. To ensure
a consistent integration, we need to align their resolutions. Therefore, to match the resolution of the MEIC, we spatially
interpolated all global inventory data to the grid coordinate with a resolution of 0.25° x 0.25° (latitude x longitude). We used
‘Conservative’ algorithms for the adjustment, which ensures that the quantity of emissions in the new grids does not change
compared to that in the old grids. The emissions in 180 mass in the new grid cell k (denoted as E}) are quantified by Equation

(2),

Ej = / / e(r)dA, @)
Ag

where e(r) is the emission density in the old grid cell that intersects with this new grid, and Ay, indicates the areas of intersections
between two grids (Dukowicz, 1984). These integrals must be calculated for all cells of the new mesh.

[Step 3 - NMVOC speciation mapping]: Aligning NMVOC emissions in all emission inventories to the same specia-
tion.

NMVOC emissions are assigned different speciations in different inventories. NMVOC speciation in regional and national

inventories (e.g., MEIC and REAS) often follows chemical mechanisms widely used in models, such as the Carbon Bond

10
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Mechanism (CBM) (Gery et al., 1989), the Regional Acid Deposition Model gas-phase chemical mechanism (RADM) (la-
cono et al., 2008), and the State Air Pollution Research Center (SAPRC) (Carter, 2015). Regional inventories often speciate
NMVOC species according to the Model for Ozone and Related chemical Tracers mechanism (MOZART) (Li et al., 2014;
Huang et al., 2017). We also assumed MOZART speciation for the integrated inventory (Table S+0 S4). This facilitates com-
parison of speciated NMVOC emissions with global inventories and application in global models, because the MOZART
speciation is also used in global inventories and global CTMs (Lamarque et al., 2010; Huang et al., 2017; Emmons et al.,
2020). To perform the integration of emissions of specific NMVOC species and to meet the requirements of simulations by
CTMs, it is essential to make the NMVOC speciation in different emission inventories consistent. For harmonized inventories,
we applied a mapping table (TableS3 S4) to align the MEIC NMVOC lumped species categories with those in the global in-
ventories, and the MOZART speciation is applied to NMVOC emissions in all inventories after mapping. For the CINEI, we
updated the NMVOC speciation by applying recently reported localized source profiles and lumped NMVOC emissions fol-
lowing the NMVOC categories in the MOZART mechanism (Emmons et al., 2020). CINEI inventory with MOZART NMVOC
speciation can be used in a wide range of air quality studies, as well as in regional and global chemistry and transport models
CTMs). Examples include the Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-Chem)
the Community Earth System Model (CESM) and the Multiscale Infrastructure for Chemistry and Aerosols (MUSICA
Dai et al., 2023; Mariscal et al., 2025;
of CINEI relative to other regional inventories, including MEIC, REAS, and MIXv2. Total NMVOC emissions from different
sectors were assigned to more than 80 specific VOC species based on NMVOC speciation profiles reported by Mo et al. (2016)
and Sha et al. (2021) (details in TableS4-and-Fable-S+6 S5 and Table S6). These profiles describe well the recent speciation

Danabasoglu et al., 2020; Dai et al., 2024). Such compatibility enhances the versatilit

of NMVOC emissions in China based on representative measurements (Li et al., 2014). In order to evaluate and compare the
impact of different NMVOC species on ozone formation, ozone formation potentials (OFPs) are calculated in this study. For

the NMVOC species j, its OFP value is calculated by Equation ( 3):

OFP(j) = EVOC(j) x MIR(3), (3)

where EVOC(j) is the emissions of j, and MIR(j) is the maximum incremental reactivity of j, defined as the potential maximum
ozone production per consumption of j under high-NOx conditions (Carter, 1994). The MIR values used in this study were
derived from Carter (2015) and are listed in TableSS S6. The MIR indicates the amount of ozone growth as the incremental
emission of NMVOC species increases, and is unitless. Therefore, the unit of OFPs should be mass based and here we use
Tg-0O3.

[Step 4 — Emissions’ harmonization and integration]: Spatial harmonization and integration of emissions by species
and sector. In the previous three steps, the selected inventories (MEIC, CEDS, CAMS, HTAP) are transformed into new ones
with consistent sector types, spatial resolutions, and NMVOC speciation (MOZART). This step harmonizes and integrates the
national and global inventories and improves the compatibility of the integrated inventory with the chemical mechanism of the

CTM. We focus on anthropogenic pollutant emissions in East Asia (70.125°E to 149.875°E and 10.125°N to 59.875°N), which

11
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is gridded in 320 x 200 grids. National and global inventories in this area are combined to produce Harmonized Emission

Inventories (HMEI) and CINEI, the details of which are presented below:

— Harmonized emission inventories (HMEI): In these inventories, anthropogenic emissions within Mainland China are
derived from the standard Chinese national inventories, MEIC and those outside of China are from the global emission
inventories. Based on the type of global inventory used in the processing, three harmonized global emission inventories
were created: HM_CAMS (harmonized MEIC with the CAMS global inventory), HM_CEDS (CEDS), and HM_HTAP
(HTAP) when using MEIC.

— Integrated emission inventory (CINEI): Based on the harmonized emission inventories, CINEI also includes all emis-
sion sectors and updated NMVOC emissions speciated according to the MOZART chemical scheme (Zhang et al., 2025).
As mentioned above, emissions from four sectors, including ships, waste, aviation and agriculture, are missing in the
MEIC. In the CINEI, emissions from these missing sectors in China are derived from the global emission inventories as
explained in Step 1 and shown in Table2- 2. The difference between CIENI and HMEI lies in the new sectors added to
CIENI, which increase total emissions. Furthermore, the additional emission sectors affect the composition of specific

local emissions, which will be discussed in later sections.

To consolidate the data fusion from national to global emission inventories at spatial scales, we calculated the Monte Carlo
uncertainty for sectoral emissions for the global inventory (CEDS) and the regional CINEI (Lee et al., 2024). We randomly
select 10000 samples from 64000 values (200 x 320), calculate the standard deviation of the samples, and repeat this step 1000
times until the standard deviation does not change. We use the standard deviation to represent Monte Carlo uncertainties, and
if the standard deviations of the global and CINEI inventories are of the same magnitude, we assume that the data fusion is

reliable (Heuvelink and Brus, 2009).
2.3 Evaluating emission inventories Using WRF-Chem Model

To evaluate the performance of the harmonized and CINEI inventories, we used the Weather Research and Forecasting model
with Chemistry (WRF-Chem, version 4.3.2; Skamarock et al. (2019); WRF Model Development Team (2025)) to run simula-
tions for our region of interest with different inputs of anthropogenic emissions and compared the model results with measure-
ments of ozone (O3), carbon monoxide (CO), and nitrogen dioxide (NO;). We performed simulations using each of the three
global emission inventories (CAMS, CEDS, HTAP), three harmonized inventories (HM_CAMS, HM_CEDS, HM_HTAP),

and CINEI (Fig.1b 1b), and for two different simulation periods, January (representing winter) and July (representing summer)

2017. In addition, the MIXv2 inventory incorporates the MEICv1.4 inventory for Asia, which has high lumped speciation
and missing aviation emissions. Its modeling performance with the same setup for July 2017 is discussed in the Supplement

Fig. S29 and Table S22).
We used the same model setups for all experiments (Table S6 S7). Specifically, we set up two-unidireetionatly-two-way

nested simulation domains with spatial resolutions of 36 km x 36 km and 12km x 12km (Fig. 2). Specifically, the inner domain

includes the major populated areas of eastern China. The domain has a dense network of air quality monitoring sites (Fig. 2)
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and meteorological monitoring sites (Fig. S7 S9). The chemical initial and boundary conditions for the outer domain were
derived from the 6-hourly output of the CAM-chem model (Lamarque et al., 2010), while for the inner domain they were
extracted from the results of the simulation in the outer domain. MOZART (Emmons et al., 2020) was used to simulate gas-
phase chemistry and reactions, and MOSAIC (MOdel for Simulating Aerosol Interactions and Chemistry; (Hodzic and Knote,
2014)) was set as the aerosol scheme. Biomass combustion emissions were taken from the FINN (Fire INventory from NCAR,
version 1.5) inventory (Wiedinmyer et al., 2011), and biogenic emissions are estimated using the Model of Emissions of Gases
and Aerosols from Nature (MEGAN, version 2.1) (Guenther et al., 2012). We set the spin-up time to 6 days before the study
periods to avoid the influence of imbalanced chemical initial conditions on the simulation results.

To evaluate the model performance across all experiments, we compared the modeled hourly averaged mixing ratios of O3,
CO, and NO; at the finer scale with corresponding observations at 969 national air quality monitoring sites. The modeled
meteorological variables, including temperatures at 2 m, wind speeds and directions at 10 m, were also validated with the
3-hour observational data set at 136 sites obtained from the National Centers for Environmental Information (https://www.
ncei.noaa.gov/, last access: March 2025). Seven statistical metrics were used to determine the performance of the model. The
metrics include normalized mean bias (NMB), mean normalized bias (MNB), mean fractional bias (MFB), mean normalized
absolute error (MNAE), mean absolute error (MAE), root mean square error (RMSE), and Pearson correlation coefficient (R)

(Brasseur and Jacob, 2017). TableS7- S8 provides information on their functions.
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Figure 2. Model domains employed for WRF-Chem simulations in eastern China. The horizontal resolution of the outer Domain 01 (depicted
in gray) is 36 km, featuring 75 x 86 grids, including a total of observed 1372 sites (in dark blue). The inner Domain 02 (illustrated in yellow)

has a higher horizontal resolution of 12 km, with 160 x 166 grids, covering observed 969 sites (in dark blue).
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3 Results and discussion
3.1 Sectoral emissions and comparison

CINEI shows the comprehensive sectoral anthropogenic emissions and reveals significant changes in ozone precursor emissions
(NOy, CO and NMVOCs) in China (Fig. 3a-c). These include the decrease in NOy emissions (-0.942.9 Tg yr—!) since 2012
and CO emissions (-7.04:23.4 Tg yr~!) since 2008 and the increase of NMVOC emissions (0.4+1.0 Tg yr~!) from 2008 to
2019. CINEI also showed a slight decrease in 2020 due to the COVID-19 shutdown (Zheng et al., 2021a). In general, the major
sectors in the global inventories show a greater divergence from the national inventories. There is a of approximately 5% for
NOy of power generation with respect to the total emissions of CINEIL, and a deviation of more than 10% for HTAP and CAMS
CO from residential activities. The deviations in the totals are minimal and the sectors are more comprehensive by including
the main sectors from the national inventory and key sectors (ships, waste, etc., as discussed in Text S6-and-FablesSH-S13)-
S8 and Tables S12- S14). Global inventories (HTAP and CEDS) agree well with the national (MEIC) in terms of total emission
levels and multi-year changes in China (Fig. 3g-i). However, emissions in CAMS show notable differences from those in other
inventories: CAMS estimates lower NOy and CO emissions in China before 2014; CAMS displays the variation without rapid
reduction during the study period (Fig. 3d-f).

CINEI also provides the amount of emissions from eight anthropogenic sectors (Fig. 3a-c). The main sectors of the CINEI
in China include industry (NOy, CO, NMVOCs), transportation (NOy, CO, NMVOCs), energyNOCO NMVOCs)-and
transport (NOy, CO, NMVOCs), power (NOy) and residential (CO, NMVOCs). Compared to MEIC -CINE(harmonized
inventories) for China, CINEI total emission on annual average includes the contributions of the marine-ships sector to NOy
emissions (2.7 Tg), the waste sector to CO emissions (5.2 Tg), and the agricultural sector to NMVOC emissions (1.4 Tg)
(Fig. 3d-f). Ignoring these emissions can lead to bias in the estimation of anthropogenic emissions and in the simulation
of ozone (von Schneidemesser et al., 2023). Differences in sectoral emissions (CINEI minus other inventories) are evident
in major and omitted sectors (Fig. 3d-f). In general, emissions from the power sector are often higher in the three global
inventories, while those from the transport sector are mostly lower. The apparently lower NOx from transport and CO from
residential emissions in CAMS (and EDGAR) are mainly due to underestimated contributions. Although CEDS provides

total emission estimates closer to those of CINEI for China, there are still notable differences in the contributions of certain

sectors. The uncertainties of the CAMs extrapolation method for the main sectors are between 30% and 60% (see Text S6 and
Table S3). One exception of power uncertainty is over 100%, likely due to the systematic uncertainty in the sector definitions

and mapping. In particular, the energy and residential sectors contribute more to NOy emissions, but lower emissions from
shipping and industry offset these increases. Higher NMVOC emissions from the power sector are offset by those from the
industry sector. This is similar to the comparison of sectoral emissions in HTAP and CINEIL

We also analyzed the contributions of sectoral emissions to changes in total emissions and identified the key sectors for
emission changes of each pollutant. TableS+4- S15 summarizes the linear trends (slopes) of 8 sectoral emissions for NOy, CO,
and NMVOCs from 2008 to 2020, and the piece-wise slopes for sectoral emissions that show changes with increases followed
by decreases (TableS+5 S16). The power sector is the key-seetor-driving-main driver of the decrease in NO, emissions ;-white
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downward trend with a linear reduction of -0.33 yr—!. In the CINEI, emissions from the power and industrial sectors (for
S2). The improved reflection of mitigation actions in the MEIC inventory comes from accounting for factors such as technolo
adoption and abatement efficiency (see Text S2 and Table S1), such as energy transition to cleaner resources (Yan et al., 2023)

. Over the study period, the sectors responsible for the largest reductions in CO emissions over-the-study-period-inelude-were
industry (60% of the reduction), residential (29%), and transportation (16%). Emissions-The main contributors to the observed

39% contribution, -3.6 Tg yr—1), residential (22%, -1.8 T 0.14
Tg yr!). CO emissions from more specific sources, including the petrochemical industry, cooking, and gasoline-powered

—1

and power (13%

linear declines in CO were industr

vehicles, also show significant reductions in MEIC v1.4 (Fig.S9 S11). In addition, industry is driving the increase in NMVOC
emissions, despite the decrease in NMVOC emissions from the residential and transportation sectors. These NMVOC emissions
are associated with industrial painting, iron and steel industry, and architectural coatings in MEIC v1.4 (Fig.5+6 S12). Thus,

more efforts are warranted in the future to control NMVOC emissions from industrial processes in China.

In-addition;—ezene-Ozone precursor emissions from the-four-missing-seetors—four key sectors not included in the MEIC

{shipsinventory (shipping, waste, agriculture, and aviation) are at- sing. <
;e . . _ - —1 . el .

included in the CINEL

inventory and are identified as key contributors (see Table S15 and Text $8). The shipping sector is a major contributor to
NOx emissions in China, with a linear emission increase of +0,07 Tg yr'!, making it the third-largest driver of the total NOy_
trend at 21%. Aviation follows as the fourth-largest contributor to NOx with 3% (+0.01 Tg yr’), while waste accounts for
the fourth-largest share of the CO trend at 13% and also shows a rising trajectory (+0.15 Tg yr!). For comparison, NOx

emissions from shipping in the HTAP inventory also display an upward trend of +0.1 Tg yr'! (Tables S12- S14), which appears

to counteract reductions from the energy sector. We-have-therefore-identified-In summary, our findings indicate that shipping,

waste, aviationand-asriettture-askey-sectors—due-to-their-inverserelationship-with-total-emisston—chanees{Fables

agriculture are key sectors that influence overall trends, often showing increases where other major sectors have declined.
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Figure 3. The top panels (a-c) show the interannual variability of NOx (NO,), CO, and NMVOC emissions across eight aggregated sectors in
the CINEIL and all data are listed in TablesS8-5+8 S9-S11. The middle panels (d-f) depict the averaged annual differences from 2008 to 2018
in sectoral emissions between each of the four inventories and CINEI (existing inventories minus CINEI). Sectoral emissions are indicated
by bars and total emissions by dots. The findings are based on the mean differences from 2008 to 2018, and the results for each year are
shown in Fig.5+ S13. The bottom panels (d-f) present the interannu!i?variability of total NOx (NO,), CO and NMVOC emissions in China
from the CINEI (in orange) and four selected emission inventories (MEIC in green, CAMS in black, CEDS in red, and HTAP in blue). Total

emissions from § sectors used from multiple inventories are provided in TablesS12-S+4 S9- S11.
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3.2 Speciation of NMVOCs emission

The increase in NMVOC emissions is a potential contributor to severe ozone pollution in China (Li et al., 2019; Zhang et al.,
2021). Individual NMVOC species often differ in the amounts emitted and in their ozone formation potential, and thus con-
tribute differently to ozone formation. We ranked the top 20 NMVOC species in China according to their mean annual emis-
sions in CINEI and quantified their OFPs values (Fig. 4a). These NMVOCs species cumulatively contribute to more than
85% of the total OFPs by NMVOCs emissions, indicating their notable influence on ozone pollution. In general, NMVOCs
species with more abundant emissions tend to contribute more to OFPs, such as m/p-xylene and toluene, which together have
an OFP value of 23.1 Tg-O3 on an annual average from 2008 to 2020 (23.4% of the total OFPs). Propene, o-xylene and ethene,
with higher OH reactivity (characterized by their MIR values), also have significant contributions to total OFPs (propene 13.9
Tg-O3 and 14.1% in percentage contribution to total OFP, o-xylene 7.1 Tg-O3 and 7.2%, and ethene 6.9 Tg-O3 and 6.1%). In
contrastHowever, high emissions of ethylbenzene and styrene (10% of total NMVOC emissions) contribute only 7.2 Tg-O3
(6%) to the total OFPs due to their low reactivity. Regarding the OFPs of different NMVOC groups, aromatics and alkenes
contribute to 75% of the total OFPs as shown in Fig. $12 S14. This result is in good agreement with previously reported results
(Li et al., 2019; Wu et al., 2022). The OFPs values in VOCs categories are also compared with the result of previous studies
(TableS1+6 S14). The emission and OFPs of all NMVOCs species on annual averages also for mainland China are shown in

Targeting the emission sectors most asseetated—with-related to NMVOC species with high OFP values may be efficient
for ozone abatementmitigation. The sectoral contributions to the top 20 NMVOC species are shown in Figure-4b-Fig. 4b.
M/p-xylene, toluene, propene and o-xylene emissions are mainly frem—derived from the industrial sources (~70%). This

includes—their—use-involves their usage as solvents in industrial processes (e.g., industrial painting and architectural coat-

ings). The residential sector is-also-an—tmportant-eontributor-also has an important contribution to these NMVOC species,
accounting for 20-30%. Ethylene-Ethene emissions show different characteristics: besides the significant-contributionsfrom
considerable contributions of the industrial and residential sectors, agriculture also accounts for a large share-proportion (32%)
ras-does-transport-as does transportation (25%), indicating the contributions frem-fishing--of fishing and harvesting and diesel
vehielesvehichles. For the other NMVOC species in-among the top 20, industry and transport-transportation are mostly the

main-soureesmajor sources, and therefore NMVOC emission control should focus on the contributions of these two sectors.
For-formaldehyde-and-acetaldehyde-emissions;-the-The agricultural sector is the main source together-with-emissionsfrom
for formaldehyde (52%) and acetaldehyde emissions (60%), related to the emissions along with crop burning (including the

burning of rice and wheat straw, maize, etc.). Ignoring agricultural NMVOC emissions in anthropogenic emission inventories
ay-tead-to- stithation-of ibution-of-can lead to underestimated contributions of these species to ozone pol-

lution. Fina

intensive local agricultural activity.
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The-seetoral-contributions-to-the-top20-NMVOE speeies-are Total NMVOC emissions and OFPs in China, showed an overall

increasing trend from 2008 to 2020, with linear slopes of 0.2 T -1 (emission) and 1.1 Tg-O3 yr’! as shown in

Fig. 46-MS 14. Fourteen of the top 20 species exhibited increasing trends and contributed significantly to OFPs, including m/p-

strategies should focus on industrial emission controls for high-OFP species, particularly aromatics like xylenes and toluene,
while continuing to strengthen transportation and residential emission reductions. Furthermore, since formaldehyde and several
alkenes showed decreasing trends, policies should maintain these reductions while preventing industrial sector growth from
overwhelming overall mitigation efforts through stricter industrial VOC controls and cleaner production technologies. All
of the major NMVOC species identified by CINEI show increasing trends within the sectors added from global inventories,
namely agriculture, shipping, aviation, and waste. For example, total NMVOC emissions from the agriculture sector are slightly.
rising by +0.003 Tg yr". Key speciated NMVOC emissions from these four sectors, such as ethene (which contributes 8% to
total OFP) and formaldehyde (5%), also show notable increases. To effectively reduce ozone levels, mitigation strategies should
target not only highly reactive species like m/p-xylene, toluene, and propene from industrial sources, but also address emissions

from sectors like agriculture and aviation that are often overlooked in national inventories.
To evaluate the NMVOC speciation used in CINEI, we selected 9 hydrocarbon species and used their emission ratios to €-H>

facetylene (CoHy, unit: mol/mol) for comparison with those in global and national inventories, as well as with observations
over China (Figure-S13Fig. S17). We used C,Hy instead of CO because C,H, and hydrocarbons are monitored with the same
measurement system (GC MS/FID). The in situ measurements of VOC species (in ppbv) were obtained from the literature (Lv
etal., 2021; Huang et al., 2022; Li et al., 2022; Song et al., 2021). These data, obtained from megacities (Beijing, Shanghai, etc.)
and provincial capitals, are listed in Fabtes-S+7-5+8Table S18 and Table S19. We extracted emissions at the same locations

and dates and calculated the ratios of hydrocarbons to C,H,. The selected VOCs have similar atmospheric lifetimes and

19



445

450

455

sources in urban areas, primarily from transportation and industrial emissions. Species treated as a single entity in emission
inventories (e.g., ketones) and those not comparable to observations (e.g., oxygenated VOCs) were excluded from the analysis.
Our comparison showed that NMVOC speciation from emission inventories is quite uncertain due to the applied source profiles,
different sectoral distributions and emission masses. The ratios in the CINEI are closer to the observations, except for ethene
and xylene. In contrast, the global and MEIC inventories have lower ratios for alkanes compared to observations, possibly due

to misrepresentation of the dominant sectoral emission (solvent or industry) for these species.

When compared to the national inventory (MEIC, with the same ratio as the harmonized inventories), the ethane-to-acetylene
and propene-to-acetylene ratios in CINEL are closer to the observed ratios (Fig. S17). These findings may be linked to two
sectors (agriculture, aviation, ships, and waste), which contribute 13% to the total annual average emission and are richer in
ethane. Second, the propene-to-acetylene ratio in CINEL is lower than the MEIC ratio despite a 3% additional contribution
from these missing sectors. This may be due to the speciated profile used in CINEI (Mo et al., 2018), which attributes a smaller
share of emissions to diesel vehicles (mainly emitting alkenes) and a larger share to gasoline vehicles (mainly emitting alkanes
(Table 520). These findings suggest that using local NMVOC speciated profiles can better capture changes caused by current

energy transitions and evolving consumption patterns (Yan et al., 2021). However, the ratios of primary alkenes (etheneand
propene)-) and toluene emission in the MEIC and CINEI exceed the observed values. Alkenes have faster loss rates via OH,

which may lead to alkenes from primary source are degraded immediately. Therefore, the observed ratios of alkenes to C,H;

may be lower than its emission ratios (MIR > 9). Therefore, the speciation of NMVOC emissions. Improving this description

would also influence the homogenization of the national inventory with global ones and the application of CTM simulations.
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Figure 4. (a) Mean annual emissions (blue bars in Tg yr~') and OFPs (yellow line in Tg-O3 yr~!) of the top 20 NMVOCs species in CINEI
(ranked by emission amount). Error bars at the top of the columns represent the standard deviations of the emissions from 2008 to 2020. (b)

Sectoral contributions to the emissions of the top 20 NMVOC species. Emissions and ©OPFs-OFPs of all NMVOC species in 8 sectors are
provided in TableS+9- S20 and TableS26- S21 respectively.
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3.3 Harmonizing emissions on spatial scales

Fig. 5 shows the spatial distribution of NOy emissions from the CINEI dataset across eight sectors in East Asia in 2017. For
emissions outside of China, we use CEDS emissions for the major sectors because CEDS incorporates national emissions
from surrounding countries and is widely used in global CTM models (Hoesly et al., 2018). We chose NOy as a representative
species to analyze the spatial distribution of pollutant emissions in CINEI. Emission maps for other species(SO,, NH3, CO,
C,Hg, toluene, and C;Hy) from CINEI are shown in Fig. S5 S19.

Anthropogenic emissions, such as those from the residential, transportation, and waste sectors, tend to be high in densely
populated areas of northern and eastern China, Japan, Korea, and India, indicating their close association with human activities
(see Fig.5+4- S18 for population distribution). NO, emissions from the energy and industry sectors, which are considered
point sources, are characterized by hotspots at sites for electricity generation, solvent volatilization, and cement, iron, and steel
production. The convergence of these sectoral data from the national emission inventory and CEDS for surrounding countries in
CINEL is tested by Monte Carlo simulations with comparisons to CEDS data. The Monte Carlo uncertainties of the two datasets
are of the same order of magnitude, indicating that the possibility density of the CINEI is normal on the spatial distribution and
not separated into two datasets.

The distribution of shipping reveals shipping routes in the ocean and inland rivers. Aviation emissions distribution is related
to airline connections between different airports, with high values likely occurring near major airports in China. The emissions
of other pollutants suggest similar characteristics of spatial distributions (Figure-S+5Fig. S19).

In addition, harmonized emission inventories used the default emissions for total emission amount from the national in-
ventory, but emissions outside China were taken from the three global inventories. To illustrate the difference in emissions
in mainland China and the similarity in emissions outside of China between national and global inventories, the distribu-
tions of the paired comparisons (HM_CEDS vs. CEDS, HM_CAMS vs. CAMS, HM_HTAP vs. HTAP) are also shown in
Figs.S16-519 S20- S23.
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3.4 Comparisons of simulation results based on multiple anthropogenic emission inventories

To identify the most harmonized inventories suitable for regional simulations over China, the performance of WRF-Chem
modeling results based on the national inventory (MEIC) merged into three global inventories (HM_CEDS, HM_CAMS, and
HM_HTAP) has been were evaluated. The three harmonized inventories show minimal variation in the averages over the entire
domain where the grid contains observed sites (Text S10). The normalized mean biases (NMBs) among the three modeling
results are 10% and 40% for ozone in summer and winter, respectively, -0.5% in summer and 40% in winter for NO, and
-50% for CO for both seasons (Fig.520 524 and Text S12). However, HM_CEDS shows better agreement with observations
from coastal cities, which have a deeper response to the transport of emissions to mainland China. In contrast, HM_CAMS
and HM_HTAP have significant biases. Accordingly, HM_CEDS was selected to represent all harmonized inventories for

subsequent modeling comparisons, hereafter abbreviated as HMEL

Further, we investigate the comparison of experiments’ performance between MEIC-based HMEI and global inventories.
Modeling ozone mixing ratio using HMEI in January 2017 achieve the smallest normalized mean bias (NMB = -26%),
compared with HTAP (-52%), CEDS (-33%), and CAMS (-40%) (Fig. 7). In July 2017, models using HMEI produced
Fi several statistical metrics (NMB, MNB, MNAE, MAE, MFE) consistently demonstrates
. S27- S28). These

. 6). Comprehensive analysis usin

that HMEI delivers superior overall performance compared to individual global emission inventories (Fi

comparisons of evaluation metrics suggest that CINEI is based on emissions from the main sectors in the MEIC inventory.
To further evaluate the performance of CINEI, HMEI and global inventories (CAMS, CEDS, HTAP), anthropogenic emis-

sions (NOy, CO and NMVOCs) are shown in the upper panels of Fig. 6 and -??Fig. 7, and modeling results (O3, NO, and
CO mixing ratios) are compared with observations in the lower panels of Fig. 6 and -2?Fig. 7. In both months the O3 mixing
ratios are overestimated by CINEI (12% in summer and 42% in winter) and HMEI (20% and 40% NMB). The NO, mixing
ratios of CINEI are closer to the observations by about 5% in summer and 40% in winter. The differences feund-between
the two emission inventories can be attributed to the aggregation-inclusion of shipping, waste, and aviation emissions, as well
as updated NMVOC speciation in the CINEI dataset. These-seetors-lead-to-a—small-inerease-in-Accounting for these sectors
results in a modest increase in total emissions (less than 10%) in the-CINEHnventoryCINEI This change leads to improved
model performance, as shown by a reduction in the normalized mean bias (NMB) for O3 in summer (from 21% with HMET

to 12% with CINEI) and for NO, in winter (from 24% with HMEI to 22% with CINEI). Additional statistical analysis shows
that CINEI and-HMEHhave-has superior performance compared to HMEI and global inventories (Text SH-— 13 and Fig.

$23-24 S27- 528). The MFB for CINEI is £0.3 in both seasons and the MNAE is less than 0.5, within the ranges suggested in
the literature (Zhai et al., 2024). However, the CO mixing ratios are apparently underestimated in all cases (up to 50% NMB).
The underestimation of CO likely has links with (1) differences between urban and regional CO backgrounds, as (Zhao et al.,

2012) reported using satellite data; (2) the inaccurate OH mixing ratios in CTM leading to more CO sink (Gaubert et al., 2020).

TFherefore;both-both-An additional experiment based on MIXv2 in the summer showed an underestimation of NO, by 7 ppbv
NMB = -54%), CO by 0.5 ppmv (-85%), and O3 by 14 ppbv (-34%) (Fig. S29 and Table S22). The larger discrepancy of
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520

525

530

MIXv2 with observations likely resulted from missing aviation emissions and reactivity due to lumping together NMVOC
species (Text S13). However, the speciated NMVOC emission values for both CINEI and HMEI result-in-are consistent and
align with global inventories, resulting in more reliable model performance.

Among the three global inventories, the CEDS result is in better agreement and slightly closer to the observations, with O3
NMB 6% and NO, NMB -24% in summer (47% and 5% in winter). In the two seasons, the NO, emissions of CEDS are about
-18% lower than that of CINEI, but the NMVOC emissions are about -50% lower than that of CINEI. In addition, CAMS
underestimates anthropogenic emissions of all precursors in both summer and winter. In particular, in July 2017, NMVOC
emissions are 90% lower in CAMS than in CINEI. As a consequence, O3 mixing ratios in summer (winter) are underpredicted
by -31% NMB (-26%) (for more details, see Supplementary Text SH-S13 and accompanying figures). An unexpected result
is that the NO, mixing ratios are overpredicted by ~35% in CAMS, despite the lower NOx emissions in CAMS. In contrast,
HTAP has the highest emissions for the two studied months in all inventories, and the HTAP NO, mixing ratio is the highest in
both seasons with 113% NMB (summer) and 121% (winter). Detailed statistical indices for these comparisons are provided in
Supplementary-SH-Text S13 and accompanying figures. However, the HTAP Oz mixing ratio is everpredieted-over-predicted
in summer and largely underpredicted in winter. The comparisons and validations suggest that ozone changes are rontinearly
non-linearly related to anthropogenic emissions of ozone precursors. Emissions and concentrations of precursors of O3 may

also alter total OH loss rates (Loy) and further affect radical termination processes and ozone production rates.
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Figure 6. The top panels (a-c) present total anthropogenic emission differences of ozone precursors (NOy, CO, and NMVOC) for July 2017
between the CINEL, HMEI, CAMS, CEDS, and HTAP inventories using the CINEI integrated emission inventory as a reference. Bottom
panels (d-f) show WRF-Chem simulated mixing ratios of O3, NO», and CO for the same month and within the modeling domain (latitudes
from 25.5° to 43.6°; longitudes from 103.5° to 127.6°) using the different emission inventories. Individual columns show simulated mean

mixing ratios in the model domain for each emission inventory used. The dashed blue lines show average observed mixing ratios calculated

using the stations within the specified domain. The numbers on the columns are the normalized mean bias (NMB) against observations
for each modeling experiment, and the calculation is expressed in the first line of Table 13. The numbers in red (blue) colors indicate
overestimation (underestimation).
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Figure 7. Same content with Figure 6, but in January 2017.
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4 Conclusions

The development of anthropogenic emission inventories used in simulations by CTMs faces various challenges, such as accu-
rate descriptions of emissions from complete sectors and with complete spatial coverage, as well as rapid emission changes
due to regional mitigation. In this study, we developed two new types of anthropogenic emission inventories for China to better

meet the requirements in the study of long-term ozone changes:

— The harmonized inventories, HMEIs, combine emissions in mainland China from MEIC and emissions in regions outside

China from three different global emission inventories (CAMS, CEDS, HTAP).

— The integrated inventory, CINEI, is based on the harmonized inventory (harmonized MEIC with CEDS), but additionally
includes from the global inventories the emissions in China contributed by the missing emission sectors in the MEIC,

including ships, waste, aviation, and agriculture.

To perform the integration, the emission sector types, spatial resolutions, and NMVOC speciation were made consistent
between the MEIC and the global emission inventories. The emission processing system developed for this study (Fig. +a 1a)
is able to meet these requirements. To evaluate the performance of harmonized and integrated inventories in the simulation of
ground-level ozone, we generated emission inventories for East Asia in two representative months (January and July 2017),
applied them in the simulations of WRF-Chem, and compared the model results with the corresponding observations. The
results show that the application of harmonized and integrated inventories leads to a satisfactory performance in the simulation
of ozone and two of its precursors, NO, and CO. In contrast, the direct application of global emission inventories (HTAP and
CAMS) can lead to a significant bias in the simulation results. The construction of our integrated emission inventories provides

valuable insights for designing ozone mitigation strategies and refining anthropogenic inventories for China:

1. CINEI and HMEI show acceptable model performance when evaluated against observations and compared with simula-
tions driven by global inventories. In summer, the CINEI model results overestimate the mixing ratios of ozone by 5%
and those of NO; by 0.5%. In winter, ozone is overestimated by 5.8 ppb, or 40%. CO is underestimated by about 30-50%
in both seasons, which is common to all simulation cases. However, the model performance needs to be further improved
and further studies are needed to reduce the bias by implementing better meteorological fields, chemical mechanisms,
parameterizations of dynamical processes and deposition based on comprehensive comparisons with observations from

different sources.

2. The CEDS is a good option for providing emission data outside mainland China because of its better modeling perfor-
mance (O3 and NO, NMB < 10%) compared to CAMS and HTAP. Due to its moderately long lifetime, ozone can be
transported from regions outside China (Zheng et al., 2021b; Qu et al., 2024). We found that the modeled ozone mixing
ratios for three harmonized inventories differ from observations by 2 to 6 ppbv on spatial average. Thus, the selection of
inventories for the surrounding regions of China is also imperative for ozone simulations in China. The applicability of
the MOSAIC emission inventory product needs to be validated based on comparisons between observations and CTM

results driven by MOSAIC emissions.
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565 3. Ozone precursor emissions from sectors initially omitted from the national inventory may be significant, such as NOy
emissions from ships (~1 Tg yr~!) and CO emissions from waste (~5 Tg yr—!). The omission of these emissions may

lead to inconsistencies in the results of ozone simulations and overlook their potential role in ozone control.

4. Additional measures are needed to curb the increase in NMVOC emissions, despite effective reductions in NOy (-0.9 Tg

yr~1) and CO emissions (-7 Tg yr—') over the past 10 years. In particular, the reduction of key species and sources of

570 NMVOC emissions, such as m/p-xylene and toluene from solvents and ethene from diesel vehicles, will be effective in
reducing ozone in China due to the larger OFP of these species. Further research is needed to support the formulation of

effective strategies for future ozone control in China.

In a follow-up study, we will investigate-the-evaluate CINEL's representation of NOx-VOC photochemistry in CTM models

and compare the results with observational data. We also plan to incorporate additional observational and modeling approaches

575  to develop an updated version of the CINEI emissions dataset. This will help reduce uncertainties in the emission estimates
and minimize modeling biases in CTM applications.

1. The ability of CINEI, with updated speciated NMVOC emissions and more sectoral emissions, to better represent total

OH loss rates and contributions to ozone formation rates. As ozone mixing ratios do not respond linearly to changes in

ozone precursor emissions, the geographical extent of VOC and NOy restricted areas appears to change with the emission

580 inventories adopted. We discuss the ozone photochemistry regime under different emission scenarios and propose more

insightful and strategic emission scenarios.

2. The new version of CINEI will incorporate additional emerging sources, such as new volatile chemical products (VCPs)
including the production of personal care products in industry and the use of pesticides in agriculture (Seltzer et al., 2021; Cai et al., 2

- We will use more observational data, such as from TROPOMI and in-situ measurements, to constrain the total emissions

585 for ozone precursors and NMVOC speciation.
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