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Abstract. The appropriate period of collocation of a low-cost air sensor (LCS) with reference measurements is often unknown. 

Previous LCS studies have shown that due to sensor ageing and seasonality of environmental interferences periodical sensor 

calibration needs to be performed to guarantee sufficient data quality. While the limitations are well-established it is still 

unclear how often a recalibration of a sensor needs to be carried out. In this study, we demonstrate how widely used air sensors 10 

(OX-B431 and SPS30) for the relevant air pollutants ozone (O3) and fine particulate matter (PM2.5) by two manufacturers 

(Alphasense and Sensirion) should be recalibrated for real-world monitoring applications. Sensor calibration functions were 

built using Multiple Linear Regression, Ridge Regression, Random Forest and Extreme Gradient Boosting. We use multiple 

novel test protocols for air sensors provided by the United States Environmental Protection Agency and the European 

Committee for Standardization for evaluative guidance and to identify possible applications for OX-B431 and SPS30 sensors. 15 

We conducted a yearlong collocation campaign at an urban background air and climate monitoring station next to the 

University Hospital Augsburg, Germany. LCSs were exposed to a wide range of environmental conditions, with air 

temperatures between -10 and 36 °C, relative air humidity between 19 and 96 % and air pressure between 937 and 983 hPa. 

The ambient concentration ranges for O3 and PM2.5 were up to 82 ppb and 153 µg m-3, respectively. For the baseline single 

training of 5 months, the calibrated O3 and PM2.5 sensors were able to reflect the hourly reference data well during the training 20 

(R2: O3 = 0.92–1.00; PM2.5 = 0.93–0.97) and the following test period (R2: O3 = 0.93–0.98; PM2.5 = 0.84–0.93). Additionally, 

the sensor errors were generally acceptable during the training (RMSE: O3 = 0.80–4.35 ppb; PM2.5 = 1.45–2.51 µg m-3) and 

the following test period (RMSE: O3 = 3.62–5.84 ppb; PM2.5 = 2.04–3.02 µg m-3). We investigated different recalibration 

cycles using a pairwise calibration strategy, which is an uncommon method for recurrent LCS calibration. Our results indicate 

that a regular in-season recalibration is required to obtain the highest quantitative validity and broadest range of applications 25 

(indicative and non-regulatory supplemental measurements) for the analysed LCSs. Monthly recalibrations are observed to be 

the most suitable approach. The measurement uncertainties of the calibrated O3 LCSs and PM2.5 LCSs were able to meet the 

data quality objective for indicative measurements for different calibration models. In-season recalibration, rather than reliance 

on a single pre-deployment calibration, should be adopted by end-user communities. This approach is required for certain real-

world applications to be performed reliably by LCSs and to achieve sufficient information content.  30 
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1 Introduction 

Low-cost sensors (LCSs) form an interesting approach for monitoring air pollution in a denser network than currently available 

due to the cost of regular fixed measurement stations. Basically, they are smaller, consume less power, are cheaper and 65 

therefore more accessible than regular monitoring devices for air pollution (Lewis et al., 2018; Li et al., 2020; Peltier et al., 

2021; Schäfer et al., 2021; Narayana et al., 2022). This underlines why there is an interest among researchers, governments, 

businesses and individuals in using LCSs for air quality monitoring in different settings, e.g. citizen science, mobile and 

stationary monitoring (in for instance urban or remote locations), urban planning, personal exposure science or education 

(Williams et al., 2019; Mahajan and Kumar, 2020; Mahajan et al., 2020; Peltier et al., 2021; Okure et al., 2022; Hassani et al., 70 

2023; Malings et al., 2024). This interest has led researchers to develop their own custom-built air quality monitoring systems 

equipped with LCSs (Mueller et al., 2017; Cross et al., 2017; Gäbel et al., 2022), which can be more widely used in the 

aforementioned settings. 

 

Nevertheless, those sensors also have their disadvantages. At present they do not fulfill the stringent requirements for 75 

regulatory measurements provided by high-quality air pollutant monitoring systems used by governments to monitor the 

exceedance of health-relevant thresholds for air pollutants like ozone (O3), nitrogen oxides (NOx), particulate matter (PM2.5, 

PM10), carbon monoxide (CO), and sulfur dioxide (SO2) (Castell et al., 2017; Wesseling et al., 2019; Schäfer et al., 2021). 

Major issues with LCSs are their short operating life, lack of long-term stability due to sensor ageing, interferences, cross-

sensitivities and the need for calibration functions to adjust LCS bias and transform LCS output into meaningful units (Lewis 80 

et al., 2018; Peltier et al., 2021; Concas et al., 2021; Carotenuto et al., 2023). Hence reference measurements are needed. The 

inter-sensor unit variability of LCSs is another issue, where a calibration function derived through training data for a LCS is 

usually not by default transferable. LCS data of a unit can be quite unique, when compared to data of another unit of the same 

model (Moltchanov et al., 2015; Gäbel et al., 2022; Bittner et al., 2022). However, good-performing sensors can act as devices 

for non-regulatory supplemental and informational monitoring (NSIM) applications (Duvall et al., 2021a; Duvall et al., 2021b).  85 

LCS performance must be assessed, and data quality control processes must be developed to establish confidence in LCS data 

(Malings et al., 2024). Consequently, the question of whether a selected air sensor is a good fit for its planned purpose must 

be answered (Diez et al., 2022). Snyder et al. (2013) summarized the essence of the problem in one sentence: “Data of poor or 

unknown quality is less useful than no data since it can lead to wrong decisions”.   

 90 

Uniform evaluation and comparison methods for LCSs are incentivized by a growing market, which offers a greater supply of 

more refined LCSs. The lack of standardized procedures was recognized in the literature in recent years (Rai et al., 2017; 

Karagulian et al., 2019; Williams et al., 2019; Duvall et al., 2021a). Therefore, there is an initiative by multiple organizations 

to develop test programs and test protocols like the Environmental Protection Agency (EPA) of the United States or the 

European Committee for Standardization (CEN) (Duvall et al., 2021a; Duvall et al., 2021b; CEN/TS 17660-1:2021; CEN/TS 95 
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17660-2:2024). The development of test programs by organizations, which are also recognized by governmental bodies, is an 

important achievement. They create a foundational framework to collect comparable harmonized metrics to assess LCS data 

quality. Thus, they help to develop a standardized quality assessment to ultimately justify the use of LCSs in defined areas of 

interest in air pollution monitoring. Hence it is a further step for establishing reliable low-cost air quality networks within the 125 

regulatory monitoring system for air quality worldwide. Using target metrics and sensor (tier) classifications from these test 

programs to better understand air sensor performance and their potential role within the broader air quality information system 

is not yet common practice in studies evaluating LCSs across different settings. The current air quality information system is 

defined by reference-grade monitoring, satellite monitoring and air quality modeling. 

 130 

One important aspect is recalibrations of LCSs after their initial (on-site) calibration using reference monitors, which is an 

important point in network management to guarantee long-term data quality (Concas et al., 2021; Carotenuto et al., 2023). 

However, most of the recent studies doing long-term field campaigns using LCS networks for air quality monitoring show in 

their methods no recalibration strategy to mitigate the effect of sensor ageing and thus to enhance the LCS measurement output 

under a quantitative point of view (Jayaratne et al., 2020; Petäjä et al., 2021; Mohd Nadzir et al., 2021; Bílek et al., 2021; 135 

Raheja et al., 2022; Kim et al., 2022; Collier-Oxandale et al., 2022; Okure et al., 2022; Connolly et al., 2022). For instance, 

the official warranted operating lifespan of the commonly used electrochemical (EC) LCS NO2-B43F by the company 

Alphasense is only 2 years (Alphasense, 2024a) or even lower according to Li et al. (2021). They investigated the long-term 

degradation of EC Alphasense NO2 sensors in the field and found evidence that those sensors could already malfunction after 

200 days. Furthermore Kim et al. (2022) calibrated Alphasense NO2 sensors based on a 6-month collocation using regulatory 140 

monitoring devices at a rural traffic site. 1.5 years later Kim et al. (2022) did a second collocation experiment with the same 

sensors at the same site using their original calibration functions from the first collocation. They found a significant 

deterioration in sensor performance during the second collocation. It was also discussed that due to time-varying effects of 

environmental interferences (e.g. air temperature, relative humidity), sensor performance can vary with season (Ratingen et 

al., 2021; Peters et al., 2022). For these reasons, LCS recalibration intervals of less than 1 year and methods for regular LCS 145 

data quality checks using regulatory monitoring devices need to be explored whether those sensor devices are supposed to be 

used in lengthy measurement campaigns to assess air quality. At present, it remains unclear how regularly LCSs need to be 

recalibrated. The number of publications investigating varying calibration periods is not exhaustive due to the lack of long-

term collocation experiments in the available literature. Generally, studies which investigate varying recalibration periods look 

only at a specific air pollutant sensor targeting one air pollutant. They do not apply state-of-the-art test programs for LCSs to 150 

categorize their results in frameworks provided by organizations, which are officially recognized by governmental authorities. 

In this context, this study presents a concept for recurrent LCS calibration for real-world applications by using various 

performance metrics based on multiple novel test protocols. 
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We investigated different recalibration cycles for commonly used LCSs for NO2, O3, CO and PM2.5 using metrics and target 175 

values provided by EPA and CEN (Duvall et al., 2021a; Duvall et al., 2021b; CEN/TS 17660-1:2021; CEN/TS 17660-2:2024). 

We conducted the investigation during a one-year on-site collocation experiment in the city of Augsburg, Germany.  

 

This work is organized as follows. The section about materials and methods describes the infrastructure used for the collocation 

experiment (AELCM, AEMS) and the methodology behind our sensor calibration strategy and its evaluation. The “Results 180 

and discussion” section focuses on the environmental conditions and pollution concentrations observed during the collocation 

experiment, the performance of the introduced LCS calibration models under different recalibration cycles and the potential 

implications of our findings for LCS networks. The concluding remarks can be found in the last section. 

2 Materials and methods 

An in-depth investigation was done for LCSs measuring O3 and PM2.5. Due to test site limitations affecting the ability to 185 

classify LCSs for NO2 and CO according to CEN, these air substances could only be classified using the EPA test protocol for 

gas sensors. Two Atmospheric Exposure Low-Cost Monitoring (AELCM) boxes were mounted next to the Atmospheric 

Exposure Monitoring Station (AEMS) for air substances and meteorological variables. The boxes included the LCSs for the 

mentioned air pollutants while the latter provided the reference measurements in the present study. The AEMS is operated by 

the Chair for Regional Climate Change and Health at the University of Augsburg.  190 

2.1 AELCM sensor box  

Two advanced AELCM sensor boxes, denoted as AELCM009 and AELCM010, were used. The custom-built devices were 

developed by the Chair for Regional Climate Change and Health at the University of Augsburg. A detailed description and 

performance check of the first version of the low-cost measurement unit can be found in our previous study (Gäbel et al., 

2022). The upgraded AELCM units measured air quality and meteorological parameters, namely O3 (Alphasense OX-B431), 195 

NO2 (Alphasense NO2-B43F), CO (Alphasense CO-B4), PM2.5 (Sensirion AG SPS30) as well as humidity and air temperature 

(Bosch BME280) (Bosch Sensortec, 2015; Sensirion, 2020; Alphasense, 2024a, b, c). In this study the air pollution sensors 

were denoted as AS-B431, AS-B43F, AS-B4 and SAG-SPS30. Table 1 summarizes the specifications of the air sensors, with 

technical details taken from the manufacturers’ official data sheets (Sensirion, 2020; Alphasense, 2024a, b, c). The upgrade of 

the AELCM boxes with respect to the previous study was related to the switch to EC gas sensors from Alphasense, which 200 

exclusively measured the earlier mentioned gaseous air substances. The upgrades also involved the increase of the sampling 

frequency for each AELCM sensor from 10 seconds to every 4 seconds. A code rework on the Arduino microcontroller board 

made it possible to measure on a higher temporal resolution. 
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(a) (b) 
 225 

Figure 1. Photographs of the AEMS and AELCM units (AELCM009 and AELCM010), which are mounted on the fence next to the AEMS: 

(a) the stationary air and climate measurement station of the Chair for Regional Climate Change and Health, Faculty of Medicine, University 

of Augsburg; and (b) the housing and interior view of the engineered AELCM units. 

There were multiple reasons for the use of Alphasense sensors. In our earlier work (Gäbel et al., 2022), we investigated the 

digital gas sensors DGS-NO2 and DGS-CO from SPEC Sensors, based on EC gas sensor technology, as well as the MiCS-230 

2714 (NO₂) and MiCS-4514 (CO) sensors from SGX Sensortech, based on metal oxide semiconductor (MOS) technology. 

Our results showed that these air sensors exhibited no satisfactory capability to capture the observed concentrations at a 

measurement station, according to the coefficient of determination after sensor calibration (R²: 0.15 – 0.66). Therefore, we 

applied alternative LCSs to capture NO2 and CO. Overall, the SPEC DGS-O3 units performed satisfactorily (R²: 0.71 – 0.95) 

but showed high inter-sensor unit variability. For the calibrated MQ131 sensor outputs moderate to high R2 were determined 235 

(R2: 0.71 – 0.83). In contrast, the raw MQ131 sensor outputs showed generally poor correlation with the O₃ reference 

measurements. We concluded that EC gas sensor technology is suitable for detecting O₃ in an urban background environment, 

whereas MOS technology showed limited capability in the case of Winsen’s MQ131 sensor. Alphasense EC gas sensors are 

the most used and evaluated LCSs for measuring O3, NO2 and CO (Karagulian et al., 2019; Kang et al., 2022) and offer a good 

price-to-quality ratio (see Table 1). Kang et al. (2022) reported median R² values of 0.70, 0.68 and 0.82 for these pollutants, 240 

respectively. The values were derived by Kang et al. (2022) from studies that used Alphasense EC sensors in outdoor settings 

in conjunction with reference instruments. In our evaluation at an urban background station (Gäbel et al., 2022), the SAG-

SPS30 particulate matter (PM) sensor showed high correlative performance for calibrated data (R²: 0.90 – 0.94). Also, other 

outdoor studies showed satisfactory results for the SAG-SPS30 and its measurement of PM2.5 (R2: 0.72 – 0.87) (Vogt et al., 

2021; Roberts et al., 2022; Shittu et al., 2025). 245 
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Table 1. Overview of the specifications of air sensors that can be used in the AELCM unit. 

Measured 

Variable 
Sensor Manufacturer Abbreviation Range 

Noise a  

[Precision] 

Approx. 

Price 

(Euro) 2025 

O3 + NO2 OX-B431 Alphasense AS-B431 20 ppm 15 ppb 
 

71/84b 

NO2 NO2-B43F Alphasense AS-B43F 20 ppm 15 ppb 59/84b 

CO CO-B4 Alphasense AS-B4 1000 ppm 4 ppb 56/79b 

PM2.5 SPS30 Sensirion AG SAG-SPS30 1000 μg m-3 

[±10 µg m-3 at 0 to 100 

µg m-3] 

[±10 % at 100 to 1000 

µg m-3] 

30 

Tested with Alphasense ISB low noise circuit: ±2 standard deviations (ppb equivalent)a  

Additional cost for the Individual Sensor Board (ISB) low noise circuit for B sensorsb 

 

2.2 Collocation with AEMS 260 

The AELCM units were mounted on a fence right next to the AEMS, as shown in Fig. 1. The AEMS is a high-quality air and 

climate measurement station located next to the University Hospital Augsburg in Germany (48°23.04' N, 10°50.53' E). The 

station can be classified as an urban background station. Federal roads are in the south and east, respectively 850 meters and 

1200 meters located away from the station. A highway road is 3600 meters located away in the North. Industrial areas relative 

to the station location are located further away, in the south-east and the north-east of Augsburg. Regular station measurements 265 

of varying concentrations of CO, NO2 and PM2.5 due to local traffic and local industry depend highly on circulation patterns 

favouring an air flow from those sources towards the city as well as on the day and daytime, where factors like commuting 

play an important role.  

 

The regulatory-grade air measurement instruments are from the company HORIBA. Reference measurements of O3, NO2, CO 270 

and PM2.5 were conducted using the instruments APOA-370, APNA-370, APMA-370 and APDA-372, in that order. The 

HORIBA instruments for gaseous air pollutants are also used by the Bavarian Environment Agency for official air pollution 

monitoring in Bavaria (Bayerisches Landesamt für Umwelt, 2019). The weather station WS600-UMB mounted to the station 

provided measurements for meteorological variables. Further details about the AEMS can be found in the study of Gäbel et al. 

(2022).  275 

 

The collocation took place from January 2022 until January 2023. The model training period for the LCSs was between 11th 

of January 2022 till 10th of June 2022. The testing period for the LCS recalibration experiment started at the 10th of June 2022. 
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The experiment ended between the 6th and 11th of January 2023 depending on the LCS. The end is individual for each LCS 

model unit, because of individual missing values in the reference measurements for each air pollutant. The aim of the 

collocation was the assessment of the benefit of regular recalibrations against single calibration. The latter used solely the 

above-mentioned training period for model training. Performance metrics and their recommended target values given by novel 

test programs and test protocols by EPA and CEN were used to assess the influence of a recalibration procedure on LCS 285 

performance and to identify possible real-world applications for the investigated LCSs (Duvall et al., 2021a; Duvall et al., 

2021b; CEN/TS 17660-1:2021; CEN/TS 17660-2:2024).  

2.3 Data treatment 

The collocation experiment involving AELCM009 and AELCM010 started initially on the 10th of January 2022. The used 

LCSs have a stabilization phase after being powered on. Only after this stabilization phase are the LCSs eligible for 290 

measurements of a target pollutant (Gäbel et al., 2022). The stabilization phase observed in the LCS measurement outputs was 

shorter than one day. The first 24 hours of all LCS data were thus removed and not included in this study. The AS-B431 is an 

LCS which measures O3 and NO2 (Alphasense, 2024b). For the correct measurement of ambient O3 using an AS-B431 unit, 

data of a LCS measuring NO2 is required for the O3 calibration model. For this purpose, we used an AS-B43F unit. The 

modelled calibration functions for the estimation of O3 included by default the LCS output of both Alphasense sensor units. 295 

The Alphasense sensors provided voltages as measurement outputs by default. Like Bigi et al. (2018), we calculated the net 

voltage of every Alphasense sensor derived from the difference between the working and auxiliary electrodes. The calculated 

net voltages became an input for the modelled calibration functions next to the meteorological variables air temperature and 

relative humidity, which affect the LCS output as environmental interferences.  

 300 

The system time of the AELCM units (UTC) was adjusted to the system time of the AEMS (CET). Raw LCS and AEMS 

reference measurements were aggregated to hourly means for LCS calibration. This resulted in calibrated hourly values of gas 

and PM sensors. Calibrated PM2.5 sensor measurements were aggregated to daily means. Hourly means of gas sensor data and 

daily means of PM sensor data were required for the performance evaluation of LCSs according to the technical specifications 

(TSs) developed by CEN (CEN/TS 17660-1:2021, 2021; CEN/TS 17660-2:2024, 2024) and the test protocols developed by 305 

EPA (Duvall et al., 2021a; Duvall et al., 2021b). As a result, PM2.5 measurements provided by the AEMS were also aggregated 

to daily means for evaluation. The missing values in the air pollution reference data were caused by regular maintenance, 

device malfunctions or due to power grid tests at the University Hospital. The missing values in the meteorological data were 

due to device malfunctions of the weather station. The LCS measurement data for each AELCM unit was nearly complete, 

with very few missing values, similar to the data in Gäbel et al. (2022). 100 % and at least 80 % of the data had to be available 310 

for the hourly aggregation of reference measurements of gaseous air pollutants and meteorological variables, respectively. For 

the calculation of the key performance metric in the TS by CEN (CEN/TS 17660-2:2024, 2024), the minimum data capture of  

the SAG-SPS30 was set to 90 %. Therefore, the daily means of PM2.5 resulting from reference and LCS data were only valid 
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if at least 90 % of the hourly averages were available within a 24 h period. Note that the data completeness criterion is less 340 

strict in the PM sensor test protocol by EPA. There, the daily mean PM2.5 concentration is calculated on at least 75 % of hourly 

averages within a 24 h period (Duvall et al., 2021a). The SAG-SPS30 for the measurement of PM provides outputs in mass 

concentrations by default. 

 

For gaseous air constituents the devices in the AEMS and the model-calibrated LCS devices provided measurements in the 345 

unit parts per billion (ppb). Hence for the calculation of mass concentrations the hourly aggregated meteorological 

measurements of the integrated weather station of the AEMS were used. Mass concentrations were needed for the performance 

evaluation of ambient air quality sensors for gaseous pollutants following the TS developed by CEN (CEN/TS 17660-1:2021, 

2021). We solely used low-cost meteorological data from the Bosch BME280 sensors as input for the calibration models (Sect. 

2.4). To calculate mass concentrations from the output of the calibration models we did not rely on BME280 meteorological 350 

data but used the weather station data. The former are highly biased due to solar radiation. The bias stems from solar heating 

of the AELCM units, which could not be mitigated by the integrated fan. The fan causes an exchange of air between the inside 

and outside yet does not reduce the heating effect. It is planned to equip the AELCM units with radiation shields in the future 

to reduce the effect of solar radiation on the low-cost meteorological measurements.  

2.4 LCS calibration and model tuning 355 

We built and evaluated four regression models (calibration models) for each LCS to estimate air pollution levels based on their 

data output (hourly means), accounting for environmental influences on sensor output and reference measurements (AEMS). 

The regression models were Multiple Linear Regression (MLR), Ridge Regression (RR), Random Forest (RF) and Extreme 

Gradient Boosting (XGB). Moving forward we will call these calibration models. Every calibration model consisted of a target 

variable to be predicted, and features used for prediction. As the target we defined the ambient air pollutant concentration of a 360 

specific air substance (AEMSO3, AEMSNO2, AEMSCO, AEMSPM2.5). As features used for prediction, we used the raw LCS 

output. The LCS output can be classified into the net voltages measured by each Alphasense sensor (VOX10, VOX09, VNO210, 

VNO209, VCO10, VCO09), the mass concentrations measured by each Sensirion PM sensor (SPS3010, SPS3009) and the air 

temperatures (T10, T09) and relative humidities (RH10, RH09) provided by each BME280. 

 365 

We chose MLR models because MLR is still the most common basic approach in the literature to develop calibration models 

for LCSs (Karagulian et al., 2019). In this paper, we used MLR with the setup as in Gäbel et al. (2022) extended by an 

interaction term according to Bigi et al. (2018) as the reference calibration approach next to machine learning approaches, i.e. 

RF (Breiman, 2001) and XGB (Chen and Guestrin, 2016). Also RR was applied (Friedman et al., 2010), which includes an 

approach to adjust for collinearity between model features. For the development of the MLR models, we considered the usual 370 

MLR model assumptions and checks, including the inspection of the residuals as well as the findings from the work of Bigi et 

al. (2018) and Hasan et al. (2023). In view of the findings of Bigi et al. (2018), we have used net voltages and a term for the 
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interaction between net voltages and air temperature as features. Furthermore, Hasan et al. (2023) found a calibration model 

performance improvement using O3 and NO2 sensors, when they added the output of a low-cost CO sensor as a feature. We 

took both findings into account for our own calibration models. The selected features for every calibration model can be found 

in Table 2 (O3 and PM2.5) and in Table S53 (NO2 and CO). 

 410 

Table 2. Model variables for the development of the calibration functions based on MLR, RR, RF and XGB.  

Calibration Model 
O3 Model 

Features 

PM2.5 Model 

Features  

[Target] 

MLR VOX, VNO2, VCO, RH, T, VOX * T 
SPS30, RH, T, log(SPS30) 

[log(AEMSPM2.5)]* 

RR VOX, VNO2, VCO, RH, T SPS30, RH, T 

RF VOX, VNO2, VCO, RH, T SPS30, RH, T 

XGB VOX, VNO2, VCO, RH, T SPS30, RH, T 

* This target is shown because it is transformed in the MLR calibration model configuration. 

 

 415 

The development of the calibration models for the LCS data of both AELCM units using RF, XGB and RR had the following 

steps: (1) Pre-processing of data provided by the AEMS (Reference) and AELCM units (LCSs) according to Sect. 2.3; (2) 

Tuning of selected model hyperparameters during the first 5 months of the collocation period using the repeated holdout 

method (10 evaluation periods), random search as search strategy and the root-mean-squared error (RMSE) as performance 

metric; (3) Applying the best hyperparameter configuration to the calibration model, and training it using a single calibration 420 

period (first 5 months of the collocation period) or an extended calibration period (further training). For step (2) and step (3) 

the package mlr3 in the statistics software R was used (Lang et al., 2019). The mlr3 package and mlr3 ecosystem provide a 

framework for regression tasks and a unified interface for working with various learning algorithms, including the calibration 

models used in this work. The selected and tuned model hyperparameters for RF, XGB and RR can be found in the supplement 

as well as more detailed information on the calibration models and used R packages (Table S3). 425 

 

The search strategy random search describes a random value selection in a pre-defined interval for each to be tuned model 

hyperparameter in an independent manner (Bergstra and Bengio, 2012; Becker et al., 2024). We selected random search as the 

search strategy for its simplicity and the possibility to use mixed search spaces (using numeric and integer hyperparameters) 

(Becker et al., 2024). Becker et al. (2024) also mention that random search is often the better choice to produce more unique 430 

values per hyperparameter compared to grid search under the circumstance that certain hyperparameters only offer a minimal 
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impact on model performance compared to others. Therefore, random search enables a meaningful hyperparameter tuning for 

multiple models and LCSs in a reasonable timeframe. 450 

 

An out-of-sample (OOS) method following a repeated holdout strategy (Gäbel et al., 2022) was used to identify calibration 

models with good performance and optimally tuned hyperparameters, as estimated by their performance on the holdout data. 

Summarizing this method, a random point t in time (e.g., 30 April 2022 12:00:00 CET) of the time series ts was chosen to 

separate the training and evaluation data. The previous window with reference to t comprising 60 % of ts was used for training 455 

and the following window of 10 % of ts was used for testing. For 10 repetitions, we received 10 randomly chosen dates t, 

which separated the training and evaluation sets. The sizes of the training and evaluation sets depended on the length of the 

available LCS time series and reference data. As mentioned in step (2), for the hyperparameter tuning process we used the first 

5 months of data per LCS during the collocation period. Finally, considering the average RMSE based on 10 evaluation periods, 

we chose the final hyperparameter configuration for each LCS calibration model. The hyperparameter tuning process was 460 

unique for each LCS calibration model. No generalized model for a specific sensor unit was developed. 

2.5 Key aspects for exploring a pairwise calibration strategy 

LCSs are measurement instruments that require regular upkeep to ensure reliable performance. This necessitates accounting 

for ongoing post-deployment maintenance, including recalibration (Peltier et al., 2021; Concas et al., 2021). However, 

calibration of LCSs requires substantial effort and is resource-intensive in general. Carotenuto et al. (2023) concluded that the 465 

comparison of LCS measurements against those from official reference stations for in situ calibration is often recommended 

in the scientific literature. Continuous and independent access to high quality equipment (e.g. laboratory, monitoring station) 

for reference measurements would be ideal to establish and maintain low-cost air measurement networks but it is rather difficult 

to achieve. Therefore, maintainers of LCS networks are either forced to rely on their established pre-deployment calibration 

functions (single calibration) or to find alternative, advanced network calibration methods to calibrate sensors in situ on a 470 

regular basis. Both usually rely on the measurement infrastructure of a third party in some form (e.g. local environmental 

agency). Alternative network calibration methods are for instance blind calibration, opportunistic and collaborative calibration 

and calibration transfer (Maag et al., 2018; Concas et al., 2021), which increase the level of methodical complexity compared 

to a more traditional pairwise calibration strategy (Delaine et al., 2019). The latter, which can take the form of collocation 

calibration, is usually deemed unfeasible as a network calibration strategy (Mueller et al., 2017; Broday et al., 2017). 475 

 

Mueller et al. (2017) argued, that a collocation calibration using a reference measurement station is time consuming and that 

the infrastructure for that approach must be available in the first place. Broday et al. (2017) highlighted the impracticality of 

relying on collocations for regular LCS calibration and that in situ calibration methods could make the widespread use of LCS 

air pollution networks more likely. Furthermore, regular recalibration using a collocation calibration hinders a continuous data 480 

collection in situ, because in situ measurements are interrupted to calibrate LCSs (Broday et al., 2017; Kizel et al., 2018). In 
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this study we explore these issues through a calibration methodology, which involves a pairwise calibration strategy. Moreover, 505 

we analysed if less but more regularly calibrated LCSs and less complex calibration methods (e.g. collocation) using a 

continuous stream of high-quality reference measurements can be an option to establish easier to manage (but smaller) LCS 

networks for long-term in situ measurements. 

 

In most air sensor studies aiming at establishing a long-term low-cost air quality monitoring network, a pairwise calibration 510 

strategy is not seen as a viable strategy due to the focus on establishing spatially dense LCS networks. The resources required 

for pairwise calibration are often not available and the method is regarded as resource-intensive. Consequently, current and 

likely future studies will not explore this method in the same depth as in this study. This tendency is seen in the main 

recommendations delivered by other scientific papers (Carotenuto et al., 2023). Indeed, a continuous data collection in situ is 

an obstacle when a collocation calibration is applied. This can be avoided by using a pair of LCS devices in situ. We  examined 515 

the use of  two AELCM units with the same sensor configuration for one location. One AELCM unit, which requires 

recalibration can be replaced with its partner AELCM unit. It must be noted that, while continuous, it creates a somewhat 

inhomogeneous measurement time series because the same location is alternately measured with two AELCM units. 

 

2.6 Single training vs. extended training 520 

A single training (ST) period  represented a continuous time frame for model calibration. In this work an extended training 

(ET) period  referred to a non-continuous time frame for model calibration, which was longer than the former. Non-continuous 

meant, that there were gaps of defined length between blocks of continuous data. Together these blocks served as the training 

data used for training the final calibration model. We also investigated the influence of the length of gaps on the model 

performance. As a baseline for reference, we used the model trained on the single, shorter training period. This approach helped 525 

us to examine the overall benefit of longer training periods on model performance given that sensors degrade over time. Also, 

we investigated if shorter gaps influence the model performance considering the seasonal variability of air pollution and that 

sensor performance can vary with season due to time-varying effects of environmental interferences.  
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Figure 2. Schematic representation of the pairwise calibration strategy and calibration model development as a flow diagram (top) and a 545 
time series scheme (bottom) using two LCS measurement systems (AELCM009 and AELCM010). The ST period (11 January–10 June 

2022) and the ET period  as well as the numbered one-month test periods (TPs) for each LCS measurement system are shown. The 

thickness of the coloured lines in the flow diagram visually represents the amount of training data used for ET of the calibration model 

compared to ST. 
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The outline of the approach is shown in Fig. 2. Since the primary goal of an air quality monitoring system equipped with LCSs 

is to collect continuous measurements from a location outside a station site used for collocation calibration, we simulated the 

use of two calibrated LCS measurement systems alternately in the field. These two LCS measurement systems were 560 

represented through AELCM009 and AELCM010. Using both AELCM units, we received a continuous time series of in situ 

air pollution measurements. These in situ measurements are represented through the test periods (TPs) in Fig. 2. By merging 

the blocks of continuous data (TP1 to TP7), we created a continuous time series in the field. Individual calibration models for 

each AELCM unit were trained using a ST period or an ET period. ST used approximately 5 months of hourly reference data 

and LCS data to train a final calibration model for each individual LCS. ET offered more training data across different seasons, 565 

which reflects the aspect of regular LCS recalibration using reference monitors at a collocation site to guarantee long-term 

consistent data quality. The ST served as a reference to investigate whether there is an actual benefit in extending the training 

period.  

 

Figure 2 shows ET lengths of 1 month and the testing data blocks. We experimented with a length of 1, 2 and 3 months to 570 

study the influence on the model performance. In a LCS network setting, an ET length of 3 months would mean, that an 

AELCM unit would take in situ measurements for 3 months before being replaced by another calibrated AELCM unit. 

Therefore, the former unit can be relocated to the collocation site for 3 months to extend its training data and to quality check 

its data before switching places again with the latter unit. Please note, that we were restricted by the overall collocation 

campaign length of 1 year. Selecting 5 months for the ST period, as shown in Fig. 2, resulted in seven months being available 575 

to fit the following data blocks, which were defined by the ET lengths. Two- and three-month ETs created a remainder of 1 

training month at the end of the measurement campaign, which we used as well for the ET to not waste training data.  

 

For the ET setup all training data blocks were employed for training a calibration model. Thus, we performed an a posteriori 

evaluation of the introduced pairwise calibration strategy including the introduced calibration models and ET lengths based on 580 

different performance metrics. 

2.7 Performance metrics and target values 

To quantify the impact of using an ET approach compared to a ST approach, we mostly applied commonly used and 

recommended performance metrics in LCS studies (Karagulian et al., 2019; Concas et al., 2021) and target values provided by 

EPA and CEN (Duvall et al., 2021a; Duvall et al., 2021b; CEN/TS 17660-1:2021; CEN/TS 17660-2:2024). These performance 585 

metrics are the RMSE, R2, mean absolute error (MAE), relative expanded uncertainty (REU), spearman rank correlation (Rs) 

as well as the regression slope and intercept. Here, a simple linear regression between model-calibrated LCS data and AEMS 

reference data provide the slope and intercept (Duvall et al., 2021a; Duvall et al., 2021b). Most of the mentioned metrics are 
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commonly used to describe LCS calibration model performance in regards of bias, noise, linearity and error (Karagulian et al., 

2019; Duvall et al., 2021a; Duvall et al., 2021b; Yatkin et al., 2022; Diez et al., 2022).  

 

We analysed the consequences of ET by using a cohesive view of performance metrics and target values, introduced through 605 

state-of-the-art test programs. A major challenge for potential end-users of LCSs is to interpret the calculated performance 

metrics and thus to infer if a LCS is a good fit for an intended application (Diez et al., 2022). Recognized organizations linked 

with governmental bodies like CEN and EPA started to develop frameworks in the form of test protocols, which can be used 

to check the suitability of LCSs for air quality monitoring applications. We used the performance metrics and associated 

categorizations given by state-of-the-art test programs as a reference to contextualize our study results. However, we emphasize 610 

that due to methodological differences, our testing framework for air sensors does not fully align with those of EPA and CEN.  

 

So far, the EPA offers target values for O3, NO2, CO, SO2, PM2.5 and PM10 air sensors through their testing protocols. According 

to EPA, the introduced performance metrics and their corresponding target values are the result of the current state of 

knowledge, based on, for example, literature reviews, findings from other organizations that conduct routine sensor evaluations 615 

and EPA’s own expertise in sensor evaluation research (Duvall et al., 2021a; Duvall et al., 2021b). The current EPA test 

protocols include target values for the RMSE, R2, regression slope, intercept, standard deviation and coefficient of variation. 

We used most of these target values in our benchmark experiment to assess how our pairwise calibration strategy influences 

the recognition of the presented LCSs as NSIM devices as defined by EPA. In this study, we did not include the standard 

deviation or coefficient of variation. Since we used only two LCSs per air pollutant, our experimental setup did not fulfil the 620 

requirements to calculate both performance metrics according to EPA’s test protocols. 

 

The REU is a performance metric, which is used for the assessment of the compliance of data quality objectives (DQOs) set 

in the European Air Quality Directive (AQD) 2008/50/EC (Directive 2008/50/EC, 2008; Yatkin et al., 2022). The REU is used 

in LCS studies (Spinelle et al., 2015; Castell et al., 2017; Cordero et al., 2018; Bigi et al., 2018; Liu et al., 2019; Bagkis et al., 625 

2021; Ratingen et al., 2021; Bagkis et al., 2022), yet it is not a common sight to describe measurement uncertainty (Karagulian 

et al., 2019). While LCSs currently cannot meet the strict requirements for reference measurements in the AQD, their 

measurements can at least meet less strict DQOs. For this reason, LCSs can provide valuable supplemental information like 

indicative measurements next to regulatory fixed measurements provided by air quality stations for the assessment of air 

quality. This is acknowledged through the recently developed European TSs by CEN for gas sensors and PM sensors (CEN/TS 630 

17660-1:2021, 2021; CEN/TS 17660-2:2024, 2024). Both CEN/TSs present classification schemes for LCSs, which respect 

the requirements for indicative measurements (class 1) and objective estimation (class 2) defined in the AQD Directive 

2008/50/EC (2008). Furthermore, the CEN/TSs offer a classification for LCSs, being out of scope of the DQOs set in the 

AQD. Those LCSs fulfil more relaxed performance criteria and provide non-regulatory measurements (class 3). For instance, 

LCSs classified as class 3 air sensors can be applied in citizen science studies or can be used for educational purposes to raise 635 
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environmental awareness. Finally, to classify the LCSs as class 1, class 2 or class 3 air sensor devices, we only used the REU 

estimated at the air pollutant limit values (LVs) in accordance with CEN/TSs (CEN/TS 17660-1:2021, 2021; CEN/TS 17660-645 

2:2024, 2024). The LVs were obtained from CEN/TSs (CEN/TS 17660-1:2021, 2021; CEN/TS 17660-2:2024, 2024). The 

DQO of class 1, class 2 and class 3 correspond to specific REUs defined in the CEN/TSs for each air pollutant (Tables S1 and 

S2). Recently, the global air quality guidelines were updated by the World Health Organization (WHO) based on the latest 

systematic reviews of exposure-response studies (WHO, 2021). The European Union Parliament and the European Council 

agreed to a new revised AQD because of this development (Directive (EU) 2024/2881, 2024). The latest revised Directive 650 

(EU) 2024/2881 aligned its standards closer to the latest WHO air quality guidelines and introduced stricter LVs and updated 

DQOs for indicative measurements and objective estimation. Please note, that the presented CEN/TSs might change in the 

future to reflect the changes in Directive (EU) 2024/2881. It should also be noted that the LCS evaluation was performed only 

at a single urban background site (AEMS). The TSs by CEN call for evaluations at different sites, for instance, testing NO2 

sensors at traffic and background sites. To visualize the REU in the statistics software R we followed the study of Diez et al. 655 

(2022) as a reference, who made their code and data available. Furthermore, we used different smoothers (GAM, LOESS) in 

the REU figures depending on the sample size of the calibration data (Figs. 9, 10, 11, 12). 

 

We calculated the REU according to the Guide for the Demonstration of Equivalence (GDE) following the introduced 

CEN/TSs (GDE, 2010; CEN/TS 17660-1:2021, 2021; CEN/TS 17660-2:2024, 2024). The REU is calculated through Eq. (1): 660 

 

𝑅𝐸𝑈(𝑦𝑖) =  
2( 

𝑅𝑆𝑆

(𝑛−2)
−𝑢2(𝑥𝑖)+[𝑏𝑜+(𝑏1−1)𝑥𝑖]2)

1 2⁄

𝑦𝑖
 𝑥 100,        (1)   

with  

𝑅𝑆𝑆 = ∑(𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖)2,           

 665 

where 𝑏0 is the intercept and 𝑏1 the slope of the orthogonal regression of 𝑦𝑖  against 𝑥𝑖 . 𝑥𝑖  are the reference measurements 

given through the measurement instruments of the AEMS and 𝑦𝑖  are the model-calibrated LCS measurements provided by the 

AELCM units, which together form 𝑛  pairs of observation data. RSS is the residual sum of squares resulting from the 

orthogonal regression. 𝑢 describes the uncertainty of the AEMS measurement instrument, which was obtained for every AEMS 

measurement instrument through the CEN/TSs (CEN/TS 17660-1:2021, 2021; CEN/TS 17660-2:2024, 2024). 670 

3 Results and discussion 

3.1 Air pollution and meteorological situation 

The environmental conditions and pollution concentrations based on hourly means are provided in Table 3. In our work, every 

LCS showed the premise of being a good-quality source of information according to the Rs (Table 3). We used the hourly 
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means of the raw output of the LCSs and of the reference station AEMS to calculate Rs. In view of the observed gas 

concentration ranges in Table 3 and the LVs in the CEN/TS, it can be inferred that the LVs for CO (10 mg m-3) and NO2 (200 

µg m-3) were not reached at the measurement site. Thus, we could not classify the sensors according to CEN/TS 17660-1:2021. 690 

Classifications according to CEN/TS 17660-1:2021 and CEN/TS 17660-2:2024 were possible for O3 and PM2.5 since the hourly 

LV for O3 (120 µg m-3) and the daily LV for PM2.5 (30 µg m-3) were reached in their respective TPs. Given the observed 

concentration ranges for each air pollutant at our urban background collocation site (Table 3), we decided to do an in-depth 

analysis focussing on the O3 and PM2.5 LCSs in this study. Nevertheless, the analytical results for the employed CO and NO2 

LCSs are provided in the supplement of this study. This is because the thresholds for the averaged concentrations of each air 695 

pollutant at the urban background collocation site were met at least once, as recommended by EPA (Duvall et al., 2021a; 

Duvall et al., 2021b). The recommended thresholds are 1 h average concentrations of 60 ppb for O₃, 30 ppb for NO₂, and 500 

ppb for CO. The recommended threshold for the 24 h average is 25 µg m-3 for PM2.5. The EPA suggests that these averaged 

concentrations must be reached at least once during a (30-day) TP (Duvall et al., 2021a; Duvall et al., 2021b). 

 700 

Table 3. Statistics based on the hourly means of the different atmospheric variables measured by the AEMS from January 2022 to January 

2023. For the calculation of the Rs all raw hourly LCS data for every individual sensor are used from AELCM009 and AELCM010. The 

AEMS data are used as reference for the correlation. 

Measured 

Variable 
Timespan Min. 

5th 

Percentile 

25th 

Percentile 
Mean 

75th 

Percentile 

95th 

Percentile 
Max. 

Rs 

AELCM 

009/010 

O3 (ppb) 
11/01/22– 

11/01/23 
0.03 1.07 12.19 26.43 37.97 58.42 81.87 0.75/0.68 

NO2 (ppb) 
11/01/22– 

10/01/23 
0.02 1.01 2.62 7.23 10.10 19.99 38.54 0.75/0.77 

CO (ppb) 
11/01/22– 

10/01/23 
74.35 94.53 117.83 181.46 213.52 368.11 1013.46 0.85/0.83 

PM2.5 (µg m-3) 
11/01/22– 

06/01/23 
0.14 1.78 4.41 9.72 12.92 24.91 153.22 0.95/0.95 

Temperature 

(°C) 

11/01/22– 

11/01/23 
-10.02 -1.39 4.97 11.29 17.14 24.98 35.65 0.99/0.99 

Relative 

Humidity (%) 

11/01/22– 

11/01/23 
18.69 35.31 58.24 71.48 87.29 92.60 96.33 0.91/0.96 

Pressure (hPa) 
11/01/22– 

11/01/23 
937.2 949.1 958.7 962.5 966.9 973.8 983.1 – / – 

 

3.2 Baseline single training results 705 

We evaluated the calibration model output with respect to the training period and TP of each LCS targeting a specific air 

substance. The performance metrics in Table 4 highlight the general robustness and overall good performance of the found 

calibration models. All LCS models for O3 and PM2.5 for both AELCM boxes were able to reflect well the patterns in the 
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reference data. For the O3 calibration models, R2 ranged from 0.92 to 1.00 during the training period and from 0.93 to 0.98 725 

during the TP. For the PM2.5 calibration models, R2 ranged from 0.93 to 0.97 during the training period and from 0.84 to 0.93 

during the TP. Considering the sensor error target by EPA (RMSE ≤ 5 ppb), it was reached for every O3 sensor calibration 

model applied to the training period (RMSE: 0.80–4.35 ppb). It was mostly reached or at least approached during the TP 

(RMSE: 3.62–5.84 ppb). Instead of hourly means, the recommended performance metrics and target values by EPA for PM2.5 

are based on 24 h averages (e.g. RMSE ≤ 7 µg m-3). Nevertheless, given the results for the model-adjusted hourly means of 730 

the PM2.5 air sensor output for the training period (RMSE: 1.45–2.51 µg m-3) and the TP (RMSE: 2.04–3.02 µg m-3), the PM2.5 

sensor error target was met for each calibration model if this criterion is applied to hourly means. 

   

While the O3 sensor calibration models based on the machine learning techniques RF and XGB performed the best in regards 

of R2, MAE and RMSE in the training period, it is not the case in the TP. Table 4 shows the results of a single calibration using 735 

different calibration models, which are trained on data from January to June 2022 (ST period). The tree-based algorithms 

represented through RF and XGB have the constraint, that they are bound by their calibration space (Bigi et al., 2018). Tree-

based models can only estimate within the bounds of the calibration space (Bigi et al., 2018), which is defined by the training 

dataset, and show poor extrapolation ability  (Yu et al., 2024). MLR and RR do not have a constraint like tree-based models 

in regards of calibration space. Given the described limitations of tree-based models, it is understandable that their performance 740 

decreases more strongly from the training to the test period compared with the MLR and RR approaches. MLR and RR 

calibration models seem to be an appropriate choice for low-cost O3 air sensors in a ST setup. Apparently, there is no 

meaningful performance benefit in using tree-based calibration models given the calculated performance metrics for the TP in 

Table 4. The same holds true for PM2.5. Given that a training period spans several months, MLR and RR calibration models 

should be used instead of tree-based models, if the goal is to calibrate the chosen O3 and PM2.5 LCSs in a ST setup. This is 745 

further explained in section 3.3. 

 

Identical LCS sensor units like the calibrated AS-B431 and SAG-SPS30 performed differently at the same location when 

inspecting the calculated R2, RMSE and MAE values. The raw output data produced by the AS-B431 for O3 (net voltages) and 

the SAG-SPS30 for PM2.5 (mass concentrations) of both AELCM boxes were almost perfectly correlated (R2 ≥ 0.97) during 750 

the collocation period. This implies changes in sensor signals were responses to changing environmental conditions (e. g. air 

pollution, ambient temperature and humidity) and not related to sensor-to-sensor variability. Bittner et al. (2022) reported the 

same behaviour for Alphasense EC gas sensors. Performance differences between the same LCS model units after calibration 

are possibly related to the varying performance of the other sensors used in the LCS calibration models.  

 755 
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Table 4. Performances of LCS calibration models (MLR, RR, XGB, RF) for O3 and PM2.5 for each AELCM box using hourly means. Results 855 
are for the O3 training dataset (11 January, 19:00:00–10 June 2022, 18:00:00) and O3 test dataset (10 June 2022, 19:00:00–11 January 2023, 

17:00:00) as well as for the PM2.5 training dataset (11 January, 19:00:00–10 June 2022, 18:00:00) and PM2.5 test dataset (10 June 2022, 

19:00:00–7 January 2023, 00:00:00). 

Model target Training R2 Training MAE (ppb) Training RMSE (ppb) Test R2 Test MAE (ppb) Test RMSE (ppb) 

O3 (MLR, 009) 0.98 1.57 1.97 0.98 2.49 3.62 

O3 (MLR, 010) 0.93 3.05 3.84 0.93 4.05 5.13 

O3 (RR, 009) 0.97 2.00 2.52 0.97 2.98 3.91 

O3 (RR, 010) 0.92 3.51 4.35 0.94 3.69 4.81 

O3 (XGB, 009) 0.99 0.84 1.07 0.97 2.97 3.75 

O3 (XGB, 010) 0.99 1.44 2.08 0.93 4.21 5.84 

O3 (RF, 009) 1.00 0.59 0.80 0.96 3.42 4.51 

O3 (RF, 010) 0.99 

 

0.80 1.08 0.93 3.87 5.12 

 Training R2 Training MAE (µg m-

3) 

Training RMSE (µg 

m-3) 

Test R2 Test MAE (µg m-3) Test RMSE (µg m-3) 

PM2.5 (MLR, 009) 0.95 1.22 1.90 0.92 1.54 2.69 

PM2.5 (MLR, 010) 0.96 1.18 1.85 0.93 1.13 2.04 

PM2.5 (RR, 009) 0.93 1.76 2.48 0.89 1.82 2.63 

PM2.5 (RR, 010) 0.94 1.58 2.27 0.91 1.38 2.04 

PM2.5 (XGB, 009) 0.94 1.46 2.29 0.84 1.55 2.97 

PM2.5 (XGB, 010) 0.95 1.37 2.51 0.85 1.39 3.02 

PM2.5 (RF, 009) 0.97 0.97 1.56 0.87 1.37 2.85 

PM2.5 (RF, 010) 0.97 0.90 1.45 0.89 1.06 2.35 

 

3.3 Extended training results and EPA performance targets  860 

To assess seasonal differences in air sensor performance we calculated the suggested performance metrics by EPA on a 30-

day basis, namely the RMSE (error), R2 (linearity), slope (bias) and intercept (bias). The EPA also provided target values for 

each of these performance metrics, which are highlighted in red in the circular bar plots (e.g. Fig. 3). We used the absolute 

value of the calculated intercept and the difference between the calculated model slope and the ideal slope of 1. We did this 

for each calibration model to improve the interpretability of the figures. The original intercepts and slopes can be found in the 865 

supplement (Tables S29–S52). Circular bar plots are a visual tool to evaluate the benefit of using the ET instead of the ST 

approach to enhance the qualitative and quantitative validity of calibrated LCS output. In addition, they enhance the visual 

distinction between the different calibration techniques, i.e. MLR, RR, and the machine learning algorithms RF and XGB. 

 

For the most part, O3 sensor calibration model performance benefitted from an ET. According to Fig. 3, Fig. 4 and Fig. 5, the 870 

performance gains highly varied in magnitude depending on the performance metric (Intercept, slope, RMSE, R2), ET length 

(1 month to 3 months) and calibration model (MLR, RR, RF and XGB). For ETs of 1 month, 2 months and 3 months and for 

each calibration model both calibrated O3 sensors correlated quite well with the hourly reference data during summer, autumn 

and winter. This is reflected through R2  (R2 (ST): 0.79–0.98; R2 (ET): 0.86–0.98). Only once the target value range for R2 was 
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missed, which was for AELCM010 and the RF calibration model in TP5 for the ST variant. But an ET resulted in reaching the 

target value range for R2 in TP5 for this calibration model. To summarize, a ST period of 5 months was almost sufficient to 

reach the target value range for R2 (R2 ≥ 0.80) for each TP and O3 sensor calibration model. High R2 values for the calibrated 

O3 sensor units of the same type (AS-B431) for periods associated with Northern Hemisphere winter and warmer months 895 

(“ozone season”) are in agreement with other LCS studies (Zimmerman et al., 2018; Zauli-Sajani et al., 2021). For all ET 

configurations, the performance of MLR and RR in terms of R2 was comparable to the RF and XGB machine learning 

techniques.  

 

We found a distinct difference in gas sensor performance for R2 between warmer periods and colder periods for the employed 900 

NO2 and CO sensors, which implied the existence of limiting factors in sensor calibration. Generally, TP4 ( September) was 

the first TP, where NO2 and CO sensor calibration models entered the R2 target range recommended by EPA for NO2 sensors 

(R2 ≥ 0.70) and CO sensors (R2 ≥ 0.80) (Figs. S5, S6, S7, S12, S13, S14). In the following months (TPs), NO2 and CO sensor 

calibration models were available, which performed in the boundaries of their targeted R2 range. We assume for TP1 till TP3, 

that an interplay between environmental interferences and limited sensor sensitivity at lower ambient concentrations of NO2 905 

and CO played a crucial role for the overall low sensor performances in those warmer periods. The findings in other studies 

support this assumption (Cross et al., 2017; Hagan et al., 2018). The mean reference values for NO2, CO, air temperature and 

relative humidity for each TP can be found in the supplement (Figs. S3 and S4). In the warmer periods, MLR and RR LCS 

calibration models performed notably worse for NO2 sensors, as reflected in the R2 values. The increased air temperatures at 

low pollutant concentrations during these periods might have introduced non-linearities to the sensor signals (Cross et al., 910 

2017; Hagan et al., 2018). Consequently, non-linear models (RF and XGB) outperformed linear models (MLR and RR).  

 

An extension of the training period for the O3 and PM2.5 calibration models had overall only a small impact on R2, when 

comparing the LCS calibration models between their ST and ET variants (Figs. 3, 4, 5, 6, 7, 8). R2 values only occasionally 

experienced stronger positive changes between at least 0.05 and 0.09 through ET for some TPs and mainly for the O3 LCSs 915 

and the RF and XGB calibration models (Tables S29–S52). The correlative performance of the O3 and PM2.5 calibration models 

for ST were already quite high. The calibrated PM2.5 sensors correlated quite well with the daily reference data during summer, 

autumn and winter (R2 (ST): 0.76–0.99; R2 (ET): 0.79–0.99). This was observed for ETs of 1 month, 2 months and 3 months 

and for each calibration model. A ST period of 5 months was sufficient to reach the target value range for R2 (R2 ≥ 0.70) for 

each TP and PM2.5 sensor calibration model. High R2 values for the calibrated PM2.5 sensor units (SAG-SPS30) for periods 920 

associated with Northern Hemisphere winter (heating season) and warmer months are in agreement with other LCS studies. In 

these studies the same sensor type was factory-calibrated or model-calibrated (Vogt et al., 2021; Gäbel et al., 2022; Shittu et 

al., 2025). Distinctive benefits for applying an ET to calibration models were rather identified for performance metrics, which 

describe the bias and error.  

 925 
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Using ST, our LCS calibration models were trained on data between January and June. The TPs TP1 till TP3 (June–

September) in Fig. 3, Fig. 4 and Fig. 5 are the most relevant TPs for the assessment of the performance (Intercept, slope, 

RMSE) of our O3 sensor calibration models. This is due to elevated O3 concentrations and the health relevance of O3 during 

these periods in the Northern Hemisphere  (Hertig et al., 2019; Jahn and Hertig, 2021). TP1 is the only period, where we can 

see a change in performance of LCS calibration models for a single O3 sensor (AELCM010) depending on ET length over all 1035 

introduced ET lengths (ETs of 1, 2 and 3 months). 

 

Overall, the bias worsens with ET lengths of 2 months and 3 months. The most pronounced degradation of intercept and slope 

can be seen for RF and XGB. A reduction of the amount of summer training data provided by AELCM010 leads to a 

meaningful reduction of the calibration space for the XGB and RF calibration models. While the XGB calibration model with 1040 

ETs of 1 month almost reached the intercept target value range (|Intercept| ≤ 5 ppb) in TP1, not a single calibration model even 

approached the target value range with other ET lengths. The RF and XGB calibration models using only ST and ETs of 3 

months were outside the slope target value range (∆Slope ≤ 0.2) in TP1. The decrease in performance was also reflected in a 

decrease of the number of calibration models, which were within the target value range for the RMSE (RMSE ≤ 5 ppb). Most 

calibration models did not achieve the target RMSE range during TP1. At most two models achieved a sufficiently low RMSE 1045 

in TP1, both using ET lengths of 1 month (XGB and RF). Considering all calculated performance metrics derived from Fig. 

3, Fig. 4 and Fig. 5 in TP1, the XGB calibration model with ETs of 1 month was almost able to reach all target values provided 

by EPA. Looking at TP1 and TP3 with respect to bias and error, in general XGB and RF calibration models suffered the most 

under a lack of training data (ST variant) and a loss of summer training data due to longer ETs. The former scenario reflects 

an absence of recalibration, whereas the latter reflects a reduced recalibration cycle (two- and three-month variants). 1050 

Comparing the MLR and RR calibration models with XGB and RF calibration models for AELCM010 in terms of bias and 

error in TP1, TP2 and TP3, it becomes evident that applying ET to the machine learning techniques can yield substantial 

improvements. In contrast, the absence of ET may result in markedly higher bias and error. In these periods the impact on bias 

reduction and error reduction due to an ET is more pronounced for the RF and XGB calibration models related to the O3 sensor 

employed with AELCM010.  1055 
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Figure 3. Performance metrics of the single O3 LCS in each AELCM box, calculated from hourly mean values after calibration. Metrics are 

presented for each calibration model, TP, and calibration variant (ST and ET). Models are ordered by performance from highest to lowest in 1095 
each period. The ET is characterized by the one-month variant for each AELCM box. Values highlighted in red describe the least accepted 

target value given by EPA for each performance metric (|Intercept| (a), RMSE (b), ∆Slope (c), R2 (d)). 
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Figure 4. Performance metrics of the single O3 LCS in each AELCM box, calculated from hourly mean values after calibration. Metrics are 

presented for each calibration model, TP, and calibration variant (ST and ET). Models are ordered by performance from highest to lowest in 

each period. The ET is characterized by the two-month variant for each AELCM box. Values highlighted in red describe the least accepted 

target value given by EPA for each performance metric (|Intercept| (a), RMSE (b), ∆Slope (c), R2 (d)). 1110 
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 1120 

Figure 5. Performance metrics of the single O3 LCS in each AELCM box, calculated from hourly mean values after calibration. Metrics are 

presented for each calibration model, TP, and calibration variant (ST and ET). Models are ordered by performance from highest to lowest in 

each period. The ET is characterized by the three-month variant for each AELCM box. Values highlighted in red describe the least accepted 

target value given by EPA for each performance metric (|Intercept| (a), RMSE (b), ∆Slope (c), R2 (d)). 
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Considering our experimental setup at an urban background site as well as the calculated bias and error metrics for TP1 to 

TP7, we conclude the following for LCS air pollution studies that aim to make quantitative statements about O3 employing 1135 

AS-B431 sensor units: 1) MLR and RR calibration models should be employed when ET cannot be applied, but a single multi-

month training period is available, which accounts for seasonal variations in atmospheric conditions (meteorological and air 

pollution factors) and thus a wide range of environmental influences on the sensor signal. 2) If ET is applicable in the form of 

monthly recalibration, RF and XGB calibration models appear to be the most sensible choice. 

 1140 

Unlike for O3, all TPs shown in Fig. 6, Fig. 7 and Fig. 8 were relevant for assessing the performance of our PM2.5 sensor 

calibration models. From a health perspective, unhealthy levels of PM2.5 can be present throughout the year due to the diverse 

sources of ambient PM2.5. Main anthropogenic sources include industrial emissions, ground transport emissions, biomass 

burning and the secondary formation of fine PM classified as PM2.5 (Thunis et al., 2021; Gu et al., 2023; Chowdhury et al., 

2023; Zauli-Sajani et al., 2024). Natural sources of fine particles include wildfires (Chowdhury et al., 2024) and dust events, 1145 

such as Saharan dust transported to different latitudes (Varga et al., 2021). Generally, weather conditions and the atmospheric 

state influence the transport, mixing ratio, transformation and deposition of air substances; hence they are important factor s 

defining the air quality level (Russo et al., 2014; Russo et al., 2016; Bodor et al., 2020; García-Herrera et al., 2022; Dayan et 

al., 2023; Du et al., 2024).  

 1150 

A MLR calibration model was the only one that satisfied all EPA recommendations for PM2.5 sensor bias (|Intercept| ≤ 5 µg 

m-3; ∆Slope ≤ 0.35) in all TPs, which is shown in Fig. 6, Fig. 7 and Fig. 8. Here, the MLR calibration model with ET reached 

the target range for the slope in TP1, which the other calibration models did not. The intercept target range was met by all 

calibration models with ST in each TP. No ET was needed here. The same applied for the PM2.5 sensor error target range 

(RMSE ≤ 7 µg m-3). Considering how often a MLR calibration model was the best performing model in regards of sensor bias 1155 

and sensor error, we conclude that a MLR calibration model is sufficient to improve the quantitative validity of raw SAG-

SPS30 data. RF and XGB did not offer a substantial alternative, visible by their performance metrics. This is emphasized for 

instance in Fig. 7, where the best-performing machine learning model, RF with ET, barely offers more than a small 

performance improvement compared to a MLR calibration model with ST. Looking at all ST and ET calibration models, there 

is generally very little change in quantitative performance following an ET approach. In our collocation experiment, the chosen 1160 

ST period appears to be sufficient to train robust calibration models, which perform well in the following TPs in an urban 

background setting. Therefore, recalibration appears largely unnecessary for the SAG-SPS30 when considering only the EPA 

performance targets discussed in this section, rather than the more stringent DQOs outlined in section 3.4. This is particularly 

notable given that both the RF and MLR calibration models, trained using the ST period, nearly met the slope target range in 

TP1.  1165 
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A calibrated SAG-SPS30 performed usually well in all performance categories in each TP. This could be due to the raw sensor 

data quality, which may be influenced by the technical integration of the measurement principle into the SAG-SPS30, or the 

out-of-the-box calibration algorithm provided by Sensirion (Vogt et al., 2021). Our calibration models may have benefited 

from both aspects. Meeting the EPA performance recommendations through LCS calibration was less challenging for a SAG-1195 

SPS30 than for the Alphasense EC gas sensors. An ET is recommended to achieve the best possible sensor performance for 

Alphasense EC gas sensors. They are likely more challenging to maintain because gas sensor performance is strongly 

influenced by local atmospheric conditions that vary seasonally. In addition, Alphasense EC gas sensors experience a more 

pronounced sensor ageing compared to SAG-SPS30 units. Therefore, more frequent pairwise recalibrations are expected to 

improve the calibration process. Our performance results implied (Figs. 3, 4, 5, Figs. S5, S6, S7, Figs. S12, S13, S14, Tables 1200 

S5-S40), that the EC LCSs AS-B431, AS-B43F and AS-B4 benefit the most from a pairwise recalibration every 30 days (one-

month ET variant), where the pairwise calibration gets extended by another 30 days. With two AELCM units and monthly 

recalibrations, both units can be recalibrated within the same season while uninterrupted in situ data collection continues. This 

allows us to account for sensor ageing and changing environmental conditions. Our results, together with those of other studies, 

show that the likelihood of well performing calibration models for the employed LCSs increases with a sufficient amount of 1205 

training data (Zauli-Sajani et al., 2021; Nowack et al., 2021). Moreover, LCS calibration benefits from raw LCS measurement 

data that are not dominated by noise at low concentrations because of sensor sensitivity limits (Zimmerman et al., 2018).  
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Figure 6. Performance metrics of the single PM2.5 LCS in each AELCM box, calculated from daily mean values after calibration. Metrics 

are presented for each calibration model, TP, and calibration variant (ST and ET). Models are ordered by performance from highest to lowest 

in each period. The ET is characterized by the one-month variant for each AELCM box. Values highlighted in red describe the least accepted 1245 
target value given by EPA for each performance metric (|Intercept| (a), RMSE (b), ∆Slope (c), R2 (d)). 
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Figure 7. Performance metrics of the single PM2.5 LCS in each AELCM box, calculated from daily mean values after calibration. Metrics 

are presented for each calibration model, TP, and calibration variant (ST and ET). Models are ordered by performance from highest to lowest 

in each period. The ET is characterized by the two-month variant for each AELCM box. Values highlighted in red describe the least accepted 

target value given by EPA for each performance metric (|Intercept| (a), RMSE (b), ∆Slope (c), R2 (d)). 1260 
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 1270 

Figure 8. Performance metrics of the single PM2.5 LCS in each AELCM box, calculated from daily mean values after calibration. Metrics 

are presented for each calibration model, TP, and calibration variant (ST and ET). Models are ordered by performance from highest to lowest 

in each period. The ET is characterized by the three-month variant for each AELCM box. Values highlighted in red describe the least 

accepted target value given by EPA for each performance metric (|Intercept| (a), RMSE (b), ∆Slope (c), R2 (d)). 
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3.4 Extended training results and data quality objectives   

The EU AQDs Directive 2008/50/EC (2008) and the new Directive (EU) 2024/2881 (2024) provide DQOs for regulatory-

grade measurement devices, which LCSs are not. But LCSs have a legitimate role alongside those regulatory-grade monitoring 1285 

systems as air sensors for indicative measurements and objective estimation. We applied REU plots to analyse the possible 

end-use applications of the employed calibrated AELCM sensors, considering the DQOs and LVs for air sensor classification 

provided by the CEN/TSs. The DQOs used in the sensor test protocols CEN/TS 17660-1:2021 and CEN/TS 17660-2:2024 are 

based on  Directive 2008/50/EC (2008). REU plots helped to describe the measurement uncertainty “point by point” of the 

calibrated LCSs, complementing the use of single-value error metrics (global performance metrics) applied in Sect. 3.2 and 1290 

Sect. 3.3 (Diez et al., 2024). They provide deeper insight into the error structures and information content of calibrated LCS 

data (Diez et al., 2022). 

 

Figures 9 and 10 show the “point by point” LCS measurement uncertainty for the “classical” MLR O3 calibration models and 

the machine learning-based RF O3 calibration models. The fluctuation in measurement uncertainty across the observed range 1295 

was greater for the calibrated O3 LCS data of AELCM010, which is shown in the top rows of the REU plots. The ST calibrated 

O3 LCS data of AELCM009 and AELCM010 met the class 1 DQO (REU ≤ 30 %), but the calibrated data of AELCM009 

reached it more reliably even at lower measured concentrations. The REU values at the O3 LV of 120 µg m-3 indicate that both 

calibrated O3 LCSs can be classified as class 1 sensor systems. Therefore, both air sensors can be used for indicative 

measurements. It must be said that we did not follow all activities and principles, which are relevant for the classification 1300 

according to CEN/TS 17660-1:2021 (2021) and CEN/TS 17660-2:2024 (2024). This includes laboratory tests, which were not 

part of this study.  

 

As in Sect. 3.2, differences in performance between identical LCS units are evident once more. In this case, they are visually 

detectable across the entire observed concentration range of ambient O3. Global performance metrics (e.g. RMSE, R2, MAE) 1305 

cannot reflect this aspect (Diez et al., 2022). The top rows in both figures (also Figs. S19 and S20) depict a differing response 

of the employed calibrated sensor units to the same environmental conditions experienced at the station site during the 

collocation period. Possible reasons for these differences in sensor behaviour were explained in Sect. 3.2. Extending the 

calibration model training period and therefore expanding the calibration space is advised for machine learning methods, as 

evidenced by the REU plots in Fig. 10 and Fig. S19. In the three-month ET variant, AELCM010 was active in TP1 to TP3, the 1310 

time when the highest O3 concentrations were observed (Fig. S1). In the  two-month and one-month ET variants, AELCM009 

was active in TP3 and TP2, in that order. The lack of further summer training data in the three-month ET variant resulted 

visibly in increased REU values above 100 µg m-3 (Fig. 10, bottom left) for AELCM010. The other two ET variants provide 

further summer training data to each RF calibration model used for the O3 LCSs belonging to AELCM009 and AELCM010. 

This resulted in a reduced measurement uncertainty for higher concentrations in TP1 until TP3 (Fig. 10, bottom middle and 1315 
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bottom right), being not the case for both RF calibrated LCSs using only ST (Fig. 10, top row). If pairwise calibration is 

considered for a LCS measurement campaign, we recommend using two calibrated LCSs meeting the same DQO, in order to 1350 

ensure consistent in situ data quality as demonstrated in Fig. 9 and Fig. 10. 

 

Figures 11 and 12 show the “point by point” LCS measurement uncertainty for the PM2.5 calibration models based on MLR 

and RF. The MLR and RF calibrated PM2.5 datasets of AELCM009 exhibited greater measurement uncertainty across the 

observed daily means of PM2.5. This is evident when comparing the ST calibrated datasets of AELCM009 and AELCM010 1355 

(Fig. 11 and Fig. 12, top row): REU values related to AELCM009 met the class 1 DQO (REU ≤ 50 %) less consistently 

compared to the REU values related to AELCM010. For the ST variant, the LOESS fits at the PM2.5 LV of 30 µg m-3 indicate 

that the MLR calibrated PM2.5 LCS of AELCM009 can be classified as a class 2 sensor system for objective estimation (REU 

≤ 100 %), whereas the MLR calibrated PM2.5 LCS of AELCM010 can be classified as a class 1 sensor system for indicative 

measurements. RF calibration models suggest that both PM2.5 LCSs accomplish the highest tier of sensor systems (class 1), 1360 

achieving indicative measurements at the PM2.5 LV. Above 5 µg m-3 both RF calibrated PM2.5 LCSs show (almost) consistently 

data meeting the class 1 DQO for the ST variant. The non-aligning patterns in relative error between the ST calibrated SAG-

SPS30 units indicate that the employed calibrated sensor units respond differently under identical environmental conditions 

(Figs. 11, 12, Figs. S21, S22), as previously observed with the AS-B431 units measuring O3.  

 1365 

ET for the MLR and RF calibration models helped to build continuous LCS time series data that met the class 1 DQO more 

consistently, using both calibrated SAG-SPS30 units (Figs. 11, 12, bottom row). ET to achieve more consistency in data quality 

was especially relevant for the PM2.5 LCS employed with AELCM009. Figure 12 shows, that an ET characterized by the one-

month variant was the most beneficial to reduce measurement uncertainty for higher concentrations of PM2.5. We conclude 

that higher sensor system tiers for LCSs can be achieved through ET, thereby broadening the scope of applications for a LCS.  1370 

  

Deleted: 9

Deleted: 8

Deleted: 9

Deleted: 01375 

Deleted: 1

Deleted: showed

Deleted:  With

Deleted: ,

Deleted: C1380 

Deleted:  calibrated PM2.5 data of

Deleted: T

Deleted:  REU values

Deleted:  using ST

Deleted: imply,1385 

Deleted: mode

Deleted: 0

Deleted: 1

Deleted: more consistently 

Deleted: e1390 

Deleted: 0

Deleted: 1

Deleted: 1

Deleted: extended training



31 

 

 1395 

Figure 9. Calculated REU values for MLR calibrated O3 LCS hourly data belonging to the TPs (TP1–TP7, 10 June 2022–11 January 2023) 

of AELCM009 and AELCM010. The calibration variants are ST (top row, left: AELCM010, right: AELCM009) and ET (bottom row). The 

ET is characterized by ET variants of 1, 2 and 3 months for each AELCM box. Horizontal dashed lines describe the DQOs (O3 Class 1 DQO 

= 30 %, Class 2 DQO = 75 % and Class 3 DQO = 200 %). The vertical dashed line describes the limit value for O3 (LV = 120 µg m-3). The 

fitted smooth curve (red) is based on a generalized additive model (GAM). Data density is shown through colour, where darker colours 1400 
express lower data density and brighter colours express higher data density. 
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 1410 

Figure 10. Calculated REU values for RF calibrated O3 LCS hourly data belonging to the TPs (TP1–TP7, 10 June 2022–11 January 2023) 

of AELCM009 and AELCM010. The calibration variants are ST (top row, left: AELCM010, right: AELCM009) and ET (bottom row). The 

ET is characterized by ET variants of 1, 2 and 3 months for each AELCM box. Horizontal dashed lines describe the DQOs (O3 Class 1 DQO 

= 30 %, Class 2 DQO = 75 % and Class 3 DQO = 200 %). The vertical dashed line describes the limit value for O3 (LV = 120 µg m-3). The 

fitted smooth curve (red) is based on a generalized additive model (GAM). Data density is shown through colour, where darker colours 1415 
express lower data density and brighter colours express higher data density. 
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 1425 

Figure 11. Calculated REU values for MLR calibrated PM2.5 LCS daily data belonging to the TPs (TP1–TP7, 11 June 2022–6 January 2023) 

of AELCM009 and AELCM010. The calibration variants are ST (top row, left: AELCM010, right: AELCM009) and ET (bottom row). The 

ET is characterized by ET variants of 1, 2 and 3 months for each AELCM box. Horizontal dashed lines describe the DQOs (PM2.5 Class 1 

DQO = 50 %, Class 2 DQO = 100 % and Class 3 DQO = 200 %). The vertical dashed line describes the limit value for PM2.5 (LV = 30 µg 

m-3). The fitted smooth curve (red) is based on locally estimated scatterplot smoothing (LOESS). Data density is shown through colour, 1430 
where darker colours express lower data density and brighter colours express higher data density. 
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 1440 

Figure 12. Calculated REU values for RF calibrated PM2.5 LCS daily data belonging to the TPs (TP1–TP7, 11 June 2022–6 January 2023) 

of AELCM009 and AELCM010. The calibration variants are ST (top row, left: AELCM010, right: AELCM009) and ET (bottom row). The 

ET is characterized by ET variants of 1, 2 and 3 months for each AELCM box. Horizontal dashed lines describe the DQOs (PM2.5 Class 1 

DQO = 50 %, Class 2 DQO = 100 % and Class 3 DQO = 200 %). The vertical dashed line describes the limit value for PM2.5 (LV = 30 µg 

m-3). The fitted smooth curve (red) is based on locally estimated scatterplot smoothing (LOESS). Data density is shown through colour, 1445 
where darker colours express lower data density and brighter colours express higher data density. 
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3.5 Implications for sustainable LCS networks and future outlook  1455 

Our concept for an effective, sustainable and manageable LCS network focuses on identifying the main target population for 

health protection from environmental exposures, such as air pollution and heat. This focus takes into account the advantages 

and disadvantages of current LCS technology. We consider the most vulnerable people as our main target group, for instance 

children, elderly people, outdoor workers or people with pre-existing health conditions. LCS measurements can thus be placed 

at locations with a high density of vulnerable populations, such as retirement homes, schools, kindergartens, or outdoor 1460 

workplaces. Therefore, we recommend focusing on the characteristics of the measurement scope rather than simply building 

a spatially dense LCS observation network. Reducing the amount of LCSs and efficiently placing them by figuring out at-risk 

population hotspots could reduce the management effort using a pairwise calibration strategy similar to the one we introduced 

in this study. Another benefit of following our calibration strategy could be improved error minimization of LCS data, 

particularly given that LCS devices are placed directly next to a reference station for (re-)calibration. This could result in 1465 

higher LCS data quality compared to the use of complex in situ calibration strategies for error reduction and data quality 

control. Following our concept, continuous in situ data collection can be achieved by using a pair of regularly maintained LCSs 

at the same location.  

 

Analysing whether LCS data fit their intended purpose and provide viable information for the end-use application over time 1470 

remains a challenge, especially in the context of a long-term measurement campaign. Stricter DQOs for regulatory-grade air 

measurement instruments, as a result of the recently updated WHO global air quality guidelines (WHO, 2021), could indirectly 

limit the scope of end-use applications for LCSs. For example, CEN/TS 17660-1:2021 (2021) and CEN/TS 17660-2:2024 

(2024) rely on Directive 2008/50/EC (2008). Both CEN/TSs help to define the possible end-use applications of sensor systems. 

Considering the relationship between the introduced CEN/TSs and the Directive 2008/50/EC, an update of both CEN/TSs due 1475 

to the recently published Directive (EU) 2024/2881 (2024) is not unlikely. Sensor manufacturers are called upon to consult 

state-of-the-art scientific literature of the air sensor research community to accelerate technological advancement while the air 

sensor community is called upon to rethink how LCS networks are built and managed. The latter is important to ensure that 

LCS networks move beyond the status of test applications and gain recognition as long-term supplemental monitoring systems 

(Carotenuto et al., 2023). Such recognition facilitates their integration into official networks, allowing LCSs to benefit the 1480 

most vulnerable members of society. 

4 Conclusions 

In an attempt to consistently provide air sensor performance by a pair of O3 and PM2.5 LCSs (AS-B431 and SAG-SPS30) 

suitable for supplementing official air quality monitoring networks, a still uncommon approach for recurrent sensor calibration 

was explored. This approach was tested during a yearlong collocation campaign at an urban background station next to the 1485 

University Hospital Augsburg, Germany.  
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LCSs were collocated with regulatory-grade air measurement instruments and were exposed to a wide range of environmental 1510 

conditions, with air temperatures between -10 and 36 °C, relative air humidity between 19 and 96 % and air pressure between 

937 and 983 hPa. The ambient concentration ranges were up to 82 ppb for O3 and 153 µg m-3 for PM2.5. LCS calibration models 

were built using linear regression techniques (MLR and RR) and machine learning (RF and XGB).  

 

We used a pairwise (re-)calibration strategy to enable continuous in situ measurements with two alternating O3 (PM2.5) LCSs. 1515 

The results were evaluated using novel air sensor performance targets defined by EPA test protocols and CEN/TSs. We 

recommend regular in-season ET, instead of relying on a single multi-month training period. These updates to the calibration 

models are necessary to consistently produce data with sufficient information content (indicative and NSIM-level 

measurements) from AS-B431 (SAG-SPS30) units to support existing official air quality monitoring. Our findings underscore 

the importance of rigorous LCS quality assurance and control for studies or LCS monitoring networks that aim to make 1520 

quantitative assertions with LCSs. 

 

Based on the EPA performance targets for O3 (RMSE ≤ 5 ppb, R2 ≥ 0.80, Slope = 1.0 ± 0.20, Intercept (b) = -5 ≤ b ≤ 5 ppb), 

monthly recalibrations for AS-B431 LCSs are recommended to increase the likelihood of reliably achieving acceptable sensor 

bias and error during the O3 season. In particular, RF and XGB calibration models benefited from the increased amount of 1525 

summer training data resulting from monthly recalibrations.  

 

We showed that MLR and RR calibration models should be employed when ET cannot be applied but a single multi-month 

training period is available. A multi-month period accounts for seasonal variations in atmospheric conditions (meteorological 

and air pollution factors). If ET via monthly recalibration is feasible, RF and XGB calibration models appear to be the most 1530 

sensible choice, as their quantitative performance aligns particularly well with EPA guidelines for NSIM devices targeting O 3. 

 

The need for recurrent calibration of the SAG-SPS30 is less apparent relying on the PM2.5 EPA performance targets (RMSE ≤ 

7 µg m-3, R2 ≥ 0.70, Slope = 1.0 ± 0.35, Intercept (b) = -5 ≤ b ≤ 5 µg m-3). It is generally unnecessary, when a single lengthy 

multi-month calibration is applied. Also, a MLR calibration model for the SAG-SPS30 is adequate since no significant benefit 1535 

was found by using more sophisticated ML methods as calibration tools. 

 

The calibrated O3 LCSs and PM2.5 LCSs were able to meet the class 1 DQO (REU ≤ 30 % and 50 %, respectively) for different 

calibration models. Therefore, they can provide indicative measurements. The REU values suggest that ET of the employed 

calibration models enables the generation of a continuous LCS time series from two identical sensor model units, more 1540 

consistently meeting a targeted DQO (indicative measurements). Again, extending the calibration space by ET is especially 

advised for tree-based ML methods to reduce the LCS measurement uncertainty with increasing pollution concentrations. 
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The performance evaluation of the SAG-SPS30 based on EPA recommendations suggests that ET is generally unnecessary 

and that MLR calibration is sufficient. In contrast, European standards relying on REU values yield a different assessment for 1545 

one of the SAG-SPS30 units. The results indicate that ET is a technique that should be carried out to achieve class 1 data 

quality for the SAG-SPS30 deployed with AELCM009. The discrepancy between our recommendations for recurrent 

calibration based on the EPA test protocol performance targets (single-value performance metrics) and those based on the 

CEN/TS performance targets (measurement uncertainty distribution) for PM₂.₅ LCSs highlights the need for careful evaluation. 

EPA test protocols and CEN/TSs should be used together as evaluative guidance to obtain a more complete understanding of 1550 

an LCS’s performance. This combined approach supports end-user communities to evaluate whether specific real-world 

applications can be supported by LCSs. 

Appendix A: List of abbreviations 

 

AELCM Atmospheric Exposure Low-Cost Monitoring 

AEMS Atmospheric Exposure Monitoring Station 

AEMSXX Concentration of a specific air substance measured by the AEMS 

AQD Air Quality Directive of the European Union 

AS Alphasense 

AS-B431 Alphasense B-Series electrochemical sensor for O3 

AS-B43F Alphasense B-Series electrochemical sensor for NO2 

AS-B4 Alphasense B-Series electrochemical sensor for CO 

CEN European Committee for Standardization 

CET Central European Time 

CO Carbon monoxide 

DQO Data quality objective 

EC Electrochemical 

EPA United States Environmental Protection Agency 

ET Extended training 

GDE Guide for the Demonstration of Equivalence 

LCS Low-cost (air) sensor 

MLR Multiple Linear Regression 

MOS Metal oxide semiconductor 
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NOx Nitrogen oxides 

NSIM Non-regulatory supplemental and informational monitoring 

O3 Ozone 

OOS Out-of-sample 

PM Particulate matter 

PM2.5 Particulate matter (Particles that are 2.5 microns or less in 

diameter) 

PM10 Particulate matter (Particles that are 10 microns or less in diameter) 

R2 Coefficient of determination 

REU Relative expanded uncertainty 

RF Random Forest 

RHXX Relative humidity of a specific BME280 sensor in an AELCM unit 

RMSE Root-mean-squared error 

RR Ridge Regression 

Rs Spearman rank correlation 

SO2 Sulfur dioxide 

SAG Sensirion AG 

SAG-SPS30 Sensirion AG optical particle sensor for PM1 and PM2.5 

SPS30XX Particulate matter concentration of a specific SAG-SPS30 in an 

AELCM unit 

ST Single training 

TXX Temperature of a specific BME280 sensor in an AELCM unit 

TP Test period 

TS Technical specification 

UTC Coordinated Universal Time 

VXX Net voltage of a specific AS sensor in an AELCM unit 

WHO World Health Organization 

XGB Extreme Gradient Boosting 

 1555 

Data availability 

The data of this study are available from the authors upon request. 
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(Schmitz et al., 2021). To achieve this, we conducted a yearlong 
collocation campaign at an urban background station for air pollution 1635 
exposure and meteorological measurements next to the University 

Hospital Augsburg, Germany. LCS were collocated with regulatory 
grade air measurement instruments and were exposed to a wide range 

of environmental conditions, with air temperatures between -10 and 

36 °C, relative air humidity between 19 and 96 % and air pressure 1640 
between 937 and 983 hPa. The ambient concentration ranges were up 

to 83 ppb for O3 and 153 µg m-3 for PM2.5. Sensor calibration models 

were built using linear regression techniques (Multiple Linear 
Regression and Ridge Regression) and machine learning (Random 

Forest and Extreme Gradient Boosting). Our methodological 1645 
approach followed a pairwise calibration strategy.¶
¶

We aimed to assess the benefit of expanding the calibration space of 

these calibration models in terms of improving the applicability of 
low-cost air sensors for tasks that support regulatory monitoring, 1650 
particularly with respect to meeting relevant EPA performance 

targets (e.g. R2, RMSE, slope, intercept) and less strict DQOs (REU; ...
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