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Abstract. The appropriate period of collocation of a low-cost air sensor (LCS) with reference measurements is often unknown. 

Previous low-cost air sensor studies have shown that due to sensor ageing and seasonality of environmental interferences 

periodical sensor calibration needs to be performed to guarantee sufficient data quality. While the limitations are well-

established it is still unclear how often a recalibration of a sensor needs to be carried out. In this study, we aim to demonstrate 

how frequently widely used air sensors for the relevant air pollutants O3 and PM2.5 by two manufacturers (Alphasense and 10 

Sensirion) should be recalibrated. Sensor calibration functions were built using Multiple Linear Regression, Ridge Regression, 

Random Forest and Extreme Gradient Boosting. We use state-of-the-art test protocols for air sensors provided by the United 

States Environmental Protection Agency (EPA) and the European Committee for Standardization (CEN) for evaluative 

guidance. We conducted a yearlong collocation campaign at an urban background air and climate monitoring station next to 

the University Hospital Augsburg, Germany. LCS were exposed to a wide range of environmental conditions, with air 15 

temperatures between -10 and 36 °C, relative air humidity between 19 and 96 % and air pressure between 937 and 983 hPa. 

The ambient concentration ranges for O3 and PM2.5 were up to 83 ppb and 153 µg m-3, respectively. For the baseline single 

training of 5 months, the calibrated O3 and PM2.5 sensors were able to reflect the hourly reference data well during the training 

(R2: O3 = 0.92–1.00; PM2.5 = 0.93–0.98) and the following test period (R2: O3 = 0.93–0.97; PM2.5 = 0.84–0.93). Additionally, 

the sensor errors were generally acceptable during the training (RMSE: O3 = 0.80–4.35 ppb; PM2.5 = 1.45–2.51 µg m-3) and 20 

the following test period (RMSE: O3 = 3.62–5.84 ppb; PM2.5 = 2.04–3.02 µg m-3). By investigating different recalibration 

cycles using a pairwise calibration strategy, our results indicate that a regular in-season recalibration is required to obtain the 

highest quantitative validity for the analysed low-cost air sensors, with monthly recalibrations appearing to be the most suitable 

approach. In contrast, an extension of the training period for the calibration models had only a minor overall impact on 

improving the low-cost air sensors’ ability to capture temporal variations in observed O3 concentrations and PM2.5 25 

concentrations. The measurement uncertainty of the calibrated O3 LCS and PM2.5 LCS were able to meet the data quality 

objective (DQO) for indicative measurements for different calibration models. Compared to one-time pre-deployment sensor 

calibration, in-season recalibration can broaden the scope of application for a LCS (indicative measurements, objective 

estimation, non-regulatory supplemental and informational monitoring). 
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1 Introduction 30 

Low-cost sensors (LCS) form an interesting approach for monitoring air pollution in a denser network than currently available 

due to the cost of regular fixed measurement stations. Basically, they are smaller, consume less power, are cheaper and 

therefore more accessible than regular monitoring devices for air pollution (Jiao et al., 2016; Lewis et al., 2018; Li et al., 2020; 

Peltier et al., 2021; Schäfer et al., 2021). This underlines why there is an interest among researchers, governments, businesses 

and individuals in using LCS for air quality monitoring in different settings, e.g. citizen science, mobile and stationary 35 

monitoring (in for instance urban or remote locations), urban planning, personal exposure science or education (Williams et 

al., 2019; Mahajan and Kumar, 2020; Mahajan et al., 2020; Peltier et al., 2021; Okure et al., 2022; Hassani et al., 2023; Malings 

et al., 2024). This interest has led researchers to develop their own custom-built air quality monitoring systems equipped with 

LCS (Mueller et al., 2017; Cross et al., 2017; Gäbel et al., 2022), which can be more widely used in the aforementioned settings 

due to lower costs. 40 

 

Nevertheless, those sensors also have their disadvantages. At present they do not fulfill the stringent requirements for 

regulatory measurements provided by high-quality air pollutant monitoring systems for instance used by governments to 

monitor the exceedance of health relevant thresholds for air pollutants like ozone (O3), nitrogen oxides (NOx), particulate 

matter (PM2.5, PM10), carbon monoxide (CO), and sulfur dioxide (SO2) (Castell et al., 2017; Wesseling et al., 2019; Schäfer et 45 

al., 2021). Major issues with LCS are their short operating life, the lack of long-term stability due to sensor ageing, 

interferences, cross-sensitivities, the need of calibration functions to adjust their bias as well as transforming LCS output into 

meaningful units (Lewis et al., 2018; Peltier et al., 2021; Concas et al., 2021; Carotenuto et al., 2023). Hence reference 

measurements are needed. The inter-sensor unit variability of LCS is another issue, where a calibration function derived 

through training data for a LCS is usually not by default transferable. LCS data of a unit can be quite unique, when compared 50 

to data of another unit of the same model (Moltchanov et al., 2015; Gäbel et al., 2022; Bittner et al., 2022). However, good-

performing sensors can act as non-regulatory supplemental and informational monitoring (NSIM) devices, where data quality 

control procedures must be explored to investigate the individual LCS and its data to classify it as a NSIM device (Duvall et 

al., 2021a; Duvall et al., 2021b; Malings et al., 2024). It boils down to the question, if the selected air sensor is a good fit for 

its planned purpose (Diez et al., 2022). Snyder et al. (2013) summarized the essence of the problem in one sentence: “Data of 55 

poor or unknown quality is less useful than no data since it can lead to wrong decisions”.   

 

Uniform evaluation and comparison methods for LCS are incentivized by a growing market, which offers a greater supply of 

more refined low-cost air sensors. The lack of standardized procedures was pointed out in the literature in the recent years (Rai 

et al., 2017; Karagulian et al., 2019; Williams et al., 2019; Duvall et al., 2021a), therefore there is an initiative of multiple 60 

organizations to develop test programs and test protocols like the Environmental Protection Agency (EPA) of the United States 

or European Committee for Standardization (CEN) (Duvall et al., 2021a; Duvall et al., 2021b; CEN/TS 17660-1:2021; CEN/TS 
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17660-2:2024). The development of test programs by organizations, which are also recognized by governmental bodies, is an 

important achievement. They create a foundational framework to collect comparable harmonized metrics to assess LCS data 

quality and therefore helping to develop a standardized quality assessment to ultimately justify the use of LCS in defined areas 65 

of interest in air pollution monitoring. Hence it is a further step for establishing reliable low-cost air quality networks within 

the regulatory monitoring system for air quality worldwide. Using target metrics from these test programs to better understand 

the performance of air sensors is not yet commonly practiced in studies evaluating LCS in different settings.  

 

One important aspect are recalibrations of LCS after their initial (on-site) calibration using reference monitors, which is an 70 

important point in network management to guarantee longer-term data quality (Concas et al., 2021; Carotenuto et al., 2023). 

However, most of the recent studies doing longer-term field campaigns using LCS networks for air quality monitoring show 

in their methods no recalibration strategy to mitigate the effect of sensor ageing and thus to enhance the LCS measurement 

output under a quantitative point of view (Jayaratne et al., 2020; Petäjä et al., 2021; Mohd Nadzir et al., 2021; Bílek et al., 

2021; Raheja et al., 2022; Kim et al., 2022; Collier-Oxandale et al., 2022; Okure et al., 2022; Connolly et al., 2022). For 75 

instance, the official warranted operating lifespan of the commonly used electrochemical LCS NO2-B43F by the company 

Alphasense is only 2 years (Alphasense, 2024a) or even lower according to Li et al. (2021). They investigated the long-term 

degradation of electrochemical Alphasense NO2 sensors in the field and found evidence, that those sensors could already 

malfunction after 200 days. Furthermore Kim et al. (2022) calibrated Alphasense NO2 sensors based on a 6-month collocation 

using regulatory monitoring devices at a rural traffic site. 1.5 years later Kim et al. (2022) did a second collocation experiment 80 

with the same sensors at the same site using their original calibration functions from the first collocation. They found a 

significant deterioration in sensor performance during the second collocation. It was also discussed that due to time-varying 

effects of environmental interferences (e.g. air temperature, relative humidity), sensor performance can vary with season 

(Ratingen et al., 2021; Peters et al., 2022). For these reasons, LCS recalibration intervals of less than 1 year and methods for 

regular LCS data quality checks using regulatory monitoring devices need to be explored whether those sensor devices are 85 

supposed to be used in lengthy measurement campaigns to assess air quality. At present it is quite unknown how regular LCS 

need to be recalibrated and the number of publications investigating varying calibration periods isn’t exhaustive due to the 

lack of long-term collocation experiments in the available literature. Generally, studies which investigate varying recalibration 

periods look only at a specific air pollutant sensor targeting one air pollutant and don’t consider state-of-the-art test programs 

for LCS to categorize their results in frameworks provided by organizations, which are officially recognized by governmental 90 

authorities. 

 

We investigated different recalibration cycles for commonly used LCS for NO2, O3, CO and PM2.5 using metrics and target 

values provided by EPA and CEN (Duvall et al., 2021a; Duvall et al., 2021b; CEN/TS 17660-1:2021; CEN/TS 17660-2:2024). 

We conducted the investigation during a one-year on-site collocation experiment in the city of Augsburg, Germany. An in-95 

depth investigation was done for LCS measuring O3 and PM2.5. Due to test site limitations affecting the ability to classify LCS 
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for NO2 and CO according to CEN, these air substances could only be classified using the EPA test protocol for gas sensors. 

Two Atmospheric Exposure Low-Cost Monitoring (AELCM) boxes developed by the Chair for Regional Climate Change and 

Health of the University of Augsburg where mounted next to the Atmospheric Exposure Monitoring Station (AEMS) for air 

substances and meteorological variables operated by the same chair. The boxes included the LCS for the mentioned air 100 

pollutants while the latter provided the reference measurements in the present study.  

 

This work is organized as follows. The section about materials and methods describes the infrastructure used for the collocation 

experiment (AELCM, AEMS) and the methodology behind our sensor calibration strategy and its evaluation. The “Results 

and Discussion” section focuses on the environmental conditions and pollution concentrations observed during the collocation 105 

experiment, the performance of the introduced LCS calibration models under different recalibration cycles and the potential 

implications of our findings for LCS networks. The concluding remarks can be found in the last section. 

2 Materials and methods 

2.1 AELCM Sensor box  

Two advanced Atmospheric Exposure Low-Cost Monitoring (AELCM) sensor boxes were used, denoted as AELCM009 and 110 

AELCM010. The custom-built devices were developed by the Chair for Regional Climate Change and Health at the University 

of Augsburg. A detailed description and performance check of the first version of the low-cost measurement unit can be found 

in our previous study (Gäbel et al., 2022). The upgraded AELCM units measured air quality and meteorological parameters, 

namely O3 (Alphasense Ox-B431), NO2 (Alphasense NO2-B43F), CO (Alphasense CO-B4), PM2.5 (Sensirion AG SPS30) as 

well as humidity and air temperature (Bosch BME280) (Bosch Sensortec, 2015; Sensirion, 2023; Alphasense, 2024a, c, b). In 115 

this study the air pollution sensors were denoted as AS-B431, AS-B43F, AS-B4 and SAG-SPS30. The upgrade of the AELCM 

boxes with respect to the previous study were related to the switch to electrochemical gas sensors from Alphasense, which 

exclusively measured the earlier mentioned gaseous air substances. The upgrades also involved the increase of the 

measurement frequency for each AELCM sensor from 10 seconds to every 4 seconds. A code rework on the Arduino 

microcontroller board made it possible to measure on a higher temporal resolution. 120 

 

There were two reasons for the switch to the Alphasense sensors: Gäbel et al. (2022) concluded, that the digital gas sensor 

models DGS-NO2 and DGS-CO from SPEC Sensors showed no capability to capture the given concentrations at a 

measurement station according to the coefficient of determination and the Spearman rank correlation. The SPEC DGS-O3 

units performed well overall but showed a high inter-sensor unit variability.   125 
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2.2 Collocation with AEMS 

The AELCM units were mounted on a fence right next to the AEMS. The AEMS is a high-quality air and climate measurement 

station located next to the University Hospital Augsburg in Germany (48°23.04' N, 10°50.53' E). The station can be classified 

as an urban background station. Federal roads are in the south and east, respectively 850 meters and 1200 meters located away 

from the station. A highway road is 3600 meters located away in the North. Industrial areas relative to the station location are 130 

located further away, in the south-east and the north-east of Augsburg. Regular station measurements of varying concentrations 

of CO, NO2 and PM2.5 due to local traffic and local industry depend highly on circulation patterns favouring an air flow from 

those sources towards the city as well as on the day and daytime, where factors like commuting play an important role.  

 

The regulatory grade air measurement instruments are from the company HORIBA. Reference measurements of O3, NO2, CO 135 

and PM2.5 were conducted using the instruments APOA-370, APNA-370, APMA-370 and APDA-372, in that order. The 

HORIBA instruments for gaseous air pollutants are also used by the Bavarian Environment Agency for official air pollution 

monitoring in Bavaria (Bayerisches Landesamt für Umwelt, 2019). The weather station WS600-UMB mounted to the station 

provided measurements for meteorological variables. Further details about the AEMS can be found in the study of Gäbel et al. 

(2022).  140 

 

The collocation took place from January 2022 until January 2023. The model training period for the LCS was between 11th of 

January 2022 till 10th of June 2022. The testing period for the LCS recalibration experiment started at the 10th of June 2022. 

The experiment ended between the 6th and 11th of January 2023 depending on the LCS. The end is individual for each LCS 

model unit, because of individual missing values in the reference measurements for each air pollutant caused by regular station 145 

maintenance work or due to power grid tests at the University Hospital. The aim of the collocation was the assessment of the 

benefit of regular recalibrations against single calibration. The latter used solely the above-mentioned training period for model 

training. Performance metrics and their recommended target values given by test programs and test protocols by EPA and 

CEN were considered to assess the influence of a recalibration procedure on LCS performance (Duvall et al., 2021a; Duvall 

et al., 2021b; CEN/TS 17660-1:2021; CEN/TS 17660-2:2024).  150 

2.3 Data treatment 

The collocation experiment involving AELCM009 and AELCM010 started originally on the 10th of January 2022. The 

equipped low-cost air sensors have a stabilization phase after powering them. Only after their stabilization phase the LCS 

output is eligible for measurements of their respective target pollutant (Gäbel et al., 2022). The first 24 hours of all LCS data 

were thus removed and not considered for this study. The AS-B431 is an LCS, which measures O3 and NO2 (Alphasense, 155 

2024c). For the correct measurement of ambient O3 using an AS-B431 unit, data of a LCS measuring NO2 is required for the 

O3 calibration model. For this purpose, we used an AS-B43F unit. The modelled calibration functions for the estimation of O3 
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included by default the LCS output of both Alphasense sensor units. The Alphasense sensors provided voltages as measurement 

outputs by default. Like Bigi et al. (2018), we calculated the net voltage of every Alphasense sensor based on the difference 

between the working and auxiliary electrodes. The calculated net voltages became an input for the modelled calibration 160 

functions next to the meteorological variables air temperature and relative humidity, which affect the LCS output as 

environmental interferences.  

 

The system time of the AELCM units (UTC) were adjusted to the system time of the AEMS (CET). LCS measurements and 

reference measurements given by the AEMS were aggregated to hourly means. PM2.5 measurements were also aggregated to 165 

daily means, which was required for the performance evaluation of the low-cost particulate matter sensor SAG-SPS30 based 

on the technical specification developed by CEN (CEN/TS 17660-2:2024, 2024) and the test protocol developed by EPA 

(Duvall et al., 2021a). The missing values in the air pollution reference data were caused by regular maintenance and device 

malfunctions. The missing values in the meteorological data were due to device malfunctions of the weather station. The LCS 

measurement data for each AELCM unit was nearly complete, with very few missing values, similar to the data in Gäbel et al. 170 

(2022). 100 % and at least 80 % of the data had to be available for the hourly aggregation of reference measurements of gaseous 

air pollutants and meteorological variables, respectively. For the calculation of the key performance metric in the technical 

specification by CEN (CEN/TS 17660-2:2024, 2024), the minimum data capture of  the SAG-SPS30 was set to 90 %. 

Therefore, the daily means of PM2.5 based on reference and LCS data were only valid if at least 90 % of the hourly averages 

were available within a 24 h period. Note, that the data completeness criterion is less strict in the particulate matter sensor test 175 

protocol by EPA. There, the daily mean PM2.5 concentration is calculated on at least 75 % of hourly averages within a 24 h 

period (Duvall et al., 2021a). 

 

For gaseous air constituents the devices in the AEMS and the model calibrated LCS devices provided measurements in the 

unit parts per billion (ppb). Hence for the calculation of mass concentrations the hourly aggregated meteorological 180 

measurements of the integrated weather station of the AEMS were used. Mass concentrations were needed for the performance 

evaluation of ambient air quality sensors for gaseous pollutants following the technical specification developed by CEN 

(CEN/TS 17660-1:2021, 2021). The SAG-SPS30 for the measurement of particulate matter provides outputs in mass 

concentrations by default. We didn’t use the low-cost meteorological data of the Bosch BME280 to calculate the mass 

concentrations for the LCS gas measurement devices, because the measurements are highly biased due to solar radiation. The 185 

bias stems from solar heating of the AELCM units, which could not be mitigated by the integrated fan, as it causes an exchange 

of air between the inside and outside, failing to reduce the heating effect. It is planned to upgrade the AELCM units with 

radiation shields in the future to reduce the effect of solar radiation on the low-cost meteorological measurements.  
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2.4 LCS calibration and model tuning 

We built and evaluated four regression models (calibration models) for each LCS to estimate air pollution levels based on their 190 

data output (hourly means) considering environmental influences on sensor output and reference measurements (AEMS). The 

regression models were based on Multiple Linear Regression (MLR), Ridge Regression (RR), Random Forest (RF) and 

Extreme Gradient Boosting (XGB). Moving forward we will call these calibration models. Every calibration model consisted 

of a target variable to be predicted, and features used for prediction. As target we defined the ambient air pollutant concentration 

of a specific air substance (AEMSO3, AEMSNO2, AEMSCO, AEMSPM2.5). As features used for prediction, we used the raw LCS 195 

output. The LCS output can be classified into the net voltages given by each Alphasense sensor (VOX10, VOX09, VNO210, VNO209, 

VCO10, VCO09), the mass concentrations given by each particulate matter sensor SPS30 (SPS3010, SPS3009) and the air 

temperatures (T10, T09) and relative humidities (RH10, RH09) provided by each BME280. 

 

We chose MLR models because MLR is still the most common basic approach in the literature to develop calibration models 200 

for LCS (Karagulian et al., 2019). In this paper, we used MLR with the setup as in Gäbel et al. (2022) extended by an interaction 

term according to Bigi et al. (2018) as the reference calibration approach next to machine learning approaches, i.e. Random 

Forest (Breiman, 2001) and Extreme Gradient Boosting (Chen and Guestrin, 2016). Also Ridge Regression was applied 

(Friedman et al., 2010), which includes an approach to adjust for collinearity between model features. For the development of 

the MLR models, we considered the usual MLR statistical model assumptions and checks, including the inspection of the 205 

residuals as well as the findings from the work of Bigi et al. (2018) and Hasan et al. (2023). Based on the findings of Bigi et 

al. (2018), we’ve used net voltages and a term for the interaction between net voltages and air temperature as features. 

Furthermore, Hasan et al. (2023) found a calibration model performance improvement using O3 and NO2 sensors, when they 

added the output of a low-cost CO sensor as a feature. We considered both findings for our own calibration models. The 

selected features and targets for every calibration model can be found in Table 1. 210 

 

Table 1. Model variables for the development of the calibration functions based on Multiple Linear Regression (MLR), Ridge Regression 

(RR), Random Forest (RF) and Extreme Gradient Boosting (XGB). 

Calibration Model 
O3 Model 

(Features / Target) 

NO2 Model 

(Features / Target) 

CO Model 

(Features / Target) 

PM2.5 Model 

(Features / Target) 

MLR 
VOX, VNO2, VCO, RH, T, VOX * T 

/ AEMSO3 

VNO2, VCO, RH, T, VNO2*T 

/ AEMSNO2 

VCO , RH, T, VCO * T,  
(𝑉𝐶𝑂)2−1

2
 / AEMSCO 

SPS30, RH, T, log(SPS30) 

/ log(AEMSPM2.5) 

RR 
VOX, VNO2, VCO, RH, T 

/ AEMSO3 

VNO2, VCO, RH, T 

/ AEMSNO2 

VCO , RH, T 

/ AEMSCO 

SPS30, RH, T 

/ AEMSPM2.5 

RF 
VOX, VNO2, VCO, RH, T 

/ AEMSO3 

VNO2, VCO, RH, T 

/ AEMSNO2 

VCO , RH, T 

/ AEMSCO 

SPS30, RH, T 

/ AEMSPM2.5 

XGB 
VOX, VNO2, VCO, RH, T 

/ AEMSO3 

VNO2, VCO, RH, T 

/ AEMSNO2 

VCO , RH, T 

/ AEMSCO 

SPS30, RH, T 

/ AEMSPM2.5 

 

https://doi.org/10.5194/egusphere-2025-2677
Preprint. Discussion started: 11 July 2025
c© Author(s) 2025. CC BY 4.0 License.



8 

 

 215 

The development of the calibration models for the LCS data of both AELCM units using Random Forest, Extreme Gradient 

Boosting and Ridge Regression had the following steps: (1) Pre-processing of data given by the AEMS (Reference) and 

AELCM units (LCS) according to Sect. 2.3 and merging the data by hour; (2) Tuning of selected model hyperparameters 

during the first 5 months of the collocation period using the repeated holdout method (10 evaluation periods), random search 

as search strategy and the root-mean-squared error (RMSE) as performance metric; (3) Applying the best hyperparameter 220 

configuration to the calibration model, and training it using a single calibration period (first 5 months of the collocation period) 

or an extended calibration period (further training). For step (2) and step (3) the package mlr3 in the statistics software R was 

used (Lang et al., 2019). The selected and tuned model hyperparameters for Random Forest, Extreme Gradient Boosting and 

Ridge Regression can be found in the supplement (Table S3). 

 225 

The search strategy random search describes a random value selection in a pre-defined interval for each to be tuned model 

hyperparameter in an independent manner (Bergstra and Bengio, 2012; Becker et al., 2024). We selected random search as the 

search strategy for its simplicity and the possibility to use mixed search spaces (using numeric and integer hyperparameters) 

(Becker et al., 2024). Becker et al. (2024) also mention that random search is often the better choice to produce more unique 

values per hyperparameter compared to grid search under the circumstance that certain hyperparameters only offer a minimal 230 

impact on model performance compared to others. Therefore, random search offered us a safer option to realize a meaningful 

hyperparameter tuning in a reasonable timeframe considering multiple models and LCS. 

 

An out-of-sample method (OOS, Gäbel et al. (2022)) using a repeated holdout strategy for the tuning process was chosen to 

obtain robust estimates. Summarizing this method, a random point t in time (e.g., 30 April 2022 12:00:00 CET) of the time 235 

series ts was chosen to separate the training and evaluation data. The previous window with reference to t comprising 60 % of 

ts was used for training and the following window of 10 % of ts was used for testing. For 10 repetitions, we received 10 

randomly chosen dates t, which separated the training and evaluation sets. The sizes of the training and evaluation sets 

depended on the length of the available LCS time series and reference data. As mentioned in step (2), for the hyperparameter 

tuning process we used the first 5 months of data per LCS during the collocation period. Finally, considering the average 240 

RMSE based on 10 evaluation periods, we chose the final hyperparameter configuration for each LCS calibration model. The 

hyperparameter tuning process was unique for each LCS calibration model. No generalized model for a specific sensor unit 

was developed. 

2.5 Key aspects for exploring a pairwise calibration strategy 

Low-cost air sensors are measurement instruments which need treatment. This treatment involves the consideration of regular 245 

maintenance work in a post-deployment setting involving recalibration and data quality assurance (Peltier et al., 2021; Concas 

et al., 2021). However, calibration of LCS requires immense effort and is resource-intensive in general. Carotenuto et al. (2023) 
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concluded that the comparison of LCS measurements against those from official reference stations for in situ calibration is 

often recommended in the scientific literature. Continuous and independent access to high quality equipment (e.g. laboratory, 

monitoring station) for reference measurements would be ideal to establish and maintain low-cost air measurement networks 250 

but it is rather hard to achieve. Therefore, maintainers of LCS networks are either forced to rely on their established pre-

deployment calibration functions (single calibration) or to find alternative, advanced network calibration methods to calibrate 

sensors in situ on a regular basis. Both usually rely on the measurement infrastructure of a third party in some form (e.g. local 

environmental agency). Alternative network calibration methods are for instance blind calibration, opportunistic and 

collaborative calibration and calibration transfer (Maag et al., 2018; Concas et al., 2021), which increase the level of methodical 255 

complexity compared to a more traditional pairwise calibration strategy (Delaine et al., 2019). Latter is usually deemed 

unfeasible as a network calibration strategy in other literature as demonstrated in the following paragraph. A collocation 

calibration represents a pairwise calibration method. 

 

It is argued by Mueller et al. (2017), that a collocation calibration using a reference measurement station is time consuming 260 

and that the infrastructure for that approach must be available in the first place. Broday et al. (2017) highlighted the 

impracticality of relying on collocations for regular LCS calibration and that in situ calibration methods could make the 

widespread use of LCS air pollution networks possibly more likely. Furthermore, regular recalibration using a collocation 

calibration hinders a continuous data collection in situ, because in situ measurements are interrupted to calibrate LCS (Broday 

et al., 2017; Kizel et al., 2018). In this study we explore these issues through a calibration methodology, which involves a 265 

pairwise calibration strategy. Moreover, we analysed if less but more regularly calibrated LCS and less complex calibration 

methods (e.g. collocation) using a continuous stream of high-quality reference measurements can be an option to establish 

easier to manage (but smaller) LCS networks for long-term in situ measurements. 

 

In most air sensor studies aiming at establishing a long-term low-cost air quality monitoring network, a pairwise calibration 270 

strategy is not seen as an option due to the focus on establishing spatially dense LCS networks. The resources for pairwise 

calibration are often not available and the method is considered resource-intensive, thus current and possibly future studies 

will not explore this method in an in-depth manner. This tendency is seen in the main recommendations delivered by other 

scientific papers (Carotenuto et al., 2023). Indeed, a continuous data collection in situ is an obstacle when a collocation 

calibration is applied. This can be avoided by using a pair of LCS devices in situ. We explored using two AELCM units with 275 

the same sensor configuration for one location. One AELCM unit, which requires recalibration can be replaced with its partner 

AELCM unit. It must be noted that, while continuous, it creates a somewhat inhomogeneous measurement time series because 

the same location is alternately measured with two AELCM units. 
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2.6 Single training vs. extended training 280 

A single training period (ST) represented a continuous time frame for model calibration. In this work an extended training 

period (ET) referred to a non-continuous time frame for model calibration, which was longer than the former. Non-continuous 

meant, that there were gaps of defined length between blocks of continuous data. Together these blocks formed the training 

data used for training the final calibration model. We also investigated the influence of the length of gaps on the model 

performance. As a baseline for reference, we used the model trained on the single, shorter training period. This approach helped 285 

us to examine the overall benefit of longer training periods on model performance considering that sensors degrade over time. 

Also, we wanted to study if shorter gaps influence the model performance considering the seasonal variability of air pollution 

and that sensor performance can vary with season due to time-varying effects of environmental interferences.  

 

Figure 1. Schematic representation of the pairwise calibration strategy using two LCS measurement systems (AELCM009 and 290 
AELCM010) showing the single training period (ST, 11 January–10 June 2022) and the extended training period (ET) as well as the 

numbered one-month test periods (TP) for each LCS measurement system.  

 

The outline of the approach is shown in Fig. 1. Since the primary goal of an air quality monitoring system equipped with LCS 

is to collect continuous measurements from a location outside a station site used for collocation calibration, we simulated the 295 

use of two calibrated LCS measurement systems alternately in the field. These two LCS measurement systems were 

represented through AELCM009 and AELCM010. Using both AELCM units, we received a continuous time series of in situ 

air pollution measurements. These in situ measurements are represented through the test periods (TP) in Fig. 1. By merging 

the blocks of continuous data (TP1 to TP7), we created a continuous time series in the field. Individual calibration models for 

each AELCM unit were trained using a ST period or an ET period. ST used approximately 5 months of hourly reference data 300 

and LCS data to train a final calibration model for each individual LCS. ET offered more training data across different seasons, 
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which reflects the aspect of regular LCS recalibration using reference monitors at a collocation site to guarantee long-term 

data quality. The ST served as a reference to investigate whether there is an actual benefit in extending the training period.  

 

Figure 1 shows ET lengths of 1 month and the testing data blocks. We experimented with a length of 1, 2 and 3 months to 305 

study the influence on the model performance. In a LCS network setting, an ET length of 3 months would mean, that an 

AELCM unit would take in situ measurements for 3 months before being replaced by another calibrated AELCM unit. 

Therefore, the former unit can be relocated to the collocation site for 3 months to extend its training data and to quality check 

its data before switching places again with the latter unit. Please note, that we were restricted by the overall collocation 

campaign length of 1 year. Selecting 5 months for the ST period, as shown in Fig. 1, resulted in seven months being available 310 

to fit the following data blocks, which were defined by the ET lengths. Two- and three-month ETs created a remainder of 1 

training month at the end of the measurement campaign, which we considered as well for the ET to not waste training data.  

 

For the ET setup all training data blocks were considered for training a calibration model. Thus, we performed an a posteriori 

evaluation of the introduced pairwise calibration strategy including the introduced calibration models and ET lengths based on 315 

different performance metrics. 

2.7 Performance metrics and target values 

To benchmark the effect of using an ET approach compared to a ST approach, we mostly looked at commonly used and 

recommended performance metrics in LCS studies (Karagulian et al., 2019; Concas et al., 2021) and target values provided by 

EPA and CEN (Duvall et al., 2021a; Duvall et al., 2021b; CEN/TS 17660-1:2021; CEN/TS 17660-2:2024). These performance 320 

metrics are the root-mean-square error (RMSE), mean absolute error (MAE), relative expanded uncertainty (REU), coefficient 

of determination (R2), spearman rank correlation (Rs) as well as the regression slope and intercept. Here, a simple linear 

regression between model calibrated LCS data and AEMS reference data provide the slope and intercept (Duvall et al., 2021a; 

Duvall et al., 2021b). Most of the mentioned metrics are commonly used to describe LCS calibration model performance in 

regards of bias, noise, linearity and error (Karagulian et al., 2019; Duvall et al., 2021a; Duvall et al., 2021b; Yatkin et al., 2022; 325 

Diez et al., 2022).  

 

We aimed to analyse the consequences of ET by using a cohesive view of performance metrics and target values, introduced 

through state-of-the-art test programs. A major challenge for potential end-users of LCS is to interpret the calculated 

performance metrics and thus to infer if a LCS is a good fit for an intended application (Diez et al., 2022). Recognized 330 

organizations linked with governmental bodies like CEN and EPA started to develop frameworks in the form of test protocols, 

which can be used to check the suitability of LCS for air quality monitoring applications. We used the performance metrics 

and associated categorizations given by state-of-the-art test programs as a reference to contextualize our study results. 
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However, we emphasize that due to methodological differences, our testing framework for air sensors does not fully align with 

those of EPA and CEN.  335 

 

So far, the EPA offers target values for O3, NO2, CO, SO2, PM2.5 and PM10 air sensors through their testing protocols. According 

to the EPA, the introduced performance metrics and their corresponding target values are the result of the current state of 

knowledge, based on, for example, literature reviews, findings from other organizations that conduct routine sensor evaluations 

and EPAs own expertise in sensor evaluation research (Duvall et al., 2021a; Duvall et al., 2021b). The current EPA test 340 

protocols include target values for the RMSE, R2, regression slope, intercept, standard deviation and coefficient of variation. 

We used most of these target values in our benchmark experiment to assess how our pairwise calibration strategy influences 

the recognition of the presented LCS as NSIM devices as defined by EPA. In this study, we did not look at the standard 

deviation or coefficient of variation. Since we used only two LCS, our experimental setup did not fulfil the requirements to 

calculate both performance metrics according to EPAs test protocols. 345 

 

The REU is a performance metric, which is used for the assessment of the compliance of data quality objectives (DQOs) set 

in the European Air Quality Directive 2008/50/EC (AQD) (Directive 2008/50/EC, 2008; Yatkin et al., 2022). The REU is used 

in LCS studies (Spinelle et al., 2015; Castell et al., 2017; Cordero et al., 2018; Bigi et al., 2018; Liu et al., 2019; Bagkis et al., 

2021; Ratingen et al., 2021; Bagkis et al., 2022), yet it is not a common sight to describe measurement uncertainty (Karagulian 350 

et al., 2019). While LCS currently can’t meet the strict requirements for reference measurements in the AQD, their 

measurements can at least meet less strict DQOs. For this reason, LCS can provide valuable supplemental information like 

indicative measurements next to regulatory fixed measurements given by air quality stations for the assessment of air quality. 

This is acknowledged through the recently developed European technical specifications by CEN for gas sensors and particulate 

matter sensors (CEN/TS 17660-1:2021, 2021; CEN/TS 17660-2:2024, 2024). Both CEN/TS present classification schemes for 355 

LCS, which respect the requirements for indicative measurements (class 1) and objective estimation (class 2) defined in the 

AQD Directive 2008/50/EC (2008). Furthermore, the CEN/TS offer a classification for LCS, being out of scope of the DQOs 

set in the AQD. Those LCS fulfil more relaxed performance criteria and provide non-regulatory measurements (class 3). For 

instance, LCS classified as class 3 air sensors can be applied in citizen science studies or can be used for educational purposes 

to raise environmental awareness. Finally, to classify the LCS as class 1, class 2 or class 3 air sensor devices, we only used the 360 

REU estimated at the air pollutant limit values (LV) in accordance with CEN/TS (CEN/TS 17660-1:2021, 2021; CEN/TS 

17660-2:2024, 2024). The LVs were obtained from CEN/TS (CEN/TS 17660-1:2021, 2021; CEN/TS 17660-2:2024, 2024). 

The DQO of class 1, class 2 and class 3 correspond to specific relative expanded uncertainties defined in CEN/TS for each air 

pollutant (Tables S1 and S2). Recently, the global air quality guidelines were updated by the World Health Organization 

(WHO) based on the latest systematic reviews of exposure-response studies (WHO, 2021). The European Union Parliament 365 

and the European Council agreed to a new revised AQD because of this development (Directive (EU) 2024/2881, 2024). The 

latest revised Directive (EU) 2024/2881 aligned its standards closer to the latest WHO air quality guidelines and introduced 
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stricter LVs and updated DQOs for indicative measurements and objective estimation. Please note, that the presented CEN/TS 

might change in the future to reflect the changes in Directive (EU) 2024/2881. To visualize the REU in the statistics software 

R we followed the study of Diez et al. (2022) as a reference, who made their code and data available. Furthermore, we used 370 

different smoothers (GAM, LOESS) in the REU figures depending on the sample size of the calibration data (Figs. 8, 9, 10, 

11). 

 

We calculated the REU according to the Guide for the demonstration of equivalence (GDE) following the introduced CEN/TS 

(GDE, 2010; CEN/TS 17660-1:2021; CEN/TS 17660-2:2024). The REU is calculated through Eq. (1): 375 

 

𝑅𝐸𝑈(𝑦𝑖) =  
2( 

𝑅𝑆𝑆
(𝑛−2)

−𝑢2(𝑥𝑖)+[𝑏𝑜+(𝑏1−1)𝑥𝑖]2)
1 2⁄

𝑦𝑖
 𝑥 100,        (1)   

with  

𝑅𝑆𝑆 = ∑(𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖)
2,           

 380 

where 𝑏0 is the intercept and 𝑏1 the slope of the orthogonal regression of 𝑦𝑖  against 𝑥𝑖 . 𝑥𝑖  are the reference measurements 

given through the measurement instruments of the AEMS and 𝑦𝑖  are the model calibrated LCS measurements provided by the 

AELCM units, which together form 𝑛  pairs of observation data. RSS is the residual sum of squares resulting from the 

orthogonal regression. 𝑢 describes the uncertainty of the AEMS measurement instrument, which was obtained for every AEMS 

measurement instrument through CEN/TS (CEN/TS 17660-1:2021, 2021; CEN/TS 17660-2:2024, 2024). 385 

3 Results and discussion 

3.1 Air pollution and meteorological situation 

The environmental conditions and pollution concentrations based on hourly means are provided in Table 2. In our work, every 

LCS showed the premise of being a good-quality source of information according to the employed Spearman rank correlation 

Rs (Table 2). We used the hourly means of the raw output of the LCS and of the reference station AEMS to calculate Rs. 390 

Considering the observed gas concentration range in Table 2 and the CEN/TS, it can be inferred that the LV for CO (10 mg 

m-3) and NO2 (200 µg m-3) were not reached at the measurement site. Thus, we could not classify the sensors according to 

CEN/TS 17660-1:2021. Classification according to CEN/TS 17660-1:2021 and CEN/TS 17660-2:2024 were possible for O3 

and PM2.5 since the hourly LV for O3 (120 µg m-3) and the daily LV for PM2.5 (30 µg m-3) were reached in their respective test 

periods. Considering the observed concentration ranges for each air pollutant at our urban background collocation site (Table 395 

2), we decided to do an in-depth analysis focussing on the O3 and PM2.5 LCS in this study. Nevertheless, the analytical results 

for the employed CO and NO2 LCS are provided in the supplement of this study since in the respective test periods the 

thresholds for the averaged concentrations for each air pollutant at the urban background collocation site were reached once at 

https://doi.org/10.5194/egusphere-2025-2677
Preprint. Discussion started: 11 July 2025
c© Author(s) 2025. CC BY 4.0 License.



14 

 

least as recommended by EPA (Duvall et al., 2021a; Duvall et al., 2021b). The recommended thresholds are 1 h average 

concentrations of 60 ppb for O₃, 30 ppb for NO₂, and 500 ppb for CO. The recommended threshold for the 24 h average is 25 400 

µg m-3 for PM2.5. The EPA suggests that these averaged concentrations must be reached at least once during a (30-day) test 

period (Duvall et al., 2021a; Duvall et al., 2021b). 

 

Table 2. Statistics based on the hourly means of the different atmospheric variables measured by the AEMS. For the calculation of the 

Spearman rank correlation (Rs) all raw hourly LCS data for every individual sensor are used from AELCM009 and AELCM010. The AEMS 405 
data are used as reference for the correlation. 

Measured 

Variable 
Timespan Min. 

5th 

Percentile 

25th 

Percentile 
Mean 

75th 

Percentile 

95th 

Percentile 
Max. 

Rs 

AELCM 

009/010 

O3 (ppb) 
11/01/22– 

11/01/23 
0.03 1.07 12.19 26.43 37.97 58.42 81.87 0.75/0.68 

NO2 (ppb) 
11/01/22– 

10/01/23 
0.02 1.01 2.62 7.23 10.10 19.99 38.54 0.75/0.77 

CO (ppb) 
11/01/22– 

10/01/23 
74.35 94.53 117.83 181.46 213.52 368.11 1013.46 0.85/0.83 

PM2.5 (µg m-3) 
11/01/22– 

06/01/23 
0.14 1.78 4.41 9.72 12.92 24.91 153.22 0.95/0.95 

Temperature 

(°C) 

11/01/22– 

11/01/23 
-10.02 -1.39 4.97 11.29 17.14 24.98 35.65 0.99/0.99 

Relative 

Humidity (%) 

11/01/22– 

11/01/23 
18.69 35.31 58.24 71.48 87.29 92.60 96.33 0.91/0.96 

Pressure (hPa) 
11/01/22– 

11/01/23 
937.2 949.1 958.7 962.5 966.9 973.8 983.1 – / – 

 

3.2 Baseline single training results 

We evaluated the calibration model output considering the training period and test period of each LCS targeting a specific air 

substance. The performance metrics in Table 3 highlight the general robustness and overall good performance of the found 410 

calibration models. All LCS models for O3 and PM2.5 for both AELCM boxes were able to reflect the patterns in the reference 

data well. For the O3 calibration model training period R2 was 0.92–1.00 and for the test period 0.93–0.98, for the PM2.5 

calibration model training period R2 was 0.93–0.97 and for the test period 0.84–0.93. Considering the sensor error target by 

EPA (RSME ≤ 5 ppb), it was reached for every O3 sensor calibration model applied to the training period (RMSE: 0.80–4.35 

ppb). It was mostly reached or at least approached during the test period (RMSE: 3.62–5.84 ppb). Instead of hourly means, the 415 

recommended performance metrics and target values by EPA for PM2.5 are based on 24 h averages (RSME ≤ 7 µg m-3). 

Considering the results for the model-adjusted hourly means of the PM2.5 air sensor output for the training period (RMSE: 

1.45–2.51 µg m-3) and the test period (RMSE: 2.04–3.02 µg m-3), the calculated daily averages and their corresponding PM2.5 

sensor error target were fulfilled for each calibration model.   
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While the O3 sensor calibration models based on the machine learning techniques RF and XGB performed the best in regards 420 

of R2, MAE and RMSE in the training period, it is not the case in the test period. Table 3 shows the results of a single calibration 

using different calibration models. The tree-based algorithms represented through RF and XGB have the constraint, that they 

are bound by their calibration space (Bigi et al., 2018). Tree-based models can only estimate within the bounds of the 

calibration space, which is defined by the input data of the selected features (Bigi et al., 2018). Here, the input data is extracted 

from the ST period from January to June 2022. MLR and RR don’t have a constraint like tree-based models in regards of 425 

calibration space. Therefore, the more pronounced performance decline from training period to test period compared to the 

MLR and RR calibration approaches appear reasonable. MLR and RR calibration models seem to be an appropriate option for 

low-cost O3 air sensors in a ST setup, because apparently there is no meaningful performance benefit in using tree-based 

calibration models considering the calculated performance metrics for the test period in Table 3. The same holds true for PM2.5. 

Given that a training period spans several months, MLR and RR calibration models should be used instead of tree-based 430 

models, if the goal is to calibrate the chosen O3 and PM2.5 LCS in a ST setup. Further explanations for this recommendation 

can be found in section 3.3. 

 

It must be mentioned that identical LCS sensor units like the calibrated AS-B431 and SAG-SPS30 performed differently at 

the same location when inspecting the calculated R2, RMSE and MAE values. The raw output data given by the AS-B431 for 435 

O3 (net voltages) and the SAG-SPS30 for PM2.5 (mass concentrations) of both AELCM boxes were almost perfectly correlated 

(R2 ≥ 0.97) during the collocation period. This implies changes in sensor signals were responses to changing environmental 

conditions (e. g. air pollution, ambient temperature and humidity) and not related to sensor-to-sensor variability. Bittner et al. 

(2022) reported the same behaviour for Alphasense electrochemical gas sensors. Performance differences between the same 

LCS model units after calibration are possibly related to the varying performance of the other sensors used in the LCS 440 

calibration models.  

 

Table 3. Performances of LCS calibration models for O3 and PM2.5 for each AELCM box using hourly means. Results are for the O3 training 

dataset (11 January, 19:00:00–10 June 2022, 18:00:00) and O3 test dataset (10 June 2022, 19:00:00–11 January 2023, 17:00:00) as well as 

for the PM2.5 training dataset (11 January, 19:00:00–10 June 2022, 18:00:00) and PM2.5 test dataset (10 June 2022, 19:00:00–7 January 2023, 445 
00:00:00). MLR = Multiple Linear Regression, RR = Ridge Regression, XGB = Extreme Gradient Boosting, RF = Random Forest. 

Model target Training R2 Training MAE (ppb) Training RMSE (ppb) Test R2 Test MAE (ppb) Test RMSE (ppb) 

O3 (MLR, 009) 0.98 1.57 1.97 0.98 2.49 3.62 

O3 (MLR, 010) 0.93 3.05 3.84 0.93 4.05 5.13 

O3 (RR, 009) 0.97 2.00 2.52 0.97 2.98 3.91 

O3 (RR, 010) 0.92 3.51 4.35 0.94 3.69 4.81 

O3 (XGB, 009) 0.99 0.84 1.07 0.97 2.97 3.75 

O3 (XGB, 010) 0.99 1.44 2.08 0.93 4.21 5.84 

O3 (RF, 009) 1.00 0.59 0.80 0.96 3.42 4.51 

O3 (RF, 010) 0.99 

 

0.80 1.08 0.93 3.87 5.12 
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 Training R2 Training MAE (µg m-

3) 

Training RMSE (µg 

m-3) 

Test R2 Test MAE (µg m-3) Test RMSE (µg m-3) 

PM2.5 (MLR, 009) 0.95 1.22 1.90 0.92 1.54 2.69 

PM2.5 (MLR, 010) 0.96 1.18 1.85 0.93 1.13 2.04 

PM2.5 (RR, 009) 0.93 1.76 2.48 0.89 1.82 2.63 

PM2.5 (RR, 010) 0.94 1.58 2.27 0.91 1.38 2.04 

PM2.5 (XGB, 009) 0.94 1.46 2.29 0.84 1.55 2.97 

PM2.5 (XGB, 010) 0.95 1.37 2.51 0.85 1.39 3.02 

PM2.5 (RF, 009) 0.97 0.97 1.56 0.87 1.37 2.85 

PM2.5 (RF, 010) 0.97 0.90 1.45 0.89 1.06 2.35 

 

3.3 Extended training results and EPA performance targets  

To assess seasonal differences in air sensor performance we calculated the suggested performance metrics by EPA on a 30-

day basis, namely the RMSE (error), R2 (linearity), slope (bias) and intercept (bias). The EPA also provided target values for 450 

each of these performance metrics, which are highlighted in red in the circular bar plots (e.g. Fig. 2). We used the absolute 

value of the calculated intercept and the difference between the calculated model slope and the ideal slope of 1 for each 

calibration model to improve the interpretability of the figures. The original intercepts and slopes can be found in the 

supplement (Tables S29–S52). Circular bar plots are a visual tool to evaluate if an ET approach is beneficial in regards of 

enhancing the qualitative and quantitative validity of calibrated LCS output compared to a ST approach. In addition, they 455 

enhance the visual distinction between the different calibration techniques, i.e. MLR, RR, and the machine learning algorithms 

RF and XGB. 

 

For the most part, O3 sensor calibration model performance benefitted from an extended training. The performance gains 

highly varied in magnitude dependent on the performance metric (Intercept, slope, RMSE, R2), ET length (1 month to 3 460 

months) and calibration model (MLR, RR, RF and XGB). For ETs of 1 month, 2 months and 3 months and for each calibration 

model both calibrated O3 sensors correlated quite well with the hourly reference data during summer, autumn and winter, 

which is reflected through the coefficient of determination (R2 (ST): 0.79–0.98; R2 (ET): 0.86–0.98). Only once the target 

value range for R2 was missed, which was for AELCM010 and the RF calibration model in TP5 for the ST variant. But an 

extended training resulted in reaching the target value range for R2 in TP5 for this calibration model. To summarize, a single 465 

training period of 5 months was almost sufficient to reach the target value range for R2 (R2 ≥ 0.80) for every TP and every O3 

sensor calibration model. High R2 values for the calibrated O3 sensor units of the same type (AS-B431) for periods associated 

with northern hemisphere winter and warmer months (“ozone season”) are in agreement with other low-cost air sensor studies 

(Zimmerman et al., 2018; Zauli-Sajani et al., 2021). Considering the performance metric R2, it can be noted that MLR and RR 

competed well against the machine learning techniques RF and XGB during all ET configurations.  470 
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We found a distinct difference in gas sensor performance for R2 between warmer periods and colder periods considering the 

employed NO2 and CO sensors, which implied the existence of limiting factors in sensor calibration. Generally, TP4 ( 

September) was the first test period, where NO2 sensor calibration models and CO sensor calibration models entered the R2 

target range for NO2 sensors (R2 ≥ 0.70) and CO sensors (R2 ≥ 0.80), which are recommended by EPA (Figs. S5, S6, S7, S12, 475 

S13, S14). In the following months (TPs), NO2 and CO sensor calibration models were available, which performed in the 

boundaries of their targeted R2 range. We assume for TP1 till TP3, that an interplay between environmental interferences and 

limited sensor sensitivity at lower ambient concentrations of NO2 and CO played a crucial role for the overall low sensor 

performances in those warmer periods, considering the findings in other studies (Cross et al., 2017; Hagan et al., 2018). The 

mean reference values for NO2, CO, air temperature and relative humidity for every TP can be found in the supplement (Figs. 480 

S3 and S4). In the warmer periods MLR and RR LCS calibration models performed notably worse for NO2 sensors, which is 

expressed through R2. The reason could be, that during these periods non-linearity was introduced to the sensor signals due to 

increased air temperatures at low concentrations (Cross et al., 2017; Hagan et al., 2018), where non-linear models like RF and 

XGB outperformed linear models like MLR and RR.  

 485 

It must be said that an extension of the training period for the O3 and PM2.5 calibration models had overall only a small impact 

on R2, when comparing the LCS calibration models between their ST and ET variants (Figs. 2, 3, 4, 5, 6, 7). R2 values only 

occasionally experienced stronger positive changes between at least 0.05 and 0.09 through extended training for some TPs and 

mainly for the O3 LCS and the RF and XGB calibration models (Tables S29–S52). The correlative performance of the O3 and 

PM2.5 calibration models for ST were already quite high. The calibrated PM2.5 sensors correlated quite well with the daily 490 

reference data during summer, autumn and winter (R2 (ST): 0.76–0.99; R2 (ET): 0.79–0.99) for ETs of 1 month, 2 months and 

3 months and for each calibration model. A ST period of 5 months was sufficient to reach the target value range for R2 (R2 ≥ 

0.70) for every TP and every PM2.5 sensor calibration model. High R2 values for the calibrated PM2.5 sensor units (SAG-SPS30) 

for periods associated with northern hemisphere winter (heating season) and warmer months are in agreement with other low-

cost air sensor studies, where the same sensor type was factory-calibrated or model-calibrated (Vogt et al., 2021; Gäbel et al., 495 

2022; Shittu et al., 2025). Distinctive benefits for applying an extended training to calibration models were rather identified 

for performance metrics, which describe the bias and error.  

 

Using ST, our LCS calibration models were trained on data between January and June. The test periods TP1 till TP3 (June–

September) in Fig. 2, Fig. 3 and Fig. 4 are the most relevant TPs for the assessment of the performance (Intercept, slope, 500 

RMSE) of our O3 sensor calibration models, because of the elevated ozone concentrations and the health relevancy of ozone 

in these periods in the northern hemisphere  (Hertig et al., 2019; Jahn and Hertig, 2021). TP1 is the only period, where we can 

see a change in performance of LCS calibration models for a single O3 sensor (AELCM010) dependent on ET length over all 

introduced ET lengths (ETs of 1, 2 and 3 months). 
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 505 

Figure 2. Performance metrics of the single O3 LCS in each AELCM box, calculated from hourly mean values after calibration. Metrics are 

presented for each calibration model, test period (TP), and calibration variant (Single training (ST) and extended training (ET)). Models are 

ordered by performance from highest to lowest in each period. The extended training is characterized by the one-month variant for each 

AELCM box. Values highlighted in red describe the least accepted target value given by EPA for each performance metric (|Intercept| (a), 

RMSE (b), ∆Slope (c), R2 (d)). 510 
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Figure 3. Performance metrics of the single O3 LCS in each AELCM box, calculated from hourly mean values after calibration. Metrics are 

presented for each calibration model, test period (TP), and calibration variant (Single training (ST) and extended training (ET)). Models are 

ordered by performance from highest to lowest in each period. The extended training is characterized by the two-month variant for each 

AELCM box. Values highlighted in red describe the least accepted target value given by EPA for each performance metric (|Intercept| (a), 515 
RMSE (b), ∆Slope (c), R2 (d)). 
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Figure 4. Performance metrics of the single O3 LCS in each AELCM box, calculated from hourly mean values after calibration. Metrics are 

presented for each calibration model, test period (TP), and calibration variant (Single training (ST) and extended training (ET)). Models are 520 
ordered by performance from highest to lowest in each period. The extended training is characterized by the three-month variant for each 

AELCM box. Values highlighted in red describe the least accepted target value given by EPA for each performance metric (|Intercept| (a), 

RMSE (b), ∆Slope (c), R2 (d)). 
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Overall, the bias worsens with ET lengths of 2 months and 3 months. The most pronounced degradation of intercept and slope 

can be seen for RF and XGB, due to reducing the amount of summer training data provided by AELCM010, which decreases 525 

the relevant calibration space for the XGB and RF calibration models. While the XGB calibration model with ETs of 1 month 

almost reached the intercept target value range (|Intercept| ≤ 5 ppb) in TP1, not a single calibration model even approached the 

target value range with other ET lengths. The RF and XGB calibration models using only ST and ETs of 3 months were outside 

the slope target value range (∆Slope ≤ 0.2) in TP1. The decrease in performance was also expressed by a decrease of the 

number of calibration models, which were within the target value range for the RMSE (RMSE ≤ 5 ppb). Most calibration 530 

models did not achieve the target RMSE range during TP1. The maximum was two models, both using ET lengths of 1 month 

(XGB and RF). Considering all calculated performance metrics from Fig. 2, Fig. 3 and Fig. 4 in TP1, the XGB calibration 

model with ETs of 1 month was almost able to reach all target values provided by EPA. Looking at TP1 and TP3 with respect 

to bias and error, in general XGB and RF calibration models suffered the most under a lack of training data (ST mode) and a 

loss of summer training data due to longer ETs, which reflect no or a reduced recalibration cycle, respectively. Comparing 535 

MLR and RR calibration models with XGB and RF calibration models for AELCM010 regarding bias and error in TP1, TP2 

and TP3, it becomes evident that the application of extended training to the machine learning techniques can yield substantial 

improvements, whereas the absence of such training may result in markedly higher bias and error. In these periods the impact 

on bias reduction and error reduction due to an ET is more pronounced for the RF and XGB calibration models related to the 

O3 sensor employed with AELCM010. Considering our experimental setup at an urban background site as well as the 540 

calculated bias and error metrics for TP1 to TP7, we conclude the following for LCS air pollution studies that aim to make 

quantitative statements about O3 employing AS-B431 sensor units: 1) MLR and RR calibration models should be employed 

when extended training is not an option, but a single multi-month training period is available, which accounts for seasonal 

variations in atmospheric conditions (meteorological and air pollution factors) and thus a wide range of environmental 

influences on the sensor signal. 2) If extended training is an option in the form of monthly recalibration, RF and XGB 545 

calibration models appear to be the more sensible option. 

 

Unlike O3, all test periods in Fig. 5, Fig. 6 and Fig. 7 were relevant for assessing the performance of our PM2.5 sensor calibration 

models from a health perspective, as unhealthy levels of PM2.5 can be present throughout the year due to the diverse sources 

of ambient PM2.5. Main anthropogenic sources include industrial emissions, ground transport emissions, biomass burning and 550 

the secondary formation of fine particulate matter classified as PM2.5 (Thunis et al., 2021; Gu et al., 2023; Chowdhury et al., 

2023; Zauli-Sajani et al., 2024). Natural sources of fine particles include wildfires (Chowdhury et al., 2024) and dust events, 

such as Saharan dust transported to different latitudes (Karanasiou et al., 2012). Generally, weather conditions and the 

atmospheric state influence the transport, mixing ratio, transformation and deposition of air substances; hence they are 

important factors defining the air quality level (Dayan and Levy, 2002; Russo et al., 2014; Russo et al., 2016; Reizer and Juda-555 

Rezler, 2016).  
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A MLR calibration model was the only one that satisfied every recommendation by EPA for PM2.5 sensor bias (|Intercept| ≤ 5 

µg m-3; ∆Slope ≤ 0.35) in all TPs, which is shown in Fig. 5, Fig. 6 and Fig. 7. Here, the MLR calibration model with ET 

reached the target range for the slope in TP1, which the other calibration models did not. The intercept target range was met 560 

by all calibration models with ST in each TP. No extended training was needed here. The same applied for the PM2.5 sensor 

error target range (RSME ≤ 7 µg m-3). Considering how often a MLR calibration model was the best performing model in 

regards of sensor bias and sensor error, we conclude that a MLR calibration model is sufficient to improve the quantitative 

validity of raw SAG-SPS30 data. RF and XGB did not offer a substantial alternative, visible by their performance metrics. 

This is emphasized for instance in Fig. 6, where the best-performing machine learning model, RF with ET, barely offers more 565 

than a small performance improvement compared to a MLR calibration model with ST. Looking at all ST calibration models 

and ET calibration models, there is generally very little change in quantitative performance following an extended training 

approach. In our collocation experiment, the chosen ST period appears to be sufficient to train robust calibration models, which 

perform well in the following test periods in an urban background setting. Therefore, recalibration appears largely unnecessary 

for the SAG-SPS30 when considering only the EPA performance targets discussed in this section, rather than the more stringent 570 

DQOs outlined in section 3.4. This is particularly notable given that both the RF and MLR calibration models, trained using 

the ST period, nearly met the slope target range in TP1.  

 

A calibrated SAG-SPS30 performed usually well in all performance categories in each TP. This could be due to the raw sensor 

data quality, which may be influenced by how the measurement principle was technically integrated into the SAG-SPS30, or 575 

because of the out-of-the-box calibration algorithm provided by Sensirion (Vogt et al., 2021), from which our calibration 

models may have benefited. To satisfy the EPA performance recommendations through LCS calibration was less challenging 

for a SAG-SPS30 compared to the Alphasense electrochemical gas sensors. An extended training is recommended to achieve 

the best possible sensor performance for the Alphasense electrochemical gas sensors. Here, an ET length of 1 month seemed 

to be the overall most sensible choice (Figs. 2, 3, 4, Figs. S5, S6, S7, Figs. S12, S13, S14, Tables S5-S40), likely because gas 580 

sensor performance is influenced by local atmospheric conditions, which experience seasonal variation.  

 

Therefore, more frequent pairwise recalibrations are expected to improve the calibration process. Our performance results 

implied, that the electrochemical LCS AS-B431, AS-B43F and AS-B4 benefit the most from a pairwise recalibration every 30 

days, where the pairwise calibration gets extended by another 30 days. With two AELCM units in this mode, we can recalibrate 585 

during the same season while continuously collecting in situ data. This allows us to account for changing environmental 

conditions and their influence on gas sensor performance. Our results next to other studies show, that the likelihood of well 

performing calibration models for the employed low-cost air sensors increases with a sufficient amount of training data (Zauli-

Sajani et al., 2021; Nowack et al., 2021) and with raw LCS measurement data, which are not dominated by noise due to low 

concentrations because of sensor sensitivity limits (Zimmerman et al., 2018).  590 
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Figure 5. Performance metrics of the single PM2.5 LCS in each AELCM box, calculated from daily mean values after calibration. Metrics 

are presented for each calibration model, test period (TP), and calibration variant (Single training (ST) and extended training (ET)). Models 

are ordered by performance from highest to lowest in each period. The extended training is characterized by the one-month variant for each 

AELCM box. Values highlighted in red describe the least accepted target value given by EPA for each performance metric (|Intercept| (a), 595 
RMSE (b), ∆Slope (c), R2 (d)). 
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Figure 6. Performance metrics of the single PM2.5 LCS in each AELCM box, calculated from daily mean values after calibration. Metrics 

are presented for each calibration model, test period (TP), and calibration variant (Single training (ST) and extended training (ET)). Models 600 
are ordered by performance from highest to lowest in each period. The extended training is characterized by the two-month variant for each 

AELCM box. Values highlighted in red describe the least accepted target value given by EPA for each performance metric (|Intercept| (a), 

RMSE (b), ∆Slope (c), R2 (d)). 
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 605 

Figure 7. Performance metrics of the single PM2.5 LCS in each AELCM box, calculated from daily mean values after calibration. Metrics 

are presented for each calibration model, test period (TP), and calibration variant (Single training (ST) and extended training (ET)). Models 

are ordered by performance from highest to lowest in each period. The extended training is characterized by the three-month variant for each 

AELCM box. Values highlighted in red describe the least accepted target value given by EPA for each performance metric (|Intercept| (a), 

RMSE (b), ∆Slope (c), R2 (d)). 610 
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3.4 Extended training results and data quality objectives   

The EU Air Quality Directive 2008/50/EC (2008) and the new Directive (EU) 2024/2881 (2024) provide DQOs for regulatory 

grade measurement devices, which LCS are not. But LCS have a legitimate role alongside those regulatory grade monitoring 

systems as air sensors for indicative measurements and objective estimations. We applied REU plots to analyse the possible 

end-use applications of the employed calibrated AELCM sensors, considering the DQOs and LVs for air sensor classification 615 

provided by the CEN/TS. The DQOs used in the sensor test protocols CEN/TS 17660-1:2021 and CEN/TS 17660-2:2024 are 

based on AQD Directive 2008/50/EC (2008). REU plots helped to describe the measurement uncertainty “point by point” of 

the calibrated LCS, complementing the use of single-value error metrics (global performance metrics) applied in Sect. 3.2 and 

Sect. 3.3 (Diez et al., 2024). They provide deeper insight into the error structures and information content of calibrated LCS 

data (Diez et al., 2022). 620 

 

Figures 8 and 9 show the “point by point” measurement uncertainty of the “classical” MLR O3 calibration model and the 

machine learning-based RF O3 calibration model. The fluctuation in measurement uncertainty across the observed range was 

greater for the calibrated O3 LCS data of AELCM010, which is shown in the top rows of the REU plots. The calibrated O3 

LCS data of AELCM009 and AELCM010 with ST meet the class 1 DQO (REU ≤ 30 %), but the calibrated data of AELCM009 625 

reached it more reliably even at lower measured concentrations. The REU values at the O3 LV of 120 µg m-3 imply, that both 

calibrated O3 LCS can be classified as class 1 sensor systems and therefore can be used for indicative measurements. It must 

be said that we didn’t follow all activities and principles, which are relevant for the classification according to CEN/TS 17660-

1:2021 (2021) and CEN/TS 17660-2:2024 (2024). This includes laboratory tests, which were not part of this study.  

 630 

As in Sect. 3.2, performance differences between identical LCS sensor units are evident once more, but visually detectable 

across the entire observed concentration range of ambient O3, an aspect global performance metrics (e.g. RMSE, R2, MAE) 

fail to capture (Diez et al., 2022). The top rows in both figures (also Figs. S19 and S20) depict a differing response of the 

employed calibrated sensor units to the same environmental conditions experienced at the station site during the collocation 

period. Possible reasons for these differences in sensor behaviour were explained in Sect. 3.2. Extending the calibration model 635 

training period and therefore expanding the calibration space is advised for machine learning methods, as evidenced by the 

REU plots in Fig. 9 and Fig. S19. In the 3 months ET AELCM010 was active in TP1 to TP3, the time when the highest O3 

concentrations were observed (Fig. S1). In the 2 months and 1 month ET AELCM009 was active in TP3 and TP2, in that order. 

The lack of further summer training data in the 3 months ET resulted visibly in increased REU values above 100 µg m-3 (Fig. 

9, bottom left) for AELCM010. The other two ET lengths provide further summer training data to the RF calibration models 640 

for the O3 LCS belonging to AELCM009 and AELCM010. This resulted in a reduced measurement uncertainty for higher 

concentrations in TP1 until TP3 (Fig. 9, bottom middle and bottom right), being not the case for both RF calibrated LCS using 
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only ST (Fig. 9, top row). If pairwise calibration is considered for a LCS measurement campaign, we recommend using two 

calibrated LCS meeting the same DQO, in order to ensure consistent in situ data quality as demonstrated in Fig. 8 and Fig. 9. 

 645 

Figures 10 and 11 show the “point by point” measurement uncertainty for the PM2.5 calibration models based on MLR and 

RF. The MLR and RF calibrated PM2.5 datasets of AELCM009 showed greater measurement uncertainty across the observed 

daily means of PM2.5. With the ST calibrated datasets, REU values met the Class 1 DQO (REU ≤ 50 %) less consistently 

compared to the REU values related to calibrated PM2.5 data of AELCM010. The REU values at the PM2.5 LV of 30 µg m-3 

using ST imply, that the MLR calibrated PM2.5 LCS of AELCM009 can be classified as a class 2 sensor system for objective 650 

estimation (REU ≤ 100 %), whereas the MLR calibrated PM2.5 LCS of AELCM010 can be classified as a class 1 sensor system 

for indicative measurements. RF calibration models suggest that both PM2.5 LCS accomplish the highest tier of sensor systems 

(class 1), achieving indicative measurements at the PM2.5 LV. Above 5 µg m-3 both RF calibrated PM2.5 LCS show (almost) 

consistently data meeting the class 1 DQO for the ST mode. The non-aligning patterns in relative error between the ST 

calibrated SAG-SPS30 units indicate that the employed calibrated sensor units respond differently under identical 655 

environmental conditions (Figs. 10, 11, Figs. S21, S22), as previously observed with the AS-B431 units measuring O3.  

 

ET for the MLR and RF calibration models helped build continuous LCS time series that more consistently meet the class 1 

DQO, using both calibrated SAG-SPS30 units (Figs. 10, 11, bottom row). ET to achieve more consistency in data quality was 

especially relevant for the PM2.5 LCS employed with AELCM009. Figure 11 shows, that an extended training characterized 660 

by the one-month variant was the most beneficial to reduce measurement uncertainty for higher concentrations of PM2.5. We 

conclude that higher sensor system tiers for LCS can be achieved through ET, thereby broadening the scope of applications 

for a LCS.  
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 665 

Figure 8. Calculated REU values for MLR calibrated O3 LCS hourly data belonging to the test periods (TP1–TP7, 10 June 2022–11 January 

2023) of AELCM009 and AELCM010. The calibration variants are single training (ST) (top row, left: AELCM010, right: AELCM009) and 

extended training (ET) (bottom row). The extended training is characterized by ET variants of 1, 2 and 3 months for each AELCM box. 

Horizontal dashed lines describe the data quality objectives (O3 Class 1 DQO = 30 %, Class 2 DQO = 75 % and Class 3 DQO = 200 %). 

The vertical dashed line describes the limit value for O3 (LV = 120 µg m-3). The fitted smooth curve (red) is based on a generalized additive 670 
model (GAM). Data density is shown through colour, where darker colours express lower data density and brighter colours express higher 

data density. 

https://doi.org/10.5194/egusphere-2025-2677
Preprint. Discussion started: 11 July 2025
c© Author(s) 2025. CC BY 4.0 License.



29 

 

 

Figure 9. Calculated REU values for RF calibrated O3 LCS hourly data belonging to the test periods (TP1–TP7, 10 June 2022–11 January 

2023) of AELCM009 and AELCM010. The calibration variants are single training (ST) (top row, left: AELCM010, right: AELCM009) and 675 
extended training (ET) (bottom row). The extended training is characterized by ET variants of 1, 2 and 3 months for each AELCM box. 

Horizontal dashed lines describe the data quality objectives (O3 Class 1 DQO = 30 %, Class 2 DQO = 75 % and Class 3 DQO = 200 %). 

The vertical dashed line describes the limit value for O3 (LV = 120 µg m-3). The fitted smooth curve (red) is based on a generalized additive 

model (GAM). Data density is shown through colour, where darker colours express lower data density and brighter colours express higher 

data density. 680 
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Figure 10. Calculated REU values for MLR calibrated PM2.5 LCS daily data belonging to the test periods (TP1–TP7, 11 June 2022–6 January 

2023) of AELCM009 and AELCM010. The calibration variants are single training (ST) (top row, left: AELCM010, right: AELCM009) and 

extended training (ET) (bottom row). The extended training is characterized by ET variants of 1, 2 and 3 months for each AELCM box. 

Horizontal dashed lines describe the data quality objectives (PM2.5 Class 1 DQO = 50 %, Class 2 DQO = 100 % and Class 3 DQO = 200 685 
%). The vertical dashed line describes the limit value for PM2.5 (LV = 30 µg m-3). The fitted smooth curve (red) is based on locally estimated 

scatterplot smoothing (LOESS). Data density is shown through colour, where darker colours express lower data density and brighter colours 

express higher data density. 

https://doi.org/10.5194/egusphere-2025-2677
Preprint. Discussion started: 11 July 2025
c© Author(s) 2025. CC BY 4.0 License.



31 

 

 

Figure 11. Calculated REU values for RF calibrated PM2.5 LCS daily data belonging to the test periods (TP1–TP7, 11 June 2022–6 January 690 
2023) of AELCM009 and AELCM010. The calibration variants are single training (ST) (top row, left: AELCM010, right: AELCM009) and 

extended training (ET) (bottom row). The extended training is characterized by ET variants of 1, 2 and 3 months for each AELCM box. 

Horizontal dashed lines describe the data quality objectives (PM2.5 Class 1 DQO = 50 %, Class 2 DQO = 100 % and Class 3 DQO = 200 

%). The vertical dashed line describes the limit value for PM2.5 (LV = 30 µg m-3). The fitted smooth curve (red) is based on locally estimated 

scatterplot smoothing (LOESS). Data density is shown through colour, where darker colours express lower data density and brighter colours 695 
express higher data density. 
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3.5 Implications for sustainable LCS networks and future outlook  

Our concept for an effective, sustainable and manageable LCS network involves the question, who is the main target population 

in regards of health protection from environmental exposure such as air pollution and heat considering the advantages and 

disadvantages of current LCS technology. We consider the most vulnerable people as our main target group, for instance 700 

children, elderly people, outdoor workers or people with pre-existing health conditions. LCS measurements can thus be placed 

at locations with a high density of vulnerable populations, such as retirement homes, schools, kindergartens, or outdoor 

workplaces. Therefore, we recommend focusing on the characteristics of the measurement scope rather than simply building 

a spatially dense LCS observation network. Reducing the amount of LCS and efficiently placing them by figuring out at-risk 

population hotspots could reduce the management effort using a pairwise calibration strategy similar to the one we introduced 705 

in this study. Another benefit of following our calibration strategy could be an improved error minimization of LCS data 

resulting in higher LCS data quality compared to using complex in situ calibration strategies for error reduction and data 

quality assurance, considering that we are placing LCS devices right next to a station for (re-)calibration. Following our 

concept, a continuous data collection in situ can be achieved by using a pair of regularly maintained LCS for the same location.  

 710 

Analysing whether LCS data fit their intended purpose and continue to provide viable information for the end-use application 

over time remains a challenge, especially in the context of a long-term measurement campaign. Stricter DQOs for regulatory 

grade air measurement instruments as a result of the recently updated WHO global air quality guidelines (WHO, 2021) could 

indirectly limit the scope of end-use applications for LCS, considering that for instance CEN/TS 17660-1:2021 (2021) and 

CEN/TS 17660-2:2024 (2024) rely on Directive 2008/50/EC (2008). Both CEN/TS help to define the possible end-use 715 

applications of sensor systems. Considering the relationship between the introduced CEN/TS and the Directive 2008/50/EC, 

an update of both CEN/TS due to the recently published Directive (EU) 2024/2881 (2024) is not unlikely. Sensor manufacturers 

are called upon to consult state-of-the-art scientific literature of the air sensor research community to accelerate technological 

advancement while the air sensor community is called upon to rethink how LCS networks are built and managed. The latter is 

important to ensure that LCS networks move beyond the status of test applications and gain recognition as long-term 720 

supplemental monitoring systems (Carotenuto et al., 2023), integrated into official networks and capable of benefitting the 

most vulnerable people of society. 

4 Conclusions 

We have investigated in detail how commonly used air sensors, AS-B431 for O3 and SAG-SPS30 for PM2.5, should be 

recalibrated in an effort to move beyond rule-of-thumb estimations (Schmitz et al., 2021). To achieve this, we conducted a 725 

yearlong collocation campaign at an urban background station for air pollution exposure and meteorological measurements 

next to the University Hospital Augsburg, Germany. LCS were collocated with regulatory grade air measurement instruments 

and were exposed to a wide range of environmental conditions, with air temperatures between -10 and 36 °C, relative air 
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humidity between 19 and 96 % and air pressure between 937 and 983 hPa. The ambient concentration ranges were up to 83 

ppb for O3 and 153 µg m-3 for PM2.5. Sensor calibration models were built using linear regression techniques (Multiple Linear 730 

Regression and Ridge Regression) and machine learning (Random Forest and Extreme Gradient Boosting). Our 

methodological approach followed a pairwise calibration strategy. 

 

We aimed to assess the benefit of expanding the calibration space of these calibration models in terms of improving the 

applicability of low-cost air sensors for tasks that support regulatory monitoring, particularly with respect to meeting relevant 735 

EPA performance targets (e.g. R2, RMSE, slope, intercept) and less strict DQOs (REU; indicative measurements, objective 

estimation). The performance targets and the associated classifications were provided by state-of-the-art test protocols for air 

sensors by the United States Environmental Protection Agency (EPA) and the European Committee for Standardization (CEN) 

and acted as a guideline for the assessment. The calibration space was expanded by extending the training period (ET) of the 

calibration models using 1 up to 3 months ET periods. The different ET lengths implied whether a calibration model should 740 

be recalibrated after a month or every 2 or 3 months. As a reference we used a shorter single training period (ST) of 5 months 

to train the calibration models.  

 

The employed O3 and PM2.5 LCS capture the temporal variations in observed O3 concentrations and PM2.5 concentrations well. 

We found that the time series correlations of the O3 and PM2.5 calibration models using only ST were already quite high for 745 

each test period (TP1–TP7) and that an extension of the training period for the O3 and PM2.5 calibration models yielded overall 

only a small improvement. Linear models like MLR and RR showed a similar performance to RF and XGB. Therefore, linear 

models are sufficient if favourable conditions are met and if a study only needs to capture the temporal variability. In our study, 

these favourable conditions most likely refer to sensor signals that are not significantly influenced by non-linearity, as well as 

observed concentration ranges where the corresponding LCS data is not dominated by noise. For gas sensors, this noise 750 

typically arises from the limited sensitivity of LCS at lower concentrations. 

 

Distinctive benefits for calibration models using ET were rather identified for performance metrics that target the correctness 

of the absolute values. Our findings suggest that for quantitative studies, during periods characterized by elevated ground level 

ozone concentrations (ozone season), recalibration is advisable after each month of O3 LCS operation. In particular, the 755 

machine learning techniques RF and XGB benefited from the increased amount of summer training data resulting from monthly 

recalibrations. We showed, that MLR and RR calibration models should be employed when ET is not an option, but a single 

multi-month training period is available, which accounts for seasonal variations in atmospheric conditions (meteorological and 

air pollution factors). If extended training via monthly recalibration is feasible, RF and XGB calibration models appear to be 

the more sensible choice, as their quantitative performance aligns particularly well with EPA guidelines for non-regulatory 760 

supplemental and informational monitoring devices targeting O3. 
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All test periods were relevant for assessing the quantitative strength of the introduced PM2.5 sensor calibration models from a 

health perspective, as unhealthy levels of PM2.5 can be present throughout the year due to the diverse sources of ambient PM2.5. 

A MLR calibration model using ET was the only calibration model that met all EPA-recommended performance metric goals 765 

for assessing the quantitative strength of PM2.5 LCS data. Machine learning techniques did not offer a substantial alternative 

to MLR calibration. When considering only the performance metrics recommended by EPA for assessing sensor bias and error, 

very little change in quantitative performance was seen following an ET approach. This suggests that a ST may be sufficient 

for developing robust and well-performing PM2.5 LCS calibration models. Therefore, assessing the measurement uncertainty, 

as expressed by the REU, contributed to a more comprehensive evaluation of the usefulness of recalibrating the SAG-SPS30 770 

units. 

 

REU values helped to describe the measurement uncertainty “point by point” of the pairwise calibrated LCS, complementing 

the use of global performance metrics in our study. The calibrated O3 LCS and PM2.5 LCS were able to meet the class 1 DQO 

for different calibration models and therefore can provide indicative measurements. The REU values suggest that extended 775 

training of the employed calibration models enables the generation of a continuous LCS time series from two identical sensor 

model units, more consistently meeting a targeted DQO (e.g. indicative measurements). This approach also contributes to 

reduced measurement uncertainty, which becomes visually noticeable as a pollutant concentration increases. Again, extending 

the calibration model training period and therefore expanding the calibration space is especially advised for machine learning 

methods to reduce the LCS measurement uncertainty.  780 

 

We conclude that achieving the highest possible quantitative validity for low-cost air sensors requires regular in-season 

recalibration using high-quality reference data. The response of the sensor units to changing environmental conditions at the 

station site, along with improved performance resulting from regular recalibration that aligns sensor output more closely with 

EPA and CEN recommendations, highlights how important regular sensor maintenance is to enhance their applicability. These 785 

findings underscore the importance of rigorous data quality assurance and control for studies or monitoring networks that aim 

to make quantitative assertions. In general, quality assurance and quality control (QA/QC) are essential for both qualitative 

and quantitative research involving low-cost sensors. 

 

 A monthly recalibration using a pairwise calibration strategy with two LCS devices of the same model for in situ 790 

measurements could be a feasible approach. It is particularly valuable and resource-efficient if the aim is not to just build a 

spatially dense sensor network, but instead to focus on targeted, good-quality monitoring at locations with high densities of 

vulnerable populations, such as retirement homes, schools or kindergartens. However, this approach requires continuous access 

to high-quality reference equipment, which represents a major obstacle for pairwise calibration strategies such as the one 

employed in this study. Continued cooperation between authorities, who provide the necessary infrastructure for calibration, 795 

and researchers, who have expertise in air sensors, is essential, especially in the view of the updated WHO global air quality 
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guidelines and the new Directive (EU) 2024/2881, which have respectively recommended and implemented stricter limits for 

major air pollutants. Focused and thoughtful supplemental and informational monitoring with the aid of well-maintained low-

cost air sensors within official air quality monitoring networks increases the likelihood of realizing better air quality for the 

population. 800 

Data availability 

The data of this study are available from the authors upon request. 

Author contributions 

Conceptualization, P.G. and E.H.; data curation, P.G.; formal analysis, P.G.; investigation, P.G.; methodology, P.G. and E.H.; 

project administration, P.G; resources, E.H.; software, P.G.; supervision, E.H.; validation, P.G.; visualization, P.G.; writing—805 

original draft preparation, P.G.; writing—review and editing, E.H. All authors have read and agreed to the published version 

of the manuscript. 

Competing interests 

The authors declare that they have no conflict of interest. 

Acknowledgements 810 

We thank our student assistant Nicolas Hahn (University of Augsburg, Institute for Geography) for his contribution in 

formatting and editing the tables and figures presented in this work. Furthermore, we thank Nicolas Hahn for his contribution 

in exporting the performance metrics to the presented tables in the supplement using R and Python. Nicolas Hahn extracted 

the mean reference values from the provided code of Paul Gäbel and created the figures S1, S2, S3 and S4 in the supplement. 

We used AI tools to improve the language of the published version of the manuscript. 815 

 

 

References 

Alphasense, Technical Specifications Version 1.1, NO2-B43F/NO2-B43F+ Nitrogen Dioxide Sensor: 

https://ametekcdn.azureedge.net/mediafiles/project/oneweb/oneweb/alphasense/products/datasheets/alphasense_no2-820 
b43f_datasheet_en_3.pdf?revision:d508b1b6-68fe-4a43-b758-8c4d8c17084a, last access: 21 March 2025. 

https://doi.org/10.5194/egusphere-2025-2677
Preprint. Discussion started: 11 July 2025
c© Author(s) 2025. CC BY 4.0 License.



36 

 

Alphasense, Technical Specifications Version 1.1, CO-B4/CO-B4+ Carbon Monoxide Sensor: 

https://ametekcdn.azureedge.net/mediafiles/project/oneweb/oneweb/alphasense/products/datasheets/alphasense_co-

b4_datasheet_en_2.pdf?revision:87f7d42e-02c4-4b00-b888-bd9c8d07ed3f, last  

Alphasense, Technical Specifications Version 1.1, OX-B431/OX-B431+ Oxidising Gas Sensor – Ozone + Nitrogen Dioxide: 825 
https://ametekcdn.azureedge.net/mediafiles/project/oneweb/oneweb/alphasense/products/datasheets/alphasense_ox-

b431_datasheet_en_4.pdf?revision:75724508-b98a-4612-aa4c-19ba3fbc0c1b, last access: 21 March 2025. 

Bagkis, E., Kassandros, T., and Karatzas, K.: Learning Calibration Functions on the Fly: Hybrid Batch Online Stacking Ensembles for the 

Calibration of Low-Cost Air Quality Sensor Networks in the Presence of Concept Drift, Atmosphere, 13, 416, 2022. 

Bagkis, E., Kassandros, T., Karteris, M., Karteris, A., and Karatzas, K.: Analyzing and Improving the Performance of a Particulate Matter 830 
Low Cost Air Quality Monitoring Device, Atmosphere, 12, 251, 2021. 

Bayerisches Landesamt für Umwelt: https://www.lfu.bayern.de/luft/immissionsmessungen/doc/lueb.pdf, last access: 24 March 2025. 

Becker, M., Schneider, L., and Fischer, S.: Hyperparameter Optimization. In Bischl B., Sonabend R., Kotthoff L., Lang M., (Eds.), Applied 

Machine Learning Using mlr3 in R., CRC Press, https://mlr3book.mlr-org.com/hyperparameter_optimization.html2024. 

Bergstra, J. and Bengio, Y.: Random search for hyper-parameter optimization, The journal of machine learning research, 13, 281-305, 2012. 835 
Bigi, A., Mueller, M., Grange, S. K., Ghermandi, G., and Hueglin, C.: Performance of NO, NO2 low cost sensors and three calibration 

approaches within a real world application, Atmos. Meas. Tech., 11, 3717-3735, 10.5194/amt-11-3717-2018, 2018. 

Bílek, J., Bílek, O., Maršolek, P., and Buček, P.: Ambient Air Quality Measurement with Low-Cost Optical and Electrochemical Sensors: 

An Evaluation of Continuous Year-Long Operation, Environments, 8, 114, 2021. 

Bittner, A. S., Cross, E. S., Hagan, D. H., Malings, C., Lipsky, E., and Grieshop, A. P.: Performance characterization of low-cost air quality 840 
sensors for off-grid deployment in rural Malawi, Atmos. Meas. Tech., 15, 3353-3376, 10.5194/amt-15-3353-2022, 2022. 

Bosch Sensortec, BME280 Integrated Environmental Unit: https://www.bosch-

sensortec.com/media/boschsensortec/downloads/product_flyer/bst-bme280-fl000.pdf, last access: 25 March 2025. 

Breiman, L.: Random Forests, Machine Learning, 45, 5-32, 10.1023/A:1010933404324, 2001. 

Broday, D. M., Arpaci, A., Bartonova, A., Castell-Balaguer, N., Cole-Hunter, T., and Dauge, F. R. e. a.: Wireless Distributed Environmental 845 
Sensor Networks for Air Pollution Measurement—The Promise and the Current Reality, Sensors, 17, 2263, 2017. 

Carotenuto, F., Bisignano, A., Brilli, L., Gualtieri, G., and Giovannini, L.: Low-cost air quality monitoring networks for long-term field 

campaigns: A review, Meteorological Applications, 30, e2161, https://doi.org/10.1002/met.2161, 2023. 

Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D., and Bartonova, A.: Can commercial low-cost sensor 

platforms contribute to air quality monitoring and exposure estimates?, Environment International, 99, 293-302, 850 
https://doi.org/10.1016/j.envint.2016.12.007, 2017. 

CEN/TS 17660-1:2021: Air quality – Performance evaluation of air quality sensor systems – Part 1: Gaseous pollutants in ambient air, 

European Committee for Standardisation (CEN), 2021. 

CEN/TS 17660-2:2024: Air quality – Performance evaluation of air quality sensor systems – Part 2: Particulate matter in ambient air, 

European Committee for Standardisation (CEN), 2024. 855 
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, Proceedings of the 22nd ACM SIGKDD International Conference 

on Knowledge Discovery and Data Mining, San Francisco, California, USA, 10.1145/2939672.2939785, 2016. 

Chowdhury, S., Hänninen, R., Sofiev, M., and Aunan, K.: Fires as a source of annual ambient PM2.5 exposure and chronic health impacts 

in Europe, Science of The Total Environment, 922, 171314, https://doi.org/10.1016/j.scitotenv.2024.171314, 2024. 

Chowdhury, S., Pillarisetti, A., Oberholzer, A., Jetter, J., Mitchell, J., Cappuccilli, E., Aamaas, B., Aunan, K., Pozzer, A., and Alexander, 860 
D.: A global review of the state of the evidence of household air pollution's contribution to ambient fine particulate matter and their related 

health impacts, Environment International, 173, 107835, https://doi.org/10.1016/j.envint.2023.107835, 2023. 

Collier-Oxandale, A., Papapostolou, V., Feenstra, B., Der Boghossian, B., and Polidori, A.: Towards the Development of a Sensor 

Educational Toolkit to Support Community and Citizen Science, Sensors, 22, 2543, 2022. 

Concas, F., Mineraud, J., Lagerspetz, E., Varjonen, S., Liu, X., Puolamäki, K., Nurmi, P., and Tarkoma, S.: Low-Cost Outdoor Air Quality 865 
Monitoring and Sensor Calibration: A Survey and Critical Analysis, ACM Trans. Sen. Netw., 17, Article 20, 10.1145/3446005, 2021. 

Connolly, R. E., Yu, Q., Wang, Z., Chen, Y.-H., Liu, J. Z., Collier-Oxandale, A., Papapostolou, V., Polidori, A., and Zhu, Y.: Long-term 

evaluation of a low-cost air sensor network for monitoring indoor and outdoor air quality at the community scale, Science of The Total 

Environment, 807, 150797, https://doi.org/10.1016/j.scitotenv.2021.150797, 2022. 

Cordero, J. M., Borge, R., and Narros, A.: Using statistical methods to carry out in field calibrations of low cost air quality sensors, Sensors 870 
and Actuators B: Chemical, 267, 245-254, https://doi.org/10.1016/j.snb.2018.04.021, 2018. 

Cross, E. S., Williams, L. R., Lewis, D. K., Magoon, G. R., Onasch, T. B., Kaminsky, M. L., Worsnop, D. R., and Jayne, J. T.:  Use of 

electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements, Atmos. Meas. 

Tech., 10, 3575-3588, 10.5194/amt-10-3575-2017, 2017. 

Dayan, U. and Levy, I.: Relationship between synoptic-scale atmospheric circulation and ozone concentrations over Israel, Journal of 875 
Geophysical Research: Atmospheres, 107, ACL 31-31-ACL 31-12, https://doi.org/10.1029/2002JD002147, 2002. 

https://doi.org/10.5194/egusphere-2025-2677
Preprint. Discussion started: 11 July 2025
c© Author(s) 2025. CC BY 4.0 License.



37 

 

Delaine, F., Lebental, B., and Rivano, H.: In Situ Calibration Algorithms for Environmental Sensor Networks: A Review, IEEE Sensors 

Journal, 19, 5968-5978, 10.1109/JSEN.2019.2910317, 2019. 

Diez, S., Lacy, S. E., Bannan, T. J., Flynn, M., Gardiner, T., Harrison, D., Marsden, N., Martin, N. A., Read, K., and Edwards, P. M.: Air 

pollution measurement errors: is your data fit for purpose?, Atmos. Meas. Tech., 15, 4091-4105, 10.5194/amt-15-4091-2022, 2022. 880 
Diez, S., Lacy, S., Coe, H., Urquiza, J., Priestman, M., Flynn, M., Marsden, N., Martin, N. A., Gillott, S., Bannan, T., and Edwards, P. M.: 

Long-term evaluation of commercial air quality sensors: an overview from the QUANT (Quantification of Utility of Atmospheric Network 

Technologies) study, Atmos. Meas. Tech., 17, 3809-3827, 10.5194/amt-17-3809-2024, 2024. 

Directive 2008/50/EC: Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and 

cleaner air for Europe, 2008. 885 
Directive (EU) 2024/2881: Directive (EU) 2024/2881 of the European Parliament and of the Council of 23 October 2024 on ambient air 

quality and cleaner air for Europe, 2024. 

Duvall, R., Clements, A., Hagler, G., Kamal, A., Kilaru, V., Goodman, L., Frederick, S., Barkjohn, K., VonWald, I., and Greene, D.: 

Performance Testing Protocols, Metrics, and Target Values for Fine Particulate Matter Air Sensors: Use in Ambient, Outdoor, Fixed Sites, 

Non-Regulatory Supplemental and Informational Monitoring Applications, US EPA Office of Research and Development, 2021a. 890 
Duvall, R., Clements, A., Hagler, G., Kamal, A., Kilaru, V., Goodman, L., Frederick, S., Johnson Barkjohn, K., VonWald, I., and Greene, 

D.: Performance Testing Protocols, Metrics, and Target Values for Ozone Air Sensors: Use in Ambient, Outdoor, Fixed Site, Non-Regulatory 

and Informational Monitoring Applications, US Environmental Protection Agency, 2021b. 

Friedman, J. H., Hastie, T., and Tibshirani, R.: Regularization Paths for Generalized Linear Models via Coordinate Descent, Journal of 

Statistical Software, 33, 1 - 22, 10.18637/jss.v033.i01, 2010. 895 
Gäbel, P., Koller, C., and Hertig, E.: Development of Air Quality Boxes Based on Low-Cost Sensor Technology for Ambient Air Quality 

Monitoring, Sensors, 22, 3830, 2022. 

Gu, Y., Henze, D. K., Nawaz, M. O., Cao, H., and Wagner, U. J.: Sources of PM2.5-Associated Health Risks in Europe and Corresponding 

Emission-Induced Changes During 2005–2015, GeoHealth, 7, e2022GH000767, https://doi.org/10.1029/2022GH000767, 2023. 

Hagan, D. H., Isaacman-VanWertz, G., Franklin, J. P., Wallace, L. M. M., Kocar, B. D., Heald, C. L., and Kroll, J. H.: Calibration and 900 
assessment of electrochemical air quality sensors by co-location with regulatory-grade instruments, Atmos. Meas. Tech., 11, 315-328, 

10.5194/amt-11-315-2018, 2018. 

Hasan, M. H., Yu, H., Ivey, C., Pillarisetti, A., Yuan, Z., Do, K., and Li, Y.: Unexpected Performance Improvements of Nitrogen Dioxide 

and Ozone Sensors by Including Carbon Monoxide Sensor Signal, ACS Omega, 8, 5917-5924, 10.1021/acsomega.2c07734, 2023. 

Hassani, A., Castell, N., Watne, Å. K., and Schneider, P.: Citizen-operated mobile low-cost sensors for urban PM2.5 monitoring: field 905 
calibration, uncertainty estimation, and application, Sustainable Cities and Society, 95, 104607, https://doi.org/10.1016/j.scs.2023.104607, 

2023. 

Hertig, E., Schneider, A., Peters, A., von Scheidt, W., Kuch, B., and Meisinger, C.: Association of ground-level ozone, meteorological 

factors and weather types with daily myocardial infarction frequencies in Augsburg, Southern Germany, Atmospheric Environment, 217, 

116975, https://doi.org/10.1016/j.atmosenv.2019.116975, 2019. 910 
Jahn, S. and Hertig, E.: Modeling and projecting health-relevant combined ozone and temperature events in present and future Central 

European climate, Air Quality, Atmosphere & Health, 14, 563-580, 10.1007/s11869-020-00961-0, 2021. 

Jayaratne, R., Kuhn, T., Christensen, B., Liu, X., Zing, I., Lamont, R., Dunbabin, M., Maddox, J., Fisher, G., and Morawska, L.: Using a 

Network of Low-cost Particle Sensors to Assess the Impact of Ship Emissions on a Residential Community, Aerosol and Air Quality 

Research, 20, 2754-2764, 10.4209/aaqr.2020.06.0280, 2020. 915 
Jiao, W., Hagler, G., Williams, R., Sharpe, R., Brown, R., Garver, D., Judge, R., Caudill, M., Rickard, J., Davis, M., Weinstock, L., Zimmer-

Dauphinee, S., and Buckley, K.: Community Air Sensor Network (CAIRSENSE) project: evaluation of low-cost sensor performance in a 

suburban environment in the southeastern United States, Atmos. Meas. Tech., 9, 5281-5292, 10.5194/amt-9-5281-2016, 2016. 

Karagulian, F., Barbiere, M., Kotsev, A., Spinelle, L., Gerboles, M., Lagler, F., Redon, N., Crunaire, S., and Borowiak, A.: Review of the 

Performance of Low-Cost Sensors for Air Quality Monitoring, Atmosphere, 10, 506, 2019. 920 
Karanasiou, A., Moreno, N., Moreno, T., Viana, M., de Leeuw, F., and Querol, X.: Health effects from Sahara dust episodes in Europe: 

Literature review and research gaps, Environment International, 47, 107-114, https://doi.org/10.1016/j.envint.2012.06.012, 2012. 

Kim, H., Müller, M., Henne, S., and Hüglin, C.: Long-term behavior and stability of calibration models for NO and NO2 low-cost sensors, 

Atmos. Meas. Tech., 15, 2979-2992, 10.5194/amt-15-2979-2022, 2022. 

Kizel, F., Etzion, Y., Shafran-Nathan, R., Levy, I., Fishbain, B., Bartonova, A., and Broday, D. M.: Node-to-node field calibration of wireless 925 
distributed air pollution sensor network, Environmental Pollution, 233, 900-909, https://doi.org/10.1016/j.envpol.2017.09.042, 2018. 

Lang, M., Binder, M., Richter, J., Schratz, P., Pfisterer, F., Coors, S., Au, Q., Casalicchio, G., Kotthoff, L., and Bischl, B.: mlr3: A modern 

object-oriented machine learning framework in R, Journal of Open Source Software, 4, 1903, 2019. 

Lewis, A., von Schneidemesser, E., and Peltier, R. E.: Low-cost sensors for the measurement of atmospheric composition: overview of topic 

and future applications, Research Report, World Meteorological Organization (WMO), Geneva, 2018. 930 
Li, J., Mattewal, S. K., Patel, S., and Biswas, P.: Evaluation of Nine Low-cost-sensor-based Particulate Matter Monitors, Aerosol and Air 

Quality Research, 20, 254-270, 10.4209/aaqr.2018.12.0485, 2020. 

https://doi.org/10.5194/egusphere-2025-2677
Preprint. Discussion started: 11 July 2025
c© Author(s) 2025. CC BY 4.0 License.



38 

 

Li, J., Hauryliuk, A., Malings, C., Eilenberg, S. R., Subramanian, R., and Presto, A. A.: Characterizing the Aging of Alphasense NO2 Sensors 

in Long-Term Field Deployments, ACS Sensors, 6, 2952-2959, 10.1021/acssensors.1c00729, 2021. 

Liu, H.-Y., Schneider, P., Haugen, R., and Vogt, M.: Performance Assessment of a Low-Cost PM2.5 Sensor for a near Four-Month Period 935 
in Oslo, Norway, Atmosphere, 10, 41, 2019. 

Maag, B., Zhou, Z., and Thiele, L.: A Survey on Sensor Calibration in Air Pollution Monitoring Deployments, IEEE Internet of Things 

Journal, 5, 4857-4870, 10.1109/JIOT.2018.2853660, 2018. 

Mahajan, S. and Kumar, P.: Evaluation of low-cost sensors for quantitative personal exposure monitoring, Sustainable Cities and Society, 

57, 102076, https://doi.org/10.1016/j.scs.2020.102076, 2020. 940 
Mahajan, S., Kumar, P., Pinto, J. A., Riccetti, A., Schaaf, K., Camprodon, G., Smári, V., Passani, A., and Forino, G.: A citizen science 

approach for enhancing public understanding of air pollution, Sustainable Cities and Society, 52, 101800, 

https://doi.org/10.1016/j.scs.2019.101800, 2020. 

Malings, C., Amegah, K., Basart, S., Diez, S., Rosales, C. M., and Zimmerman, N.: Integrating Low-cost Sensor Systems and Networks to 

Enhance Air Quality Applications, (GAW Report No. 293),  World Meteorological Organization (WMO), United Nations Environment 945 
Programme (UNEP), International Global Atmospheric Chemistry project (IGAC), Geneva, 2024. 

Mohd Nadzir, M. S., Mohd Nor, M. Z., Mohd Nor, M. F. F., A Wahab, M. I., Ali, S. H. M., Otuyo, M. K., Abu Bakar, M. A., Saw, L. H., 

Majumdar, S., Ooi, M. C. G., Mohamed, F., Hisham, B. A., Abd Hamid, H. H., Khaslan, Z., Mohd Ariff, N., Anuar, J., Tok, G. R., Ya’akop, 

N. A., and Mohd Meswan, M. i.: Risk Assessment and Air Quality Study during Different Phases of COVID-19 Lockdown in an Urban 

Area of Klang Valley, Malaysia, Sustainability, 13, 12217, 2021. 950 
Moltchanov, S., Levy, I., Etzion, Y., Lerner, U., Broday, D. M., and Fishbain, B.: On the feasibility of measuring urban air pollution by 

wireless distributed sensor networks, Science of The Total Environment, 502, 537-547, https://doi.org/10.1016/j.scitotenv.2014.09.059, 

2015. 

Mueller, M., Meyer, J., and Hueglin, C.: Design of an ozone and nitrogen dioxide sensor unit and its long-term operation within a sensor 

network in the city of Zurich, Atmos. Meas. Tech., 10, 3783-3799, 10.5194/amt-10-3783-2017, 2017. 955 
Nowack, P., Konstantinovskiy, L., Gardiner, H., and Cant, J.: Machine learning calibration of low-cost NO2 and PM10 sensors: non-linear 

algorithms and their impact on site transferability, Atmos. Meas. Tech., 14, 5637-5655, 10.5194/amt-14-5637-2021, 2021. 

Okure, D., Ssematimba, J., Sserunjogi, R., Gracia, N. L., Soppelsa, M. E., and Bainomugisha, E.: Characterization of Ambient Air Quality 

in Selected Urban Areas in Uganda Using Low-Cost Sensing and Measurement Technologies, Environmental Science & Technology, 56, 

3324-3339, 10.1021/acs.est.1c01443, 2022. 960 
Peltier, R. E., Castell, N., Clements, A. L., Dye, T., Hüglin, C., Kroll, J. H., Ning, Z., Parsons, M., Penza, M., and Reisen, F.: An Update on 

Low-cost Sensors for the Measurement of Atmospheric Composition, December 2020 (WMO – No.1215),  World Meteorological 

Organization (WMO), Geneva, 2021. 

Petäjä, T., Ovaska, A., Fung, P. L., Poutanen, P., Yli-Ojanperä, J., Suikkola, J., Laakso, M., Mäkelä, T., Niemi, J. V., Keskinen, J., Järvinen, 

A., Kuula, J., Kurppa, M., Hussein, T., Tarkoma, S., Kulmala, M., Karppinen, A., Manninen, H. E., and Timonen, H.: Added Value of 965 
Vaisala AQT530 Sensors as a Part of a Sensor Network for Comprehensive Air Quality Monitoring, Frontiers in Environmental Science, 9, 

10.3389/fenvs.2021.719567, 2021. 

Peters, D. R., Popoola, O. A. M., Jones, R. L., Martin, N. A., Mills, J., Fonseca, E. R., Stidworthy, A., Forsyth, E., Carruthers, D., Dupuy-

Todd, M., Douglas, F., Moore, K., Shah, R. U., Padilla, L. E., and Alvarez, R. A.: Evaluating uncertainty in sensor networks for urban air 

pollution insights, Atmos. Meas. Tech., 15, 321-334, 10.5194/amt-15-321-2022, 2022. 970 
Raheja, G., Sabi, K., Sonla, H., Gbedjangni, E. K., McFarlane, C. M., Hodoli, C. G., and Westervelt, D. M.: A Network of Field-Calibrated 

Low-Cost Sensor Measurements of PM2.5 in Lomé, Togo, Over One to Two Years, ACS Earth and Space Chemistry, 6, 1011-1021, 

10.1021/acsearthspacechem.1c00391, 2022. 

Rai, A. C., Kumar, P., Pilla, F., Skouloudis, A. N., Di Sabatino, S., Ratti, C., Yasar, A., and Rickerby, D.: End-user perspective of low-cost 

sensors for outdoor air pollution monitoring, Science of The Total Environment, 607-608, 691-705, 975 
https://doi.org/10.1016/j.scitotenv.2017.06.266, 2017. 

Ratingen, S. v., Vonk, J., Blokhuis, C., Wesseling, J., Tielemans, E., and Weijers, E.: Seasonal Influence on the Performance of Low-Cost 

NO2 Sensor Calibrations, Sensors, 21, 7919, 2021. 

Reizer, M. and Juda-Rezler, K.: Explaining the high PM10 concentrations observed in Polish urban areas, Air Quality, Atmosphere & Health, 

9, 517-531, 10.1007/s11869-015-0358-z, 2016. 980 
Russo, A., Trigo, R. M., Martins, H., and Mendes, M. T.: NO2, PM10 and O3 urban concentrations and its association with circulation 

weather types in Portugal, Atmospheric Environment, 89, 768-785, https://doi.org/10.1016/j.atmosenv.2014.02.010, 2014. 

Russo, A., Gouveia, C., Levy, I., Dayan, U., Jerez, S., Mendes, M., and Trigo, R.: Coastal recirculation potential affecting air pollutants in 

Portugal: The role of circulation weather types, Atmospheric Environment, 135, 9-19, https://doi.org/10.1016/j.atmosenv.2016.03.039, 2016. 

Schäfer, K., Lande, K., Grimm, H., Jenniskens, G., Gijsbers, R., Ziegler, V., Hank, M., and Budde, M.: High-Resolution Assessment of Air 985 
Quality in Urban Areas—A Business Model Perspective, Atmosphere, 12, 595, 2021. 

https://doi.org/10.5194/egusphere-2025-2677
Preprint. Discussion started: 11 July 2025
c© Author(s) 2025. CC BY 4.0 License.



39 

 

Schmitz, S., Towers, S., Villena, G., Caseiro, A., Wegener, R., Klemp, D., Langer, I., Meier, F., and von Schneidemesser, E.: Unraveling a 

black box: An open-source methodology for the field calibration of small air quality sensors, Atmos. Meas. Tech. Discuss., 2021, 1-34, 

10.5194/amt-2020-489, 2021. 

Sensirion, Datasheet SPS30, Particulate Matter Sensor for Air Quality Monitoring and Control: 990 
https://sensirion.com/de/media/documents/8600FF88/64A3B8D6/Sensirion_PM_Sensors_Datasheet_SPS30.pdf, last access: 25 March 

2025. 

Shittu, A. I., Pringle, K. J., Arnold, S. R., Pope, R. J., Graham, A. M., Reddington, C., Rigby, R., and McQuaid, J. B.: Performance evaluation 

of Atmotube PRO sensors for air quality measurements in an urban location, Atmos. Meas. Tech., 18, 817-828, 10.5194/amt-18-817-2025, 

2025. 995 
Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., Hagler, G. S. W., Shelow, D., Hindin, D. A., Kilaru, V. J., 

and Preuss, P. W.: The Changing Paradigm of Air Pollution Monitoring, Environmental Science & Technology, 47, 11369-11377, 

10.1021/es4022602, 2013. 

Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., and Bonavitacola, F.: Field calibration of a cluster of low-cost available sensors 

for air quality monitoring. Part A: Ozone and nitrogen dioxide, Sensors and Actuators B: Chemical, 215, 249-257, 1000 
https://doi.org/10.1016/j.snb.2015.03.031, 2015. 

Thunis, P., Clappier, A., Beekmann, M., Putaud, J. P., Cuvelier, C., Madrazo, J., and de Meij, A.: Non-linear response of PM2.5 to changes 

in NOx and NH3 emissions in the Po basin (Italy): consequences for air quality plans, Atmos. Chem. Phys., 21, 9309-9327, 10.5194/acp-

21-9309-2021, 2021. 

Vogt, M., Schneider, P., Castell, N., and Hamer, P.: Assessment of Low-Cost Particulate Matter Sensor Systems against Optical and 1005 
Gravimetric Methods in a Field Co-Location in Norway, Atmosphere, 12, 961, 2021. 

Wesseling, J., de Ruiter, H., Blokhuis, C., Drukker, D., Weijers, E., Volten, H., Vonk, J., Gast, L., Voogt, M., Zandveld, P., van Ratingen, 

S., and Tielemans, E.: Development and Implementation of a Platform for Public Information on Air Quality, Sensor Measurements, and 

Citizen Science, 10.3390/atmos10080445,  2019. 

WHO: WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon 1010 
monoxide (No. 9789240034228), World Health Organization: Geneva, Switzerland, 2021. 

Williams, R., Duvall, R., Kilaru, V., Hagler, G., Hassinger, L., Benedict, K., Rice, J., Kaufman, A., Judge, R., Pierce, G., Allen, G., Bergin, 

M., Cohen, R. C., Fransioli, P., Gerboles, M., Habre, R., Hannigan, M., Jack, D., Louie, P., Martin, N. A., Penza, M., Polidori, A., 

Subramanian, R., Ray, K., Schauer, J., Seto, E., Thurston, G., Turner, J., Wexler, A. S., and Ning, Z.: Deliberating performance targets 

workshop: Potential paths for emerging PM2.5 and O3 air sensor progress, Atmospheric Environment: X, 2, 100031, 1015 
https://doi.org/10.1016/j.aeaoa.2019.100031, 2019. 

Yatkin, S., Gerboles, M., Borowiak, A., Davila, S., Spinelle, L., Bartonova, A., Dauge, F., Schneider, P., Van Poppel, M., Peters, J., 

Matheeussen, C., and Signorini, M.: Modified Target Diagram to check compliance of low-cost sensors with the Data Quality Objectives of 

the European air quality directive, Atmospheric Environment, 273, 118967, https://doi.org/10.1016/j.atmosenv.2022.118967, 2022. 

Zauli-Sajani, S., Marchesi, S., Pironi, C., Barbieri, C., Poluzzi, V., and Colacci, A.: Assessment of air quality sensor system performance 1020 
after relocation, Atmospheric Pollution Research, 12, 282-291, https://doi.org/10.1016/j.apr.2020.11.010, 2021. 

Zauli-Sajani, S., Thunis, P., Pisoni, E., Bessagnet, B., Monforti-Ferrario, F., De Meij, A., Pekar, F., and Vignati, E.: Reducing biomass 

burning is key to decrease PM2.5 exposure in European cities, Scientific Reports, 14, 10210, 10.1038/s41598-024-60946-2, 2024. 

Zimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk, A., Robinson, E. S., Robinson, A. L., and Subramanian, R.: A machine 

learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring, Atmos. Meas. Tech., 1025 
11, 291-313, 10.5194/amt-11-291-2018, 2018. 

 

https://doi.org/10.5194/egusphere-2025-2677
Preprint. Discussion started: 11 July 2025
c© Author(s) 2025. CC BY 4.0 License.


