
Response to Reviewer 1st  – Manuscript gmd-2025-268  “Towards an integrated inventory of anthropogenic 

emissions for China ” by Zhang et al., 2025 

 

We would like to thank the reviewer for the careful reading and suggestions to improve the clarity and quality 

of the manuscript. Below, we provide a detailed reply to each of the comments (Reviewers’ 

comments/questions in bold black, our reply in black, and new text in the manuscript in blue). 

 

Comment 1. Why does the study rely solely on MEIC for China in all harmonized emission inventories 

instead of using global inventories? The paper devotes substantial effort to harmonizing emission sectors, 

VOC speciation, and spatial resolution, but these harmonized datasets are not fully utilized to produce 

the final emissions inventory. Does MEIC significantly outperform the global inventories in China? I 

did not see supporting evidence for this in Figures 6–7. 

 

 

We would like to thank the reviewer for their valuable and insightful comments. In our study, we created our 

final inventory (CINEI) by combining the harmonized national MEIC inventory for mainland China with the 

global CEDS inventory for regions surrounding mainland China, as described in the manuscript (referred to as 

HMEI). CINEI also incorporates additional contributions from global inventories, specifically from the 

agriculture, shipping, and waste sectors. Furthermore, we applied a localized non-methane volatile organic 

compound (NMVOC) speciation profile within CINEI. For mainland China, we exclusively use MEIC data 

across all harmonized emission inventories. This choice is based on the fact that MEIC utilizes the most recent 

and region-specific data for China, including updated emission factors, detailed activity data (such as power 

plant locations and population), and current mitigation measures (see Section S2). Our study integrates 

emission estimates derived using these unique factors for all major sectors into the overarching framework of 

global inventories. As a result, MEIC emissions often differ in magnitude from those reported by other global 

inventories. 

 

Following the suggestion of the second reviewer, we have updated Table 2 by adding a column labeled 

‘Selection Principles’. This new column clarifies the criteria we used to select the main sectors (transportation, 

industry, power, and residential) from the national MEIC inventory. 

 

To address the second part of the comment (model performance), we have now included detailed model 

validation metrics in Supplementary Section S13, Figures S27–S28. While some deviations between modeled 

and observed values (see Figures 6–7) can be attributed to spatial averaging, we have now added the 

Normalized Mean Bias (NMB) directly to these figures for clarity. 

 

- Winter (Jan 2017): The MEIC-based HMEI outperforms all other global inventories for multiple 

pollutants. For ozone, HMEI achieves the lowest NMB (-26%) compared to HTAP (-52%), CEDS (-

33%), CAMS (-40%), and CINEI (-44%). It also shows the lowest Mean Normalized Bias (MNB = 

15.6%) and the lowest Mean Normalized Absolute Error (MNAE = 43.1%). For CO, HMEI comes 

closest to zero NMB (-24%) and performs well for NO2. Overall, the strong performance of 

HM_CEDS makes it the optimal choice for wintertime air quality modeling. 

 

- Summer (July 2017): During July, HMEI continues to outperform other global emission inventories, 

especially in predicting NO2 and CO. For NO2, HMEI provides the most accurate results, with a 

normalized mean bias (NMB) of 0.5%, which is closest to zero among all inventories compared to 

CINEI (2%), CAMS (-21%), CEDS (-21%), and HTAP (113%). It also achieves the lowest mean 

normalized bias (MNB = 41%) and mean normalized absolute error (MNAE = 32.8%). For CO, HMEI 

again stands out with the best performance (MNB = 57.6%, NMB = -34%, MNAE = 34.4%) despite 

the fact that all inventories tend to underestimate concentrations. Ozone predictions using HMEI show 

moderate overestimation (NMB = 20.0%, MNB = 17.3%) compared to other inventories (CINEI: 14%, 

CAMS: -31%), likely due to reduced NO2 in polluted regions, which may enhance ozone formation 

through increased oxidant availability and OH-VOC reactions. 

 

Despite this challenge with summer ozone, HMEI consistently delivers the most reliable results across multiple 

pollutants in both winter and summer, making it the best choice for year-round atmospheric chemical modeling. 

 



Changes made in the manuscript:  

 

3rd paragraph in section 3.1 (Line 337-345) in main text:  The power sector is the main driver of the decrease 

in NOx emissions for China, contributing 49% to the downward trend with a linear reduction of -0.33 Tg yr-1. 

In the CINEI , emissions from the power and industrial sectors (for NOx) and the residential sector (for CO) 

started to decline after peaking in 2013 (see Table S16). This timing aligns with the emission reduction 

measures implemented, starting with the 12th Five-Year Plan in 2011 (see Text S1). The improved reflection 

of mitigation actions in the MEIC inventory comes from accounting for factors such as technology adoption 

and abatement efficiency (see Text S2 and Table S1), such as energy transition to cleaner resources (Yan et 

al., 2023). Over the study period, the sectors responsible for the largest reductions in CO emissions were 

industry (60% of the reduction), residential (29%), and transportation (16%). The main contributors to the 

observed linear declines in CO were industry (39% contribution, -3.6 Tg yr-1), residential (22%, -1.8 Tg yr-1), 

and power generation (13%, 0.14 Tg yr-1). 

 

2nd paragraph in section 3.4 (Line 456-462) in the main text: Further, we investigate that the comparison of 

experiments’ performance between MEIC-based HMEI and global inventories. Modeling ozone mixing ratio 

using HMEI in January 2017 achieve the smallest normalized mean bias (NMB = -26%), compared with HTAP 

(-52%), CEDS (-33%), and CAMS (-40%) (Fig. 7). In July 2017, models using HMEI produced NO2 and CO 

bias values (NMB = 0.5% for NO2, -34% for CO) that are closer to zero than results from global inventories 

(Fig. 6). Comprehensive analysis using several statistical metrics (NMB, MNB, MNAE, MAE, MFE) 

consistently demonstrates that HMEI delivers superior overall performance compared to individual global 

emission inventories (Fig. S27-S28). These comparisons of evaluation metrics suggest that CINEI is based on 

emissions from the main sectors in the MEIC inventory. 

 
Page 25 in the main text: Figure 6: The top panels (a-c) present total anthropogenic emission differences of 

ozone precursors (NOx, CO, and NMVOC) for July 2017 between the CINEI, HMEI, CAMS, CEDS, and 

HTAP inventories using the CINEI integrated emission inventory as a reference. Bottom panels (d-f) show 

WRF-Chem simulated mixing ratios of O3, NO2, and CO for the same month and within the modeling domain 

(latitudes from 25.5° to 43.6°; longitudes from 103.5° to 127.6°) using the different emission inventories. 

Individual columns show simulated mean mixing ratios in the model domain for each emission inventory used. 

The dashed blue lines show average observed mixing ratios calculated using the stations within the specified 

domain. The numbers shown in the columns represent the normalized mean bias (NMB)  against observations 



for each modeling experiment, as defined in the first line of Table S7. Values in red indicate overestimation, 

while values in blue indicate underestimation. 

 
Page 26 in the main text: Figure 7. Same content with Figure 6, but in July 2017. 

 

  



Comment 2. Additionally, the key distinction between CINEI and MEIC lies in the inclusion of 

previously missing sources in CINEI, such as agricultural, waste, and marine sectors. While MEIC has 

been evaluated in previous studies, the current evaluation of CINEI essentially serves to assess the 

impact of these additional sources. This important insight should be emphasized more clearly and 

consistently throughout the manuscript. 

 

We thank the reviewer for this suggestion. The key distinction between CINEI and MEIC is indeed the 

inclusion of agricultural waste and marine (shipping and aviation) sectors, and applying new NMVOC 

speciated profiles to NMVOC emissions. Our modeling evaluation based on CINEI in this study reveals several 

differences when compared to previous studies using MEIC and to harmonized MEIC with CEDS inventory 

(HMEI) in this work. Below, we summarize the improvements associated with these changes in CINEI: 

 

Modeling evaluation:  

 

- In January (Winter), CINEI total emissions over China are (slightly) higher than HMEI: +6% for NOx, 

+8% for CO, and +1% for NMVOCs. This increase is due to the inclusion of agricultural, waste, and 

shipping emissions that are absent in the original MEIC inventory. The additional emissions lead to a 

small increase in O₃ (less than 1 ppb), along with slight decreases in CO (by 0.4 ppm) and NO2 (by 1 

ppbv) mixing ratios. The improvement for NO2 is shown by a decrease in normalized mean bias (NMB) 

from 24% (HMEI) to 22% (CINEI). Other metrics, such as MAE, MNB, and MFE, also support the 

improvement for NO2. 

 

- In July (Summer), CINEI shows (slightly) higher emissions compared to HMEI: +7% for NOx, +16% 

for CO, and +1% for NMVOCs. The added emissions increase O3 by 3 ppb but lower CO (by 0.17 

ppm) and NO2 (by 2 ppbv). For O3, the NMB improves from 21% (HMEI) to 12% (CINEI), as 

supported by additional evaluation metrics. 

 

Impact of additional sectoral emission contributions:  

 

The CINEI inventory includes previously missing sectors for NOx and CO emissions. Based on our results:  

- The shipping sector is identified as a key sector for NOx emission in China, because the linear emission 

change rate of shipping NOx is +0.07 Tg yr⁻¹ and it ranks as the 3rd largest contributor to the total 

trend (21%). 

- The aviation sector is also a key sector for NOx emission due to being the 4th contributor to the total 

trend (3% and +0.01 Tg yr⁻¹).  

- Waste CO emission is the 4th largest contributor (13%) to the total trend and has an increasing trend 

(linear slope: +0.15 Tg yr⁻¹). 

 

4th paragraph in section 3.1 (Line 351-359) in main text (sectoral emission): Ozone precursor emissions 

from four key sectors not included in the MEIC inventory (shipping, waste, agriculture, and aviation) are 

included in the CINEI inventory and are identified as key contributors (see Tables S12-15 and Text S8). The 

shipping sector is a major contributor to NOx emissions in China, with a linear emission increase of +0.07 Tg 

yr⁻¹ , making it the third-largest driver of the total NOx trend at 21%. Aviation follows as the fourth-largest 

contributor to NOx with 3% (+0.01 Tg yr⁻¹), while waste accounts for the fourth-largest share of the CO trend 

at 13% and also shows a rising trajectory (+0.15 Tg yr⁻¹, see Table S13). For comparison, NOx emissions from 

shipping in the HTAP inventory also display an upward trend of +0.1 Tg  yr⁻¹ (Table S12), which appears to 

counteract reductions from the energy sector. In summary, our findings indicate that shipping, waste, aviation, 

and agriculture are key sectors that influence overall trends, often showing increases where other major sectors 

have declined.  

 

3rd paragraph in section 3.2 Line 398-404 in main text (NMVOC emission): All of the major NMVOC 

species identified by CINEI show increasing trends within the sectors added from global inventories, namely 

agriculture, shipping, aviation, and waste. For example, total NMVOC emissions from the agriculture sector 

are slightly rising by +0.003 Tg yr-1. Key speciated NMVOC emissions from these four sectors, such as ethene 

(which contributes 8% to total OFP) and formaldehyde (5%), also show notable increases. To effectively 

reduce ozone levels, mitigation strategies should target not only highly reactive species like m/p-xylene, 



toluene, and propene from industrial sources, but also address emissions from sectors like agriculture and 

aviation that are often overlooked in national inventories. 

 

 

The last paragraph in section 3.2 Line 418-426 in the main text (NMVOC speciation): When compared 

to the national inventory (MEIC, with the same ratio as the harmonized inventories), the ethane-to-acetylene 

and propene-to-acetylene ratios in CINEI are closer to the observed ratios (Fig. S17). These findings may be 

linked to two factors. First, the ethane-to-acetylene ratio in CINEI is higher than the MEIC ratio resulting from 

the incorporation of missing sectors (agriculture, aviation, ships, and waste), which contribute 13% to the total 

annual average emission and are richer in ethane. Second, the propene-to-acetylene ratio in CINEI is lower 

than the MEIC ratio despite a 3% additional contribution from these missing sectors. This may be due to the 

speciated profile used in CINEI (Mo et al., 2018), which attributes a smaller share of emissions to diesel 

vehicles (mainly emitting alkenes) and a larger share to gasoline vehicles (mainly emitting alkanes) (Table 

S20). These findings suggest that using local NMVOC speciated profiles can better capture changes caused by 

current energy transitions and evolving consumption patterns (Yan et al., 2021). 

 

 

3rd paragraph in section 3.4 (Line 473-477) in main text (Modeling evaluation): The differences between 

the two emission inventories can be attributed to the inclusion of shipping, waste, and aviation emissions, as 

well as updated NMVOC speciation in the CINEI dataset. Accounting for these sectors results in a modest 

increase in total emissions (less than 10%) in CINEI. This change leads to improved model performance, as 

shown by a reduction in the normalized mean bias (NMB) for ozone in summer (from 21% with HMEI to 12% 

with CINEI) and for NO₂ in winter (from 24% with HMEI to 22% with CINEI).  



 

 

Comment 3. Section 3.2 and Figure 4a: What causes the large year-to-year fluctuations in ozone 

formation potentials (OFPs)? 

 

The ozone formation potential (OFP) measures how much each volatile organic compound (VOC) can 

contribute to ozone creation. It is expressed in Tg of ozone (Tg-O3) yr⁻¹. OFP for each VOC species is 

calculated by multiplying that species’ emissions by its maximum incremental reactivity (MIR). Year-to-year 

changes in OFP depend, therefore, on (1) the reactivity of different NMVOC species, as measured by their 

MIR (Carter, 2015), and (2) each species’ share of total OFP. Trends in emissions of individual NMVOCs are 

closely linked to their relative abundance and the dominant emitting sectors. Figure 3 displays OFP and 

emission trends for the major (top 20) VOC species contributing to total OFP from 2008 to 2020. 

 

China’s total NMVOC emissions and OFPs, summing all species, increased from 2008 to 2020, with linear 

trends of 0.2 Tg yr⁻¹ for emissions and 1.1 Tg-O3 yr⁻¹ for OFP (Figure S14). Fourteen of the top 20 species 

(70% contribution of total emission) showed increasing trends and now make up large portions of OFP, 

including m/p-xylene (18% of OFP, 0.04 Tg yr⁻¹), propene (18%, 0.2 Tg yr⁻¹), and toluene (10%, 0.03 Tg yr⁻¹). 

The main sources driving this increase are industrial activities such as industrial painting, iron and steel 

manufacturing, and architectural coatings (Figure S12).  

 

Some sources like aviation, shipping, and waste, though lower in emissions, also contribute to the overall 

upward trend. Small decreasing trends can be found in species including i-pentane (-0.005 Tg yr-1), 

formaldehyde (-0.004 Tg yr-1) and trans-2-butene (-0.002 Tg yr-1). The residential and transportation sectors 

lead the decreasing trends, but fail to offset the emission increase by the other sectors in the study period. 

Above all, OFPs increase is driven by high-reactive species like m/p-xylene, toluene, and propene from 

industrial sources, and slightly from the missing sources (aviation and shipping, etc) by national inventory 

(MEIC). 

 

3rd paragraph in section 3.2 (Line 389-398) in main text: Total NMVOC emissions and OFPs in China, 

showed an overall increasing trend from 2008 to 2020, with linear slopes of 0.2 Tg yr-1 (emission) and 1.1 Tg-

O3 yr-1 (OFPs), as shown in Fig. S14. Fourteen of the top 20 species exhibited increasing trends and contributed 

significantly to OFPs, including m/p-xylene (18% OFP contribution and 0.04 Tg-O3 yr-1), propene (18% and 

0.2 Tg-O3 yr-1), and toluene (10% and 0.03 Tg-O3 yr-1) (Fig. S15 and Fig. S16). The primary driver for this 

increase was the industrial sector, particularly processes like industrial painting, iron and steel production, and 

architectural coating (Fig.  S12).  To mitigate ozone formation, targeted strategies should focus on industrial 

emission controls for high-OFP species, particularly aromatics like xylenes and toluene, while continuing to 

strengthen transportation and residential emission reductions. Additionally, since formaldehyde and several 

alkenes showed decreasing trends, policies should maintain these reductions while preventing industrial sector 

growth from overwhelming the overall mitigation efforts through stricter industrial VOC controls and cleaner 

production technologies.  

 

 

The last paragraph in section S10 (Line 276-281) in SI: Based on the VOC emissions analysis from 2008-

2020, the overall mean increase in OFP, of 1.3% annually, was primarily driven by significant growth in 

industrial emissions, which increased by 3.9% yr-1 across most VOC species. This industrial growth more than 

compensated for the decreasing trends in transportation (-3.3% annually) and residential (-2.2% annually) 

sectors. The species contributing most to ozone formation, m/p-xylene (17.7% of total OFP), propene (16.7%), 

and toluene (10.0%), all showed increasing industrial emissions despite reductions from other sectors (Figures 

S15 and S16).



 

 
 

Figure 15. Year-to-year CINEI Ozone formation potentials (OFPs, in columns, unit: Tg-O3) distinguishing 

contributions from each sector (see figure legend) and total emission (blue line with dots, unit: Tg) for the 

TOP-20 important NMVOC species in China from 2008 to 2020. The colors of the columns denote sectors' 

contribution to OFP.   



 
 

Figure 16. Year-to-year CINEI Ozone formation potentials (OFPs, in columns, unit: Tg-O3) distinguishing 

contributions from each sector (see figure legend) and total emissions (blue line with dots, unit: Tg) for the 

TOP-20 important NMVOC species in China from 2008 to 2020. The colors of the columns denote sectors' 

contribution to OFP.   



 

 

 

 

  



 

Comment 4. How are VOC emissions from volatile chemical products (VCPs) treated in the CINEI 

inventory? 

 

 

VCPs represent a specific emission source sector that includes products such as pesticides, coatings, printing 

inks, adhesives, cleaning agents, and personal care products (McDonald et al., 2018; Seltzer et al., 2021). All 

of these sources contribute to emissions through evaporation processes. In our approach, we incorporate 

emissions data for the main sectors from the original MEIC dataset. MEIC classifies VCP emissions into 

industrial, residential, and agricultural sectors, with examples such as industrial painting, architectural coatings, 

and printing and dyeing. For transportation, MEIC includes emissions from petrol and diesel vehicles, 

accounting for both exhaust and evaporation processes. 

 

In CINEI, we categorize VOC emissions from VCPs in two ways: by emission sector and by VOC speciation 

source profile. First, we obtained total NMVOC emissions from national and global inventories for relevant 

sectoral emissions. Then, we map emitting sectors to the source profile categorization and use source profile 

scores to calculate emissions for each species. Finally, we grouped similar species into the MOZART model 

species.  

 

3rd paragraph Section 2.2 (Line 163-167) in the main text: Emissions from by-product industrial processes 

include emissions from solvent volatilization, cement, iron and steel production, fugitive emissions, refinery 

emissions and other fuel-related emissions. This sector also covers emissions from volatile chemical products 

(VCPs) such as petrochemical products, coatings, and printing inks. These sources emits high-reactivity 

species such as m/p-xylene, propene, and toluene, which are important contributors to ozone formation.  

 

The last paragraph Section 4 (Line 551) in the main text: 

The new version of CINEI will incorporate additional emerging sources, such as new volatile chemical 

products (VCPs), including the production of personal care products in industry and the use of pesticides in 

agriculture (Seltzer et al., 2021; Cai et al., 2023). 
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Response to Reviewer 2nd – Manuscript gmd-2025-268  “Towards an integrated 

inventory of anthropogenic emissions for China ” by Zhang et al., 2025 

 

We would like to thank the reviewer for the careful reading and suggestions to improve the 

clarity and quality of the manuscript. Below, we provide a detailed reply to each of the 

comments (Reviewers’ comment/question in bold black, our reply in black, and new text in the 

manuscript in blue). 

 

Comment 1. Recent efforts, such as HTAP v3.1 

(https://essd.copernicus.org/preprints/essd-2024-601/), have also incorporated MEIC for 

China. It is suggested that the authors compare CINEI with HTAP v3.1 over China to 

highlight differences and improvements. 

Comment 2. Similarly, MIX v2 has integrated MEIC emissions. What are the 

methodological advancements and advantages of CINEI relative to MIX v2? 

We thank the reviewer for the detailed comments on the newly released HTAPv3.1 and MIXv2 

emission dataset (Li et al., 2024; Guizzardi et al., 2025) and the suggestion to compare with the 

here developed inventory in order to further support the usefulness of it.  

CINEI introduces methodological improvements and offers a more comprehensive coverage 

of emission sectors than MIXv2, especially with the inclusion of the agriculture and aviation 

sectors. In addition, CINEI’s detailed NMVOC speciation enhances its suitability for global 

atmospheric modeling. When comparing the HTAPv3.1, MIXv2, and CINEI inventories, the 

main advantages of CINEI are: 

(1)  Broader emission sectors in CINEI, including aviation and domestic ships, are missing 

from the MIXv2 inventory (see Table 2 in Li et al., 2024). MIXv2 presents only seven 

broad sectors in gridded format and lacks the detailed 22 subsectors in time series, which 

are available in MEIC v1.4. As shown in Figures S10–S12, MIXv2 is limited in its ability 

to analyze subsector emission trends over time and complicates direct sector mapping 

with global inventories. For example, Table 2 in Li et al. (2024) provides a one-way 

mapping between MIXv2 and the IPCC code. In contrast, Figure S8 provides a two-way 

mapping, including one between the CINEI and the IPCC code and one between the 

existing inventories and the IPCC code. Therefore, the absence of specific sub-sectors 

complicates direct sector mapping with global inventories. For example, enteric 

fermentation (3A) is missing in MIXv2, while wastewater treatment and discharge (4D) 

is omitted in both MIXv2 and HTAP. These missing sub-sectors can be identified and 

addressed during the screening process. 

(2) Updated NMVOC speciation profiles in CINEI that are fully compatible with the 

MOZART chemistry mechanism, which is widely adopted in air quality studies and 

regional chemistry and transport models (CTMs), such as the Weather Research and 

Forecasting (WRF) model coupled with Chemistry (WRF-Chem), the Community Earth 

System Model (CESM) and the Multi-Scale Infrastructure for Chemistry and Aerosols 



 

 

(MUSICA) (Dai et al., 2023 and 2024; Mariscal et al., 2025; Tilmes et al., 2019). The 

MIXv2 inventory provides speciations such as CB05 and SPARC that are suitable for 

certain regional and chemistry models; while HTAPv3.1 currently lacks local profile 

updates for NMVOC species and the speciated NMVOC emissions in gridded format 

have not yet been completed (Guizzardi et al., 2025). 

(3) Facilitation of widely used chemistry mechanisms for global climate models. CINEI’s 

integration with the global CEDS inventory further enhances its applicability for climate 

change studies, including use within the Coupled Model Intercomparison Project (CMIP) 

framework (Feng et al., 2020). CINEI is compatible with the MOZART chemistry 

mechanism that is widely adopted in air quality studies and regional chemistry and 

transport models; This broad compatibility positions CINEI as a flexible and valuable 

resource for a wide range of modeling applications. 

We have added a supplementary Figure S6 that shows a comparison of the interannual variation 

in NOx, CO, and NMVOC emissions among CINEI, MIXv2, and HTAPv3.1. For the 

overlapping period (2010–2017), the inventories show minor discrepancies. On average, 

annual emissions in HTAPv3.1 are 2.1% higher than CINEI (ranging from -0.8% to +5.8% 

across different species), while MIXv2 emissions are consistently 3.2% lower (ranging from -

1.6% to -6.1%). These differences mainly result from variations in sectoral aggregation 

methodologies. For instance, NOx emissions in CINEI and HTAPv3.1 are higher than in 

MIXv2, with annual differences of 1.5 Tg (5%), mainly due to the omission of aviation (1.1 

Tg) and agricultural soil emissions (0.3 Tg) in MIXv2. Annual CO emissions from agricultural 

waste burning in HTAPv3.1 are 5 Tg higher than in CINEI and MIXv2. Although both CINEI 

and MIXv2 provide speciated NMVOC emissions compatible with chemistry mechanisms, 

HTAP currently lacks local profile updates for NMVOC species.  

 

Figure S5. Interannual variability of total NOx (NO2), CO and NMVOC emissions in China 

from the CINEI in orange (2008 to 2020) and MIXv2 in green (2010 to 2017), and 

HTAPv3.1 in blue (2008 to 2020). 

We have also performed an additional experiment based on MIXv2 in the summer that showed 

an underestimation of NO2 by 7 ppbv (NMB = -54%), CO by 0.5 ppmv (-85%), and O3 by 14 

ppbv (-34%) (Figure S29 and Table S22). The larger discrepancy likely resulted from missing 



 

 

aviation emissions and reactivity due to lumping together NMVOC species (Li et al., 2024). 

However, CINEI and HMEI both have consistent speciated NMVOC emission values that align 

with global inventories, resulting in more reliable model performance. Furthermore, modelling 

performance based on CINEI in July 2017 outperforms that based on MIXv2, as illustrated in 

Figure S25 and Table S23. The MIXv2-based runs substantially underestimated all three 

pollutants: NO2 by 7 ppbv (-54%), CO by 0.5 ppmv (-85%), and O₃ by 14 ppbv (-34%). These 

underestimations likely result from (1) missing emission sectors such as aviation and 

agriculture, leading to lower NOx and CO emissions and (2) incomplete accounting for 

transported emissions from surrounding regions and the ocean. CINEI integrates China’s 

emissions within the CEDS inventory, while MIXv2 uses other regional inventories (CAPSS 

for Korea and MOEJ for Japan). Additionally, MIXv2 inventory provides NMVOCs species 

as high-lumped species, which might lead to missing reactivity of NMVOCs species in WRF-

Chem model.  

This discussion is added in the supplementary material section S12. 

In the revised manuscript we added the following text: 

The 4th paragraph in section 1(Line 67)  in the main text: Reference to Guizzardi et al., 

2025 was added.  

The 4th paragraph in section 2.1 (Line 129-138) in the main text:  

Our final dataset-CINEI aims at methodological improvements and offers a more 

comprehensive coverage of emission sectors than MIXv2, especially with the inclusion of the 

agriculture and aviation sectors. In addition, CINEI’s detailed NMVOC speciation that is fully 

compatible with the MOZART chemistry mechanism enhances its suitability for global 

atmospheric modeling and its versatility relative to other regional inventories, including MEIC, 

REAS, and MIXv2. Figure S6, showing a comparison of the interannual variation in NOx, CO, 

and NMVOC emissions over China among CINEI, MIXv2, and HTAPv3.1 inventories for the 

overlapping period (2010–2017), demonstrates only minor discrepancies among the 

inventories. Annual emissions in HTAPv3.1 are 2.1% higher than CINEI (ranging from -0.8% 

to +5.8% across different species), while MIXv2 emissions are consistently 3.2% lower 

(ranging from -1.6% to -6.1%)  (see further discussion in the section S4 of SI).  

Step 3 in section 2.2 (Line 233-234) in the main text: CINEI inventory with MOZART 

NMVOC speciation can be used in a wide range of air quality studies, as well as in regional 

and global chemistry and transport models (CTMs). Examples include the Weather Research 

and Forecasting (WRF) model coupled with Chemistry (WRF-Chem), the Community Earth 

System Model (CESM) and the Multiscale Infrastructure for Chemistry and Aerosols 

(MUSICA) (Dai et al., 2023; Mariscal et al., 2025; Danabasoglu et al., 2020). Such 

compatibility enhances the versatility of CINEI relative to other regional inventories, including 

MEIC, REAS, and MIXv2. 

Supplement 



 

 

New Figure S6 in Page 9 of SI: Comparison of the interannual variability of total NOx (NO2), 

CO and NMVOC emissions in China between HTAPv3.1, CINEI and MIXv2.  

Added discussion text (following) as section S5 (Page 11) of SI: 

When comparing the HTAPv3.1, MIXv2 and CINEI inventories, the main advantages of 

CINEI are: 

(1) Broader emission sectors in CINEI, including aviation and domestic ships, are missing 

from the MIXv2 inventory (see Table 2 in Li et al., 2024). MIXv2 presents only seven broad 

sectors in gridded format and lacks the detailed 22 subsectors in time series, which are 

available in MEICv1.4. As shown in Figures S10–S12, MIXv2 is limited in its ability to 

analyse subsector emission trends over time and complicates direct sector mapping with 

global inventories. For example, Table 2 in Li et al. (2024) provides a one-way mapping 

between MIXv2 and the IPCC code. In contrast, Figure S8 provides a two-way mapping, 

including one between the CINEI and the IPCC code and one between the existing 

inventories and the IPCC code. Therefore, the absence of specific sub-sectors complicates 

direct sector mapping with global inventories. For example, enteric fermentation (3A) is 

missing in MIXv2, while wastewater treatment and discharge (4D) is omitted in both MIXv2 

and HTAP. These missing sub-sectors can be identified and addressed during the screening 

process. 

(2) updated NMVOC speciation profiles in CINEI that are fully compatible with the 

MOZART chemistry mechanism, which is widely adopted in air quality studies and regional 

chemistry and transport models (CTMs), such as the Weather Research and Forecasting 

(WRF) model coupled with Chemistry (WRF-Chem), the Community Earth System Model 

(CESM) and the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA) (Dai et 

al., 2023 and 2024; Mariscal et al., 2025; Tilmes et al., 2019). The MIXv2 inventory provides 

speciations such as CB05 and SPARC that are suitable for certain regional and chemistry 

models; while HTAPv3.1 currently lacks local profile updates for NMVOC species and the 

speciated NMVOC emissions in gridded format have not yet been completed (Guizzardi et 

al., 2025). 

(3) Facilitation of widely used chemistry mechanisms for global climate models. CINEI’s 

integration with the global CEDS inventory further enhances its applicability for climate 

change studies, including use within the Coupled Model Intercomparison Project (CMIP) 

framework (Feng et al., 2020). CINEI is compatible with the MOZART chemistry 

mechanism that is widely adopted in air quality studies and regional chemistry and transport 

models; This broad compatibility positions CINEI as a flexible and valuable resource for a 

wide range of modeling applications. 

Figure S6 shows a comparison of the interannual variation in NOx, CO, and NMVOC 

emissions among CINEI, MIXv2, and HTAPv3.1. For the overlapping period (2010–2017), 

the inventories show minor discrepancies. On average, annual emissions in HTAPv3.1 are 2.1% 

higher than CINEI (ranging from -0.8% to +5.8% across different species), while MIXv2 



 

 

emissions are consistently 3.2% lower (ranging from -1.6% to -6.1%). These differences 

mainly result from variations in sectoral aggregation methodologies. For instance, NOx 

emissions in CINEI and HTAPv3.1 are higher than in MIXv2, with annual differences of 1.5 

Tg (5%), mainly due to the omission of aviation (1.1 Tg) and agricultural soil emissions (0.31 

Tg) in MIXv2. Annual CO emissions from agricultural waste burning in HTAPv3.1 are 5 Tg 

higher than in CINEI and MIXv2. Although both CINEI and MIXv2 provide speciated 

NMVOC emissions compatible with chemistry mechanisms, HTAP currently lacks local 

profile updates for NMVOC species.  

Furthermore, an additional experiment was performed with the MIXv2 inventory for July 2017. 

The modeling setup, including input data, was kept consistent for both inventories, except for 

the anthropogenic emission data, as noted in the main manuscript. Due to limited availability 

of HPC resources, we were unable to perform simulations for January. A comparison of MIXv2 

and CINEI modeling results for July 2017 (Figure S29 and Table S22) shows that CINEI 

delivers better performance than MIXv2 when compared to observations. In contrast, MIXv2 

consistently underestimates concentrations: NO2 by 7 ppbv (-54%), CO by 0.5 ppmv (-85%), 

and O3 by 14 ppbv (-34%). These discrepancies can be attributed to several factors: (1) MIXv2 

lacks important sectors, such as aviation and agriculture, which leads to lower NOx and CO 

emissions; (2) emissions from surrounding regions and the ocean are not fully accounted for, 

whereas CINEI integrates China’s emissions within the broader CEDS inventory, while MIXv2 

relies on CAPSS for Korea and MOEJ for Japan. (3) MIXv2 provides NMVOC emissions as 

broad, lumped categories, potentially missing key reactivity of NMVOCs required for accurate 

simulation in WRF-Chem.  

 

Figure S29. WRF-Chem simulated mixing ratios of O3, NO2, and CO for July 2017 (summer) and within the modeling 

domain using CINEI (in orange) and MIX (in blue). Individual columns show simulated mean mixing ratios in the model 

domain for each emission inventory used. The dashed blue lines show average observed mixing ratios calculated using the 

stations within the specified domain. The numbers on the columns are Normalized mean bias (NMB). Blue (red) number 

indicates underestimated (overestimated).  

Table S22. Statistical metrics to evaluate modeling O3, CO and NO2 performance based on 

CINEI and 



 

 

 

The first paragraph in section 2.3 (Line 278) in the main text: In addition, the MIXv2 

inventory incorporates the MEICv1.4 inventory for Asia, which has high lumped speciation 

and missing aviation emissions. Its modeling performance with the same setup for July 2017 

is discussed in the Supplement (figure S29 and Table S22). 

The 3rd paragraph in section 3.4 (Line 482-487) in main text: An additional experiment 

based on MIXv2 in the summer showed an underestimation of NO2 by 7 ppbv (NMB = -54%), 

CO by 0.5 ppmv (-85%), and O3 by 14 ppbv (-34%) (Figure S29 and Table S22). The larger 

discrepancy of MIXv2 with observations likely resulted from missing aviation emissions and 

reactivity due to lumping together NMVOC species (Section S12). However, the speciated 

NMVOC emission values for both CINEI and HMEI are consistent and align with global 

inventories, resulting in more reliable model performance.  

Section S13 (Line 384-390) in SI: Furthermore, modelling performance based on CINEI in 

July 2017 outperforms that based on MIXv2, as illustrated in Figure S29 and Table S22. The 

MIXv2-based runs substantially underestimated all three pollutants: NO2 by 7 ppbv (-54%), 

CO by 0.5 ppmv (-85%), and O₃ by 14 ppbv (-34%). These underestimations likely result from 

(1) missing emission sectors such as aviation and agriculture, leading to lower NOx and CO 

emissions and (2) incomplete accounting for transported emissions from surrounding regions 

and the ocean. CINEI integrates China’s emissions within the CEDS inventory, while MIXv2 

uses other regional inventories (CAPSS for Korea and MOEJ for Japan). Additionally, MIXv2 

inventory provides NMVOCs species as high-lumped species, which might lead to missing 

reactivity of NMVOCs species in WRF-Chem model.  

Added Table S22 in SI. 

Added Figure S29 in SI. 

 



 

 

Comment 3. Table 2: When the same emission source exists in multiple global inventories, 

how is the choice made? For instance, international shipping emissions are available in 

CEDS, CAMS, and HTAP. Why is CAMS selected in this case? A clearer explanation of 

the selection principles is needed. 

When the same sector appears in different global inventories, we compare the datasets and 

examine the sources and methodologies behind the emissions calculations. In the CINEI 

inventory, emissions data for each sector are selected based on two main criteria: (1) the sector 

must be as complete as possible in terms of included sub-sectors and chemical species (see 

'Completion of sub-sectors and species' in Table 2); and (2) the underlying data used for 

emissions calculations must be high-quality and up to date (see 'Better underlying data' in Table 

2). Below is a summary of how leading global inventories meet these criteria: 

The HTAP v3 agricultural emissions are more complete than those of the other models and use 

more up-to-date underlying data. The HTAP agriculture sector includes subsectors such as 

manure management (NOx), agricultural soils (NOx) and field burning of agricultural residues 

(CO and some NMVOC species). 

Waste emissions from CEDS are more complete than those from other sources. The HTAP 

waste sector includes the biological treatment of solid waste and the treatment and discharge 

of wastewater. The main relative species is CO. Emission data from CAMsv5.3 is adopted from 

EDGAR v5. We prioritize emission data from more complete sectors, and then make further 

selections based on whether the data is updated. 

Shipping emissions are tracked mainly using Automatic Identification System (AIS) data, 

which combines terrestrial and satellite observations to provide detailed vessel activity. CAMS 

further refines shipping emissions and routes with the STEAM3 model (Johansson et al., 2017). 

However, inland shipping data in CAMS is less comprehensive because AIS coverage is 

limited on inland waterways. HTAP, which builds on EDGAR data, offers an independent sub-

sector specifically for domestic (inland) shipping emissions. 

Paragraphs 3rd, 4th, and 5th of Section 2.2 in the main text:  

Table 2 lists the data sources for CINEI’s sectoral emissions and the missing sectors in existing 

inventories. By following the IPCC sector definitions, we were able to identify sectors that 

were omitted from certain emission inventories (see Figure S8). We selected the emission 

sectors from different inventories based on three principles, in the following priority order: (1) 

whether the sectors included complete sources (sub-sector) and species, as indicated by 

"Completion of sub-sectors and species" in Table 2; (2) whether the sector used high-quality 

and updated underlying data for calculating emissions, as indicated by "Better underlying data" 

in Table 2; and (3) whether the emission estimations for the sectors considered the mitigation 

measures implemented in China (as discussed in Section S2), which is indicated by 

"incorporation of pollution mitigation measures" in Table 2. 

For CINEI, we retained the emissions from the four existing sectors (transportation, residential, 

industry, and energy) that were utilized in MEIC, as these sectors adhere to the three principles. 



 

 

As detailed in Section S2, MEICv1.4 employed local emission factors and activity data and 

included a parameter for abatement estimation (Section S2 and Table S1). The emission peak 

year is consistent with the year of mitigation implementation (see Section S7). 

We integrated emissions from various global inventories for the four missing sectors to ensure 

comprehensive sectoral coverage and consistency between national and global emission 

inventories. Specifically, we used emissions from HTAP for aviation and domestic shipping. 

We opted for HTAP’s data for domestic shipping because its inventory provides an 

independent sub-sector for inland shipping, whereas inland shipping emissions from CAMS 

are less complete due to the limited use and coverage of the Automatic Identification System 

(AIS) on inland waterways. We incorporated ocean shipping emissions from CAMS, which 

refines data using the Ship Traffic Emission Assessment Model (STEAM3), providing a more 

detailed representation of shipping routes and emissions (Johansson et al., 2017). For the 

agriculture and waste sectors, we utilized data from CEDS because its agricultural emissions 

are more comprehensive than those of MEIC (which only considers NH3, and its waste 

emissions are more complete than those from sources from other inventories (Figure S6). 

Updated Table 2 as shown below：  

 

 

 

 

 

 



 

 

Added Figure S7 in SI: Spatial distribution of international shipping and inland shipping of 

CAMs and HTAP. 

 

 

 

  



 

 

 

Comment 4. What are the exact differences between HMEI and CINEI? Is it solely the 

inclusion of previously missing sectors (e.g., ships, aviation, waste, agriculture), or are 

there additional improvements in sectoral mapping, NMVOC speciation, or spatial 

harmonization? 

We thank the reviewer for highlighting the differences between the HMEI and CINEI inventories. The 

primary distinction is that the MEIC inventory that the basis of the HMEI inventory for Mainland China 

does not cover certain sectors—specifically shipping, aviation, waste, and agriculture—while CINEI 

addresses these gaps by incorporating these additional sources. CINEI also improves NMVOC 

characterization by utilizing locally observed NMVOC profiles, ensuring that sector-specific 

compositions are more accurately represented. Furthermore, CINEI uses a uniform sector definition and 

a consistent spatial resolution of 0.25°, enhancing comparability and spatial detail. 

The increase in total emissions in CINEI compared to HMEI is primarily due to the inclusion of these 

previously omitted sectors (see Figures 3d–f), resulting in average annual increases of 2.7 Tg NOx, 5.2 

Tg CO, and 1.4 Tg NMVOCs. CINEI’s use of local NMVOC profiles also leads to differences in the 

chemical composition of emissions, especially for sectors such as agriculture and waste, which 

contribute notable amounts of propene, ethene, formaldehyde, and acetaldehyde (see Figure 4b). 

Section 2.2 (Line 266-268) in the main text: The difference between CINEI and HMEI lies in the new 

sectors (shipping, aviation, waste, and agriculture) added to CINEI, which increase total emissions. 

Speciated NMVOCs in CINEI are improved by applying locally observed NMVOC profiles. 

Furthermore, the additional emission sectors affect the composition of specific local emissions, which 

will be discussed in later sections. 

2nd paragraph in section 3.1 (Line 320-322) in the main text: Compared to MEIC (harmonized 

inventories) for China, CINEI total emissions on annual average include the contributions of the ships 

sector to NOx emissions (2.7 Tg), the waste sector to CO emissions (5.2 Tg), and the agricultural sector 

to NMVOC emissions (1.4 Tg) (Fig. 3d-f). 

2nd paragraph in section 3.2 (Line 383-386) in the main text: The agricultural sector is the main 

source for formaldehyde (52%) and acetaldehyde emissions (60%), related to the emissions along with 

crop burning (including the burning of rice and wheat straw, maize, etc.). Ignoring agricultural NMVOC 

emissions in anthropogenic emission inventories can lead to underestimated contributions of these 

species to ozone pollution. Ozone pollution may occur in areas with intensive local agricultural activity. 

  



 

 

Comment 5. The CAMS dataset is extended from 2018 to 2022 using linear slopes from 

CEDS. How are uncertainties introduced by this extrapolation process quantified and 

propagated? More detailed treatment or discussion is recommended. 

Table 3 summarizes the uncertainties associated with CAMS emissions for the main sectors. Overall, 

the CAMS extrapolation method introduces between 30% and 60% of uncertainty. The greatest 

uncertainties are found in the power sector, reaching 96% for CO emissions and 148% for NMVOC 

emissions. These unusually high values are likely due to systematic uncertainty regarding how CAMS 

defines the power and industry sectors. In comparison, uncertainties from bottom-up and top-down 

modeling approaches cited in the literature are lower, typically between 20% and 50%. To reduce 

uncertainties in future work, we recommend a combined approach that uses activity data, in-situ 

measurements, satellite observations, and CTM modeling. Section S3 and Table S3 will be added in the 

supplementary to explain how uncertainties in CAMS emissions due to the extrapolation method are 

evaluated. 

Table S3. Comprehensive uncertainty table for CAMs Emissions Extrapolation Method: CO, NOx, and 

NMVOC by Sector 

 

Add text in section 2.1 (Line 120) in the main text: The uncertainties of CAMs extrapolation 

method will also be discussed in Section 3.1. 

2nd paragraph in section 3.1 (Line 323-325) in the main text: The uncertainties of the CAMs 

extrapolation method for the main sectors are estimated between 30% and 60% (see Section S5 and 

Table S3). One exception is the power sector where uncertainty exceeds 100%, likely due to the 

systematic uncertainty in the sector’ definitions and mapping. 

Section 4 (Line 540-543) in the main text: In a follow-up study, we will evaluate CINEI’s 

representation of NOx-VOC photochemistry in CTM models and compare the results with 

observational data. We also plan to incorporate additional observational and modeling approaches to 

develop an updated version of the CINEI emissions dataset. This will help reduce uncertainties in the 

emission estimates and minimize modeling biases in CTM applications. 



 

 

Main text Line 542: We will use more observational data, such as from TROPOMI and in-situ 

measurements, to constrain the total emissions for ozone precursors and NMVOC speciation.   

Add Table S3 in SI:  

Add a section S5 in SI:  

1. Method to quantify the uncertainties on the projection of CAMs emission from 2018 onward.  

For this study, CAMs emissions for the main sectors (industry, power, residential and transportation) 

from 2018 to 2020 are extrapolated using linear slopes (slopespec,i) derived from CEDS for the period 

2015 to 2019, with 2018 as the base year.  The emissions for a given species (spec) and sector (i) in 

years 2019–2020 are calculated as: 

𝐸𝑠𝑝𝑒𝑐,𝑦𝑒𝑎𝑟,𝑖 = 𝐸𝑠𝑝𝑒𝑐,2018,𝑖 + 𝑠𝑙𝑜𝑝𝑒𝑠𝑝𝑒𝑐,𝑖 × (𝑦𝑒𝑎𝑟 − 2018) (1) 

Here, slopeCEDS, spec,i is the slope of linear regression of annual total CEDS emissions for sector i and 

specific species (spec) from 2015 to 2019 and slopeCINEI, spec,i is the slope of linear regression of annual 

total CINEI emissions. The uncertainty of the linear slope is calculated as the absolute difference 

between linear slopes of CINEI and CEDS from 2015 to 2019 with respect to their averages. The 

calculation is expressed as:  

𝜎𝑠𝑙𝑜𝑝𝑒 =
|𝑠𝑙𝑜𝑝𝑒𝐶𝐸𝐷𝑆,𝑠𝑝𝑒𝑐,𝑖−𝑠𝑙𝑜𝑝𝑒𝐶𝐼𝑁𝐸𝐼,𝑠𝑝𝑒𝑐,𝑖|×2

𝑠𝑙𝑜𝑝𝑒𝐶𝐸𝐷𝑆,𝑠𝑝𝑒𝑐,𝑖+𝑠𝑙𝑜𝑝𝑒𝐶𝐼𝑁𝐸𝐼,𝑠𝑝𝑒𝑐,𝑖
× 100 (2) 

The uncertainty of the bias is calculated as the absolute difference of CAMs and CINEI emissions 

with respect to their average in the base year. 

𝜎𝑏𝑖𝑎𝑠2018 =
|𝐸𝐶𝐴𝑀𝑠,𝑠𝑝𝑒𝑐,2018,𝑖−𝐸𝐶𝐼𝑁𝐸𝐼,𝑠𝑝𝑒𝑐,2018,𝑖|×2

𝐸𝐶𝐴𝑀𝑠,𝑠𝑝𝑒𝑐,2018,𝑖+𝐸𝐶𝐼𝑁𝐸𝐼,𝑠𝑝𝑒𝑐,2018,𝑖
× 100 (3) 

The uncertainty of the model (σmodel) originates from differences in approaches to calculate emissions, 

including top-down estimation (satellite estimation and inverse modeling) and bottom-up estimation 

(Miyazaki et al., 2017; Li et al., 2024; Liu et al., 2016a). This component is independent of the 

uncertainties of linear slope and base-year emission in bottom-up emission inventories. Adopted from 

Li et al. (2024), the standard deviation of all estimates on emission trends can be represented by 46% 

for NOx, 39% for CO, and 26% for NMVOC. 

The propagation of uncertainty for three independent uncertainties is expressed as follows: 

𝜎𝑡𝑜𝑡𝑎𝑙,𝑠𝑝𝑒𝑐,𝑖 = √𝜎𝑠𝑙𝑜𝑝𝑒,𝑠𝑝𝑒𝑐,𝑖
2 + 𝜎𝑚𝑜𝑑𝑒𝑙,𝑠𝑝𝑒𝑐,𝑖

2 + 𝜎𝑏𝑖𝑎𝑠,𝑠𝑝𝑒𝑐,𝑖
2  (4) 
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