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Abstract

Methane (CHa4), the second most important anthropogenic greenhouse gas, significantly impacts global
warming. As the world's largest anthropogenic CH4 emitter, China faces challenges in accurately
estimating its emissions. Top-down methods often suffer from coarse resolution, limited data
constraints, and result discrepancies. Here, we developed the Regional Methane Assimilation System
(RegGCAS-CH4) based on the WRF-CMAQ model and the EnKF algorithm. By assimilating
extensive TROPOMI column-averaged dry CH4 mixing ratio (XCHa) retrievals, we conducted high-
resolution nested inversions to quantify daily CHs emissions across China, with a focus on Shanxi
Province in 2022. Nationally, posterior CH4 emissions were 45.1 & 3.8 TgCHa yr ', 36.5% lower than
the EDGAR estimates, with the largest reductions in the coal and waste sectors. In North China,
emissions decreased most significantly, mainly attributed to the coal and enteric fermentation sectors.
Posterior emissions in coal-reliant Shanxi Province decreased by 46.3%. Sporadic emission increases
were detected in major coal-producing cities but were missed by the coarse-resolution inversion.
Monthly emissions exhibited a winter-low, summer-high pattern, with the rice cultivation and waste
sectors showing higher seasonal increases than those in EDGAR. The inversion significantly improved
XCHg4 and surface CH4 concentration simulations, reducing emission uncertainty. Compared to other
bottom-up/top-down estimates, our results were the lowest, primarily because the high-resolution
inversion better captured local emission hotspots. Sensitivity tests underscored the importance of
nested inversions in reducing the influence of boundary condition uncertainties on emission estimates.
This study provides robust CH4 emission estimates for China, crucial for understanding the CH4 budget

and informing climate mitigation strategies.

Keywords CH4 emissions, Emission inversion, RegGCAS-CH4, Data assimilation
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1. Introduction

Methane (CH4) ranks as the second most significant anthropogenic greenhouse gas and plays a crucial
role in global warming. Its global warming potential is 28-29.8 times that of carbon dioxide (CO.)
over a 100-year time scale and contributes approximately 17% to the total radiative forcing of
greenhouse gases since the industrial era (Forster et al., 2021; Saunois et al., 2025). With a relatively
short steady state atmospheric budget lifetime of slightly over 9 years (Prather, 2007), CHs is a key
target for rapid climate change mitigation efforts (Tu et al., 2024), as emphasized by the Global
Methane Pledge, which aims to reduce global anthropogenic CH4 emissions by 30% below 2020 levels
by 2030 (GMP, 2023). China, as the world's largest CH4 emitter, accounting for around 14%—22% of
global anthropogenic CHs emissions, faces a complex challenge (Zhang et al., 2022; Janssens-
Maenhout et al., 2019). China's CH4 emissions originate from diverse sources, with coal mining and
rice cultivation being particularly prominent (Nisbet, 2023; Lin et al., 2021). Comprehending the
spatiotemporal distribution and trends of China's CHs emissions is of utmost importance for

formulating effective climate policies and fulfilling international climate commitments.

The bottom-up approaches, which rely on activity data and emission factors, have been widely used to
estimate China's CH4 emissions. However, accurately estimating these emissions remains a significant
challenge. Existing inventories are often characterized by large uncertainties in both magnitude and
sectoral attribution, with differences between various bottom-up estimates reaching up to 40—-60% for
China (Saunois et al., 2025). Among the various sources, estimates of China’s coal mine CH4 emissions
can range from 14-28 Tg'yr! (Sheng et al., 2019). This wide disparity leads to much uncertainty in
the bottom-up estimates. There are multiple reasons for the uncertainties, especially the lack of
comprehensive data on emission sources, especially for small-scale and sporadic emitters, and the use
of complex and perhaps inappropriate emission factors in different sectors (Stavert et al., 2022). For
instance, in coal mining, the emission factors vary significantly depending on the mining method
(underground vs. surface mining), geological conditions, and the quality of coal. More generally, due
to the use of a spatial proxy approach for the spatial allocation of the total emissions, existing global
inventories exhibit significant spatial discrepancies when compared with high-resolution local

measurements, resulting in misattribution of emissions (Qin et al., 2024).
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In contrast, top-down inversion methods, that utilize satellite and surface observations in conjunction
with atmospheric transport models, have the potential to provide more accurate and comprehensive
estimates. Compared with ground-based inversions, satellite-based atmospheric inversions, such as
those using column-averaged dry CHs mixing ratios (XCHs) data from the Greenhouse Gases
Observing Satellite (GOSAT) or the TROPOspheric Monitoring Instrument (TROPOMI), can offer
valuable insights into the spatial distribution of emissions (Lu et al., 2023). Studies utilizing satellite
observations have quantified CH4 emissions from various sources, including oil, gas, and coal mining
sectors at the global, regional, and local scales (Nesser et al., 2024; Bai et al., 2024; Zhang et al., 2021).
For instance, Maasakkers et al. (2019) investigated the contribution of different regions to the global
CH4 budget with GOSAT XCH4 data, identifying areas with significant emissions and sinks. Pandey
et al. (2019) used TROPOMI XCHj4 observations to reveal extreme CH4 leakage from a natural gas
well blowout, demonstrating the instrument's ability to detect both large-scale and short-term emission

events.

The Methane Emission Control Action Plan released by China explicitly states the exploration and
implementation of research on atmospheric CHs emission inversion models, and strengthens the
verification of emission inventories by inversion data (MECAP, 2023). A number of inversions
relevant to China have been conducted with satellite observations. Using inverse analysis of 2019
TROPOMI XCHy data, Chen et al. (2022) quantified CH4 emissions across China and attributed
contributions to specific sectors. Zhang et al. (2022) estimated China's CHs emissions from 2010 to
2017 by combining satellite and surface observations, revealing complex linkages between emission
trends and associated policy drivers. However, the trends of China's CH4 emissions quantified by the
top-down approach (Sheng et al., 2021; Miller et al., 2019) are contrary to those estimated by the
bottom-up approach. This discrepancy is mainly due to the uncertain quantification of emissions from

the coal mining sector (Sheng et al., 2019; Liu et al., 2021).

Currently, global-scale CH4 assimilation systems are widely applied, such as CarbonTracker-CH4 in
the United States (Bruhwiler et al., 2014), CAMS in Europe (Agusti-Panareda et al., 2023), NTFVAR
in Japan (Wang et al., 2019), and GONGGA-CH4 in China (Zhao et al., 2024). However, significant
knowledge gaps remain in accurately estimating CHs4 emissions at the regional scale. There are

relatively few existing regional CH4 assimilation systems, such as the ICON-ART-CTDAS (Steiner et

4
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al., 2024) and CarbonTracker Europe-CH4 (Tsuruta et al., 2017) in Europe. Additionally, several open-
source frameworks offer inversion tools adaptable to different scales, such as LMDz-SACS-CIF in
France (Thanwerdas et al., 2022) and the IMI in the United States (Varon et al., 2022). Nevertheless,
most existing regional inversions still rely on global atmospheric transport models with relatively
coarse resolutions and only provide annual or monthly average results. This lack of high
spatiotemporal resolution prevents them from capturing local emission characteristics and short-term
variations (Chen et al., 2022). Qu et al. (2021) highlighted significant challenges in separating rice and
coal emissions over southeast China due to coarse grid resolution. High-resolution estimates are crucial
for understanding the detailed distribution of emissions, especially in regions with heterogeneous
source landscapes. For instance, in Shanxi Province, a major coal producing region, the traditional
low-resolution models may fail to capture the emissions from numerous small-scale coal mines.
Additionally, the inversion results of global and regional systems still show significant differences,
mainly due to different observation data, inversion methods, transport models, and resolutions (Kou et
al., 2025; Chen et al., 2022; Liang et al., 2023). Another challenge is that regional models need to
consider the impact of boundary fields, especially for long-lived species. Current studies usually
directly derive regional boundary fields from global simulation or analysis fields, which still contain
large errors (Zhang et al., 2022; Kou et al., 2025). Consequently, China's contribution to the global

CH4 budget remains unclear.

In this study, we aimed to address these limitations by developing a Regional Methane Assimilation
System (RegGCAS-CHy4) based on the Weather Research and Forecasting-Community Multiscale Air
Quality (WRF-CMAQ) model and the Ensemble Kalman Filter (EnKF) algorithm (Evensen, 1994).
This system enabled the assimilation of a large volume of TROPOMI XCH4 data to achieve nested
inversions of daily CHs emissions with high spatial-temporal resolution. We conducted a
comprehensive analysis of the spatial characteristics and monthly variations of China's CH4 emissions
in 2022. In particular, we focused on the nested inversion analysis of CH4 emissions in Shanxi

Province, China.

The novelty of our study lies in the high spatial resolution emission inversions, which allows for
capturing the fine-scale features of CH4 emissions that are often missed by global inversion models.

Secondly, by assimilating a larger amount of TROPOMI XCH4 observations, which feature high

5
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spatial resolution, wide spatial coverage, and high-frequency retrievals (~ 100 times more
observations than GOSAT) (Qu et al., 2021), we can incorporate the latest and more representative
information on atmospheric CH4 concentrations to update the daily emissions. This high temporal
resolution is essential for understanding the short-term fluctuations in emissions and their response to
various factors. Notably, we have pre-updated the global boundary fields, which effectively mitigates
the impact of boundary condition errors on regional emission inversions. This is a crucial step that has
not been emphasized or implemented in most previous studies. By comparing our results with the
currently widely used inventories, we aim to provide a more accurate and detailed understanding of

China's CH4 emissions, which is crucial for formulating effective climate change mitigation strategies.
2. Method and data

2.1 Data assimilation system

The basic framework of the RegGCAS-CHj4 system is almost identical to that of RegGCAS (Zhang et
al., 2024). Developed by Feng et al. (2020) based on the Regional multi-Air Pollutant Assimilation
System (RAPAS, Feng et al., 2023), RegGCAS was initially used to infer the fossil fuel CO, emission.
RegGCAS-CH; includes a regional chemical transport model (CTM) and an ensemble square root
filter (EnSRF) assimilation module (Whitaker and Hamill, 2002), which are employed to simulate
atmospheric compositions and infer anthropogenic emissions, respectively. In this study, the system
was extended to high-resolution nested inversion for CHs emissions, which can optimize emissions
from the outer (D01) to inner (D02) domain and reduce the influence of inaccurate boundary conditions
on the inversion of the inner area (Feng et al., 2022). Moreover, the assimilation framework was
updated to optimize CH4 emissions by assimilating the TROPOMI CH4 column retrievals. For the
same domain, the RegGCAS-CHj4 performed a “two-step” inversion scheme in each data assimilation
(DA) window. First, the prior emissions were optimized using the available atmospheric observations.
Then, the optimized emissions were input back into the CTM to generate the initial fields for the next
assimilation window. Simultaneously, the optimized emissions were transferred to the next window to
serve as prior emissions (Figure S1). It is noted that the system optimizes the prior emissions for the
D01 and D02 domains separately. Specifically, DO1 only provides an optimized boundary field for

D02, rather than the prior emission source for D0O2. Thus, the uncertainties in boundary conditions for
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D02 emission estimates were reduced. This “two-step” scheme facilitates error propagation and
iterative emission optimization, which can ensure the mass conservation of the system and effectively

enhance the stability and consistency of the emission updates (Feng et al., 2024).

2.1.1 Atmospheric transport model

The Weather Research and Forecast (WRF v4.0) model (Skamarock and Klemp, 2008) and the
Community Multiscale Air Quality Modeling System (CMAQ v5.0.2) (Byun and Schere, 2006) were
applied to simulate meteorological conditions and atmospheric chemistry, respectively. In this study,
the CMAQ model employed two-nested simulations. The D01, which covered the whole mainland of
China with a grid of 225 x 165 cells, and the D02, which covered the Shanxi Province and surrounding
areas with a grid of 195 x 174 cells, had grid spacings of 27 and 9 km, respectively (Figure 1). There
were 20 levels on the sigma—pressure coordinates extending from the surface to 100 Pa. To account
for the rapid expansion of urbanization, we updated the underlying surface information for urban and
built-up land using the MODIS Land Cover Type Product (MCDI12C1) Version 6.1 of 2022. The
detailed configuration of WRF-CMAQ is shown in Table S1.
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Figure 1 (a) Nested inversion domain and (b) number of TROPOMI XCHj retrievals during 2022. The
red dashed frame depicts the CMAQ modeling domain; black squares represent the surface
meteorological measurement sites; red triangles represent the six in-situ CHs measurement sites in
Shanxi Province; purple asterisks and black triangles represent the flask and in-situ CH4 measurement
sites, respectively. The TROPOMI observations that fall within the same model grid are processed and
counted as one super-observations. The subfigure in panel (b) shows the total number of super-

observations for each month within the study area.
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The meteorological initial and lateral boundary conditions were obtained from the Final (FNL)
Operational Global Analysis data of the National Center for Environmental Prediction (NCEP) with a
1° x 1° resolution at 6-h intervals. The chemical lateral boundary conditions for the outer domain were
derived from the CAMS global inversion-optimized CH4 concentrations with a 1° X 1° resolution at
6-hour intervals (Bergamaschi et al., 2013), while those for the inner domain were obtained from the
forward simulation of the outer domain with optimized CH4 emissions. In the first DA window, the
chemical initial conditions were also extracted from the CAMS, whereas in subsequent windows, they
were derived through forward simulation using optimized emissions from the previous window. Given
that the transport time of CH4 within the study area is far shorter than its atmospheric lifetime, we
deactivated all atmospheric chemical reaction processes to minimize computational costs (Chen et al.,
2022; Kou et al., 2025). Instead, we integrated a set of CHj4 tracer variables into CMAQ for ensemble

simulations, enabling all CH4 concentration sets to be obtained from a single simulation.

Eliminating biases in boundary conditions is critical, as such biases can propagate through the entire
system. We found that the boundary conditions extracted from the CAMS global fields still had
considerable biases over East Asia (see Section 4). Thus, we calculated a grid-specific scaling factor
for CAMS fields (50°E-160°E, 0°-70°N) against TROPOMI XCHyj retrievals, and then applied these
factors to correct the CAMS boundary conditions (Figure S2). Based on each pair of CAMS and
TROPOMI data, we first calculated the column concentration of the CAMS reanalysis field. Then, the
column concentrations of CAMS and TROPOMI were respectively smoothed in the longitudinal and
latitudinal directions with a radius of 4°, and in terms of time using a 4-day window. Subsequently, the
latitudinal average values were calculated, along with the average column concentrations biases
between CAMS and TROPOMI. After that, linear interpolation was applied to fill in the missing values
of the biases in the longitudinal direction. For the biases of the grids where there were missing values
at the same latitude, it was assumed that they were consistent with the average biases of the non-
missing values at that latitude. Finally, grid-by-grid bias was calculated and correction was carried out

for the original CAMS CH4 concentrations.
2.1.2 EnKF assimilation algorithm

The EnKeF is based on the Monte Carlo approach, which uses a stochastic ensemble of model states to

approximate the probability distribution of the true state. It has been widely employed for updating the
9
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model state by incorporating observational data to minimize the difference between the model-
simulated and observed values (Evensen, 1994). The ensemble square root filter (EnSRF) approach,

introduced by Whitaker and Hamill (2002), was used to constrain the CHs emissions in this study.

The EnSRF process commences with the initialization of an ensemble of model states, which are
generated by applying a Gaussian perturbation with an average value of zero and the standard deviation
of the uncertainty to a state vector X?. The ensemble-estimated background error covariance matrix

P? is then calculated as:
1 —_— J—
PP = —3yN (X? - X") (x} - XP)T (D
N—1

where N is the ensemble size; X? represents the ith sampling; X? represents the mean of the
ensemble samples. P? plays a pivotal role in determining how the model state will be adjusted based

on new observations.

During the forecast step, each ensemble member is advanced in time using the WRF-CMAQ model. As
the model runs, uncertainties in emissions can lead to errors in CHa4 concentrations, and thus the
response relationships of the concentration ensembles to the emission ensembles are obtained. In the

analysis step, observational data y are incorporated to update the analyzed state. The ensemble

mean of the analyzed state X% is regarded as the best estimate of emissions, which is obtained through

the following equations:
X = Xt + K(y — HXP) 2)
K = PPHT(HPPHT + R)™! (3)

where R is an observation error covariance matrix, which is specified as a diagonal matrix with the
assumption that observation errors from different pixels are mutually independent (Feng et al., 2020).
K is the Kalman gain matrix, estimated from the ensemble simulations and determining the relative
contributions of observation and background to analysis. The state vector was defined as X? =
(Ea”, Ep")T,where Ea and Ep represent the vectors of CH4 emissions for the area and power plant
sources, respectively. Area sources included the daily total emissions from the enteric fermentation &

manure, landfills & waste, rice cultivation, coal mining, oil & gas, industry, transport sources, etc.

10
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Given that power plants are typically elevated point sources, this spatial distinction allows for effective
separation from ground-based area sources. Therefore, even though power plant sources account for a
small proportion (0.6%) of total emissions, we treated them as separate state vectors for optimization.
The updated emissions are then used as the new initial states for the next forecast step, creating a cycle

of assimilation that gradually refines the estimate of CH4 emissions.

The observation operator H maps the model state to the observation space. In the context of CHas, H is
configured to first horizontally geo-locate simulated CHs concentrations to match the TROPOMI
XCHzy retrievals. Subsequently, it remaps the sub-column concentrations from the 20-layer CMAQ
vertical grid to the 12-layer TROPOMI vertical grid by totally or partially allocating CMAQ layers to
TROPOMI layers based on pressure edges (Varon et al., 2022). Finally, the column average dry-air
mixing ratio XCH4 can be obtained by applying the TROPOMI column averaging kernel of each
layer a; to sub-columns:

XCH4g = VCH4/VAIRyyy; &)
VCH4, = VCH4, + Y, a; (XCH44 ,AVAIRy,,; — AVCH4,) (5)

where n is the number of retrieval layers; AVCH4,,; and VCH4,, represent the prior CHs column
in retrieval layer i and total CH4 column; XCH4,; is the simulated dry air mixing ratio of CHs in
retrieval layer i; AVAIRy,,; and VAIRg4,.,; represent the dry air column in retrieval layer i and
total dry air column, respectively, provided along with the TROPOMI product.

In this study, the DA window was set to 1 d, meaning that daily TROPOMI XCHj, retrievals were
utilized as emission constraints. The ensemble size was set to 50 to fully characterize the system
uncertainties and inversion accuracy. To address the problem of spurious long-distance correlations in
the EnKF (Houtekamer and Mitchell, 2001), we applied covariance localization using the Gaspari and
Cohn function, which is a piecewise continuous fifth-order polynomial approximation of a normal
distribution (Miyazaki et al., 2017; Gaspari and Cohn, 1999). Taking into account the transmission
distance of CH4 within one assimilation window, the localization scale was set to 300 km. By setting
the covariance to be smaller the farther away from the observations, we could reduce the spurious

influence of remote observations on the local analysis.

2.2 Prior emissions and uncertainties
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The prior anthropogenic CH4 emissions were taken from the Emission Database for Global
Atmospheric Research version 8.0 (EDGAR v8), which offers detailed monthly gridded CHs
emissions at 0.1°x0.1° from various anthropogenic sources (Crippa et al., 2024). The daily emissions,
obtained by uniformly allocating the aggregated monthly emission inventory, were directly utilized as
the initial estimate in the RegGCAS-CHj4. For natural CH4 emissions, we utilized the ensemble average
of 18 emissions from the WetCHARTSs v1.3.1 inventory (0.5 x 0.5°, monthly) in 2019 for wetland
emissions (Bloom et al., 2021), the Global Fire Emissions Database (GFED v4.1s, 0.25° x 0.25¢, three-
hourly) in 2022 for biomass burning emissions (van Wees et al., 2022), and CAMS global emissions
inventory (CAMS-GLOB-TERM v1.1, 0.5° x 0.5°, monthly) in 2000 for termite emissions (Jamali et
al., 2011). Additionally, CH4 sinks resulting from soil absorption were derived from datasets simulated

by Soil Methanotrophy Model (MeMo v1.0, 1° x 1¢, yearly) in 2020 (Murguia-Flores et al., 2018).

Given the model error compensation and the relatively comparable emission uncertainties from one
day to the next, we applied an identical uncertainty of 40% to each emission grid at every DA window.
Since the RegGCAS-CH4 adopts a “two-step” inversion strategy and the daily posterior emissions are
iteratively optimized, the emission analysis is generally no longer sensitive to the prior uncertainties

of the original emission inventory after several assimilation windows (Zhang et al., 2024).
2.3 Assimilation data and errors

TROPOMI, onboard the Sentinel-5 Precursor satellite, was launched in 2017. Operating in a sun-
synchronous orbit with an equator local overpass time of 13:30 h, TROPOMI offers daily global
continuous monitoring of XCHs4. The RemoTeC full-physics algorithm is used to retrieve XCH4 from
TROPOMI measurements of sunlight backscattered by Earth's surface and atmosphere in the near-
infrared (NIR) and shortwave-infrared (SWIR) spectral bands (Lorente et al., 2022). After 2019, the
spatial resolution of TROPOMI was adjusted to a remarkable 5.5%3.5 km? at nadir, enabling the
identification of even relatively small-scale CH4 emission sources. We used the TROPOMI XCHjy level

2 data product to estimate CH4 emissions.

All TROPOMI individual pixels with a quality assurance value (qa_ value) smaller than 0.5 were
discarded, which corresponds to high-cloud conditions or the presence of snow or ice. However, we

still found many unrealistic low values, especially in summer. These negative biases can inevitably
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lead to the underestimation of inverted emissions. To further minimize the impact of outliers, we
selected another XCH4 product generated based on the WFMD algorithm for cross-validation
(Schneising et al., 2023). Only those pixels that were concurrently available in the TROPOMI/WFMD
product and met the quality flag requirements were assimilated. Subsequently, the final quality-
controlled TROPOMI data demonstrated good consistency with observations from two TCCON
stations, namely the Hefei and Xianghe stations (Figure S3). Figure 1b illustrates the observational
amount of TROPOMI XCHy in 2022 at each grid. Although the distribution of filtered data exhibits
spatiotemporal nonuniformity, most grid cells in the central-northern regions with intense
anthropogenic emissions have observational coverage for more than 100 days in 2022. Additionally,
the monthly variation in the data amount shows fluctuations, with the peak occurring at the beginning
and end of the year and the troughs around the middle. For regions with limited observation coverage
(e.g., southern China), posterior emission estimates may rely heavily on prior information (see
Discussion). On one hand, the system optimizes emissions in grids surrounding observations through
the source-receptor relationship of atmospheric transport, allowing it to impose extensive constraints
on emissions (Figure S4); on the other hand, it adopts an iterative approach where emissions optimized
in the current window serve as prior emissions for the next window, facilitating rolling assimilation
and thereby sustaining the influence of observational information on emission estimates. However,
intermittent observations may cause posterior emissions to underestimate short-term emission
fluctuations. At the monthly scale, grids without continuous observational constraints throughout the
month directly use EDGAR data. Such grids account for 7.9% of all grids and contribute 0.3% to total
posterior emissions. Although this may lead to insufficient observational constraints on posterior
emissions, particularly in southern regions during summer, it effectively avoids seasonal distortions in
posterior estimates caused by variations in emissions. At the annual scale, 4.8% of grids remain
unadjusted. These unadjusted emissions are mainly distributed in uninhabited areas of Southwest

China, resulting in a negligible overall impact on annual CH4 emission estimates.

According to the latest quarterly validation report, the 1o spread of the relative difference between the
TROPOMI and the TCCON (Wunch et al., 2011) is of the order of 0.7% for bias corrected product,
which is recommended to be considered as an upper boundary of the random uncertainty of the satellite

data (Lambert et al., 2025).

13



321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2.4 Evaluation Data

To evaluate the performance of the WRF simulations, we utilized the surface meteorological
measurements of 400 stations with 3-hour intervals, including temperature at 2 m (T2), relative
humidity at 2 m (RH2), wind direction at 10 m (WD10), and wind speed at 10 m (WS10). These
measurements were obtained from the National Climate Data Center (NCDC) integrated surface
database (http://www.ncdc.noaa.gov/oa/ncdc.html, last access: 25 August 2024). To evaluate the
posterior CH4 emissions, two parallel forward modeling experiments were conducted: the control
experiment with prior emissions (CEP) and the validation experiment with posterior emissions (VEP).
Both experiments utilized identical meteorological fields, as well as initial and boundary conditions.
We evaluated: (1) the simulated XCH4 against TROPOMI XCHys; (2) the simulated surface CHy
concentrations against independent ground CH4 observations from eleven in-situ and five flask
monitoring sites (Table S2). The in-situ measurements included five global sites outside China (AMY,
GSN, RYO, ULD, and YON) with hourly resolution from NOAA's GLOBALVIEWplus CH4 ObsPack
v6.0 (Schuldt et al., 2023), as well as six regional sites in Shanxi Province (TY, DT, LF, SZ, JC, and
WTS) equipped with Picarro G2301 analyzers for high-precision, 5-second CH4 measurements (data
were processed as daily averages to reduce random errors). The Picarro instrument, based on
wavelength-scanned cavity ring-down spectroscopy technology, is designated by the World
Meteorological Organization as the international reference instrument for CHa observations in
international comparisons. Additionally, observations from five flask sampling sites (AMY, DSI, LLN,

TAP, and WLG) were also obtained from ObsPack dataset, providing weekly measurements.

3. Results and discussion

3.1 Posterior CH4 emissions

Figure 2 shows the spatial distributions of the estimated annual CH4 emissions and the differences
from the prior emissions (i.e., EDGAR) over China in 2022. On a national scale, the high CH4
emissions were primarily concentrated in the Yangtze River Delta (YRD), Pearl River Delta (PRD),
North China Plain (NCP), and Shanxi Province. For the YRD and PRD characterized by high-density
populations, a large number of industrial plants, as well as extensive agricultural activities such as rice
cultivation, contributed significantly to CH4 emissions. The NCP, with its heavy reliance on coal-based
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energy and large-scale livestock farming, was also expected to be a major emission source. Lower
emissions were mainly distributed across Northwest, and Southwest China.

Compared with the EDGAR, the posterior emissions were generally smaller over most areas of
mainland China, with total anthropogenic emissions decreasing to 45.1 TgCHa yr !, 36.5% lower than
the EDGAR (71.0 TgCHy4-yr!). Additionally, previous studies have consistently shown that the
EDGAR inventory overestimates China's CH4 emissions. For example, through a Bayesian inversion
of CH4 and stable isotope (6'*C-CHa4) measurements for East Asia, Thompson et al. (2015) found that
posterior values decreased significantly across eastern and southern China, especially in the
NCP. Overall, EDGAR overestimated China's emissions by 29%. Similarly, Zhang et al. (2021)
conducted a global inverse analysis using GOSAT observations and revealed that EDGAR significantly
overestimates anthropogenic emissions in eastern China. The posterior estimate of Chinese
anthropogenic emissions was 30 % lower than that of EDGAR. Turner et al. (2015) also demonstrated
that after assimilating GOSAT observations, China's posterior CHs emissions were revised downward
by 50% relative to EDGAR. Using a regional model to assimilate TROPOMI observations, Kou et al.
(2025) detected decreases of varying magnitudes across nearly the entirety of China, with the exception
of Northwest China. Similar results have been reported by Alexe et al. (2015), Pandey et al. (2016),
and Maasakkers et al. (2019). Our study, using a higher-resolution regional inversion method, provided
more detailed emission information. Overall, our inversion results were comparable to the ensemble

mean of GCP ground-based inversions (Wang et al., 2025).
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Figure 2 Spatial distribution of the annual total prior emissions (top, EDGAR v8, MgCHs km2-yr 1),
posterior emissions (middle), and differences (bottom, posterior minus prior) over (a-c) Mainland

China and (d-f) Shanxi Province.

Assimilating total CH4 observations alone cannot disentangle emissions from different source sectors
overlapping in individual grid cells (Saunois et al., 2025). Consequently, we partitioned the inversion

results into respective emission sectors based on the monthly prior proportions at the model grid points
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(Kou et al., 2025; Zhang et al., 2022), though this approach does introduce a certain degree of
uncertainty in sectoral attribution. The sectoral patterns offer insights into the underlying factors
influencing China's emission changes. We concentrated on interpreting the emissions from the coal,
gas, rice cultivation, waste, livestock, building, and manure management sectors, which are the most
significant sectors in China (Table S3). Table 1 shows the comparison of posterior and prior
anthropogenic CH4 emissions of the main emission sectors in China. Consistent with the previous
studies, we also found that North China is the region with the most significant reduction nationwide.
Almost the entire region has experienced a decrease, with a reduction of 56.9%, indicating that there
are indeed substantial systematic biases in the EDGAR inventory. Among them, the coal sector
contributed the most to this discrepancy, followed by enteric fermentation, with decreases of 56.2%

and 64.0%, respectively (Table 1).

For Northeast China, the increase in emissions mainly occurred in Heilongjiang Province, especially
in the western part, which is the base of Daqing Oilfield, China's largest oilfield. The oil and gas sectors
in the entire Northeast China increased by 27.1% and 23.1%, respectively. However, emissions from
other sectors decreased, resulting in an overall 11.1% reduction in emissions. Rice paddy CHy
emissions serve as the dominant emission source in East China. However, the high spatial
heterogeneity and the insufficiency of data on rice cultivation introduce large uncertainties to
inventories. Additionally, different fertilization management practices in various regions, such as the
use of nitrogen fertilizer versus organic fertilizer (Zhang et al., 2022), and mid-season drainage
management (Lin et al., 2021), bring about considerable uncertainties in the emission factors related
to rice cultivation practices. Emissions in Zhejiang, Fujian, and Jiangxi Provinces increased, mainly
attributed to emissions from rice paddies. In contrast, emissions in other provinces decreased,
dominated by the coal mining, leading to an overall 26.4% reduction in emissions in East China.
Recent studies have highlighted significant errors in the spatial distribution of rice CH4 emissions in
EDGAR v8.0, which relies on outdated rice paddy maps and incorrectly overspreads rice emissions
across non-rice agricultural grids (Chen et al., 2025). These limitations not only cause EDGAR to
overestimate rice emissions but also lead to overestimation in subsequent posterior emissions.
Specifically, this overestimation may inflate the contribution of rice to total CH4 emissions in posterior

attribution, while simultaneously underestimating the contribution of other CH4 sources (e.g., coal,
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wetlands) that coexist in these misclassified grids. Conversely, EDGAR fails to capture recent
expansions of rice cultivation in Northeast China, particularly the rapid growth of rice paddies in the
Sanjiang Plain (Liang et al., 2024). This omission may result in a systematic underestimation of rice

emission hotspots in this region.

In Central and South China, the dominant sources of emissions remain rice paddies. However, the
decreases were mainly attributed to the coal mining and wastewater treatment sectors, which reduced
emissions by 51.3% and 12.4%, respectively. Overall, the total emissions in these two regions
decreased by 21.8% and 7.8%, respectively. In Northwest China, the reduction in emissions was
mainly distributed in the hotspot areas of coal mines, which dominated the overall 55.7% decrease in
emissions. In Southwest China, the increase in emissions occurred predominantly in the southern part
of the Sichuan Basin, a major coal-producing region, while emissions in other regions decreased.
Sheng et al. (2019) found that the EDGAR inventory lacks a significant amount of statistics on coal
mines. Moreover, China has issued an energy policy of “phasing out small coal mines” (approximately
50% of which are located in the southwest with high CH4 content) to shift production towards lower-
emission areas and consolidate into large coal mines (Zhang et al., 2022; Sheng et al., 2019).
Additionally, the wastewater treatment sector achieved significant emission reductions, driving a 1.7%

overall decrease in Southwest China.
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Table 1 Comparison of posterior and prior anthropogenic CHs emissions (GgCHa4 yr ") of the main

emission sectors in the 7 major regions of China.

Coal Gas Rice Waste Livestock Building Manure

Prior 13841.1 98.4 169.1 2462.1 3882.9 385.5 859.5
North

Posterior 60684  46.2 116.4 1238.1 1396.4 206.7 279.6

Prior 771.9 82.6 879.6 14279 2519 268.4 36.8
Northeast

Posterior 665.0 101.8 821.2 1259.6  237.7 243.3 34.1

Prior 2257.3 54.4 5100.3 6681.4 9079 732.9 200.5
East

Posterior 1114.5 45.1 45924  4750.9 512.7 576.2 114.4

Prior 846.5 32.4 3139.5 1882.9 4342 399.4 91.2
Central

Posterior 412.2 25.7 2862.6 13244 3433 314.1 75.2

Prior 15.0 20.5 2186.4 1622.5 280.2 254.6 44.0
South

Posterior 13.8 18.9 2080.6 1421.3 269.9 235.0 42.2

Prior 8188.3 1083.4 143.3 970.5 746.2 226.7 76.4
Northwest

Posterior 2899.1 645.8 120.7 593.6 534.3 164.4 39.6

Prior 531.3 76.5 2046.4 11240 667.0 356.3 107.1
Southwest

Posterior  505.6 77.2 2063.0 1060.7  663.7 352.1 107.2

* Waste includes wastewater treatment, solid waste landfills, and solid waste incineration; Building represents
emissions from small-scale non-industrial stationary combustion; Manure refers to emissions from the manure
management sector.

China accounts for as high as 69% of the global mitigation potential in coal mining in 2030 (EPA,
2019). Shanxi Province, where 94% of the emissions come from the coal mining sector, accounts for
nearly one-third of the country’s total CH4 emissions. Therefore, we conducted a focused analysis on
the emissions in Shanxi Province with high-resolution (9 km) inversion, which can better diagnose the
spatial characteristics of emissions caused by coal mining (Figure 2d-f). The optimized emissions
showed a decrease in the vast majority of areas in Shanxi Province. Compared with the EDGAR
inventory (9.0 TgCH4-yr '), the posterior emissions decreased by 46.3% to 4.8 TgCH4 yr!. The
overestimation of coal mining emissions may be due to the fact that the standard IPCC emission factors
used by EDGAR are too high for Chinese coal mines (Lin et al., 2021). Additionally, the average

emission factors in the north are lower than those in other regions (Gao et al., 2021). The use of a
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uniform regional emission factor by EDGAR further exacerbates the overestimation of emissions (Shi
et al., 2025). Moreover, in the past decade, the extraction and utilization of coal mine CH4 in China
have been largely improved (Lu et al., 2021), but the recovery of coal mine CHjy is not adequately
considered in the EDGAR inventory. Finally, the CH4 emission intensity of surface mining is ten times
lower than that of underground mining. However, surface mining is overlooked in the EDGAR
inventory (Gao et al., 2020). In Yangquan, Jincheng, Changzhi, and Jinzhong cities (Figure 2), some
increased emission hotspots caused by the coal mining activities could be found. Coincidentally, these
cities are the main coal-producing areas in Shanxi Province. Overall, the emissions in these cities have
still decreased by 3.3%, 4.2%, 29.5%, and 32.3%, respectively (Figure S5). Tu et al. (2024) utilized
TROPOMI observations and implemented a wind-assigned anomaly method to quantify the CHy
emissions from coal mines in Yangquan, Changzhi, and Jincheng. Compared to EDGAR, emissions

decreased by 56.5%, 40.5%, and 65.0%, respectively—a larger reduction than our findings.

3.2 Monthly variations

Figure 3 illustrates the comparison of the monthly variations in prior and posterior emissions both in
China and Shanxi Province. Nationally, influenced by CH4 emissions from paddy fields, both the prior
and posterior emissions exhibited the characteristic of being low in winter and high in summer.
However, the posterior emissions for each month were lower than the prior emissions. The monthly
posterior emissions ranged from 2.3 to 7.5 Tg-month™', with a modification rate ranging from -30.7%
to 5.6% compared to the prior emissions (4.8—7.6 Tg-month™"). The month with the smallest difference
occurred in August, mainly because the underestimation of CHs4 emissions from paddy fields
compensated for the overestimation of emissions from coal mining (Figure 3c). Additionally, due to
the weather conditions such as clouds and rain in summer, the amount of TROPOMI data was
significantly smaller than that in other seasons (Figure 1b), which might lead to insufficient constraints
on emissions. Regarding Shanxi Province, even with an agnostic flat monthly prior (Figure 3b), our
estimates generated a monthly variation, and emissions in all months were lower than the prior values.
We also detected a decrease and subsequent increase in emissions that correspond to the Spring
Festival in February. A noticeable recovery of production capacity in the following two months was
also evident. Overall, although relatively large uncertainties were introduced by the amount of

observations, the seasonal variation of monthly posterior emissions could be roughly captured.
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It could be found that the reduction in emissions each month in China was mainly dominated by the
coal sector, with an overall annual reduction of 55.9%, indicating a high level of uncertainty in the
prior emissions. Moreover, the gas, livestock, and manure management sectors also showed varying
degrees of reduction in different months, with overall decreases of 34.0%, 45.1%, and 51.5%,
respectively. However, for the rice cultivation sector, the posterior emissions were lower than the prior
emissions in the first half of the year, while the situation was reversed in the second half of the
year. Summer and autumn are the heading and flowering stages for both single-cropping late rice and
double-cropping late rice across the eastern, central, and southern China. During these periods, the
emissions from paddy fields tended to be higher than in other seasons. However, EDGAR v8.0 adopts
a uniform seasonal profile for rice CH4 emissions across China, assigning a single emission peak in
June to all rice-growing regions. This simplification contradicts the findings of Chen et al. (2025), who
reported that rice CHs emissions in China generally peak in July—August, with the length of the
emission season varying significantly due to the diversity of regional rice cropping systems. Notably,
our posterior emission results align well with the seasonal pattern, with the highest monthly rice
emissions occurring in August, followed by July (Table S3). This consistency confirms that the
TROPOMI satellite observations have effectively corrected the unrealistic uniform seasonal bias
inherent in EDGAR. Overall, the posterior CHs emissions from paddy fields have slightly decreased
by 4.7%.

A similar situation was observed in the waste sector. Previous studies have shown that significant CHy
production in wastewater is more likely to occur because methanogens become more active as the
temperature rises (Hu et al., 2023). Therefore, a significant increase in the posterior emissions
compared to the prior emissions could be observed in August. For the building sector, due to winter
heating or hot water supply, the emissions in winter were approximately three times higher than those
in summer. After optimization, the emissions in winter and spring significantly decreased, while in
some months of summer and autumn, the decrease was less pronounced, and there was even a slight
increase. The inter-monthly difference in emissions decreased, but the monthly variation remained
significant. Overall, the posterior emissions have decreased by 25.4%. The changes in emissions in
Shanxi Province were mainly dominated by the coal mining sector. Compared to EDGAR, the monthly

reduction rate ranged from 12.6% in August to 67.3% in February. For other sectors, there was little
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Figure 3 Comparison of the monthly variations and the sectoral differences (GgCHs mon™!) in prior

and posterior CH4 emissions over (a, b) China and (c, d) Shanxi Province.
3.3 Evaluation of posterior emission estimates

CHa4 emission estimates are highly sensitive to biases in meteorological simulations, as meteorological
processes significantly influence atmospheric transport, which in turn shapes the source-receptor
relationships and determines the flow-dependent background error covariance. Overall, the model
demonstrated satisfactory performance in reproducing domain-wide meteorological conditions across
China (Figure S6), with minimal biases of -0.4°C for T2 and -4.9% for RH2, alongside high correlation
coefficients (CORR) of 1.0 and 0.96, respectively. The model’s performance over Shanxi Province
was slightly less optimal, likely due to the region’s complex terrain. The biases for T2 and RH2 were

1.5°C and -12.5%, respectively, while the CORR remained high at 0.99 and 0.90. Additionally, the
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WRF model effectively captured the temporal variations in wind direction both across China and
Shanxi Province. However, WS10 was generally slightly overestimated, with biases of 0.5 m/s and 0.4
m/s and CORR of 0.88 and 0.81, respectively. Such overestimation of wind speed in WRF simulations
has also been widely reported in other studies (Hu et al., 2016). An overestimated wind speed causes
the model to simulate faster and more extensive diffusion of CH4 concentrations than occurs in reality.
To compensate for the simulated reduction in CH4 concentrations due to this excessive diffusion, the

inversion system potentially increases the estimated emissions.

Figure 4 shows the spatial distribution of XCHj4 in the posterior simulation, as well as the validation
of XCH4 simulated by prior and posterior emissions with TROPOMI observations. It could be
observed that relatively large XCH4 were present over eastern China, which was driven by coal mining
in the northern part and rice paddy fields in the southern part (Zhang et al., 2023). The simulation using
prior emissions significantly overestimated the XCHy4 concentration in China, especially in the NCP.
The maximum overestimation exceeded 100 ppb, which was consistent with the overestimated
emissions in these regions (Figure 2). After the inversion optimization, the simulated XCH4 showed
better spatial distribution consistency with the TROPOMI observations. The vast majority of the biases
were within 20 ppb, and the national average biases decreased from 14.7 ppb to 7.9 ppb, representing
a 46.0% reduction. In Shanxi Province, high emissions were mainly concentrated in the coal-rich
southeastern region, with an annual average maximum exceeding 1970 ppb, which was difficult to
reproduce the characteristics of local high concentrations at a coarse resolution. The prior simulation
showed obvious overestimation across the entire region, particularly in northern Shanxi. Due to the
high spatial resolution adopted, the model could take into account more practical factors, and thus
capture the spatiotemporal variations of emission sources and transport processes more precisely. As
a result, the agreement between the posterior simulations and the TROPOMI observations was
remarkably enhanced. The average deviation decreased from 37.9 ppb to 11.9 ppb, with a reduction of
68.7%. These changes not only demonstrate the effectiveness of reducing uncertainties in optimizing
emission sources but also imply that there are indeed significant uncertainties in the prior emission

inventory.
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Figure 4 Comparison of simulated XCH4 (ppb) from prior and posterior emissions with TROPOMI
observations over (a-c) China and (d-f) Shanxi Province for the 2022 annual average. (a, d) Spatial
distribution of XCH4 observed by TROPOMI. (b, e) Differences between prior simulations and

observations. (¢, f) Differences between posterior simulations and observations.

We further conducted an independent evaluation of the posterior estimate by comparing it with 10 in-
situ and flask monitoring sites from the CH4 ObsPack v6.0 database. Figure 5 shows the time series
comparison of the CEP and VEP experiments with the observations. The evaluation statistics for all

sites are presented in Table S4. There was a significant overestimation in the CEP experiment
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throughout most of the study period. Although most of the sites are located in the eastern regions
outside China, influenced by the atmospheric circulation, the westerlies prevail in most parts of
China. Thus, the optimized emission information can be effectively reflected in the concentrations
observed downwind. The optimized simulation in VEP experiments was more consistent with the
observations. Among them, the AMY flask site showed the largest reduction in bias, with the average
bias decreasing from 35.3 ppb to 3.3 ppb, a decrease of 90.7%. For WLG, the only ObsPack site
available in mainland China, the average bias decreased from 47.4 ppb to 28.3 ppb, a reduction of
40.3%. This indicates that the optimized emissions can significantly improve the CH4 simulation,
whether in areas close to the source or downwind of the source. Overall, the average bias of the 10
sites decreased by 58.6%, from 28.6 ppb to 11.9 ppb, the root mean square error (RMSE) decreased
by 28.9%, from 56.2 ppb to 39.9 ppb, and the CORR increased from 0.72 to 0.75. These evaluation

results demonstrate that the inversion effectively reduces the uncertainties of prior emission inventory.
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Figure S Time series comparison of surface CHs concentrations (ppb) from prior (CEP) and posterior
(VEP) emission simulations with observations from 5 flask sites and 5 in-situ sites within the ObsPack
dataset. The black, blue, and red values represent the averaged observations, prior simulations, and

posterior simulations, respectively.

We also carried out an independent validation using six high-precision in-situ observation sites within
Shanxi Province (Figure la). Table 2 shows the bias, RMSE, and CORR of the CEP and VEP
simulations against these surface observations. Except for the LF site, which shifted to a severe

negative bias and exhibited a larger RMSE, the VEP experiment demonstrated varying degrees of
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improvement at the other five sites. Notably, the bias reduction at the DT and WTS sites exceeded
93.3%. Especially for the WTS site, a high mountain site with an altitude of over 2208 m, the bias was
decreased to 8.3 ppb. On average across all sites, the bias significantly decreased by 96.0%, from 535.1
ppb to 21.4 ppb. For the RMSE, the most significant decreases were observed at the DT and SZ sites,
both exceeding 73%. Overall, the RMSE reduction ranged from 13.5% to 79.0%. Additionally, the
CORR of the VEP experiment increased to 0.48—0.63. In addition, we evaluated the CH4 concentration
simulation for the afternoon, during which the model generally demonstrates better boundary layer
simulation performance, with overall lower bias and higher CORR (Table S5). These results further
confirm that the RegGCAS-CHj4 system can effectively capture the characteristics of high-resolution
CHa4 emission changes and improve the accuracy of concentration simulations.

Table 2 Statistics comparing the daily average CH4 concentrations (ppb) from the simulations with
prior (CEP) and posterior (VEP) emissions against six independent surface in-sifu observation sites in

Shanxi Province, respectively. The numbers under the site names represent the number of valid

observations.
' Mean Mean Sim. BIAS RMSE CORR
Site Name
Obs.
CEP VEP CEP VEP CEP VEP CEP VEP
(g;) 25955 | 2771.0 | 2353.2 | 1754 |-242.3 | 408.7 | 353.6 | 0.46 0.51
DT
(286) 2122.0 | 2441.1 | 2139.2 | 319.1 17.2 | 489.0 | 102.6 | 0.49 0.58
LF
277) 2395.1 | 2397.2 | 2197.9 2.0 -197.3 | 186.8 | 257.3 | 0.45 0.35
(38529) 2148.8 | 4560.5 | 2782.4 | 2411.7 | 633.6 | 2778.1 | 745.1 | 0.44 0.48
(3J6Cz) 2446.0 | 2624.5 | 23552 | 178.4 -909 | 385.0 | 356.3 | 0.52 0.52
WTS
(361) 2064.0 | 2188.0 | 2072.2 | 124.1 8.3 162.6 | 59.1 0.49 0.63

* BIAS, mean bias; RMSE, root mean square error; CORR, correlation coefficient

4. Discussion

To further explore the characteristics of our posterior emissions and offer valuable guidance for the

27



594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

refinement of bottom-up inventory in China, we conducted a comparison analysis with the latest 8
bottom-up inventories and 4 top-down emission estimates (Figure 6). Specifically, apart from EDGAR
v8, the bottom-up inventories were sourced from the Copernicus Atmosphere Monitoring Service
(CAMS-GLOB-ANT v6.2) (Soulie et al., 2024), Community Emissions Data System (CEDS_202407)
(Hoesly et al., 2018), Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants
inventory (ECLIPSE v6b) from the GAINS model (Stohl et al., 2015), Global Carbon Project (GCP
2024) (Saunois et al., 2025), Peking University (PKU v2) (Liu et al., 2021), United Nations Framework
Convention on Climate Change (UNFCCC, 2020), and the United States Environmental Protection
Agency (EPA, 2019). In addition, we also obtained the Global Fuel Exploitation Inventory (GFEI
v2) (Scarpelli et al., 2022) to assess the emissions from the coal mining sector in Shanxi Province. The
top-down emissions were mainly sourced from the CarbonTracker-CH4 (Oh et al., 2023) and the

research results of Chen et al. (2022), Kou et al. (2025), and Peng et al. (2023).

Typically, the top-down estimates showed lower emissions than the bottom-up inventories. Although
our posterior estimates were the lowest across all datasets, they closely matched CEDS, PKU, and
CarbonTracker-CH4 and were comparable to the ensemble mean of GCP ground-based inversions
(Wang et al., 2025). Overall, our posterior emissions were 22.0% lower than the average of bottom-up
inventories and 16.6% lower than the previous top-down estimates. The lower emissions in this study
were predominantly driven by the downward revision of coal emissions. Overestimated emission
factors and the difficulty in tracking the spatial distribution of coal mines due to mine closures and
regional transfers remain significant obstacles to the assessment of coal mine emissions (Gao et al.,
2021). Our estimate was lower than the previous top-down studies (53—65 Tg yr™), likely because
those previous studies were conducted at much coarser resolutions (0.3°-2.5° versus 27 km) or with
much sparser observations (in-situ ground measurements and GOSAT versus TROPOMI). For Shanxi
Province, compared with the bottom-up inventories, our results were close to those of GAINS and fell
within the uncertainty range of Qin et al. (2024), which set multiple groups of emission factors
according to coal types, mining methods, and geological structures. There were substantial disparities
among the top-down inversions. Notably, for CarbonTracker-CH4, despite having minimal divergence
at the national scale when contrasted with other estimations, the values for Shanxi Province were

markedly lower than those of other estimates. This could be attributed to the insufficient assimilation
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623  of China's surface observations and systematic biases in the spatial distribution of prior emissions.
624  Overall, the coal-mining emissions in this study were 29.2% lower than the bottom-up inventories and

625  19.3% lower than the previous top-down inversions.
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627  Figure 6 Total anthropogenic CH4 emissions (TgCH4-yr™") in China (a) and CH4 emissions from the
628  coal mining sector in Shanxi Province (b). GCP 2024 BU and GCP 2024 TD represent the bottom-up
629  and top-down ensemble means included in the dataset, respectively. The grey bars in panel b represent
630 the range of CH4 emissions estimated by Qin et al. (2024) using four different methods. The latest year

631  in the inventory is marked above the bars.

632  Uncertainties in boundary conditions constitute a significant source of error in regional inversion.

633  Despite the optimization of concentration fields in the CAMS, significant biases remained evident

29



634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

(Figure 7a). To address this issue, we implemented additional constraints on the CAMS concentration
fields using TROPOMI XCH4 observations, resulting in a notably improved agreement with the
observations. Specifically, the average bias decreased from -3.7 ppb to -1.0 ppb, representing a
reduction of 73.7%. A sensitivity experiment (SENS1) was further conducted (Table S6), where the
unadjusted CAMS global fields were extracted as boundary conditions to invert anthropogenic CHy
emissions, aiming to evaluate the impact of boundary condition uncertainties on regional emission
inversions. Compared with the base experiment (BASE), the largest discrepancies in monthly
variations were observed during the winter months, indicating significant overestimations. The
emission differences across different months closely aligned with the concentration differences,
suggesting that underestimations in concentrations prompted more substantial emission adjustments
for compensation. Regarding the spatial distribution, due to the relative long lifetime of CH4, emission
changes caused by boundary condition biases were not confined to regional boundaries, such as in
Northeast and Northwest China, but were also observable throughout the entire region. In the outer
national inversion, the average CH4 emissions increased by 7.5%, while in the inner Shanxi Province,
the increase was 3.9%. This highlights the necessity of expanding the inversion scope to mitigate the
influence of boundary condition errors on the inversion of central regions.

Furthermore, we compared two sets of emission differences over the inner domain: one between the
two national inversions, and the other between the two inner nested regional inversions (BASE and
SENS1). We found that the two inner inversions exhibited a 23.1% smaller discrepancy. This indicates
that adopting a nested inversion approach is essential, which can further reduce boundary condition
errors during inner inversion through outer optimization, thereby enhancing the robustness of the

inversion process.
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Figure 7 Differences in XCH4 column concentrations (ppb) between TROPOMI-adjusted and
unadjusted CAMS fields, along with the induced monthly posterior CH4 emission differences (SENS
- BASE) over China (a); differences in two posterior emissions (MgCH4-km™2-yr ') derived from

unadjusted and adjusted boundaries over China (b) and Shanxi Province (¢)

To better evaluate the potential impact of prior uncertainties on posterior emission estimates, we
conducted additional inversion experiments (SENS2) using the 2022 CAMS-GLOB-ANT v6.2
inventory as prior emissions. Nationwide, the posterior emissions in SENS2 increased by 5.2%
compared with those in the BASE experiment. More importantly, the initial difference between the
two prior inventories (6.0 Tg) converged to a much smaller difference of 2.3 Tg in the posterior results,

indicating good robustness of the assimilation system at the national scale. However, in southern China
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(south of 30°N), due to limited observational constraints, the difference between the two prior
inventories (5.8 Tg) only decreased to 4.8 Tg in the posterior results. In contrast, in observation-dense
regions such as Shanxi Province, even though the difference in prior emissions was only 61.9 Gg, the

difference in optimized posterior emissions further converged to 39.0 Gg.

Uncertainty in atmospheric transport models can contribute to model-data mismatch errors. Consistent
with previous studies (Chen et al., 2022), this study initially omitted CH4 chemical reactions to
accelerate model integration and inversion efficiency. To quantify the impact of this simplification, we
further conducted an additional inversion experiment (SENS3) where CH4 chemical reactions were
incorporated into the CMAQ model. Results showed that the inclusion of chemical reactions led to a
6.6% difference compared to the base experiment. Specifically, the difference was small in winter
(only 1.7%), whereas in summer, the OH concentration in the lower troposphere was one order of
magnitude higher than that in winter (Lelieveld et al., 2016). This stronger OH-driven CH4 oxidation
resulted in an increase of over 10% in posterior emissions. This indicates that accounting for CH4
chemical reactions in summer is still necessary for accurate emission inversion. The impact of

chemical reactions only increased emission estimates by 1.9% in Shanxi Province.

Different satellite products employ distinct inversion algorithms, which in turn determine the quality
and quantity of the data. To assess how satellite product selection influences emission inversion, the
TROPOMI/WFMD product was assimilated in SENS4. Compared with the operational TROPOMI
product in BASE experiment, the TROPOMI/WFMD product provided a 59.3% increase in the
number of observations, particularly notable in winter. In mainland China, posterior emissions derived
from SENS4 increased by 4.4%, primarily driven by higher emission estimates in March and April. In

Shanxi Province, posterior emissions showed a more modest increase of 2.2%.

Our results may also be subject to several uncertainties associated with the settings of assimilation
system parameters. In particular, background and observation errors influence the weight assigned to
prior emissions versus observations in determining posterior emissions, while the localization scale
dictates the distance over which observational information affects the inversion results. To quantify
these impacts, we conducted sensitivity tests by adjusting key parameters: observation errors were set
to 0.5% and 0.9% (SENSS5-6), background errors to 30% and 50% (SENS7-8), and localization scales

to 250 km and 350 km (SENS9-10), respectively. However, our sensitivity analysis revealed that
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varying these parameters, whether increasing or decreasing their values, only led to differences of -
0.7% to 1.7% in posterior emission estimates across mainland China. This indicates that the CHy4

emission estimates were not significantly affected by adjustments to the system parameters.

Following the methods of Feng et al. (2024) and Nassar et al. (2017), we estimated the overall
uncertainty of our results by accounting for the combined effects of the aforementioned factors (e.g.,
parameter settings, prior inventories). In general, sparsely observed regions, such as western China
and Northeast China, showed over-reliance on the prior inventory (SENS2) and exhibited relatively
high posterior emission uncertainty (28.0-44.1%). In contrast, densely observed regions including East
China and North China showed relatively low uncertainty (7.9-17.4%). Across mainland China,
boundary condition errors contributed the most to total uncertainty. Specifically, boundary conditions
caused substantial differences in emission estimates for Northeast China. The overall posterior
emission uncertainty for mainland China was 8.5%, while that for Shanxi Province was even lower at

7.8%, with this uncertainty primarily driven by uncertainties in the prior inventory.
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Figure 8. Posterior CHs emissions from the base and different sensitivity experiments (Table S6). B
denotes the BASE experiment. S1 to S10 denote the SENS1 to SENS10 experiments, respectively. S1
represents the experiment using the unadjusted CAMS global concentration field as the boundary; S2
denotes the experiment adopting CAMS-GLOB-ANT v6.2 inventory as the prior emission inventory;
S3 denotes the inversion experiment accounting for CH4 chemical reactions; S4 denotes the inversion
experiment assimilating the TROPOMI/WFMD product; S5 and S6 denote the experiments with
observation errors set to 0.5% and 0.9%, respectively; S7 and S8 denote the experiments with
background errors set to 30% and 50%, respectively; S9 and S10 denote the experiments with the
localization scale adjusted to 250 km and 350 km, respectively. The numbers on the figure represent

the uncertainty values of different regions.

Our inversion results are generally lower than previous emission estimates. By comparing the emission
differences over the inner region at different resolutions across the BASE and all SENS experiments,
we found that emissions inverted at a 9 km resolution were typically 5.4-10.6% lower than those at a
27 km resolution. This indicates that higher-resolution inversion consistently yields lower emission

estimates, a discrepancy likely driven by the fact that higher-resolution simulations excel at capturing
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localized emission hotspots that lead to elevated concentration values. Therefore, compared with other
coarse-resolution inversions, this study tends to adjust emissions downward to better align with
observations. To further understand the extent to which different sensitivity factors affect our relatively
low posterior emission results, we compared the emission differences between SENS experiments and
the BASE experiment under the inner domain coverage at the same 27 or 9 km resolution (Figure S7).
In every sensitivity experiment with a positive difference (SENS — BASE), the magnitude varies
between 0.3-7.2%, which is always smaller than the emission reduction caused by high-resolution
inversion under the corresponding SENS experiment. This confirms that higher resolution remains the
dominant driver of our lower inversion results relative to previous studies, while the aforementioned
factors contribute to secondary, manageable uncertainties. Additionally, China's 2022 COVID-19
restrictions, the most stringent since 2020, may be another factor driving lower emissions due to
production shutdowns and home quarantine. Peng et al. (2022) combined bottom-up and top-down
approaches to quantify CHa4 source changes, revealing a 1.2 Tg:CHa4 yr ! reduction in anthropogenic
CH4 emissions in 2020 compared to 2019. Taking oil and gas sector as an example, an IEA report
stated that global CH4 emissions from oil and gas operations decreased by approximately 10% year-
on-year in 2020 (IEA, 2021), primarily attributed to reduced oil and gas production during the
pandemic (Thorpe et al., 2023).

5 Summary and conclusions

In this study, we developed a Regional Methane Assimilation System (RegGCAS-CH4) based on the
WRF-CMAQ model and EnKF algorithm to perform high-resolution nested inversions of China's CH4
emissions using TROPOMI XCHjy retrievals. Taking the EDGAR v8 as prior emissions, we inferred
the daily anthropogenic CH4 emissions over China in 2022.

Using TROPOMI XCHjs as constraints, we revealed significant overestimations in the prior emissions.
Nationally, the posterior anthropogenic CH4 emissions in 2022 were estimated to be 45.1 + 3.8
TgCH4yr ', 36.5% lower than the EDGAR inventory, mainly driven by the decreases in the coal and
waste sectors. North China experienced the most substantial reduction, with a 56.9% decrease, mainly
due to downward revisions in the coal and enteric fermentation sectors. In Shanxi Province, influenced
by dominant sources of coal mining, the posterior emissions decreased by 46.3% compared to the

EDGAR inventory, with value of 4.8 + 0.4 TgCH4-yr !. The monthly variation of posterior emissions
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showed a pattern of being low in winter and high in summer. Except for the rice cultivation and waste
sectors, which showed some increases in certain months related to seasonal growth stages and
temperature-driven methanogen activity, respectively, other sectors exhibited varying degrees of
reduction. Observation-constrained emissions significantly improved the CH4 simulation performance.
Specifically, for the entire region and Shanxi Province, the biases were reduced by 46.0% and 68.7%
for XCH4 columns, and by 58.6% and 96.0% for surface CHa, respectively. This highlights the
effectiveness of RegGCAS-CH4 in reducing uncertainty in CHs emissions. Sensitivity inversions
highlight the importance of high-resolution satellite-based nested inversions in accurately estimating
CH4 emissions, especially in reducing the impact of boundary condition errors on emission inversions.
Top-down inversions usually result in lower emissions compared to those constructed by bottom-up
methods. When comparing our posterior emissions with other inventories, our estimates were the
lowest among both bottom-up and top-down estimations. On average, they were 22.0% lower than
bottom-up inventories and 16.6% lower than previous top-down estimates. The high-resolution
inversion employed in this study is capable of more accurately simulating local high concentration
values, and thus, the reduction in emissions is greater than that in previous studies. The overestimation
of China's CH4 emissions may have led to an overestimation of the country's climate change mitigation
burden. The more accurate emission estimates presented here not only enhance our understanding of

the CH4 budget but also contribute to more effective global climate change mitigation efforts.
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