Response to Reviewer 1% — Manuscript gmd-2025-268 “Towards an integrated inventory of anthropogenic
emissions for China ” by Zhang et al., 2025

We would like to thank the reviewer for the careful reading and suggestions to improve the clarity and quality
of the manuscript. Below, we provide a detailed reply to each of the comments (Reviewers’
comments/questions in bold black, our reply in black, and new text in the manuscript in blue).

Comment 1. Why does the study rely solely on MEIC for China in all harmonized emission inventories
instead of using global inventories? The paper devotes substantial effort to harmonizing emission sectors,
VOC speciation, and spatial resolution, but these harmonized datasets are not fully utilized to produce
the final emissions inventory. Does MEIC significantly outperform the global inventories in China? I
did not see supporting evidence for this in Figures 6-7.

We would like to thank the reviewer for their valuable and insightful comments. In our study, we created our
final inventory (CINEI) by combining the harmonized national MEIC inventory for mainland China with the
global CEDS inventory for regions surrounding mainland China, as described in the manuscript (referred to as
HMEI). CINEI also incorporates additional contributions from global inventories, specifically from the
agriculture, shipping, and waste sectors. Furthermore, we applied a localized non-methane volatile organic
compound (NMVOC) speciation profile within CINEI. For mainland China, we exclusively use MEIC data
across all harmonized emission inventories. This choice is based on the fact that MEIC utilizes the most recent
and region-specific data for China, including updated emission factors, detailed activity data (such as power
plant locations and population), and current mitigation measures (see Section S2). Our study integrates
emission estimates derived using these unique factors for all major sectors into the overarching framework of
global inventories. As a result, MEIC emissions often differ in magnitude from those reported by other global
nventories.

Following the suggestion of the second reviewer, we have updated Table 2 by adding a column labeled
‘Selection Principles’. This new column clarifies the criteria we used to select the main sectors (transportation,
industry, power, and residential) from the national MEIC inventory.

To address the second part of the comment (model performance), we have now included detailed model
validation metrics in Supplementary Section S13, Figures S27—S28. While some deviations between modeled
and observed values (see Figures 6—7) can be attributed to spatial averaging, we have now added the
Normalized Mean Bias (NMB) directly to these figures for clarity.

- Winter (Jan 2017): The MEIC-based HMEI outperforms all other global inventories for multiple
pollutants. For ozone, HMEI achieves the lowest NMB (-26%) compared to HTAP (-52%), CEDS (-
33%), CAMS (-40%), and CINEI (-44%). It also shows the lowest Mean Normalized Bias (MNB =
15.6%) and the lowest Mean Normalized Absolute Error (MNAE = 43.1%). For CO, HMEI comes
closest to zero NMB (-24%) and performs well for NO,. Overall, the strong performance of
HM_CEDS makes it the optimal choice for wintertime air quality modeling.

- Summer (July 2017): During July, HMEI continues to outperform other global emission inventories,
especially in predicting NO, and CO. For NO,, HMEI provides the most accurate results, with a
normalized mean bias (NMB) of 0.5%, which is closest to zero among all inventories compared to
CINEI (2%), CAMS (-21%), CEDS (-21%), and HTAP (113%). It also achieves the lowest mean
normalized bias (MNB = 41%) and mean normalized absolute error (MNAE = 32.8%). For CO, HMEI
again stands out with the best performance (MNB = 57.6%, NMB = -34%, MNAE = 34.4%) despite
the fact that all inventories tend to underestimate concentrations. Ozone predictions using HMEI show
moderate overestimation (NMB = 20.0%, MNB = 17.3%) compared to other inventories (CINEI: 14%,
CAMS: -31%), likely due to reduced NO> in polluted regions, which may enhance ozone formation
through increased oxidant availability and OH-VOC reactions.

Despite this challenge with summer ozone, HMEI consistently delivers the most reliable results across multiple
pollutants in both winter and summer, making it the best choice for year-round atmospheric chemical modeling.



Changes made in the manuscript:

3" paragraph in section 3.1 (Line 337-345) in main text: The power sector is the main driver of the decrease
in NOy emissions for China, contributing 49% to the downward trend with a linear reduction of -0.33 Tg yr'.
In the CINEI , emissions from the power and industrial sectors (for NOy) and the residential sector (for CO)
started to decline after peaking in 2013 (see Table S16). This timing aligns with the emission reduction
measures implemented, starting with the 12th Five-Year Plan in 2011 (see Text S1). The improved reflection
of mitigation actions in the MEIC inventory comes from accounting for factors such as technology adoption
and abatement efficiency (see Text S2 and Table S1), such as energy transition to cleaner resources (Yan et
al., 2023). Over the study period, the sectors responsible for the largest reductions in CO emissions were
industry (60% of the reduction), residential (29%), and transportation (16%). The main contributors to the
observed linear declines in CO were industry (39% contribution, -3.6 Tg yr''), residential (22%, -1.8 Tg yr™'),
and power generation (13%, 0.14 Tg yr).

2" paragraph in section 3.4 (Line 456-462) in the main text: Further, we investigate thatthe comparison of
experiments’ performance between MEIC-based HMEI and global inventories. Modeling ozone mixing ratio
using HMEI in January 2017 achieve the smallest normalized mean bias (NMB = -26%), compared with HTAP
(-52%), CEDS (-33%), and CAMS (-40%) (Fig. 7). In July 2017, models using HMEI produced NO and CO
bias values (NMB = 0.5% for NO,, -34% for CO) that are closer to zero than results from global inventories
(Fig. 6). Comprehensive analysis using several statistical metrics (NMB, MNB, MNAE, MAE, MFE)
consistently demonstrates that HMEI delivers superior overall performance compared to individual global
emission inventories (Fig. S27-S28). These comparisons of evaluation metrics suggest that CINEI is based on
emissions from the main sectors in the MEIC inventory.

(a) NOx (Tqg) (b) CO (Tqg) (¢)  NMVOCs (Tg)
2.0 20 2.5
5% 16%
6% ] BT
g 1.5 15 -8% 5% 2 L
i7) -23% -19%
o 0y .5 1
g 5 24 - 33% . -32%
m. -55% 1.0 -
< o
O cos 5
< 0.5 -
- 0.0 -— . . . . 01— . . : : 0.0 +— . . ’ :
e NS W e (05 (q® NS GWEY cpe (05 ((ia® ONE W& pS (€05 (e
-E (d  NO, (ppbv) % B (e) CO (ppmv) (f) O3 (ppbv)
- — obs
127% 6%
L | | peeeteer e 30 4
JrBl 44% 47%
; i 40%
= 1.09 -2a% obs
% X 40% 43% 379, 33% 369 | 20 mmmmmm—— e —— e m e
= obs
- o -~ - ap————- 26%
= 201 0.5 -64%
[] 10 - -52%
°
o
=
0.0

T T T T T T T T T T 0 T T T T T

ONEY GWEY CpaS (05 (o ONEY GWEY (a5 (05 ((op® ONEY (B CpMS (05 (e
Page 25 in the main text: Figure 6: The top panels (a-c) present total anthropogenic emission differences of
ozone precursors (NOx, CO, and NMVOC) for July 2017 between the CINEI, HMEI, CAMS, CEDS, and
HTAP inventories using the CINEI integrated emission inventory as a reference. Bottom panels (d-f) show
WRF-Chem simulated mixing ratios of Oz, NO», and CO for the same month and within the modeling domain
(latitudes from 25.5° to 43.6°; longitudes from 103.5° to 127.6°) using the different emission inventories.
Individual columns show simulated mean mixing ratios in the model domain for each emission inventory used.
The dashed blue lines show average observed mixing ratios calculated using the stations within the specified
domain. The numbers shown in the columns represent the normalized mean bias (NMB) against observations



for each modeling experiment, as defined in the first line of Table S7. Values in red indicate overestimation,
while values in blue indicate underestimation.
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Page 26 in the main text: Figure 7. Same content with Figure 6, but in July 2017.



Comment 2. Additionally, the key distinction between CINEI and MEIC lies in the inclusion of
previously missing sources in CINEIL such as agricultural, waste, and marine sectors. While MEIC has
been evaluated in previous studies, the current evaluation of CINEI essentially serves to assess the
impact of these additional sources. This important insight should be emphasized more clearly and
consistently throughout the manuscript.

We thank the reviewer for this suggestion. The key distinction between CINEI and MEIC is indeed the
inclusion of agricultural waste and marine (shipping and aviation) sectors, and applying new NMVOC
speciated profiles to NMVOC emissions. Our modeling evaluation based on CINEI in this study reveals several
differences when compared to previous studies using MEIC and to harmonized MEIC with CEDS inventory
(HMEI) in this work. Below, we summarize the improvements associated with these changes in CINEI:

Modeling evaluation:

- InJanuary (Winter), CINEI total emissions over China are (slightly) higher than HMEI: +6% for NO,
+8% for CO, and +1% for NMVOC:s. This increase is due to the inclusion of agricultural, waste, and
shipping emissions that are absent in the original MEIC inventory. The additional emissions lead to a
small increase in Os (less than 1 ppb), along with slight decreases in CO (by 0.4 ppm) and NO; (by 1
ppbv) mixing ratios. The improvement for NO> is shown by a decrease in normalized mean bias (NMB)
from 24% (HMEI) to 22% (CINEI). Other metrics, such as MAE, MNB, and MFE, also support the
improvement for NO,.

- In July (Summer), CINEI shows (slightly) higher emissions compared to HMEI: +7% for NOx, +16%
for CO, and +1% for NMVOCs. The added emissions increase O3 by 3 ppb but lower CO (by 0.17
ppm) and NO; (by 2 ppbv). For O;, the NMB improves from 21% (HMEI) to 12% (CINEI), as
supported by additional evaluation metrics.

Impact of additional sectoral emission contributions:

The CINEI inventory includes previously missing sectors for NOx and CO emissions. Based on our results:

- The shipping sector is identified as a key sector for NOx emission in China, because the linear emission
change rate of shipping NOx is +0.07 Tg yr' and it ranks as the 3rd largest contributor to the total
trend (21%).

- The aviation sector is also a key sector for NOx emission due to being the 4th contributor to the total
trend (3% and +0.01 Tg yr?).

- Waste CO emission is the 4th largest contributor (13%) to the total trend and has an increasing trend
(linear slope: +0.15 Tg yr™).

4™ paragraph in section 3.1 (Line 351-359) in main text (sectoral emission): Ozone precursor emissions
from four key sectors not included in the MEIC inventory (shipping, waste, agriculture, and aviation) are
included in the CINEI inventory and are identified as key contributors (see Tables S12-15 and Text S8). The
shipping sector is a major contributor to NOy emissions in China, with a linear emission increase of +0.07 Tg
yr! , making it the third-largest driver of the total NOx trend at 21%. Aviation follows as the fourth-largest
contributor to NOx with 3% (+0.01 Tg yr '), while waste accounts for the fourth-largest share of the CO trend
at 13% and also shows a rising trajectory (+0.15 Tg yr, see Table S13). For comparison, NOx emissions from
shipping in the HTAP inventory also display an upward trend of +0.1 Tg yr (Table S12), which appears to
counteract reductions from the energy sector. In summary, our findings indicate that shipping, waste, aviation,
and agriculture are key sectors that influence overall trends, often showing increases where other major sectors
have declined.

34 paragraph in section 3.2 Line 398-404 in main text (NMVOC emission): All of the major NMVOC
species identified by CINEI show increasing trends within the sectors added from global inventories, namely
agriculture, shipping, aviation, and waste. For example, total NMVOC emissions from the agriculture sector
are slightly rising by +0.003 Tg yr'!. Key speciated NMVOC emissions from these four sectors, such as ethene
(which contributes 8% to total OFP) and formaldehyde (5%), also show notable increases. To effectively
reduce ozone levels, mitigation strategies should target not only highly reactive species like m/p-xylene,



toluene, and propene from industrial sources, but also address emissions from sectors like agriculture and
aviation that are often overlooked in national inventories.

The last paragraph in section 3.2 Line 418-426 in the main text (NMVOC speciation): When compared
to the national inventory (MEIC, with the same ratio as the harmonized inventories), the ethane-to-acetylene
and propene-to-acetylene ratios in CINEI are closer to the observed ratios (Fig. S17). These findings may be
linked to two factors. First, the ethane-to-acetylene ratio in CINEI is higher than the MEIC ratio resulting from
the incorporation of missing sectors (agriculture, aviation, ships, and waste), which contribute 13% to the total
annual average emission and are richer in ethane. Second, the propene-to-acetylene ratio in CINEI is lower
than the MEIC ratio despite a 3% additional contribution from these missing sectors. This may be due to the
speciated profile used in CINEI (Mo et al., 2018), which attributes a smaller share of emissions to diesel
vehicles (mainly emitting alkenes) and a larger share to gasoline vehicles (mainly emitting alkanes) (Table
S20). These findings suggest that using local NMVOC speciated profiles can better capture changes caused by
current energy transitions and evolving consumption patterns (Yan et al., 2021).

3" paragraph in section 3.4 (Line 473-477) in main text (Modeling evaluation): The differences between
the two emission inventories can be attributed to the inclusion of shipping, waste, and aviation emissions, as
well as updated NMVOC speciation in the CINEI dataset. Accounting for these sectors results in a modest
increase in total emissions (less than 10%) in CINEI This change leads to improved model performance, as
shown by a reduction in the normalized mean bias (NMB) for ozone in summer (from 21% with HMEI to 12%
with CINEI) and for NO: in winter (from 24% with HMEI to 22% with CINEI).



Comment 3. Section 3.2 and Figure 4a: What causes the large year-to-year fluctuations in ozone
formation potentials (OFPs)?

The ozone formation potential (OFP) measures how much each volatile organic compound (VOC) can
contribute to ozone creation. It is expressed in Tg of ozone (Tg-Os3) yr'. OFP for each VOC species is
calculated by multiplying that species’ emissions by its maximum incremental reactivity (MIR). Year-to-year
changes in OFP depend, therefore, on (1) the reactivity of different NMVOC species, as measured by their
MIR (Carter, 2015), and (2) each species’ share of total OFP. Trends in emissions of individual NMVOCs are
closely linked to their relative abundance and the dominant emitting sectors. Figure 3 displays OFP and
emission trends for the major (top 20) VOC species contributing to total OFP from 2008 to 2020.

China’s total NMVOC emissions and OFPs, summing all species, increased from 2008 to 2020, with linear
trends of 0.2 Tg yr' for emissions and 1.1 Tg-Os yr! for OFP (Figure S14). Fourteen of the top 20 species
(70% contribution of total emission) showed increasing trends and now make up large portions of OFP,
including m/p-xylene (18% of OFP, 0.04 Tg yr!), propene (18%, 0.2 Tg yr!), and toluene (10%, 0.03 Tg yr).
The main sources driving this increase are industrial activities such as industrial painting, iron and steel
manufacturing, and architectural coatings (Figure S12).

Some sources like aviation, shipping, and waste, though lower in emissions, also contribute to the overall
upward trend. Small decreasing trends can be found in species including i-pentane (-0.005 Tg yr'),
formaldehyde (-0.004 Tg yr'!) and trans-2-butene (-0.002 Tg yr''). The residential and transportation sectors
lead the decreasing trends, but fail to offset the emission increase by the other sectors in the study period.
Above all, OFPs increase is driven by high-reactive species like m/p-xylene, toluene, and propene from
industrial sources, and slightly from the missing sources (aviation and shipping, etc) by national inventory
(MEIC).

3" paragraph in section 3.2 (Line 389-398) in main text: Total NMVOC emissions and OFPs in China,
showed an overall increasing trend from 2008 to 2020, with linear slopes of 0.2 Tg yr! (emission) and 1.1 Tg-
O; yr'! (OFPs), as shown in Fig. S14. Fourteen of the top 20 species exhibited increasing trends and contributed
significantly to OFPs, including m/p-xylene (18% OFP contribution and 0.04 Tg-Os yr''), propene (18% and
0.2 Tg-O; yr'), and toluene (10% and 0.03 Tg-Os yr'') (Fig. S15 and Fig. S16). The primary driver for this
increase was the industrial sector, particularly processes like industrial painting, iron and steel production, and
architectural coating (Fig. S12). To mitigate ozone formation, targeted strategies should focus on industrial
emission controls for high-OFP species, particularly aromatics like xylenes and toluene, while continuing to
strengthen transportation and residential emission reductions. Additionally, since formaldehyde and several
alkenes showed decreasing trends, policies should maintain these reductions while preventing industrial sector
growth from overwhelming the overall mitigation efforts through stricter industrial VOC controls and cleaner
production technologies.

The last paragraph in section S10 (Line 276-281) in SI: Based on the VOC emissions analysis from 2008-
2020, the overall mean increase in OFP, of 1.3% annually, was primarily driven by significant growth in
industrial emissions, which increased by 3.9% yr™! across most VOC species. This industrial growth more than
compensated for the decreasing trends in transportation (-3.3% annually) and residential (-2.2% annually)
sectors. The species contributing most to ozone formation, m/p-xylene (17.7% of total OFP), propene (16.7%),
and toluene (10.0%), all showed increasing industrial emissions despite reductions from other sectors (Figures
S15 and S16).
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Figure 15. Year-to-year CINEI Ozone formation potentials (OFPs, in columns, unit: Tg-Os) distinguishing
contributions from each sector (see figure legend) and total emission (blue line with dots, unit: Tg) for the
TOP-20 important NMVOC species in China from 2008 to 2020. The colors of the columns denote sectors'
contribution to OFP.
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Figure 16. Year-to-year CINEI Ozone formation potentials (OFPs, in columns, unit: Tg-Os) distinguishing
contributions from each sector (see figure legend) and total emissions (blue line with dots, unit: Tg) for the
TOP-20 important NMVOC species in China from 2008 to 2020. The colors of the columns denote sectors'
contribution to OFP.






Comment 4. How are VOC emissions from volatile chemical products (VCPs) treated in the CINEI
inventory?

VCPs represent a specific emission source sector that includes products such as pesticides, coatings, printing
inks, adhesives, cleaning agents, and personal care products (McDonald et al., 2018; Seltzer et al., 2021). All
of these sources contribute to emissions through evaporation processes. In our approach, we incorporate
emissions data for the main sectors from the original MEIC dataset. MEIC classifies VCP emissions into
industrial, residential, and agricultural sectors, with examples such as industrial painting, architectural coatings,
and printing and dyeing. For transportation, MEIC includes emissions from petrol and diesel vehicles,
accounting for both exhaust and evaporation processes.

In CINEI, we categorize VOC emissions from VCPs in two ways: by emission sector and by VOC speciation
source profile. First, we obtained total NMVOC emissions from national and global inventories for relevant
sectoral emissions. Then, we map emitting sectors to the source profile categorization and use source profile
scores to calculate emissions for each species. Finally, we grouped similar species into the MOZART model
species.

3" paragraph Section 2.2 (Line 163-167) in the main text: Emissions from by-product industrial processes
include emissions from solvent volatilization, cement, iron and steel production, fugitive emissions, refinery
emissions and other fuel-related emissions. This sector also covers emissions from volatile chemical products
(VCPs) such as petrochemical products, coatings, and printing inks. These sources emits high-reactivity
species such as m/p-xylene, propene, and toluene, which are important contributors to ozone formation.

The last paragraph Section 4 (Line 551) in the main text:

The new version of CINEI will incorporate additional emerging sources, such as new volatile chemical
products (VCPs), including the production of personal care products in industry and the use of pesticides in
agriculture (Seltzer et al., 2021; Cai et al., 2023).
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Response to Reviewer 2" — Manuscript gmd-2025-268 “Towards an integrated
inventory of anthropogenic emissions for China ” by Zhang et al., 2025

We would like to thank the reviewer for the careful reading and suggestions to improve the
clarity and quality of the manuscript. Below, we provide a detailed reply to each of the
comments (Reviewers’ comment/question in bold black, our reply in black, and new text in the
manuscript in blue).

Comment 1. Recent efforts, such as HTAP v3.1
(https://essd.copernicus.org/preprints/essd-2024-601/), have also incorporated MEIC for
China. It is suggested that the authors compare CINEI with HTAP v3.1 over China to
highlight differences and improvements.

Comment 2. Similarly, MIX v2 has integrated MEIC emissions. What are the
methodological advancements and advantages of CINEI relative to MIX v2?

We thank the reviewer for the detailed comments on the newly released HTAPv3.1 and MIXv2
emission dataset (Li et al., 2024; Guizzardi et al., 2025) and the suggestion to compare with the
here developed inventory in order to further support the usefulness of it.

CINEI introduces methodological improvements and offers a more comprehensive coverage
of emission sectors than MIXv2, especially with the inclusion of the agriculture and aviation
sectors. In addition, CINEI’s detailed NMVOC speciation enhances its suitability for global
atmospheric modeling. When comparing the HTAPv3.1, MIXv2, and CINEI inventories, the
main advantages of CINEI are:

(1) Broader emission sectors in CINEI, including aviation and domestic ships, are missing
from the MIXv2 inventory (see Table 2 in Li et al., 2024). MIXv2 presents only seven
broad sectors in gridded format and lacks the detailed 22 subsectors in time series, which
are available in MEIC v1.4. As shown in Figures S10-S12, MIXv2 is limited in its ability
to analyze subsector emission trends over time and complicates direct sector mapping
with global inventories. For example, Table 2 in Li et al. (2024) provides a one-way
mapping between MIXv2 and the IPCC code. In contrast, Figure S8 provides a two-way
mapping, including one between the CINEI and the IPCC code and one between the
existing inventories and the IPCC code. Therefore, the absence of specific sub-sectors
complicates direct sector mapping with global inventories. For example, enteric
fermentation (3A) is missing in MIXv2, while wastewater treatment and discharge (4D)
is omitted in both MIXv2 and HTAP. These missing sub-sectors can be identified and
addressed during the screening process.

(2) Updated NMVOC speciation profiles in CINEI that are fully compatible with the
MOZART chemistry mechanism, which is widely adopted in air quality studies and
regional chemistry and transport models (CTMs), such as the Weather Research and
Forecasting (WRF) model coupled with Chemistry (WRF-Chem), the Community Earth
System Model (CESM) and the Multi-Scale Infrastructure for Chemistry and Aerosols



(MUSICA) (Dai et al., 2023 and 2024; Mariscal et al., 2025; Tilmes et al., 2019). The
MIXv2 inventory provides speciations such as CB05 and SPARC that are suitable for
certain regional and chemistry models; while HTAPv3.1 currently lacks local profile
updates for NMVOC species and the speciated NMVOC emissions in gridded format
have not yet been completed (Guizzardi et al., 2025).

(3) Facilitation of widely used chemistry mechanisms for global climate models. CINEI’s
integration with the global CEDS inventory further enhances its applicability for climate
change studies, including use within the Coupled Model Intercomparison Project (CMIP)
framework (Feng et al., 2020). CINEI is compatible with the MOZART chemistry
mechanism that is widely adopted in air quality studies and regional chemistry and
transport models; This broad compatibility positions CINEI as a flexible and valuable
resource for a wide range of modeling applications.

We have added a supplementary Figure S6 that shows a comparison of the interannual variation
in NOx, CO, and NMVOC emissions among CINEI, MIXv2, and HTAPv3.1. For the
overlapping period (2010-2017), the inventories show minor discrepancies. On average,
annual emissions in HTAPv3.1 are 2.1% higher than CINEI (ranging from -0.8% to +5.8%
across different species), while MIXv2 emissions are consistently 3.2% lower (ranging from -
1.6% to -6.1%). These differences mainly result from variations in sectoral aggregation
methodologies. For instance, NOx emissions in CINEI and HTAPv3.1 are higher than in
MIXv2, with annual differences of 1.5 Tg (5%), mainly due to the omission of aviation (1.1
Tg) and agricultural soil emissions (0.3 Tg) in MIXv2. Annual CO emissions from agricultural
waste burning in HTAPv3.1 are 5 Tg higher than in CINEI and MIXv2. Although both CINEI
and MIXv2 provide speciated NMVOC emissions compatible with chemistry mechanisms,
HTAP currently lacks local profile updates for NMVOC species.
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Figure S5. Interannual variability of total NOx (NO,), CO and NMVOC emissions in China
from the CINEI in orange (2008 to 2020) and MIXv2 in green (2010 to 2017), and
HTAPv3.1 in blue (2008 to 2020).

We have also performed an additional experiment based on MIXv2 in the summer that showed
an underestimation of NO> by 7 ppbv (NMB = -54%), CO by 0.5 ppmv (-85%), and O3 by 14
ppbv (-34%) (Figure S29 and Table S22). The larger discrepancy likely resulted from missing



aviation emissions and reactivity due to lumping together NMVOC species (Li et al., 2024).
However, CINEI and HMEI both have consistent speciated NMVOC emission values that align
with global inventories, resulting in more reliable model performance. Furthermore, modelling
performance based on CINEI in July 2017 outperforms that based on MIXv2, as illustrated in
Figure S25 and Table S23. The MIXv2-based runs substantially underestimated all three
pollutants: NO; by 7 ppbv (-54%), CO by 0.5 ppmv (-85%), and Os by 14 ppbv (-34%). These
underestimations likely result from (1) missing emission sectors such as aviation and
agriculture, leading to lower NOx and CO emissions and (2) incomplete accounting for
transported emissions from surrounding regions and the ocean. CINEI integrates China’s
emissions within the CEDS inventory, while MIXv2 uses other regional inventories (CAPSS
for Korea and MOE]J for Japan). Additionally, MIXv2 inventory provides NMVOCs species
as high-lumped species, which might lead to missing reactivity of NMVOCs species in WRF-
Chem model.

This discussion is added in the supplementary material section S12.
In the revised manuscript we added the following text:

The 4th paragraph in section 1(Line 67) in the main text: Reference to Guizzardi et al.,
2025 was added.

The 4th paragraph in section 2.1 (Line 129-138) in the main text:

Our final dataset-CINEI aims at methodological improvements and offers a more
comprehensive coverage of emission sectors than MIXv2, especially with the inclusion of the
agriculture and aviation sectors. In addition, CINEI’s detailed NMVOC speciation that is fully
compatible with the MOZART chemistry mechanism enhances its suitability for global
atmospheric modeling and its versatility relative to other regional inventories, including MEIC,
REAS, and MIXv2. Figure S6, showing a comparison of the interannual variation in NOx, CO,
and NMVOC emissions over China among CINEI, MIXv2, and HTAPv3.1 inventories for the
overlapping period (2010-2017), demonstrates only minor discrepancies among the
inventories. Annual emissions in HTAPv3.1 are 2.1% higher than CINEI (ranging from -0.8%
to +5.8% across different species), while MIXv2 emissions are consistently 3.2% lower
(ranging from -1.6% to -6.1%) (see further discussion in the section S4 of SI).

Step 3 in section 2.2 (Line 233-234) in the main text: CINEI inventory with MOZART
NMVOC speciation can be used in a wide range of air quality studies, as well as in regional
and global chemistry and transport models (CTMs). Examples include the Weather Research
and Forecasting (WRF) model coupled with Chemistry (WRF-Chem), the Community Earth
System Model (CESM) and the Multiscale Infrastructure for Chemistry and Aerosols
(MUSICA) (Dai et al., 2023; Mariscal et al., 2025; Danabasoglu et al., 2020). Such
compatibility enhances the versatility of CINEI relative to other regional inventories, including
MEIC, REAS, and MIXv2.

Supplement



New Figure S6 in Page 9 of SI: Comparison of the interannual variability of total NOx (NO>),
CO and NMVOC emissions in China between HTAPv3.1, CINEI and MIXv2.

Added discussion text (following) as section S5 (Page 11) of SI:

When comparing the HTAPv3.1, MIXv2 and CINEI inventories, the main advantages of
CINEI are:

(1) Broader emission sectors in CINEI, including aviation and domestic ships, are missing
from the MIXv2 inventory (see Table 2 in Li et al., 2024). MIXv2 presents only seven broad
sectors in gridded format and lacks the detailed 22 subsectors in time series, which are
available in MEICv1.4. As shown in Figures S10-S12, MIXv2 is limited in its ability to
analyse subsector emission trends over time and complicates direct sector mapping with
global inventories. For example, Table 2 in Li et al. (2024) provides a one-way mapping
between MIXv2 and the IPCC code. In contrast, Figure S8 provides a two-way mapping,
including one between the CINEI and the IPCC code and one between the existing
inventories and the IPCC code. Therefore, the absence of specific sub-sectors complicates
direct sector mapping with global inventories. For example, enteric fermentation (3A) is
missing in MIXv2, while wastewater treatment and discharge (4D) is omitted in both MIXv2
and HTAP. These missing sub-sectors can be identified and addressed during the screening
process.

(2) updated NMVOC speciation profiles in CINEI that are fully compatible with the
MOZART chemistry mechanism, which is widely adopted in air quality studies and regional
chemistry and transport models (CTMs), such as the Weather Research and Forecasting
(WRF) model coupled with Chemistry (WRF-Chem), the Community Earth System Model
(CESM) and the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA) (Dai et
al., 2023 and 2024; Mariscal et al., 2025; Tilmes et al., 2019). The MIXv2 inventory provides
speciations such as CB05 and SPARC that are suitable for certain regional and chemistry
models; while HTAPv3.1 currently lacks local profile updates for NMVOC species and the
speciated NMVOC emissions in gridded format have not yet been completed (Guizzardi et
al., 2025).

(3) Facilitation of widely used chemistry mechanisms for global climate models. CINEI’s
integration with the global CEDS inventory further enhances its applicability for climate
change studies, including use within the Coupled Model Intercomparison Project (CMIP)
framework (Feng et al., 2020). CINEI is compatible with the MOZART chemistry
mechanism that is widely adopted in air quality studies and regional chemistry and transport
models; This broad compatibility positions CINEI as a flexible and valuable resource for a
wide range of modeling applications.

Figure S6 shows a comparison of the interannual variation in NOx, CO, and NMVOC
emissions among CINEI, MIXv2, and HTAPv3.1. For the overlapping period (2010-2017),
the inventories show minor discrepancies. On average, annual emissions in HTAPv3.1 are 2.1%
higher than CINEI (ranging from -0.8% to +5.8% across different species), while MIXv2



emissions are consistently 3.2% lower (ranging from -1.6% to -6.1%). These differences
mainly result from variations in sectoral aggregation methodologies. For instance, NOx
emissions in CINEI and HTAPv3.1 are higher than in MIXv2, with annual differences of 1.5
Tg (5%), mainly due to the omission of aviation (1.1 Tg) and agricultural soil emissions (0.31
Tg) in MIXv2. Annual CO emissions from agricultural waste burning in HTAPv3.1 are 5 Tg
higher than in CINEI and MIXv2. Although both CINEI and MIXv2 provide speciated
NMVOC emissions compatible with chemistry mechanisms, HTAP currently lacks local
profile updates for NMVOC species.

Furthermore, an additional experiment was performed with the MIXv2 inventory for July 2017.
The modeling setup, including input data, was kept consistent for both inventories, except for
the anthropogenic emission data, as noted in the main manuscript. Due to limited availability
of HPC resources, we were unable to perform simulations for January. A comparison of MIXv2
and CINEI modeling results for July 2017 (Figure S29 and Table S22) shows that CINEI
delivers better performance than MIXv2 when compared to observations. In contrast, MIXv2
consistently underestimates concentrations: NO2 by 7 ppbv (-54%), CO by 0.5 ppmv (-85%),
and O3 by 14 ppbv (-34%). These discrepancies can be attributed to several factors: (1) MIXv2
lacks important sectors, such as aviation and agriculture, which leads to lower NOx and CO
emissions; (2) emissions from surrounding regions and the ocean are not fully accounted for,
whereas CINEI integrates China’s emissions within the broader CEDS inventory, while MIXv2
relies on CAPSS for Korea and MOEJ for Japan. (3) MIXv2 provides NMVOC emissions as
broad, lumped categories, potentially missing key reactivity of NMVOCs required for accurate
simulation in WRF-Chem.
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Figure S29. WRF-Chem simulated mixing ratios of O3, NO2, and CO for July 2017 (summer) and within the modeling
domain using CINEI (in orange) and MIX (in blue). Individual columns show simulated mean mixing ratios in the model
domain for each emission inventory used. The dashed blue lines show average observed mixing ratios calculated using the
stations within the specified domain. The numbers on the columns are Normalized mean bias (NMB). Blue (red) number
indicates underestimated (overestimated).

Table S22. Statistical metrics to evaluate modeling Oz, CO and NO» performance based on
CINEI and



O3 (ppbv) CO (ppmv) NO2 (ppbv)
Metric

MIX CINEI | MIX CINEI | MIX CINEI
Observed 43.24 4324 0.68 0.68 12.61 12.61

Model 28.68 4946 0.10 0.28 5.79 12.54
NMB (%) -34 12 -85 -59 -54 -8
MFB (%) -42 10 -149 -84 -88 -17
MNAE (%) 34 18 85 59 58 34
R 0.95 0.95 0.28 0.50 0.85 0.85

The first paragraph in section 2.3 (Line 278) in the main text: In addition, the MIXv2
inventory incorporates the MEICv1.4 inventory for Asia, which has high lumped speciation
and missing aviation emissions. Its modeling performance with the same setup for July 2017
is discussed in the Supplement (figure S29 and Table S22).

The 3™ paragraph in section 3.4 (Line 482-487) in main text: An additional experiment
based on MIXv2 in the summer showed an underestimation of NO> by 7 ppbv (NMB = -54%)),
CO by 0.5 ppmv (-85%), and O3 by 14 ppbv (-34%) (Figure S29 and Table S22). The larger
discrepancy of MIXv2 with observations likely resulted from missing aviation emissions and
reactivity due to lumping together NMVOC species (Section S12). However, the speciated
NMVOC emission values for both CINEI and HMEI are consistent and align with global
inventories, resulting in more reliable model performance.

Section S13 (Line 384-390) in SI: Furthermore, modelling performance based on CINEI in
July 2017 outperforms that based on MIXv2, as illustrated in Figure S29 and Table S22. The
MIXv2-based runs substantially underestimated all three pollutants: NO2 by 7 ppbv (-54%),
CO by 0.5 ppmv (-85%), and Os by 14 ppbv (-34%). These underestimations likely result from
(1) missing emission sectors such as aviation and agriculture, leading to lower NOx and CO
emissions and (2) incomplete accounting for transported emissions from surrounding regions
and the ocean. CINEI integrates China’s emissions within the CEDS inventory, while MIXv2
uses other regional inventories (CAPSS for Korea and MOEJ for Japan). Additionally, MIXv2
inventory provides NMVOCs species as high-lumped species, which might lead to missing
reactivity of NMVOC:s species in WRF-Chem model.

Added Table S22 in SI.

Added Figure S29 in SI.



Comment 3. Table 2: When the same emission source exists in multiple global inventories,
how is the choice made? For instance, international shipping emissions are available in
CEDS, CAMS, and HTAP. Why is CAMS selected in this case? A clearer explanation of
the selection principles is needed.

When the same sector appears in different global inventories, we compare the datasets and
examine the sources and methodologies behind the emissions calculations. In the CINEI
inventory, emissions data for each sector are selected based on two main criteria: (1) the sector
must be as complete as possible in terms of included sub-sectors and chemical species (see
'Completion of sub-sectors and species' in Table 2); and (2) the underlying data used for
emissions calculations must be high-quality and up to date (see 'Better underlying data' in Table
2). Below is a summary of how leading global inventories meet these criteria:

The HTAP v3 agricultural emissions are more complete than those of the other models and use
more up-to-date underlying data. The HTAP agriculture sector includes subsectors such as
manure management (NOXx), agricultural soils (NOx) and field burning of agricultural residues
(CO and some NMVOC species).

Waste emissions from CEDS are more complete than those from other sources. The HTAP
waste sector includes the biological treatment of solid waste and the treatment and discharge
of wastewater. The main relative species is CO. Emission data from CAMsv5.3 is adopted from
EDGAR v5. We prioritize emission data from more complete sectors, and then make further
selections based on whether the data is updated.

Shipping emissions are tracked mainly using Automatic Identification System (AIS) data,
which combines terrestrial and satellite observations to provide detailed vessel activity. CAMS
further refines shipping emissions and routes with the STEAM3 model (Johansson et al., 2017).
However, inland shipping data in CAMS is less comprehensive because AIS coverage is
limited on inland waterways. HTAP, which builds on EDGAR data, offers an independent sub-
sector specifically for domestic (inland) shipping emissions.

Paragraphs 379, 4t and 5% of Section 2.2 in the main text:

Table 2 lists the data sources for CINEI’s sectoral emissions and the missing sectors in existing
inventories. By following the IPCC sector definitions, we were able to identify sectors that
were omitted from certain emission inventories (see Figure S8). We selected the emission
sectors from different inventories based on three principles, in the following priority order: (1)
whether the sectors included complete sources (sub-sector) and species, as indicated by
"Completion of sub-sectors and species" in Table 2; (2) whether the sector used high-quality
and updated underlying data for calculating emissions, as indicated by "Better underlying data"
in Table 2; and (3) whether the emission estimations for the sectors considered the mitigation
measures implemented in China (as discussed in Section S2), which is indicated by
"incorporation of pollution mitigation measures" in Table 2.

For CINEI, we retained the emissions from the four existing sectors (transportation, residential,
industry, and energy) that were utilized in MEIC, as these sectors adhere to the three principles.



As detailed in Section S2, MEICv1.4 employed local emission factors and activity data and
included a parameter for abatement estimation (Section S2 and Table S1). The emission peak
year is consistent with the year of mitigation implementation (see Section S7).

We integrated emissions from various global inventories for the four missing sectors to ensure
comprehensive sectoral coverage and consistency between national and global emission
inventories. Specifically, we used emissions from HTAP for aviation and domestic shipping.
We opted for HTAP’s data for domestic shipping because its inventory provides an
independent sub-sector for inland shipping, whereas inland shipping emissions from CAMS
are less complete due to the limited use and coverage of the Automatic Identification System
(AIS) on inland waterways. We incorporated ocean shipping emissions from CAMS, which
refines data using the Ship Traffic Emission Assessment Model (STEAM3), providing a more
detailed representation of shipping routes and emissions (Johansson et al., 2017). For the
agriculture and waste sectors, we utilized data from CEDS because its agricultural emissions
are more comprehensive than those of MEIC (which only considers NH3, and its waste
emissions are more complete than those from sources from other inventories (Figure S6).

Updated Table 2 as shown below:

Table 2. Data sources of CINEI sectoral emissions and mapping with global emission inventories

If provided by existing inventories

Sectors CINEI Data Source ~ Selection Principles”™™”
MEIC CEDS* CAMS HTAP*

Power v v v v MEICv1.4 (1H2)3)
Industry v v Vo v MEICv1.4 (23
Residential v v v v MEICv1.4 (H2)3)
Aviation missing  missing  missing v HTAPv3 2)
Transportation v v v v MEICv1.4 (23
International Ships  missing v v v CAMSVS.3 (2)
Domestic Ships missing  missing v v HTAPv3 2)
Agriculture g v v v HTAPv3 2)
Waste missing v v N CEDSv2021 2)

* As emissions from HTAP and CEDS are not extended to 2020, we use a linear regression of the emissions from 2008 to 2018 (2019)
for HTAP (CEDS) and extrapolate to 2020 for CINEL

*#* Indicates that the emissions inventory provides parts of the sectoral emissions but misses some subsectors suggested by the IPCC
report. Details on IPCC subsectors and a comparison to each inventory are listed in Figure S6.

*#% The selection principles are prioritized in the following order: (1) Completion of sub-sectors and species, (2) Better underlying data,

and (3) Incorporation of mitigation.



Added Figure S7 in SI: Spatial distribution of international shipping and inland shipping of
CAMs and HTAP.
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Comment 4. What are the exact differences between HMEI and CINEI? Is it solely the
inclusion of previously missing sectors (e.g., ships, aviation, waste, agriculture), or are
there additional improvements in sectoral mapping, NMVOC speciation, or spatial
harmonization?

We thank the reviewer for highlighting the differences between the HMEI and CINEI inventories. The
primary distinction is that the MEIC inventory that the basis of the HMEI inventory for Mainland China
does not cover certain sectors—specifically shipping, aviation, waste, and agriculture—while CINEI
addresses these gaps by incorporating these additional sources. CINEI also improves NMVOC
characterization by utilizing locally observed NMVOC profiles, ensuring that sector-specific
compositions are more accurately represented. Furthermore, CINEI uses a uniform sector definition and
a consistent spatial resolution of 0.25°, enhancing comparability and spatial detail.

The increase in total emissions in CINEI compared to HMEI is primarily due to the inclusion of these
previously omitted sectors (see Figures 3d—f), resulting in average annual increases of 2.7 Tg NOx, 5.2
Tg CO, and 1.4 Tg NMVOCs. CINEI’s use of local NMVOC profiles also leads to differences in the
chemical composition of emissions, especially for sectors such as agriculture and waste, which
contribute notable amounts of propene, ethene, formaldehyde, and acetaldehyde (see Figure 4b).

Section 2.2 (Line 266-268) in the main text: The difference between CINEI and HMEI lies in the new
sectors (shipping, aviation, waste, and agriculture) added to CINEI, which increase total emissions.
Speciated NMVOCs in CINEI are improved by applying locally observed NMVOC profiles.
Furthermore, the additional emission sectors affect the composition of specific local emissions, which
will be discussed in later sections.

2" paragraph in section 3.1 (Line 320-322) in the main text: Compared to MEIC (harmonized
inventories) for China, CINEI total emissions on annual average include the contributions of the ships
sector to NOx emissions (2.7 Tg), the waste sector to CO emissions (5.2 Tg), and the agricultural sector
to NMVOC emissions (1.4 Tg) (Fig. 3d-f).

2" paragraph in section 3.2 (Line 383-386) in the main text: The agricultural sector is the main
source for formaldehyde (52%) and acetaldehyde emissions (60%), related to the emissions along with
crop burning (including the burning of rice and wheat straw, maize, etc.). Ignoring agricultural NMVOC
emissions in anthropogenic emission inventories can lead to underestimated contributions of these
species to ozone pollution. Ozone pollution may occur in areas with intensive local agricultural activity.



Comment 5. The CAMS dataset is extended from 2018 to 2022 using linear slopes from
CEDS. How are uncertainties introduced by this extrapolation process quantified and
propagated? More detailed treatment or discussion is recommended.

Table 3 summarizes the uncertainties associated with CAMS emissions for the main sectors. Overall,
the CAMS extrapolation method introduces between 30% and 60% of uncertainty. The greatest
uncertainties are found in the power sector, reaching 96% for CO emissions and 148% for NMVOC
emissions. These unusually high values are likely due to systematic uncertainty regarding how CAMS
defines the power and industry sectors. In comparison, uncertainties from bottom-up and top-down
modeling approaches cited in the literature are lower, typically between 20% and 50%. To reduce
uncertainties in future work, we recommend a combined approach that uses activity data, in-situ
measurements, satellite observations, and CTM modeling. Section S3 and Table S3 will be added in the
supplementary to explain how uncertainties in CAMS emissions due to the extrapolation method are
evaluated.

Table S3. Comprehensive uncertainty table for CAMs Emissions Extrapolation Method: CO, NOx, and
NMVOC by Sector

Species Sector Slopes (Tg/year) Emission in base year (2018) o_model o total
CEDS CINEl o _slope(%) CAMs(Tg) CINEI(Tg) o bias(%) (%) (%)
Iransportation -1.6021 -1.5969 03 1483 2367 459 39.0 602
co Residential -2.1838  -2.2927 49 2734 5581 685 39.0 78.8
L Power 00692 0.1850 91.1 12.80 501 875 39.0 958
Industry 1.3966 2.2350 46.2 7549 4767 452 39.0 59.7
Iransportation  -0.0160  -0.1717 1658 52 75 350 46.0 578
. Residential 0.0229 -0.0267 155 1.0 08 17.3 46.0 492

NOx (NO2)
Power 0.1439 02977 69.7 63 40 4.1 46.0 63.7
Industry 00956  -0.1608 509 85 9.1 72 46.0 46.6
Iransportation -02747 -02145 246 389 463 174 26.0 313
1 Residential 02069 -0.0941 749 3.05 467 421 260 495

NMVOC

Power 01204  0.0024 208.2 049 0.08 146.0 260 148.3
Industry* 0.0046 05275 203.5 20.19 19.49 35 26.0 26.2

Notes:

' CAMs NOx (represented by NO) emissions scaled by factor 1.5

! Industry sector for NMVOC includes solvents (ind + slv)

— Slopes calculated from linear regression (2015-2019)
~ Base year emissions in appropriate units for each species
= Uncertainties calculated using equations (2)-(4) from methodology

= Model uncertainties: CO (39%), NOx (46%), NMVOC (26%) from Li et al. (2024)

Add text in section 2.1 (Line 120) in the main text: The uncertainties of CAMs extrapolation
method will also be discussed in Section 3.1.

2nd paragraph in section 3.1 (Line 323-325) in the main text: The uncertainties of the CAMs
extrapolation method for the main sectors are estimated between 30% and 60% (see Section S5 and
Table S3). One exception is the power sector where uncertainty exceeds 100%, likely due to the
systematic uncertainty in the sector’ definitions and mapping.

Section 4 (Line 540-543) in the main text: In a follow-up study, we will evaluate CINEI’s
representation of NOx-VOC photochemistry in CTM models and compare the results with
observational data. We also plan to incorporate additional observational and modeling approaches to
develop an updated version of the CINEI emissions dataset. This will help reduce uncertainties in the
emission estimates and minimize modeling biases in CTM applications.



Main text Line 542: We will use more observational data, such as from TROPOMI and in-situ
measurements, to constrain the total emissions for ozone precursors and NMVOC speciation.

Add Table S3 in SI:
Add a section S5 in SI:
1. Method to quantify the uncertainties on the projection of CAMs emission from 2018 onward.

For this study, CAMs emissions for the main sectors (industry, power, residential and transportation)
from 2018 to 2020 are extrapolated using linear slopes (slopespec,i) derived from CEDS for the period
2015 to 2019, with 2018 as the base year. The emissions for a given species (spec) and sector (i) in
years 2019-2020 are calculated as:

Espec,year,i = Lspec,2018,i + Slopespec,i X (year - 2018) (1)

Here, slopeceps, spec.i 1S the slope of linear regression of annual total CEDS emissions for sector i and
specific species (spec) from 2015 to 2019 and slopecingr, spec,i 1S the slope of linear regression of annual
total CINEI emissions. The uncertainty of the linear slope is calculated as the absolute difference
between linear slopes of CINEI and CEDS from 2015 to 2019 with respect to their averages. The
calculation is expressed as:

_ |510peCEDS,spec,i_SIOPeCINEI,speC,i|X2 x 100 (2)

g =
slope
P slopeceps,spec,itSlOPecINELspec,i

The uncertainty of the bias is calculated as the absolute difference of CAMs and CINEI emissions
with respect to their average in the base year.

ECAMS,S ec,2018,i_ECINEI,s ec,2018,1 X2
| P P 2 5 100 (3)

Opias2018 =
ECAMs,spec,Z018,i+ECINEI,spec,2018,i

The uncertainty of the model (Gmoder) Originates from differences in approaches to calculate emissions,
including top-down estimation (satellite estimation and inverse modeling) and bottom-up estimation
(Miyazaki et al., 2017; Li et al., 2024; Liu et al., 2016a). This component is independent of the
uncertainties of linear slope and base-year emission in bottom-up emission inventories. Adopted from
Li et al. (2024), the standard deviation of all estimates on emission trends can be represented by 46%
for NOx, 39% for CO, and 26% for NMVOC.

The propagation of uncertainty for three independent uncertainties is expressed as follows:

— 2 2 2
Ototal,spec,i = \/Uslope,spec,i + Gmodel,spec,i + Ubias,spec,i (4)
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