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Overview of all major changes of the original manuscript: 

• New title of the manuscript: 

o “Recalibration of low-cost O3 and PM2.5 sensors: Linking practices to recent 

air sensor test protocols” 

• Manuscript text has been revised to improve clarity and language 

• Added more recent references 

• Improved formatting of the section “References” 

• Revision of the section “Conclusions” (Simplification and shortening) 

• Improved the highlighting of our own contributions and key findings to the research 

and end-user community of low-cost sensors (LCSs)  

• Text has been added to properly motivate the use of the chosen LCSs 

• Table has been added with specifications of the used LCSs 

• Added figures of the deployed measurement boxes 

• Improved readability of Table with calibration model features (O3 and PM2.5 LCSs) 

• Table with calibration model features of CO and NO2 LCSs moved to the supplement 

(Table S53) 

• Added more details and information about the LCS calibration models (Table S3) 

• Added a flow diagram to improve the depiction of the employed recurrent calibration 

method and combined it with the original schematic figure 

• Adjusted the title position and title size of the relative expanded uncertainty (REU) 

plots 

• Added a list of abbreviations 

 

We thank the referees for their reviews and valuable comments. Our responses and revisions, 

which we believe will further enhance the quality of the paper, are presented below. The 

comments from Referee #1 and Referee #2 are provided in black, our responses appear in 

brown, and the revised or newly added text in the manuscript is shown in italics. 

Please note that there were cases were Referee #1 and Referee #2 commented on the same 

lines and tables in the manuscript. We responded to referee comments individually (suggested 

improvements and changes by the author), if you look at our responses below. In the revised 

version of the manuscript, the author combined these of course.  



Response to comments from Referee #1  

Citation: https://doi.org/10.5194/egusphere-2025-2677-RC1  

We would like to thank you for taking the time to review our manuscript and provide 
valuable feedback. Our responses and proposed revisions, which we believe enhance 
the quality of the paper, are presented below. The comments from Referee #1 are 
provided in black, our responses appear in brown, and the revised or newly added text in 
the manuscript is shown in italics. 

First of all, I would like congratulate the authors for the work carried out and presented 
in this paper. After having read the full document, I'm not sure that the conclusion or the 
study really answer the question asked in the title. In fact, the author ask the question of 
the need of re-calibration of low-cost senors but they do not really answer it in the 
document as the present an interesting use of sensor for ambient air 
monitoring  ("pairwise calibration strategy") based on a monthly exchange of LCS 
between a collocation site and a measurement site. This strategy, somehow interesting 
when looking at the sensors performances is much more time consuming than a classic 
network installation as, at the end, 2 LCS are always running adding the necessity of 
installation/removal every month. However, the interesting comparison of calibration 
results using several training length against both US-EPA and European standards brings 
a lot of valuable information. 

In recent years, multiple recognized organizations such as the EPA and CEN have 
released state-of-the-art test protocols for air sensors. These are important and much-
needed tools that help to communicate the possible end-use applications of low-cost 
sensors to the public after their evaluation. In this work, these test protocols provide 
guidance for evaluating and contextualizing the actual impact of different training 
lengths (extended training (ET)) compared to a shorter training period (single training 
(ST)) on sensor performance. However, the main research question is if and how 
recalibration must be designed to maximize performance of the sensors. 

The conclusions section (Sect. 4) of this work offers the following statements related to 
the question asked in the title (Recalibration of low-cost air pollution sensors: Is it worth 
it?) of this study: 

1. Our findings suggest that for quantitative studies, during periods characterized by 
elevated ground level ozone concentrations (ozone season), recalibration is 
advisable after each month of O3 LCS operation. In particular, the machine 
learning techniques RF and XGB benefited from the increased amount of summer 
training data resulting from monthly recalibrations. 
 

2. If extended training via monthly recalibration is feasible, RF and XGB calibration 
models appear to be the more sensible choice, as their quantitative performance 



aligns particularly well with EPA guidelines for non-regulatory supplemental and 
informational monitoring devices targeting O3. 
 

3. A MLR calibration model using ET was the only calibration model that met all 
EPA-recommended performance metric goals for assessing the quantitative 
strength of PM2.5 LCS data. 
 

4. The REU values suggest that extended training of the employed calibration 
models enables the generation of a continuous LCS time series from two 
identical sensor model units, more consistently meeting a targeted DQO (e.g. 
indicative measurements). This approach also contributes to reduced 
measurement uncertainty, which becomes visually noticeable as a pollutant 
concentration increases. Again, extending the calibration model training period 
and therefore expanding the calibration space is especially advised for machine 
learning methods to reduce the LCS measurement uncertainty. 
 

5. We conclude that achieving the highest possible quantitative validity for low-cost 
air sensors requires regular in-season recalibration using high-quality reference 
data. The response of the sensor units to changing environmental conditions at 
the station site, along with improved performance resulting from regular 
recalibration that aligns sensor output more closely with EPA and CEN 
recommendations, highlights how important regular sensor maintenance is to 
enhance their applicability. 

We understand the reviewer’s point that the current title may not fully reflect the 
content, which could be expected given its provocative nature. If the title seems too 
strong, we propose the following possible revisions: 

Recalibration of low-cost air pollution sensors: Linking practices to state-of-the-art test 
protocols 

Recalibration of low-cost air pollution sensors: Connecting calibration practices with 
modern test protocols 

Recalibration of low-cost air pollution sensors for advanced performance 

 

Furthermore, we agree that a pairwise calibration strategy is more time-consuming than 
a classic network installation, particularly when sensors are installed and removed 
monthly in a large-scale network. However, considering our observed sensor 
performances, we see value and the possibility in applying a pairwise calibration 
strategy in small networks, especially when LCS measurement systems are deployed at 
locations with high densities of vulnerable populations, such as retirement homes, 
schools, kindergartens, or outdoor workplaces. Implementing multiple smaller-scale 



LCS networks by various groups with access to adequate infrastructure for sensor 
calibration (e.g. research institutions, state organizations), focused on at-risk population 
hotspots, could help LCS realize their potential and, in fact, gain recognition as long-
term supplemental monitoring systems, integrated into official networks to serve the 
most vulnerable people of society. 

 

I also made some minor comment along the document listed below: 

➢ Line 153: length of this stabilization phase ? 

We clarified the stabilization phase in the manuscript as follows: 

Only after their stabilization phase the LCS output is eligible for measurements of their 
respective target pollutant (Gäbel et al., 2022). The stabilization phase observed in the 
LCS outputs was shorter than one day. The first 24 hours of all LCS data were thus 
removed and not considered for this study. 

➢ Line 155: coma could be removed. 

Done. 

➢ Line 157: The 3 of O3 should be in subscript. 

Done. 

➢ Line 165: Are the daily means for LCS based on the hourly values or on the 
raw values ? The end of this paragraph suggest that the daily means has 
been calculated using hourly values. Did you check the impact on the data 
? 

We have clarified this in the manuscript as follows in lines 164-168: 

Raw LCS measurements and reference measurements given by the AEMS were 
aggregated to hourly means for LCS calibration. Calibrated PM2.5 measurements were 
aggregated to daily means. Daily means were required for the performance evaluation of 
the low-cost particulate matter sensor SAG-SPS30 based on the technical specification 
developed by CEN (CEN/TS 17660-2:2024, 2024) and the test protocol developed by EPA 
(Duvall et al., 2021a). 

 

➢ Line 183: This PM sensor sentence seems to me to be not in the right 
paragraph as the PM data has been discussed on the previous one. 

We moved line 183 to the previous paragraph to line 168: 

Calibrated PM2.5 measurements were aggregated to daily means. Daily means were 
required for the performance evaluation of the low-cost particulate matter sensor SAG-



SPS30 based on the technical specification developed by CEN (CEN/TS 17660-2:2024, 
2024) and the test protocol developed by EPA (Duvall et al., 2021a). The SAG-SPS30 
provides outputs in mass concentrations by default. 

 

➢ Line184-189: This explanation could maybe be moved a after the first 
paragraph of 2.4 where the use of T and RH in the calibration models is 
explained. It was somehow confusing to me to read first that the data from 
the BME280 were not used to then see that they are finally used. Only on a 
second read I pay attention to the fact that the BME280 data were not 
used for the gas sensors. 

The purpose of the paragraph is to emphasize that mass concentrations are required for 
sensor evaluation according to CEN/TS 17660-1:2021 and to specify which 
meteorological data we considered in order to calculate mass concentrations as 
accurately as possible. Therefore, we would prefer to keep these lines in the data 
treatment section, as the contents of the full paragraph are too closely interwoven. 

To prevent confusion, we adjusted the lines 184-189: 

We exclusively used low-cost meteorological data from the Bosch BME280 sensors as 
input for the calibration models (Sect. 2.4). To calculate mass concentrations from the 
output of the calibration models we did not rely on BME280 meteorological data, but 
used the  weather station data, because the former are highly biased due to solar 
radiation. The bias stems from solar heating of the AELCM units, which could not be 
mitigated by the integrated fan, as it causes an exchange of air between the inside and 
outside, failing to reduce the heating effect. It is planned to upgrade the AELCM units 
with radiation shields in the future to reduce the effect of solar radiation on the low-cost 
meteorological measurements. 

 

➢ Table 1: the first row is not the easiest to read, in particular for O3 and NO2 
as there is not a clear separation between the T (end of O3) and VNO2 
(beginning of NO2). 

 

We improved the readability of the table: 



 
 

➢ Line 218: what do you mean by merging the data by hour ? is it the mean 
calculation ? 

We aligned the hourly reference station data with the hourly raw LCS data by matching 
timestamps. We think it is redundant to mention this, since time alignment is the 
standard procedure when comparing a reference method with a candidate method. 
Therefore, we removed “and merging the data by hour” in line 218. 

➢ Line 395: you should mention in the previous paragraph 2.7 Performance 
metrics and target values that the measurement thus the evaluation has 
been carried out only for a urban background site whereas the CEN 
document ask for different testing site, for example a rural site for O3. 

I’ve added this information in Section 2.7 at line 369: 

It should also be noted that the LCS evaluation was performed only at a single urban 
background site (AEMS), whereas the technical specifications by CEN call for 
evaluations at different sites, for instance, testing NO₂ sensors at traffic and background 
sites. 

▪ Figure 8, 9, 10 and 11: I would advice the authors to write the title of 
the different graphs on a clearer way, at a first look, it is not easy to 
see the difference between each plot. 

We adjusted the title position and title size of each of the figures mentioned to enhance 
readability. The adjustments can be seen further down below: 

 



 

Figure 8. Calculated REU values for MLR calibrated O3 LCS hourly data belonging to the test periods (TP1–TP7, 10 June 

2022–11 January 2023) of AELCM009 and AELCM010. The calibration variants are single training (ST) (top row, left: 

AELCM010, right: AELCM009) and extended training (ET) (bottom row). The extended training is characterized by ET 

variants of 1, 2 and 3 months for each AELCM box. Horizontal dashed lines describe the data quality objectives (O3 Class 1 

DQO = 30 %, Class 2 DQO = 75 % and Class 3 DQO = 200 %). The vertical dashed line describes the limit value for O3 (LV 

= 120 µg m-3). The fitted smooth curve (red) is based on a generalized additive model (GAM). Data density is shown through 

colour, where darker colours express lower data density and brighter colours express higher data density. 

 

 

 

 

 



 

Figure 9. Calculated REU values for RF calibrated O3 LCS hourly data belonging to the test periods (TP1–TP7, 10 June 2022–

11 January 2023) of AELCM009 and AELCM010. The calibration variants are single training (ST) (top row, left: AELCM010, 

right: AELCM009) and extended training (ET) (bottom row). The extended training is characterized by ET variants of 1, 2 and 

3 months for each AELCM box. Horizontal dashed lines describe the data quality objectives (O3 Class 1 DQO = 30 %, Class 

2 DQO = 75 % and Class 3 DQO = 200 %). The vertical dashed line describes the limit value for O3 (LV = 120 µg m-3). The 

fitted smooth curve (red) is based on a generalized additive model (GAM). Data density is shown through colour, where darker 

colours express lower data density and brighter colours express higher data density. 

 



 

Figure 10. Calculated REU values for MLR calibrated PM2.5 LCS daily data belonging to the test periods (TP1–TP7, 11 June 

2022–6 January 2023) of AELCM009 and AELCM010. The calibration variants are single training (ST) (top row, left: 

AELCM010, right: AELCM009) and extended training (ET) (bottom row). The extended training is characterized by ET 

variants of 1, 2 and 3 months for each AELCM box. Horizontal dashed lines describe the data quality objectives (PM2.5 Class 

1 DQO = 50 %, Class 2 DQO = 100 % and Class 3 DQO = 200 %). The vertical dashed line describes the limit value for PM2.5 

(LV = 30 µg m-3). The fitted smooth curve (red) is based on locally estimated scatterplot smoothing (LOESS). Data density is 

shown through colour, where darker colours express lower data density and brighter colours express higher data density. 

 



 

Figure 11. Calculated REU values for RF calibrated PM2.5 LCS daily data belonging to the test periods (TP1–TP7, 11 June 

2022–6 January 2023) of AELCM009 and AELCM010. The calibration variants are single training (ST) (top row, left: 

AELCM010, right: AELCM009) and extended training (ET) (bottom row). The extended training is characterized by ET 

variants of 1, 2 and 3 months for each AELCM box. Horizontal dashed lines describe the data quality objectives (PM2.5 Class 

1 DQO = 50 %, Class 2 DQO = 100 % and Class 3 DQO = 200 %). The vertical dashed line describes the limit value for PM2.5 

(LV = 30 µg m-3). The fitted smooth curve (red) is based on locally estimated scatterplot smoothing (LOESS). Data density is 

shown through colour, where darker colours express lower data density and brighter colours express higher data density. 

 

 



Response to comments from Referee #2  
 

Citation: https://doi.org/10.5194/egusphere-2025-2677-RC2  

 

Thank you for your review and valuable comments. Our responses and revisions, which we 

believe will further enhance the quality of the paper, are presented below. The comments from 

Referee #2 are provided in black, our responses appear in brown, and the revised or newly 

added text in the manuscript is shown in italics. 

 

This manuscript shows different options for calibration of LCS, in particular O3 and PM2.5. 

The goal is to show a tradeoff between the model accuracy based on an initial training with a 

dataset (in terms of duration) and recurrent recalibrations. 

 

The discussion is interesting, and it is an open question. Notice that about this topic there are 

many issues to be considered for this problem, with regard to the initial dataset (in terms of 

quality, range, duration, sampling frequency, locations for deployments), models used for 

calibration (statistical ones or based on AI (machine learning, deep learning)), sensor types and 

features (gas, cross sensitivity, fabrication (Electrochemical,  Metal OXide (MOX) sensor, 

NDIR and/or optical, aging effect) to name a few. Nevertheless, the authors focus on sensors 

O3 (Alphasense Ox-B431) and PM2.5 (Sensirion AG SPS30) and using 4 different models 

(MLR, RR, RF, XGB) for calibration. 

 

Thank you for emphasizing the common issues and challenges that need to be considered in 

low-cost sensor (LCS) calibration, many of which we aim to address through recurrent 

calibration and, consequently, through continuous data quality assurance. 

 

To clarify why we focused only on these two sensor technologies (electrochemical gas sensors 

and optical particle sensors): In our initial work (Gäbel et al., 2022), we tested LCSs based on 

different technologies to identify the most suitable ones for developing our own low-cost air 

pollution monitoring system. Based on the raw data quality and calibration results using the 

common multiple linear regression (MLR) method, we found that electrochemical sensors 

provided the most promising results for the measurement of ozone (O3), while the Sensirion 

SPS30 (optical particle sensor) stood out in terms of performance compared to the other LCSs 

we investigated. Therefore, we decided to focus on these two sensor technologies. In the case 

of the SPS30, we did not explore other optical particle sensor candidates for the measurement 

of PM2.5, as its performance was satisfactory, and we retained it for the latest, more advanced 

version of the Atmospheric Exposure Low-Cost Monitoring (AELCM) box. 

 

In the present paper we investigated gas sensors from another manufacturer (Alphasense), 

which are based on electrochemical gas sensor technology, as a consequence of our findings 

(Gäbel et al., 2022) and other literature about Alphasense sensors. We applied additional 

calibration models, but our main focus was on recurrent calibration and its impact on 

performance. The study considers the recommendations of the U.S. EPA (United States 

Environmental Protection Agency) and European technical specifications (CEN/TSs) approved 

by CEN (European Committee for Standardization) for LCSs providing a novel perspective on 

sensor calibration design by using both as guidance to evaluate overall sensor performance and 

to investigate the suitability of the introduced LCS as supplemental tools for air quality 

monitoring. 

  

 

 



 

 

Next, you have the suggested Comments (C) to improve your manuscript: 

  

C1.- The title should be clearer and more specific including key words such as tradeoff, O3 and 

PM2.5 

 

We would use tradeoff as one of the keywords for this study, but we would not include it directly 

in the title. 

 

We suggest the following title change:  

 

“Recalibration of low-cost O3 and PM2.5 sensors: Is it worth it?“ 

 

C2.-The study is carried out with 2 sensos O3 (Alphasense Ox-B431) and PM2.5 (Sensirion 

AG SPS30). The selection should be justified and motivated: why these ones? are these the 

more common, more reliable, price vs quality ratio, etc.? The authors should provide a survey 

(a study of state of art) about this. This information is very useful for the reader. 

 

In addition, in Section 2.1, the name of the sensors for O3 and PM2.5 and their abbreviations 

(AS-B431, SAG-SPS30) as well as their features should be placed in a table to ease reading. 

 

Thank you for the suggestions. We added more information and a new table based on the 

Reviewers input. 

 

Line 122 – 125: 

 

There were multiple reasons for the use of Alphasense sensors. In our earlier work (Gäbel et 

al., 2022), we investigated the digital gas sensors DGS-NO2 and DGS-CO from SPEC Sensors, 

based on electrochemical (EC) gas sensor technology, as well as the MiCS-2714 (NO₂) and 

MiCS-4514 (CO) sensors from SGX Sensortech, based on metal oxide semiconductor (MOS) 

technology. Our results showed that these air sensors exhibited no satisfactory capability to 

capture the observed concentrations at a measurement station, according to the coefficient of 

determination after sensor calibration (R²: 0.15 – 0.66). Therefore, we applied alternative LCSs 

to capture NO2 and CO. Overall, the SPEC DGS-O3 units performed satisfactorily (R²: 0.71 – 

0.95) but showed high inter-sensor unit variability. For the calibrated MQ131 sensor outputs 

moderate to high R2 were determined (R2: 0.71 – 0.83). In contrast, the raw MQ131 sensor 

outputs showed generally poor correlation with the O₃ reference measurements. We concluded 

that EC gas sensor technology is suitable for detecting O₃ in an urban background environment, 

whereas MOS technology showed limited capability considering Winsen’s MQ131 sensor. 

Alphasense EC gas sensors are the most used and evaluated LCSs for measuring O3, NO2 and 

CO (Karagulian et al., 2019; Kang et al., 2022) and offer a good price-to-quality ratio (see 

Table 2). Kang et al. (2022) reported median R² values of 0.70, 0.68 and 0.82, respectively, for 

these pollutants when measured using Alphasense EC sensors in outdoor settings, as 

determined by reference instrument data. In our evaluation at an urban background station 

(Gäbel et al., 2022), the SAG-SPS30 particulate matter sensor showed high correlative 

performance for calibrated data (R²: 0.90 – 0.94). Also, other outdoor studies showed 

satisfactory results for the SAG-SPS30 and its measurement of PM2.5 (R
2: 0.72 – 0.87) (Vogt et 

al., 2021; Roberts et al., 2022; Shittu et al., 2025).  
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Table 2: Overview of the specifications of the air sensors that can be used in the AELCM unit. 

Measured 

Variable 
Sensor Manufacturer Abbreviation Range 

Noise a  

[Precision] 

Approx. 

Price 

(Euro) 2025 

O3 + NO2 OX-B431 Alphasense AS-B431 20 ppm 15 ppb  71/84b 

NO2 NO2-B43F Alphasense AS-B43F 20 ppm 15 ppb 59/84b 

CO CO-B4 Alphasense AS-B4 1000 ppm 4 ppb 56/79b 

PM2.5 SPS30 Sensirion AG SAG-SPS30 1000 μg/m3 

[±10 µg/m3 at 0 to 100 

µg/m3] 

[±10% at 100 to 1000 

µg/m3] 

30 

Tested with Alphasense ISB low noise circuit: ±2 standard deviations (ppb equivalent)a  

Additional cost for Individual Sensor Board (ISB) low noise circuit for B sensorsb 

 

 

 

 

 

 

 



C3.- The references are bit confusing. Not sure if it is the proper format and they are correctly 

compiled (not linked with reference section). For instance, (Gäbel et al., 2022), you cannot find 

it directly in the reference list. Although in a double lookup you can assume that it refers to a 

paper in Sensors MDPI from the same authors. 

 

Also, an update of these references is welcome, with more recent ones. 

 

Yes, we reference Gäbel et al. (2022), which is our earlier publication about the AELCM box 

in Sensors MDPI.  

 

We adjusted the output style of the references to improve readability in the section “References” 

(Indentation and line spaces). References in the manuscript are easier to find now in the section 

“References”. All references in the manuscript are included in this section.  

 

We added some more recent literature, kept the relevant references and removed older 

references where it seemed appropriate. 

 

Update with more recent references: 
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C4.- Figure 1 is a bit confusing. Maybe a flow diagram of the proposal of the manuscript (the 

tradeoff between training duration and recalibration) should be better. 

 

Done. 

 

We would like to keep our original Figure 1 and present both figures side by side to make our 

methodological approach even clearer.

 

 

Figure 1: Schematic representation of the pairwise calibration strategy and calibration model development as a flow 

diagram (top) and a time series scheme (bottom) using two LCS measurement systems (AELCM009 and AELCM010) 

showing the single training period (ST, 11 January–10 June 2022) and the extended training period (ET) as well as the 

numbered one-month test periods (TP) for each LCS measurement system. The thickness of the coloured lines in the flow 

diagram visually represents the amount of training data used for ET of the calibration model compared to ST. 

 

 

 



C5.-In my opinion, the analysis of 2 different deployments (AELCM009 and AELCM010) is 

interesting, to see the behavior (variability) between the different sensors. 

But, the content of this manuscript could improved in a more comprehensive way. It could be 

carried out by using the whole dataset, and running on this dataset the different variables of the 

tradeoff: x= duration of initial training, y=recalibration time. Based on (x,y) you can plot the 

different metrics (R2, RMSE, REU,…) or a cost function (this is mentioned later in C11)) as a 

heatmap (in 3D plots), in stead of using a fixed training of 5 months, with extended periods of 

1 months, and with recalibration with different periods. A heatmap should be easier to 

understand and see the optimum, rather than Figures 2-4 and 5-7. Notice that these figures are 

ambiguous and unclear. Also, the caption is bit redundant except 1, 2 or 3 months. 

Besides, it should be noted that usually, the datasets have a higher sampling frequency, usually 

10 min (or even lower), rather than 1 hour. It should be explained. Even, the sampling frequency 

could be a new variable to be considered in the tradeoff, instead of 1 hour as default. 

Carotenuto et al. (2023) provide a literature survey about the topic of low-cost air quality 

monitoring networks for long-term field campaigns. They highlighted that in most cases, LCS 

networks are still only used for test applications or specific projects, most often not even lasting 

one year and that there is a lack of long-term efforts aiming at routinely monitoring air quality 

conditions.  

 

To help encourage such long-term initiatives and stimulate interest among potential sensor end 

users such as local environmental agencies that also have permanent access to calibration 

equipment, we deliberately incorporated the recent test protocols from the U.S. EPA and CEN 

into our study. By applying the recommended performance metrics and performance targets 

from these protocols, our aim was to support practical decision making by stakeholders 

considering deeper involvement in air sensor projects, rather than to conduct an in-depth 

statistical analysis like suggested in C5 in the second paragraph. 

We also wanted to avoid obscuring our key messages for end-use communities, centered on 

reaching performance targets and attaining the highest possible sensor tiers. This tier-based 

concept is easier for end-users and stakeholders to understand, especially for those who usually 

have the infrastructure and resources to maintain low-cost sensor networks over the long term 

and who ultimately need to be convinced of their value. 

 

In our opinion, the approach we have chosen and the form of display (2D circular bar plots and 

REU plots) to check the achievement of performance targets and sensor tiers are very good 

from an end-user and practical perspective and also for the scientific community. We work with 

air sensor data (O3, PM2.5) and performance thresholds for RMSE, R2, Intercept and slope and 

the relative expanded uncertainty (REU) at the limit value of O3 and PM2.5 as suggested by EPA 

test protocols and CEN test protocols, respectively. 

   

We are specifically highlighting in our plots (Fig. 2-4 and Fig. 5-7), when a target is fulfilled 

(non-hatched bars in circular bar plots) and under which circumstances (Calibration model, 

single training (ST), extended training (ET) variant, AELCM box). Calibration model 

performances are ordered from highest to lowest in each test period (TP). Because of the 

manifold of aspects (Calibration model, ST, ET variant, AELCM box, time periods, error 

metrics and so on), which should be displayed in a single plot, and the question how recurrent 



calibration should be designed, splitting figures by ET variants (1 month, 2 months, 3 months) 

is the most sensible choice in our opinion.  

 

A further reason is, that an ET variant defines when an AELCM box needs to be exchanged 

with its partner AELCM box in situ. This is indicated through the curved lines in Fig. 2-4 and 

Fig. 5-7 (dashed: AELCM009, non-dashed: AELCM010). We also prefer 2D circular bar plots 

instead of 3D plots, because we can display TPs in a clocklike manner, which is an elegant way 

to communicate sensor performance over time in our opinion. 

  

Our AELCM measurement systems have a sampling frequency of 4 seconds, as mentioned in 

line 119. We clarified it more in line 119: 

 

The upgrades also involved the increase of the sampling frequency for each AELCM sensor 

from 10 seconds to every 4 seconds. 

 

Hourly and daily means of LCS measurements were used to comply with the evaluation 

requirements of the CEN and EPA test protocols. We clarified that in line 164 till 168: 

 

Gas sensor measurements were aggregated to hourly means, while PM2.5 sensor measurements 

were aggregated to daily means. This was required for the performance evaluation of LCSs 

according to the technical specification developed by CEN (CEN/TS 17660-1:2021, 2021; 

CEN/TS 17660-2:2024, 2024) and the test protocol developed by EPA (Duvall et al., 2021a, 

Duvall et al., 2021b). As a result, gas measurements and PM2.5 measurements given by the 

AEMS were aggregated to hourly and daily means, respectively. 

 

Reference: 

 

Carotenuto, F., Bisignano, A., Brilli, L., Gualtieri, G., & Giovannini, L. (2023). Low‐cost air 

quality monitoring networks for long‐term field campaigns: A review. Meteorological 

Applications, 30(6). https://doi.org/10.1002/met.2161  

 

C6.- In Section, 2.1, it should be nice to place some pictures of the boxes and deployment, 

although you refer to them in your own reference ((Gäbel et al., 2022)). 

 

  

  
(a) (b) 

 

Figure 2. Photographs of the AEMS and AELCM units (AELCM009 and AELCM010), which are mounted on the fence next 

to the AEMS: (a) the stationary air and climate measurement station of the Chair for Regional Climate Change and Health, 

Faculty of Medicine, University of Augsburg; and (b) the housing and interior view of the engineered AELCM units. 



C7.- Section 2.4 requires a better description and detail of the models used. This can be 

summarized in a table with a short description and reference. Additional information could be 

interesting such as the library used, hyperparameters used (if needed), is there overfitting in the 

machine learning models? etc. 

 

In Table 1, the target (in features/target) is not necessary if it is the same name of the model (on 

each column). Also, it should be recommended for clarity to show only the 2 models that you 

are using: O3 and PM2.5. 

 

The tuned hyperparameters of our calibration models are provided in Table S3 of our 

Supplement. We added additional details and descriptions of the calibration models in Table 

S3 for interested readers and added the used R libraries. We refer to this table in the manuscript.  

Furthermore, we revised line 224 as follows: 

 

The selected and tuned model hyperparameters for RF, XGB and RR can be found in the 

supplement as well as more detailed information on the calibration models and used R packages 

(Table S3). 

 

Furthermore, we added additional information about the purpose of the mlr3 package, as we 

believe the relationship between mlr3 and the R packages listed in Table S3 may not be clear 

to readers. The mlr3 framework enables us to use models from multiple libraries through a 

single, unified interface for training, testing and evaluation. We revised line 223 to clarify the 

role of the mlr3 package: 

 

The mlr3 package and mlr3 ecosystem provide a framework for regression tasks and a unified 

interface for working with various learning algorithms, including the calibration models used 

in this work.  

 

The Reviewer raised concerns about overfitting; therefore, we added additional information in 

line 234 to clarify how we addressed overfitting during the calibration model building process: 

 

An out-of-sample (OOS) method following a repeated holdout strategy (Gäbel et al., 2022) was 

used to identify calibration models with good performance and optimally tuned 

hyperparameters, as estimated by their performance on the holdout data. 

 

We revised Table 1 as suggested by the Reviewer and moved the information about the NO₂ 

and CO models to the Supplement. 

 

The reason the targets were initially all placed outside the column names is that we apply a 

specific transformation to a target of a single calibration model. Therefore, we wanted to be 

consistent in our display of information. This calibration model is the MLR-based calibration 

model for PM2.5 sensor measurements (last column). We removed the other targets and added 

an asterisk to Table 1 explaining why this one target is retained in the table. 

 

 

 



Table 1. Model variables for the development of the calibration functions based on Multiple Linear Regression (MLR), Ridge 

Regression (RR), Random Forest (RF) and Extreme Gradient Boosting (XGB).  

Calibration Model 
O3 Model 

Features 

PM2.5 Model 

Features  

[Target] 

MLR VOX, VNO2, VCO, RH, T, VOX * T 
SPS30, RH, T, log(SPS30) 

[log(AEMSPM2.5)]* 

RR VOX, VNO2, VCO, RH, T SPS30, RH, T 

RF VOX, VNO2, VCO, RH, T SPS30, RH, T 

XGB VOX, VNO2, VCO, RH, T SPS30, RH, T 

* This target is shown because it is transformed in the MLR calibration model configuration. 

 

 

 

 

 

 

 

 

 

 
Table S3. Description of the employed calibration models. 

Calibration Model Description Tuned Hyperparameters R package Reference 

Extreme Gradient 

Boosting 

• Decision tree-based ensemble machine 

learning method 

• employs the gradient boosting 

framework 

• Boosting is the concept of producing a 

strong learner from weak learners 

• predictions are created from weak 

learners that continuously develop 

over the mistakes of the former 

learners 

 

nrounds 

eta 

max_depth 

lambda 

alpha 

xgboost 

 

Mienye, I. D., & Sun, Y. (2022). A Survey of 

Ensemble Learning: Concepts, Algorithms, 

Applications, and Prospects. IEEE Access, 10, 

99129–99149. 

https://doi.org/10.1109/access.2022.3207287 

 

Zounemat-Kermani, M., Batelaan, O., Fadaee, M., 

& Hinkelmann, R. (2021). Ensemble machine 

learning paradigms in hydrology: A review. Journal 

of Hydrology, 598, 126266. 

https://doi.org/10.1016/j.jhydrol.2021.126266 

 

Random Forest 

• tree-based ensemble machine learning 

method that uses decision trees as 

base-learners 

• employs the bagging technique to 

build multiple decision trees using 

bootstrapped samples 

• the bagging technique generates 

random samples with replacements 

from the input data and trains the 

decision trees from the samples 

• predictions are created from the 

trained decision trees 

 

mtry 

sample.fraction 

min.node.size 

num.trees  

ranger 

 

Mienye, I. D., & Sun, Y. (2022). A Survey of 

Ensemble Learning: Concepts, Algorithms, 

Applications, and Prospects. IEEE Access, 10, 

99129–99149. 

https://doi.org/10.1109/access.2022.3207287 

 

Zounemat-Kermani, M., Batelaan, O., Fadaee, M., 

& Hinkelmann, R. (2021). Ensemble machine 

learning paradigms in hydrology: A review. Journal 

of Hydrology, 598, 126266. 

https://doi.org/10.1016/j.jhydrol.2021.126266 

 

Multiple Linear 

Regression 

• regression method, which models 

linear relationships using least squares 

estimation 

• linear combination of features (also 

called independent or explanatory 

variables), which are weighted by 

coefficients, to predict the target or 

dependent variable 

• Assumptions:  

o linear relationship 

between features and 

target 

o residuals are normally 

distributed and 

independent 

o constant variance of 

residuals 

(Homoscedastic) 

o no outlier 

o no or a lack of 

multicollinearity  

 

– 
stats 

Uyanık, G. K., & Güler, N. (2013). A Study on 

Multiple Linear Regression Analysis. Procedia - 

Social and Behavioral Sciences, 106, 234–240. 

https://doi.org/10.1016/j.sbspro.2013.12.027 

 

Wilks, D. S. (2011). Statistical methods in the 

atmospheric sciences (Vol. 100). Academic press. 



Calibration Model Description Tuned Hyperparameters R package Reference 

Ridge Regression 

• linear least squares regression method 

augmented by L2 regularization to 

address the bias-variance trade-off 

• can be viewed as penalized regression 

• Multiple linear regression is the simple 

non-regularized case of ridge 

regression  

s glmnet 

Wanishsakpong, W., & Notodiputro, K. A. (2024). 

Comparing the performance of Ridge Regression 

and Lasso techniques for modelling daily maximum 

temperatures in Utraradit Province of Thailand. 

Modeling Earth Systems and Environment, 10(4), 

5703–5716. https://doi.org/10.1007/s40808-024-

02087-z  

 

Nowack, P., Konstantinovskiy, L., Gardiner, H., & 

Cant, J. (2021). Machine learning calibration of 

low-cost NO2 and PM10 sensors: non-linear 

algorithms and their impact on site transferability. 

Atmospheric Measurement Techniques, 14(8), 

5637–5655. https://doi.org/10.5194/amt-14-5637-

2021  

 

Asilevi, P. J., Dzidzorm, E. N., Boakye, P., & 

Quansah, E. (2025). Nitrogen dioxide (NO2) 

Meteorology and predictability for air quality 

management using TROPOMI. Npj Clean Air, 1(1). 

https://doi.org/10.1038/s44407-024-00003-4  

 

 

C8.- Abbreviations are repeated many times. As a general rule for abbreviations, define them 

once and use them always, except in the abstract. 

 

Besides, a glossary at the end of the paper should be interesting. 

 

Done. We did adjustments to our manuscript to respect the general rule for abbreviations. 

 

We added a list of abbreviations. 

  

Appendix A: List of abbreviations 

 

AELCM Atmospheric Exposure Low-Cost Monitoring 

AEMS Atmospheric Exposure Monitoring Station 

AEMSXX Concentration of a specific air substance measured by 

the AEMS 

AQD Air Quality Directive of the European Union 

AS Alphasense 

AS-B431 Alphasense B-Series electrochemical sensor for O3 

AS-B43F Alphasense B-Series electrochemical sensor for NO2 

AS-B4 Alphasense B-Series electrochemical sensor for CO 

CEN European Committee for Standardization 

CET Central European Time 

CO Carbon monoxide 

DQO Data quality objective 

EC Electrochemical 

EPA United States Environmental Protection Agency 

ET Extended training 

GDE Guide for the demonstration of equivalence 

LCS Low-cost (air) sensor 

MLR Multiple Linear Regression 

MOS Metal oxide semiconductor 

NOx Nitrogen oxides 

NSIM Non-regulatory supplemental and informational 

monitoring 

O3 Ozone 



OOS Out-of-sample 

PM2.5 Particulate matter (Particles that are 2.5 microns or 

less in diameter) 

PM10 Particulate matter (Particles that are 10 microns or less 

in diameter) 

R2 Coefficient of determination 

REU Relative expanded uncertainty 

RF Random Forest 

RHXX Relative humidity of a specific BME280 sensor in an 

AELCM unit 

RMSE Root-mean-squared error 

RR Ridge Regression 

Rs Spearman rank correlation 

SO2 Sulfur dioxide 

SAG Sensirion AG 

SAG-SPS30 Sensirion AG optical particle sensor for PM1 and 

PM2.5 

SPS30XX Particulate matter concentration of a specific SAG-

SPS30 in an AELCM unit 

ST Single training 

TXX Temperature of a specific BME280 sensor in an 

AELCM unit 

TP Test period 

TS Technical specification 

UTC Coordinated Universal Time 

VXX Net voltage of a specific AS sensor in an AELCM unit 

WHO World Health Organization 

XGB Extreme Gradient Boosting 

 

 

C9.- In addition to Table 2 (with the stats of the dataset for 1 day), why do not you plot the stats 

for the whole period (1 year?) and/or plot their value over the time? 

 

Is it correct 36º in Augsburg? 

 

Also, you can also include in Table 2 the same stats for all the features (variables) of your 

dataset (AEMSxx, Vxx). 

  

These statistics are not for a single day but cover a specific timespan. For example, in the second 

column of the first row, you will see 11/01/22 – 11/01/23. Due to unfortunate formatting and 

the lack of space, this wasn’t immediately clear, but all calculated statistics for the variables in 

column 1 are based on an entire year of data. We adjusted the table description of Table 2 and 

added the following to clarify:  

 

Statistics based on the hourly means of the atmospheric variables measured by the AEMS from 

January 2022 to January 2023. 

 

Plotted values over time related to Table 2 can be found in the Supplement of this work (Figure 

S1-S4). 

 



According to Germany’s National Meteorological Service, the Deutscher Wetterdienst (DWD), 

the DWD station in Augsburg recorded a daily maximum temperature of 35.9 °C on 

20/07/2022, which is close to the daily maximum temperature of 35.65 °C that we measured on 

the same day. Therefore, the daily maximum temperature given in Table 2 appears to be correct. 

We obtained the station data from the DWD Climate Data Center, which provides open data: 

https://www.dwd.de/EN/climate_environment/cdc/cdc_node_en.html  

 

Thank you for the suggestion to include the statistics for the raw output data in the table. We 

initially considered this but decided not to include it in the manuscript. In our view, presenting 

raw sensor signals, such as the sensors’ net voltages, would not add meaningful value and would 

obscure the main message of Table 2. The purpose of Table 2 is to characterize the 

environmental conditions during the collocation period and to provide a first impression of the 

information content of the raw sensor signals. In our opinion, this is already achieved through 

the Spearman rank correlation (Rs), which illustrates the relationship between the station 

measurements and the raw sensor signals. 

 

C10.- Conclusions are too long. You could simplify them add more relevant conclusions, since 

it is well known that with these LCS, recalibration is always required. 

 

Besides, both in the abstract and in conclusion, you should highlight your contribution. 

 

We shortened and simplified the section “Conclusions”, focusing on the relevant conclusions. 

We also highlighted our own contributions in the abstract and conclusion. 

 

Our Abstract changes to highlight our own contributions to the community: 

 

Line 9 – 11: 

 

In this study, we demonstrate how widely used air sensors (OX-B431 and SPS30) for the 

relevant air pollutants ozone (O3) and fine particulate matter (PM2.5) by two manufacturers 

(Alphasense and Sensirion) should be recalibrated for real-world monitoring applications. 

 

Line 12 – 14: 

 

We use multiple novel test protocols for air sensors provided by the United States 

Environmental Protection Agency (EPA) and the European Committee for Standardization 

(CEN) for evaluative guidance and to identify possible applications for OX-B431 and SPS30 

sensors.  

 

Line 21 – 24: 

 

We investigated different recalibration cycles using a pairwise calibration strategy, which is 

an uncommon method for recurrent LCS calibration. Our results indicate that a regular in-

season recalibration is required to obtain the highest quantitative validity and broadest range 

of applications for the analyzed LCSs, with monthly recalibrations appearing to be the most 

suitable approach. 

 

Line 27 – 29: 

 

Compared to one-time pre-deployment sensor calibration, in-season recalibration can broaden 

the scope of application for a LCS (indicative and non-regulatory supplemental measurements) 



and must be considered by the end-use communities, if certain real-word applications are 

supposed to be performed reliably by LCSs and to achieve sufficient information content. 

 

 

Our updated and adjusted conclusions (Line 724 – 800): 

 

In an attempt to consistently provide air sensor performance by a pair of O3 and PM2.5 LCSs 

(AS-B431 und SAG-SPS30) suitable for supplementing official air quality monitoring networks, 

an still uncommon approach for recurrent sensor calibration was explored during a yearlong 

collocation campaign at an urban background station next to the University Hospital Augsburg, 

Germany.  

 

LCSs were collocated with regulatory grade air measurement instruments and were exposed to 

a wide range of environmental conditions, with air temperatures between -10 and 36 °C, 

relative air humidity between 19 and 96 % and air pressure between 937 and 983 hPa. The 

ambient concentration ranges were up to 83 ppb for O3 and 153 µg m-3 for PM2.5. LCS 

calibration models were built using linear regression techniques (MLR and RR) and machine 

learning (RF and XGB).  

 

We used a pairwise (re-)calibration strategy to enable continuous in situ measurements with 

two alternating O3 (PM2.5) LCSs. The results were evaluated using novel air sensor 

performance targets defined by EPA test protocols and the CEN/TSs. We recommend regular 

in-season ET, instead of relying on a single multi-month training period. These updates to the 

calibration models are necessary to consistently produce data with sufficient information 

content (indicative and NSIM-level measurements) from AS-B431 (SAG-SPS30) units to 

support existing official air quality monitoring. Our findings underscore the importance of 

rigorous LCS data quality assurance and control for studies or LCS monitoring networks that 

aim to make quantitative assertions with LCSs. 

 

Based on the EPA performance targets for O3 (RMSE ≤ 5 ppb, R2 ≥ 0.80, Slope = 1.0 ± 0.20, 

Intercept (b) = -5 ≤ b ≤ 5 ppb), monthly recalibrations for AS-B431 LCSs are recommended to 

increase the likelihood of reliably achieving acceptable sensor bias and error during the O3 

season. In particular, RF and XGB calibration models benefited from the increased amount of 

summer training data resulting from monthly recalibrations.  

 

We showed, that MLR and RR calibration models should be employed when ET is not an option, 

but a single multi-month training period is available, which accounts for seasonal variations 

in atmospheric conditions (meteorological and air pollution factors). If ET via monthly 

recalibration is feasible, RF and XGB calibration models appear to be the more sensible choice, 

as their quantitative performance aligns particularly well with EPA guidelines for NSIM 

devices targeting O3. 

 

The need for recurrent calibration of the SAG-SPS30 is less obvious relying on the PM2.5 EPA 

performance targets (RMSE ≤ 7 µg m-3, R2 ≥ 0.70, Slope = 1.0 ± 0.35, Intercept (b) = -5 ≤ b ≤ 

5 µg m-3) and appears to be largely unnecessary, when a single lengthy multi-month calibration 

is applied. Also, a MLR calibration model for the SAG-SPS30 is adequate since no significant 

benefit was found by using more sophisticated ML methods as calibration tools. 

 

The calibrated O3 LCS and PM2.5 LCS were able to meet the class 1 DQO (REU ≤ 30 % and 

50 %, respectively) for different calibration models and therefore can provide indicative 

measurements. The REU values suggest that ET of the employed calibration models enables 



the generation of a continuous LCS time series from two identical sensor model units, more 

consistently meeting a targeted DQO (indicative measurements). Again, extending the 

calibration space by ET is especially advised for tree-based ML methods to reduce the LCS 

measurement uncertainty with increasing pollution concentrations. 

 

While the performance evaluation of the SAG-SPS30 based on EPA recommendations suggests 

that ET is largely unnecessary and that MLR calibration is sufficient, the European standards 

relying on REU values tell a different story for one of the SAG-SPS30 units. The results indicate 

that ET is a technique that should be carried out to achieve class 1 data quality for the SAG-

SPS30 deployed with AELCM009. The discrepancy between our recommendations for 

recurrent calibration based on the EPA test protocol performance targets (single-value 

performance metrics) and those based on the CEN/TS performance targets (measurement 

uncertainty distribution) for PM₂.₅ LCSs shows that EPA test protocols and CEN/TSs should be 

used together as evaluative guidance to obtain a more complete understanding of an LCS’s 

performance and to communicate to end-use communities whether specific real-world 

applications can be supported by LCSs. 

 

 

C11.- As mentioned before in C5, if you plot heatmap find other suggestions to visualize the 

results: 

1. Error-vs-time curves: plot RMSE(t) for different recalibration strategies. This shows 

how quickly accuracy decays and how recalibration recovers it. 

2. Heatmap: x-axis = initial training duration (T₀), y-axis = recalibration interval (days). 

z = a metrics (RMSE, R2, …). This visually shows regions where short initial training 

+ frequent recalibration ≈ long initial training + infrequent recalibration. 

3. Pareto frontier / cost-accuracy plot: x-axis = operational/calibration cost, y-axis = 

long-term mean RMSE. Mark strategies on the plot. 

4. Bar chart: number of recalibrations vs mean RMSE for each T₀. 

5. Time-to-failure distributions: for threshold-triggered policies, plot histogram of 

detection delays. 

6. Uncertainty band plots (error ± CI) to show statistical significance between 

strategies. 

 

Thank you for your detailed suggestions.  

 

We would prefer to keep our circular bar plots for the visualization of our results. The reasoning 

for that is explained in our response to C5.  

 

 


