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Abstract 18 

Methane (CH4), the second most important anthropogenic greenhouse gas, significantly impacts global 19 

warming. As the world's largest anthropogenic CH4 emitter, China faces challenges in accurately 20 

estimating its emissions. Top-down methods often suffer from coarse resolution, limited data 21 

constraints, and result discrepancies. Here, we developed the Regional Methane Assimilation System 22 

(RegGCAS-CH4) based on the WRF-CMAQ model and the EnKF algorithm. By assimilating 23 

extensive TROPOMI column-averaged dry CH4 mixing ratio (XCH4) retrievals, we conducted high-24 

resolution nested inversions to quantify daily CH4 emissions across China, with a focus on Shanxi 25 

Province in 2022. Nationally, posterior CH4 emissions were 45.1 ± 3.8 TgCH4·yr⁻¹, 36.5% lower than 26 

the EDGAR estimates, with the largest reductions in the coal and waste sectors. In North China, 27 

emissions decreased most significantly, mainly attributed to the coal and enteric fermentation sectors. 28 

Posterior emissions in coal-reliant Shanxi Province decreased by 46.3%. Sporadic emission increases 29 

were detected in major coal-producing cities but were missed by the coarse-resolution inversion. 30 

Monthly emissions exhibited a winter-low, summer-high pattern, with the rice cultivation and waste 31 

sectors showing higher seasonal increases than those in EDGAR. The inversion significantly improved 32 

XCH4 and surface CH4 concentration simulations, reducing emission uncertainty. Compared to other 33 

bottom-up/top-down estimates, our results were the lowest, primarily because the high-resolution 34 

inversion better captured local emission hotspots. Sensitivity tests underscored the importance of 35 

nested inversions in reducing the influence of boundary condition uncertainties on emission estimates. 36 

This study provides robust CH4 emission estimates for China, crucial for understanding the CH4 budget 37 

and informing climate mitigation strategies. 38 
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1. Introduction 45 

Methane (CH4) ranks as the second most significant anthropogenic greenhouse gas and plays a crucial 46 

role in global warming. Its global warming potential is 28–29.8 times that of carbon dioxide (CO2) 47 

over a 100-year time scale and contributes approximately 17% to the total radiative forcing of 48 

greenhouse gases since the industrial era (Forster et al., 2021; Saunois et al., 2025). With a relatively 49 

short steady state atmospheric budget lifetime of slightly over 9 years (Prather, 2007), CH4 is a key 50 

target for rapid climate change mitigation efforts (Tu et al., 2024), as emphasized by the Global 51 

Methane Pledge, which aims to reduce global anthropogenic CH4 emissions by 30% below 2020 levels 52 

by 2030 (GMP, 2023). China, as the world's largest CH4 emitter, accounting for around 14%–22% of 53 

global anthropogenic CH4 emissions, faces a complex challenge (Zhang et al., 2022; Janssens-54 

Maenhout et al., 2019). China's CH4 emissions originate from diverse sources, with coal mining and 55 

rice cultivation being particularly prominent (Nisbet, 2023; Lin et al., 2021). Comprehending the 56 

spatiotemporal distribution and trends of China's CH4 emissions is of utmost importance for 57 

formulating effective climate policies and fulfilling international climate commitments.  58 

The bottom-up approaches, which rely on activity data and emission factors, have been widely used to 59 

estimate China's CH4 emissions. However, accurately estimating these emissions remains a significant 60 

challenge. Existing inventories are often characterized by large uncertainties in both magnitude and 61 

sectoral attribution, with differences between various bottom-up estimates reaching up to 40–60% for 62 

China (Saunois et al., 2025). Among the various sources, estimates of China’s coal mine CH4 emissions 63 

can range from 14–28 Tg·yr−1 (Sheng et al., 2019). This wide disparity leads to much uncertainty in 64 

the bottom-up estimates. There are multiple reasons for the uncertainties, especially the lack of 65 

comprehensive data on emission sources, especially for small-scale and sporadic emitters, and the use 66 

of complex and perhaps inappropriate emission factors in different sectors (Stavert et al., 2022). For 67 

instance, in coal mining, the emission factors vary significantly depending on the mining method 68 

(underground vs. surface mining), geological conditions, and the quality of coal. More generally, due 69 

to the use of a spatial proxy approach for the spatial allocation of the total emissions, existing global 70 

inventories exhibit significant spatial discrepancies when compared with high-resolution local 71 

measurements, resulting in misattribution of emissions (Qin et al., 2024). 72 
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In contrast, top-down inversion methods, that utilize satellite and surface observations in conjunction 73 

with atmospheric transport models, have the potential to provide more accurate and comprehensive 74 

estimates. Compared with ground-based inversions, satellite-based atmospheric inversions, such as 75 

those using column-averaged dry CH4 mixing ratios (XCH4) data from the Greenhouse Gases 76 

Observing Satellite (GOSAT) or the TROPOspheric Monitoring Instrument (TROPOMI), can offer 77 

valuable insights into the spatial distribution of emissions (Lu et al., 2023). Studies utilizing satellite 78 

observations have quantified CH4 emissions from various sources, including oil, gas, and coal mining 79 

sectors at the global, regional, and local scaleskey source scales (Nesser et al., 2024; Bai et al., 2024; 80 

Zhang et al., 2021). For instance, Maasakkers et al. (2019) investigated the contribution of different 81 

regions to the global CH4 budget with GOSAT XCH4 data, identifying areas with significant emissions 82 

and sinks. Pandey et al. (2019) used TROPOMI XCH4 observations to reveal extreme CH4 leakage 83 

from a natural gas well blowout, demonstrating the instrument's ability to detect both large-scale and 84 

short-term emission events.  85 

The Methane Emission Control Action Plan released by China explicitly states the exploration and 86 

implementation of research on atmospheric CH4 emission inversion models, and strengthens the 87 

verification of emission inventories by inversion data (MECAP, 2023). A number of inversions 88 

relevant to China have been conducted with satellite observations. Using inverse analysis of 2019 89 

TROPOMI XCH4 data, Chen et al. (2022) quantified CH4 emissions across China and attributed 90 

contributions to specific sectors. Zhang et al. (2022) estimated China's CH4 emissions from 2010 to 91 

2017 by combining satellite and surface observations, revealing complex linkages between emission 92 

trends and associated policy drivers. However, the trends of China's CH4 emissions quantified by the 93 

top-down approach (Sheng et al., 2021; Miller et al., 2019) are contrary to those estimated by the 94 

bottom-up approach., This discrepancywhich is mainly due to the uncertainunclear quantification of 95 

emissions from the coal mining sector (Sheng et al., 2019; Liu et al., 2021).  96 

Currently, global-scale CH4 assimilation systems are widely applied, such as CarbonTracker-CH4 in 97 

the United States (Bruhwiler et al., 2014), CAMS in Europe (Agustí-Panareda et al., 2023), NTFVAR 98 

in Japan (Wang et al., 2019), LMDz-SACS-CIF in France (Thanwerdas et al., 2022), and GONGGA-99 

CH4 in China (Zhao et al., 2024). However, significant knowledge gaps remain in accurately estimating 100 

CH4 emissions at the regional scale. There are relatively few existing regional CH4 assimilation 101 



5 

 

systems, such as the ICON-ART-CTDAS (Steiner et al., 2024) and CarbonTracker Europe-CH4 102 

(Tsuruta et al., 2017) in Europe, and the IMI in the United States (Varon et al., 2022). Additionally, 103 

several open-source frameworks offer inversion tools adaptable to different scales, such as LMDz-104 

SACS-CIF in France (Thanwerdas et al., 2022) and the IMI in the United States (Varon et al., 2022). 105 

Nevertheless, most existing regional inversions still rely on global atmospheric transport models with 106 

relatively coarse resolutions and only provide annual or monthly average results. This lack of high 107 

spatiotemporal resolution prevents them from capturing local emission characteristics and short-term 108 

variations (Chen et al., 2022). Qu et al. (2021) highlighted significant challenges in separating rice and 109 

coal emissions over southeast China due to coarse grid resolution. High-resolution estimates are crucial 110 

for understanding the detailed distribution of emissions, especially in regions with heterogeneous 111 

source landscapes. For instance, in Shanxi Province, a major coal producing region, the traditional 112 

low-resolution models may fail to capture the emissions from numerous small-scale coal mines. 113 

Additionally, the inversion results of global and regional systems still show significant differences, 114 

mainly due to different observation data, inversion methods, transport models, and resolutions (Kou et 115 

al., 2025; Chen et al., 2022; Liang et al., 2023). Another challenge is that regional models need to 116 

consider the impact of boundary fields, especially for long-lived species. Current studies usually 117 

directly derive regional boundary fields from global simulation or analysis fields, which still contain 118 

large errors (Zhang et al., 2022; Kou et al., 2025). Consequently, China's contribution to the global 119 

CH4 budget remains unclear. 120 

In this study, we aimed to address these limitations by developing a Regional Methane Assimilation 121 

System (RegGCAS-CH4) based on the Weather Research and Forecasting-Community Multiscale Air 122 

Quality (WRF-CMAQ) model and the Ensemble Kalman Filter (EnKF) algorithm (Evensen, 1994). 123 

This system enabled the assimilation of a large volume of TROPOMI XCH4 data to achieve nested 124 

inversions of daily CH4 emissions with high spatial-temporal resolution. We conducted a 125 

comprehensive analysis of the spatial characteristics and monthly variations of China's CH4 emissions 126 

in 2022. In particular, we focused on the nested inversion analysis of CH4 emissions in Shanxi 127 

Province, China. 128 

The novelty of our study lies in the high spatial resolution emission inversions, which allows for 129 

capturing the fine-scale features of CH4 emissions that are often missed by global inversion models. 130 
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Secondly, by assimilating a larger amount of TROPOMI XCH4 observations, which feature high 131 

spatial resolution, wide spatial coverage, and high-frequency retrievals (∼ 100 times more 132 

observations than GOSAT) (Qu et al., 2021), we can incorporate the latest and more representative 133 

information on atmospheric CH4 concentrations to update the daily emissions. This high temporal 134 

resolution is essential for understanding the short-term fluctuations in emissions and their response to 135 

various factors. Notably, we have pre-updated the global boundary fields, which effectively mitigates 136 

the impact of boundary condition errors on regional emission inversions. This is a crucial step that has 137 

not been emphasized or implemented in most previous studies. By comparing our results with the 138 

currently widely used inventories, we aim to provide a more accurate and detailed understanding of 139 

China's CH4 emissions, which is crucial for formulating effective climate change mitigation strategies. 140 

2. Method and data 141 

2.1 Data assimilation system 142 

The basic framework of the RegGCAS-CH4 system is almost identical to that of RegGCAS (Zhang et 143 

al., 2024). Developed by Feng et al. (2020) based on the Regional multi-Air Pollutant Assimilation 144 

System (RAPAS, Feng et al., 2023), RegGCAS was initially used to infer the fossil fuel CO2 emission. 145 

RegGCAS-CH4 includes a regional chemical transport model (CTM) and an ensemble square root 146 

filter (EnSRF) assimilation module (Whitaker and Hamill, 2002), which are employed to simulate 147 

atmospheric compositions and infer anthropogenic emissions, respectively. In this study, the system 148 

was extended to high-resolution nested inversion for CH4 emissions, which can optimize emissions 149 

from the outer (D01) to inner (D02) domain and reduce the influence of inaccurate boundary conditions 150 

on the inversion of the inner area (Feng et al., 2022). Moreover, the assimilation framework was 151 

updated to optimize CH4 emissions by assimilating the TROPOMI CH4 column retrievals. For the 152 

same domain, tThe RegGCAS-CH4 performed a “two-step” inversion scheme in each data assimilation 153 

(DA) window. First, the prior emissions were optimized using the available atmospheric observations. 154 

Then, the optimized emissions were input back into the CTM to generate the initial fields for the next 155 

assimilation window and boundary conditions for the inner domain. Simultaneously, the optimized 156 

emissions were transferred to the next window to serve as prior emissions (Figure S1). It is noted that 157 

the system optimizes the prior emissions for the D01 and D02 domains separately. Specifically, D01 158 
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only provides an optimized boundary field for D02, rather than the prior emission source for D02. 159 

Thus, the uncertainties in boundary conditions for D02 emission estimatesthe estimates of emissions 160 

in the inner domain were also reduced. Simultaneously, the optimized emissions were transferred to 161 

the next window to serve as prior emissions. This “two-step” scheme facilitates error propagation and 162 

iterative emission optimization, which can ensure the mass conservation of the system and effectively 163 

enhance the stability and consistency of the emission updates (Feng et al., 2024). 164 

2.1.1 Atmospheric transport model 165 

The Weather Research and Forecast (WRF v4.0) model (Skamarock and Klemp, 2008) and the 166 

Community Multiscale Air Quality Modeling System (CMAQ v5.0.2) (Byun and Schere, 2006) were 167 

applied to simulate meteorological conditions and atmospheric chemistry, respectively. In this study, 168 

the CMAQ model employed two-nested simulations. The outer domain (D01), which covered the 169 

whole mainland of China with a grid of 225 × 165 cells, and the inner domain (D02), which covered 170 

the Shanxi Province and surrounding areas with a grid of 195 × 174 cells, had grid spacings of 27 and 171 

9 km, respectively (Figure 1). There were 20 levels on the sigma–pressure coordinates extending from 172 

the surface to 100 Pa. To account for the rapid expansion of urbanization, we updated the underlying 173 

surface information for urban and built-up land using the MODIS Land Cover Type Product 174 

(MCD12C1) Version 6.1 of 2022. The detailed configuration of WRF-CMAQ is shown in Table S1. 175 
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 176 

Figure 1 (a) Nested inversion domain and (b) number of TROPOMI XCH4 retrievals during 2022. The 177 

red dashed frame depicts the CMAQ modeling domain; black squares represent the surface 178 

meteorological measurement sites; red triangles represent the six in-situ CH4 measurement sites in 179 

Shanxi Province; purple asterisks and black triangles represent the flask and in-situ CH4 measurement 180 

sites, respectively. The TROPOMI observations that fall within the same model grid are processed and 181 

counted as one super-observations. The subfigure in panel (b) shows the total number of super-182 

observations for each month within the study area. 183 
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The meteorological initial and lateral boundary conditions were obtained from the Final (FNL) 184 

Operational Global Analysis data of the National Center for Environmental Prediction (NCEP) with a 185 

1° × 1° resolution at 6-h intervals. The chemical lateral boundary conditions for the outer domain were 186 

derived from the CAMS global inversion-optimized CH4 concentrations with a 1° × 1° resolution at 187 

6-hour intervals (Bergamaschi et al., 2013), while those for the inner domain were obtained from the 188 

forward simulation of the outer domain with optimized CH4 emissions. In the first DA window, the 189 

chemical initial conditions were also extracted from the CAMS, whereas in subsequent windows, they 190 

were derived through forward simulation using optimized emissions from the previous window. Given 191 

that the transport time of CH4 within the study area is far shorter than its atmospheric lifetime, we 192 

deactivated all atmospheric chemical reaction processes to minimize computational costs (Chen et al., 193 

2022; Kou et al., 2025). Instead, we integrated a set of CH4 tracer variables into CMAQ for ensemble 194 

simulations, enabling all CH4 concentration sets to be obtained from a single simulation. 195 

Eliminating biases in boundary conditions is critical, as such biases can propagate through the entire 196 

system. We found that the boundary conditions extracted from the CAMS global fields still had 197 

considerable biases over East Asia (see Section 4). Thus, we calculated a grid-specific scaling factor 198 

for CAMS fields (50°E–160°E, 0°–70°N) against TROPOMI XCH4 retrievals, and then applied these 199 

factors to correct the CAMS boundary conditions (Figure S1S2). Based on each pair of CAMS and 200 

TROPOMI data, we first calculated the column concentration of the CAMS reanalysis field. Then, the 201 

column concentrations of CAMS and TROPOMI were respectively smoothed in the longitudinal and 202 

latitudinal directions with a radius of 4°, and in terms of time using a 4-day window. Subsequently, the 203 

latitudinal average values were calculated, along with the average column concentrations biases 204 

between CAMS and TROPOMI. After that, linear interpolation was applied to fill in the missing values 205 

of the biases in the longitudinal direction. For the biases of the grids where there were missing values 206 

at the same latitude, it was assumed that they were consistent with the average biases of the non-207 

missing values at that latitude. Finally, grid-by-grid bias was calculated and correction was carried out 208 

for the original CAMS CH4 concentrations. 209 

2.1.2 EnKF assimilation algorithm 210 

The EnKF is based on the Monte Carlo approach, which uses a stochastic ensemble of model states to 211 

approximate the probability distribution of the true state. It has been widely employed for updating the 212 



10 

 

model state by incorporating observational data to minimize the difference between the model-213 

simulated and observed values (Evensen, 1994). The ensemble square root filter (EnSRF) approach, 214 

introduced by Whitaker and Hamill (2002), was used to constrain the CH4 emissions in this study.  215 

The EnSRF process commences with the initialization of an ensemble of model states, which are 216 

generated by applying a Gaussian perturbation with an average value of zero and the standard deviation 217 

of the uncertainty to a state vector ��. The ensemble-estimated background error covariance matrix 218 

�� is then calculated as: 219 

 �� =
�

���
∑ (��

� − ���)�
��� (��

� − ���)�  (1) 220 

where N is the ensemble size; ��
�  represents the ith sampling; ���  represents the mean of the 221 

ensemble samples. �� plays a pivotal role in determining how the model state will be adjusted based 222 

on new observations. 223 

During the forecast step, each ensemble member is advanced in time using the WRF-CMAQ model. As 224 

the model runs, uncertainties in emissions can lead to errors in CH4 concentrations, and thus the 225 

response relationships of the concentration ensembles to the emission ensembles are obtained. In the 226 

analysis step, observational data �  are incorporated to update the analyzed state. The ensemble 227 

mean of the analyzed state �� is regarded as the best estimate of emissions, which is obtained through 228 

the following equations: 229 

 �� = �� + �(� − ���)  (2) 230 

 � = ����(����� + �)��  (3) 231 

where � is an observation error covariance matrix, which is specified as a diagonal matrix with the 232 

assumption that observation errors from different pixels are mutually independent (Feng et al., 2020).; 233 

K is the Kalman gain matrix, estimated from the ensemble simulations and determining the relative 234 

contributions of observation and background to analysis. The state vector was defined as �� =235 

(���, ���)�, where �� and �� represent the vectors of CH4 emissions for the area and power plant 236 

sources, respectively. Area sources included the daily total emissions from the enteric fermentation & 237 

manure, landfills & waste, rice cultivation, coal mining, Oil oil & gas, industry, transport sources, etc. 238 
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Given that power plants are typically elevated point sources, this spatial distinction allows for effective 239 

separation from ground-based area sources. Therefore, even though power plant sources account for a 240 

small proportion (0.6%) of total emissions, we treated them as separate state vectors for optimization. 241 

The updated emissions are then used as the new initial states for the next forecast step, creating a cycle 242 

of assimilation that gradually refines the estimate of CH4 emissions. 243 

The observation operator � maps the model state to the observation space. In the context of CH4, � is 244 

configured to first horizontally geo-locate simulated CH4 concentrations to match the TROPOMI 245 

XCH4 retrievals. Subsequently, it remaps the sub-column concentrations from the 20-layer CMAQ 246 

vertical grid to the 12-layer TROPOMI vertical grid by totally or partially allocating CMAQ layers to 247 

TROPOMI layers based on pressure edges (Varon et al., 2022). Finally, the column average dry-air 248 

mixing ratio ���4� can be obtained by applying the TROPOMI column averaging kernel of each 249 

layer �� to sub-columns:  250 

 ���4� = ���4�/�������,�  (4) 251 

 ���4� = ���4� + ∑ ��
�
��� (���4�,�∆�������,� − ∆���4�,�)   (5) 252 

where � is the number of retrieval layers; ∆���4�,� and ���4� represent the prior CH4 column 253 

in retrieval layer � and total CH4 column; ���4�,� is the simulated dry air mixing ratio of CH4 in 254 

retrieval layer �; ∆�������,� and �������,� represent the dry air column in retrieval layer � and 255 

total dry air column, respectively, provided along with the TROPOMI product. 256 

In this study, the DA window was set to 1 d, meaning that daily TROPOMI XCH4 retrievals were 257 

utilized as emission constraints. The ensemble size was set to 50 to fully characterize the system 258 

uncertainties and inversion accuracy. To address the problem of spurious long-distance correlations in 259 

the EnKF (Houtekamer and Mitchell, 2001), we applied covariance localization using the Gaspari and 260 

Cohn function, which is a piecewise continuous fifth-order polynomial approximation of a normal 261 

distribution (Miyazaki et al., 2017; Gaspari and Cohn, 1999). Taking into account the transmission 262 

distance of CH4 within one assimilation window, the localization scale was set to 300 km. By setting 263 

the covariance to be smaller the farther away from the observations, we could reduce the spurious 264 

influence of remote observations on the local analysis.  265 

2.2 Prior emissions and uncertainties 266 
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The prior anthropogenic CH4 emissions were taken from the Emission Database for Global 267 

Atmospheric Research version 8.0 (EDGAR v8), which offers detailed monthly gridded CH4 268 

emissions at 0.1°×0.1° from various anthropogenic sources (Crippa et al., 2024). The daily emissions, 269 

obtained by uniformly allocating the aggregated monthly emission inventory, were directly utilized as 270 

the initial estimate in the RegGCAS-CH4. For natural CH4 emissions, we utilized the ensemble average 271 

of 18 emissions from the WetCHARTs v1.3.1 inventory (0.5◦ × 0.5◦, monthly) in 2019 for wetland 272 

emissions (Bloom et al., 2021), the Global Fire Emissions Database (GFED v4.1s, 0.25◦ × 0.25◦, three-273 

hourly) in 2022 for biomass burning emissions (van Wees et al., 2022), and CAMS global emissions 274 

inventory (CAMS-GLOB-TERM v1.1, 0.5◦ × 0.5◦, monthly) in 2000 for termite emissions (Jamali et 275 

al., 2011). Additionally, CH4 sinks resulting from soil absorption were derived from datasets simulated 276 

by Soil Methanotrophy Model (MeMo v1.0, 1◦ × 1◦, yearly) in 2020 (Murguia-Flores et al., 2018). 277 

Given the model error compensation and the relatively comparable emission uncertainties from one 278 

day to the next, we applied an identical uncertainty of 40% to each emission grid at every DA window. 279 

Since the RegGCAS-CH4 adopts a “two-step” inversion strategy and the daily posterior emissions are 280 

iteratively optimized, the emission analysis is generally no longer sensitive to the prior uncertainties 281 

of the original emission inventory after several assimilation windows (Zhang et al., 2024). 282 

2.3 Assimilation data and errors 283 

TROPOMI, onboard the Sentinel-5 Precursor satellite, was launched in 2017. Operating in a sun-284 

synchronous orbit with an equator local overpass time of 13:30 h, TROPOMI offers daily global 285 

continuous monitoring of XCH4. The RemoTeC full-physics algorithm is used to retrieve XCH4 from 286 

TROPOMI measurements of sunlight backscattered by Earth's surface and atmosphere in the near-287 

infrared (NIR) and shortwave-infrared (SWIR) spectral bands (Lorente et al., 2022). After 2019, the 288 

spatial resolution of TROPOMI was adjusted to a remarkable 5.5×3.5 km2 at nadir, enabling the 289 

identification of even relatively small-scale CH4 emission sources. We used the TROPOMI XCH4 level 290 

2 data product to estimate CH4 emissions. 291 

All TROPOMI individual pixels with a quality assurance value (qa_value) smaller than 0.5 were 292 

discarded, which corresponds to high-cloud conditions or the presence of snow or ice. However, we 293 

still found many unrealistic low values, especially in summer. These negative biases can inevitably 294 
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lead to the underestimation of inverted emissions. To further minimize the impact of outliers, we 295 

selected another XCH4 product generated based on the WFMD algorithm for cross-validation 296 

(Schneising et al., 2023). Only those pixels that were concurrently available in the TROPOMI/WFMD 297 

product and met the quality flag requirements were assimilated. Subsequently, the final quality-298 

controlled TROPOMI data demonstrated good consistency with observations from two TCCON 299 

stations, namely the Hefei and Xianghe stations (Figure S3). Figure 1b illustrates the observational 300 

amount of TROPOMI XCH4 in 2022 at each grid. Although the distribution of filtered data exhibits 301 

spatiotemporalspatial nonuniformity, most grid cells in the central-northern regions with intense 302 

anthropogenic emissions have observational coverage for more than 100 days in 2022. Additionally, 303 

the monthly variation in the data amount shows fluctuations, with the peak occurring at the beginning 304 

and end of the year and the troughs around the middle. For regions with limited observation coverage 305 

(e.g., southern China), posterior emission estimates may rely heavily on prior information (see 306 

Discussion). On one hand, the system optimizes emissions in grids surrounding observations through 307 

the source-receptor relationship of atmospheric transport, allowing it to impose extensive constraints 308 

on emissions (Figure S4); on the other hand, it adopts an iterative approach where emissions optimized 309 

in the current window serve as prior emissions for the next window, facilitating rolling assimilation 310 

and thereby sustaining the influence of observational information on emission estimates. However, 311 

intermittent observations may cause posterior emissions to underestimate short-term emission 312 

fluctuations. At the monthly scale, grids without continuous observational constraints throughout the 313 

month directly use EDGAR data. Such grids account for 7.9% of all grids and contribute 0.3% to total 314 

posterior emissions. Although this may lead to insufficient observational constraints on posterior 315 

emissions, particularly in southern regions during summer, it effectively avoids seasonal distortions in 316 

posterior estimates caused by variations in emissions. At the annual scale, 4.8% of grids remain 317 

unadjusted. These unadjusted emissions are mainly distributed in uninhabited areas of Southwest 318 

China, resulting in a negligible overall impact on annual CH4 emission estimates. 319 

 According to the latest quarterly validation report, the 1σ spread of the relative difference between 320 

the TROPOMI and the TCCON (Wunch et al., 2011) is of the order of 0.7% for bias corrected product, 321 

which is recommended to be considered as an upper boundary of the random uncertainty of the satellite 322 

data (Lambert et al., 20242025).  323 
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2.4 Evaluation Data  324 

To evaluate the performance of the WRF simulations, we utilized the surface meteorological 325 

measurements of 400 stations with 3-hour intervals, including temperature at 2 m (T2), relative 326 

humidity at 2 m (RH2), wind direction at 10 m (WD10), and wind speed at 10 m (WS10). These 327 

measurements were obtained from the National Climate Data Center (NCDC) integrated surface 328 

database (http://www.ncdc.noaa.gov/oa/ncdc.html, last access: 25 August 2024). Overall, the WRF 329 

demonstrated satisfactory performance in reproducing meteorological conditions over China (Figure 330 

S2), with minimal biases of -0.4°C for T2, -4.9% for RH2, and 0.5 m/s for WS10, respectively. To 331 

evaluate the posterior CH4 emissions, two parallel forward modeling experiments were conducted: the 332 

control experiment with prior emissions (CEP) and the validation experiment with posterior emissions 333 

(VEP). Both experiments utilized identical meteorological fields, as well as initial and boundary 334 

conditions. We evaluated: (1) the simulated XCH4 against TROPOMI XCH4; (2) the simulated surface 335 

CH4 concentrations against independent ground CH4 observations from eleven in-situ and five flask 336 

monitoring sites (Table S2). The in-situ measurements included five global sites outside China (AMY, 337 

GSN, RYO, ULD, and YON) with hourly resolution from NOAA's GLOBALVIEWplus CH₄ ObsPack 338 

v6.0 (Schuldt et al., 2023), as well as six regional sites in Shanxi Province (TY, DT, LF, SZ, JC, and 339 

WTS) equipped with Picarro G2301 analyzers for high-precision, 5-second CH₄ measurements (data 340 

were processed as daily averages to reduce random errors). The Picarro instrument, based on 341 

wavelength-scanned cavity ring-down spectroscopy technology, is designated by the World 342 

Meteorological Organization as the international reference instrument for CH₄ observations in 343 

international comparisons. Additionally, observations from five flask sampling sites (AMY, DSI, LLN, 344 

TAP, and WLG) were also obtained from ObsPack dataset, providing weekly measurements. 345 

3. Results and discussion  346 

3.1 Posterior CH4 emissions 347 

Figure 2 shows the spatial distributions of the estimated annual CH4 emissions and the differences 348 

from the prior emissions (i.e., EDGAR) over China in 2022. On a national scale, the high CH4 349 

emissions were primarily concentrated in the Yangtze River Delta (YRD), Pearl River Delta (PRD), 350 

North China Plain (NCP), and Shanxi Province. For the YRD and PRD characterized by high-density 351 
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populations, a large number of industrial plants, as well as extensive agricultural activities such as rice 352 

cultivation, contributed significantly to CH4 emissions. The NCP, with its heavy reliance on coal-based 353 

energy and large-scale livestock farming, was also expected to be a major emission source. Lower 354 

emissions were mainly distributed across Northwest, and Southwest China.  355 

Compared with the EDGAR, the posterior emissions were generally smaller over most areas of 356 

mainland China, with total anthropogenic emissions decreasing to 45.1 TgCH4·yr–1, 36.5% lower than 357 

the EDGAR (71.0 TgCH4·yr–1). Additionally, previous studies have consistently shown that the 358 

EDGAR inventory overestimates China's CH4 emissions. For example, through a Bayesian inversion 359 

of CH4 and stable isotope (δ¹³C-CH4) measurements for East Asia, Thompson et al. (2015) found that 360 

posterior values decreased significantly across eastern and southern China, especially in the 361 

NCP. Overall, EDGAR overestimated China's emissions by 29%. Similarly, Zhang et al. (2021) 362 

conducted a global inverse analysis using GOSAT observations and revealed that EDGAR significantly 363 

overestimates anthropogenic emissions in eastern China. The posterior estimate of Chinese 364 

anthropogenic emissions was 30 % lower than that of EDGAR. Turner et al. (2015) also demonstrated 365 

that after assimilating GOSAT observations, China's posterior CH4 emissions were revised downward 366 

by 50% relative to EDGAR. Using a regional model to assimilate TROPOMI observations, Kou et al. 367 

(2025) detected decreases of varying magnitudes across nearly the entirety of China, with the exception 368 

of Northwest China. Similar results have been reported by Alexe et al. (2015), Pandey et al. (2016), 369 

and Maasakkers et al. (2019). Our study, using a higher-resolution regional inversion method, provided 370 

more detailed emission information. Overall, our inversion results were comparable to the ensemble 371 

mean of GCP ground-based inversions (Wang et al., 2025).  372 
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 373 

Figure 2 Spatial distribution of the annual total prior emissions (top, EDGAR v8, MgCH4·km−2·yr−1), 374 

posterior emissions (middle), and differences (bottom, posterior minus prior) over (a-c) Mainland 375 

China and (d-f) Shanxi Province. 376 

Assimilating total CH4 observations alone cannot disentangle emissions from different source sectors 377 

overlapping in individual grid cells (Saunois et al., 2025). Consequently, we partitioned the inversion 378 

results into respective emission sectors based on the monthly prior proportions at the model grid points 379 
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(Kou et al., 2025; Zhang et al., 2022), though this approach does introduce a certain degree of 380 

uncertainty in sectoral attribution. The sectoral patterns offer insights into the underlying factors 381 

influencing China's emission changes. Consequently, wWe further concentrated on interpreting the 382 

emissions from the coal, gas, rice cultivation, waste, livestock, building, and manure management 383 

sectors, which are the most significant sectors in China (Table S3).  384 

Table 1 shows the comparison of posterior and prior anthropogenic CH4 emissions of the main 385 

emission sectors in China. Consistent with the previous studies, we also found that North China is the 386 

region with the most significant reduction nationwide. Almost the entire region has experienced a 387 

decrease, with a reduction of 56.9%, indicating that there are indeed substantial systematic biases in 388 

the EDGAR inventory. Among them, the coal sector contributed the most to this discrepancy, followed 389 

by enteric fermentation, with decreases of 56.2% and 64.0%, respectively (Table 1).  390 

For Northeast China, the increase in emissions mainly occurred in Heilongjiang Province, especially 391 

in the western part, which is the base of Daqing Oilfield, China's largest oilfield. The oil and gas sectors 392 

in the entire Northeast China increased by 27.1% and 23.1%, respectively. However, emissions from 393 

other sectors decreased, resulting in an overall 11.1% reduction in emissions. Rice paddy CH4 394 

emissions serve as the dominant emission source in East China. However, the high spatial 395 

heterogeneity and the insufficiency of data on rice cultivation introduce large uncertainties to 396 

inventories. Additionally, different fertilization management practices in various regions, such as the 397 

use of nitrogen fertilizer versus organic fertilizer (Zhang et al., 2022), and mid-season drainage 398 

management (Lin et al., 2021), bring about considerable uncertainties in the emission factors related 399 

to rice cultivation practices. Emissions in Zhejiang, Fujian, and Jiangxi Provinces increased, mainly 400 

attributed to emissions from rice paddies. In contrast, emissions in other provinces decreased, 401 

dominated by the coal mining, leading to an overall 26.4% reduction in emissions in East China. 402 

Recent studies have highlighted significant errors in the spatial distribution of rice CH4 emissions in 403 

EDGAR v8.0, which relies on outdated rice paddy maps and incorrectly overspreads rice emissions 404 

across non-rice agricultural grids (Chen et al., 2025). These limitations not only cause EDGAR to 405 

overestimate rice emissions but also lead to overestimation in subsequent posterior emissions. 406 

Specifically, this overestimation may inflate the contribution of rice to total CH4 emissions in posterior 407 

attribution, while simultaneously underestimating the contribution of other CH4 sources (e.g., coal, 408 
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wetlands) that coexist in these misclassified grids. Conversely, EDGAR fails to capture recent 409 

expansions of rice cultivation in Northeast China, particularly the rapid growth of rice paddies in the 410 

Sanjiang Plain (Liang et al., 2024). This omission may result in a systematic underestimation of rice 411 

emission hotspots in this region. 412 

In Central and South China, the dominant sources of emissions remain rice paddies. However, the 413 

decreases were mainly attributed to the coal mining and wastewater treatment sectors, which reduced 414 

emissions by 51.3% and 12.4%, respectively. Overall, the total emissions in these two regions 415 

decreased by 21.8% and 7.8%, respectively. In Northwest China, the reduction in emissions was 416 

mainly distributed in the hotspot areas of coal mines, which dominated the overall 55.7% decrease in 417 

emissions. In Southwest China, the increase in emissions occurred predominantly in the southern part 418 

of the Sichuan Basin, a major coal-producing region, while emissions in other regions decreased. 419 

Sheng et al. (2019) found that the EDGAR inventory lacks a significant amount of statistics on coal 420 

mines. Moreover, China has issued an energy policy of “phasing out small coal mines” (approximately 421 

50% of which are located in the southwest with high CH4 content) to shift production towards lower-422 

emission areas and consolidate into large coal mines (Zhang et al., 2022; Sheng et al., 2019). 423 

Additionally, the wastewater treatment sector achieved significant emission reductions, driving a 1.7% 424 

overall decrease in Southwest China.  425 

 426 

 427 

 428 

 429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 
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Table 1 Comparison of posterior and prior anthropogenic CH4 emissions (GgCH4·yr−1) of the main 438 

emission sectors in the 7 major regions of China. Waste includes wastewater treatment, solid waste 439 

landfills, and solid waste incineration. 440 
 

 Coal Gas Rice Waste Livestock Building Manture 

North 
Prior 13841.1  98.4  169.1  2462.1  3882.9  385.5  859.5  

Posterior 6068.4  46.2  116.4  1238.1  1396.4  206.7  279.6  

Northeast 
Prior 771.9  82.6  879.6  1427.9  251.9  268.4  36.8  

Posterior 665.0  101.8  821.2  1259.6  237.7  243.3  34.1  

East 
Prior 2257.3  54.4  5100.3  6681.4  907.9  732.9  200.5  

Posterior 1114.5  45.1  4592.4  4750.9  512.7  576.2  114.4  

Central 
Prior 846.5  32.4  3139.5  1882.9  434.2  399.4  91.2  

Posterior 412.2  25.7  2862.6  1324.4  343.3  314.1  75.2  

South 
Prior 15.0  20.5  2186.4  1622.5  280.2  254.6  44.0  

Posterior 13.8  18.9  2080.6  1421.3  269.9  235.0  42.2  

Northwest 
Prior 8188.3  1083.4  143.3  970.5  746.2  226.7  76.4  

Posterior 2899.1  645.8  120.7  593.6  534.3  164.4  39.6  

Southwest 
Prior 531.3  76.5  2046.4  1124.0  667.0  356.3  107.1  

Posterior 505.6  77.2  2063.0  1060.7  663.7  352.1  107.2  

* Waste includes wastewater treatment, solid waste landfills, and solid waste incineration.; Building represents 441 

emissions from small-scale non-industrial stationary combustion; Manure refers to emissions from the manure 442 

management sector.  443 

China accounts for as high as 69% of the global mitigation potential in coal mining in 2030 (EPA, 444 

2019). Shanxi Province, where 94% of the emissions come from the coal mining sector, accounts for 445 

nearly one-third of the country’s total CH4 emissions. Therefore, we conducted a focused analysis on 446 

the emissions in Shanxi Province with high-resolution (9 km) inversion, which can better diagnose the 447 

spatial characteristics of emissions caused by coal mining (Figure 2d-f). The optimized emissions 448 

showed a decrease in the vast majority of areas in Shanxi Province. Compared with the EDGAR 449 

inventory (9.0 TgCH4·yr−1), the posterior emissions decreased by 46.3% to 4.8 TgCH4·yr−1. The 450 

overestimation of coal mining emissions may be due to the fact that the standard IPCC emission factors 451 

used by EDGAR are too high for Chinese coal mines (Lin et al., 2021). Additionally, the average 452 
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emission factors in the north are lower than those in other regions (Gao et al., 2021). The use of a 453 

uniform regional emission factor by EDGAR further exacerbates the overestimation of emissions (Shi 454 

et al., 2025). Moreover, in the past decade, the extraction and utilization of coal mine CH4 in China 455 

have been largely improved (Lu et al., 2021), but the recovery of coal mine CH4 is not adequately 456 

considered in the EDGAR inventory. Finally, the CH4 emission intensity of surface mining is ten times 457 

lower than that of underground mining. However, surface mining is overlooked in the EDGAR 458 

inventory (Gao et al., 2020). In Yangquan, Jincheng, Changzhi, and Jinzhong cities (Figure 2), some 459 

increased emission hotspots caused by the coal mining activities could be found. Coincidentally, these 460 

cities are the main coal-producing areas in Shanxi Province. Overall, the emissions in these cities have 461 

still decreased by 3.3%, 4.2%, 29.5%, and 32.3%, respectively (Figure S3S5). Tu et al. (2024) utilized 462 

TROPOMI observations and implemented a wind-assigned anomaly method to quantify the CH4 463 

emissions from coal mines in Yangquan, Changzhi, and Jincheng. Compared to EDGAR, emissions 464 

decreased by 56.5%, 40.5%, and 65.0%, respectively—a larger reduction than our findings. 465 

3.2 Monthly variations 466 

Figure 3 illustrates the comparison of the monthly variations in prior and posterior emissions both in 467 

China and Shanxi Province. Nationally, influenced by CH4 emissions from paddy fields, both the prior 468 

and posterior emissions exhibited the characteristic of being low in winter and high in summer. 469 

However, the posterior emissions for each month were lower than the prior emissions. The monthly 470 

posterior emissions ranged from 2.3 to 7.5 Tg·month⁻¹, with a modification rate ranging from -30.7% 471 

to 5.6% compared to the prior emissions (4.8–7.6 Tg·month⁻¹). The month with the smallest difference 472 

occurred in August, mainly because the underestimation of CH4 emissions from paddy fields 473 

compensated for the overestimation of emissions from coal mining (Figure 3c). Additionally, due to 474 

the weather conditions such as clouds and rain in summer, the amount of TROPOMI data was 475 

significantly smaller than that in other seasons (Figure 1b), which might lead to insufficient constraints 476 

on emissions. Regarding Shanxi Province, even with an agnostic flat monthly prior (Figure 3b), our 477 

estimates generated a monthly variation, and emissions in all months were lower than the prior values. 478 

We also detected a decrease and subsequent increase in emissions that correspond to the Spring 479 

Festival in February. A noticeable recovery of production capacity in the following two months was 480 

also evident. Overall, although relatively large uncertainties were introduced by the amount of 481 
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observations, the seasonal variation of monthly posterior emissions could be roughly captured. 482 

To gain a deeper understanding of the posterior emissions, the assimilated estimations were allocated 483 

to different emission sectors, based on the monthly prior proportions at the model grid points. The 484 

sectoral patterns offer insights into the underlying factors influencing China's emission changes. 485 

Consequently, we further concentrated on interpreting the emissions from the coal, gas, rice cultivation, 486 

waste, livestock, building, and manure management sectors, which are the most significant sectors in 487 

China (Table S3). 488 

It could be found that the reduction in emissions each month in China was mainly dominated by the 489 

coal sector, with an overall annual reduction of 55.9%, indicating a high level of uncertainty in the 490 

prior emissions. Moreover, the gas, livestock, and manure management sectors also showed varying 491 

degrees of reduction in different months, with overall decreases of 34.0%, 45.1%, and 51.5%, 492 

respectively. However, for the rice cultivation sector, the posterior emissions were lower than the prior 493 

emissions in the first half of the year, while the situation was reversed in the second half of the 494 

year. Summer and autumn are the heading and flowering stages for both single-cropping late rice and 495 

double-cropping late rice across the eastern, central, and southern China. During these periods, the 496 

emissions from paddy fields tended to be higher than in other seasons. However, EDGAR v8.0 adopts 497 

a uniform seasonal profile for rice CH4 emissions across China, assigning a single emission peak in 498 

June to all rice-growing regions. This simplification contradicts the findings of Chen et al. (2025), who 499 

reported that rice CH4 emissions in China generally peak in July–August, with the length of the 500 

emission season varying significantly due to the diversity of regional rice cropping systems. Notably, 501 

our posterior emission results align well with the seasonal pattern, with the highest monthly rice 502 

emissions occurring in August, followed by July (Table S3). This consistency confirms that the 503 

TROPOMI satellite observations have effectively corrected the unrealistic uniform seasonal bias 504 

inherent in EDGAR. Overall, the posterior CH4 emissions from paddy fields have slightly decreased 505 

by 4.7%.  506 

A similar situation was observed in the waste sector. Previous studies have shown that significant CH4 507 

production in wastewater is more likely to occur because methanogens become more active as the 508 

temperature rises (Hu et al., 2023). Therefore, a significant increase in the posterior emissions 509 

compared to the prior emissions could be observed in August. For the building sector, due to winter 510 
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heating or hot water supply, the emissions in winter were approximately three times higher than those 511 

in summer. After optimization, the emissions in winter and spring significantly decreased, while in 512 

some months of summer and autumn, the decrease was less pronounced, and there was even a slight 513 

increase. The inter-monthly difference in emissions decreased, but the monthly variation remained 514 

significant. Overall, the posterior emissions have decreased by 25.4%. The changes in emissions in 515 

Shanxi Province were mainly dominated by the coal mining sector. Compared to EDGAR, the monthly 516 

reduction rate ranged from 12.6% in August to 67.3% in February. For other sectors, there was little 517 

overall monthly variation. 518 

 519 

Figure 3 Comparison of the monthly variations and the sectoral differences (GgCH4·mon−1) in prior 520 

and posterior CH4 emissions over (a, b) China and (c, d) Shanxi Province. 521 

3.3 Evaluation of posterior emission estimates 522 

CH4 emission estimates are highly sensitive to biases in meteorological simulations, as meteorological 523 
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processes significantly influence atmospheric transport, which in turn shapes the source-receptor 524 

relationships and determines the flow-dependent background error covariance. Overall, the model 525 

demonstrated satisfactory performance in reproducing domain-wide meteorological conditions across 526 

China (Figure S6), with minimal biases of -0.4°C for T2 and -4.9% for RH2, alongside high correlation 527 

coefficients (CORR) of 1.0 and 0.96, respectively. The model’s performance over Shanxi Province 528 

was slightly less optimal, likely due to the region’s complex terrain. The biases for T2 and RH2 were 529 

1.5°C and -12.5%, respectively, while the CORR remained high at 0.99 and 0.90. Additionally, the 530 

WRF model effectively captured the temporal variations in wind direction both across China and 531 

Shanxi Province. However, WS10 was generally slightly overestimated, with biases of 0.5 m/s and 0.4 532 

m/s and CORR of 0.88 and 0.81, respectively. Such overestimation of wind speed in WRF simulations 533 

has also been widely reported in other studies (Hu et al., 2016). An overestimated wind speed causes 534 

the model to simulate faster and more extensive diffusion of CH4 concentrations than occurs in reality. 535 

To compensate for the simulated reduction in CH4 concentrations due to this excessive diffusion, the 536 

inversion system potentially increases the estimated emissions. 537 

Figure 4 shows the spatial distribution of XCH4 in the posterior simulation, as well as the validation 538 

of XCH4 simulated by prior and posterior emissions with TROPOMI observations. It could be 539 

observed that relatively large XCH4 were present over eastern China, which was driven by coal mining 540 

in the northern part and rice paddy fields in the southern part (Zhang et al., 2023). The simulation using 541 

prior emissions significantly overestimated the XCH4 concentration in China, especially in the NCP. 542 

The maximum overestimation exceeded 100 ppb, which was consistent with the overestimated 543 

emissions in these regions (Figure 2). After the inversion optimization, the simulated XCH4 showed 544 

better spatial distribution consistency with the TROPOMI observations. The vast majority of the biases 545 

were within 20 ppb, and the national average biases decreased from 14.7 ppb to 7.9 ppb, representing 546 

a 46.0% reduction. In Shanxi Province, high emissions were mainly concentrated in the coal-rich 547 

southeastern region, with an annual average maximum exceeding 1970 ppb, which was difficult to 548 

reproduce the characteristics of local high concentrations at a coarse resolution. The prior simulation 549 

showed obvious overestimation across the entire region, particularly in northern Shanxi. Due to the 550 

high spatial resolution adopted, the model could take into account more practical factors, and thus 551 

capture the spatiotemporal variations of emission sources and transport processes more precisely. As 552 
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a result, the agreement between the posterior simulations and the TROPOMI observations was 553 

remarkably enhanced. The average deviation decreased from 37.9 ppb to 11.9 ppb, with a reduction of 554 

68.7%. These changes not only demonstrate the effectiveness of reducing uncertainties in optimizing 555 

emission sources but also imply that there are indeed significant uncertainties in the prior emission 556 

inventory. 557 

 558 

Figure 4 Comparison of simulated XCH4 (ppb) from prior and posterior emissions with TROPOMI 559 

observations over (a-c) China and (d-f) Shanxi Province for the 2022 annual average. (a, d) Spatial 560 

distribution of XCH4 observed by TROPOMI. (b, e) Differences between prior simulations and 561 

observations. (c, f) Differences between posterior simulations and observations. 562 
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We further conducted an independent evaluation of the posterior estimate by comparing it with 10 in-563 

situ and flask monitoring sites from the CH4 ObsPack v6.0 database. Figure 5 shows the time series 564 

comparison of the CEP and VEP experiments with the observations. The evaluation statistics for all 565 

sites are presented in Table S4. There was a significant overestimation in the CEP experiment 566 

throughout most of the study period. Although most of the sites are located in the eastern regions 567 

outside China, influenced by the atmospheric circulation, the westerlies prevail in most parts of 568 

China. Thus, the optimized emission information can be effectively reflected in the concentrations 569 

observed downwind. The optimized simulation in VEP experiments was more consistent with the 570 

observations. Among them, the AMY flask site showed the largest reduction in bias, with the average 571 

bias decreasing from 35.3 ppb to 3.3 ppb, a decrease of 90.7%. For WLG, the only ObsPack site 572 

available in mainland China, the average bias decreased from 47.4 ppb to 28.3 ppb, a reduction of 573 

40.3%. This indicates that the optimized emissions can significantly improve the CH4 simulation, 574 

whether in areas close to the source or downwind of the source. Overall, the average bias of the 10 575 

sites decreased by 58.6%, from 28.6 ppb to 11.9 ppb, the root mean square error (RMSE) decreased 576 

by 28.9%, from 56.2 ppb to 39.9 ppb, and the correlation coefficient (CORR) increased from 0.72 to 577 

0.75. These evaluation results demonstrate that the inversion effectively reduces the uncertainties of 578 

prior emission inventory. 579 

 580 
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 581 

Figure 5 Time series comparison of surface CH4 concentrations (ppb) from prior (CEP) and posterior 582 

(VEP) emission simulations with observations from 5 flask sites and 5 in-situ sites within the ObsPack 583 

dataset. The black, blue, and red values represent the averaged observations, prior simulations, and 584 

posterior simulations, respectively. 585 

We also carried out an independent validation using six high-precision in-situ observation sites within 586 

Shanxi Province (Figure 1a). Table 2 shows the bias, RMSE, and CORR of the CEP and VEP 587 

simulations against these surface observations. Except for the LF site, which shifted to a severe 588 

negative bias and exhibited a larger RMSE where the VEP experiment exhibited an underestimation, 589 



27 

 

the VEP experiment demonstrated varying degrees of improvement at the other five sites. Notably, the 590 

bias reduction at the DT and WTS sites exceeded 93.3%. Especially for the WTS site, a high mountain 591 

site with an altitude of over 2208 m, the bias was decreased to 8.3 ppb. On average across all sites, the 592 

bias significantly decreased by 96.0%, from 535.1 ppb to 21.4 ppb. For the RMSE, the most significant 593 

decreases were observed at the DT and SZ sites, both exceeding 73%. Overall, the RMSE reduction 594 

ranged from 13.5% to 79.0%. Additionally, the CORR of the VEP experiment increased to 0.48–0.63. 595 

In addition, we evaluated the CH4 concentration simulation for the afternoon, during which the model 596 

generally demonstrates better boundary layer simulation performance, with overall lower bias and 597 

higher CORR (Table S5). These results further confirm that the RegGCAS-CH4 system can effectively 598 

capture the characteristics of high-resolution CH4 emission changes and improve the accuracy of 599 

concentration simulations. 600 

Table 2 Statistics comparing the daily average CH4 concentrations (ppb) from the simulations with 601 

prior (CEP) and posterior (VEP) emissions against six independent surface in-situ observation sites in 602 

Shanxi Province, respectively. The numbers under the site names represent the number of valid 603 

observations. 604 

Site Name 
Mean 

Obs. 

Mean Sim. BIAS RMSE CORR 
 

CEP VEP CEP VEP CEP VEP CEP VEP  

TY 

(351) 
2595.5 2771.0 2353.2 175.4 -242.3 408.7 353.6 0.46 0.51  

DT 

(286) 
2122.0 2441.1 2139.2 319.1 17.2 489.0 102.6 0.49 0.58  

LF 

(277) 
2395.1 2397.2 2197.9 2.0 -197.3 186.8 257.3 0.45 0.35  

SZ 

(359) 
2148.8 4560.5 2782.4 2411.7 633.6 2778.1 745.1 0.44 0.48  

JC 

(362) 
2446.0 2624.5 2355.2 178.4 -90.9 385.0 356.3 0.52 0.52  

WTS 

(361) 
2064.0 2188.0 2072.2 124.1 8.3 162.6 59.1 0.49 0.63  

* BIAS, mean bias; RMSE, root mean square error; CORR, correlation coefficient 605 

 606 
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4. Discussion 607 

To further explore the characteristics of our posterior emissions and offer valuable guidance for the 608 

refinement of bottom-up inventory in China, we conducted a comparison analysis with the latest 8 609 

bottom-up inventories and 4 top-down emission estimates (Figure 6). Specifically, apart from EDGAR 610 

v8, the bottom-up inventories were sourced from the Copernicus Atmosphere Monitoring Service 611 

(CAMS-GLOB-ANT v6.2) (Soulie et al., 2024), Community Emissions Data System (CEDS_202407) 612 

(Hoesly et al., 2018), Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants 613 

inventory (ECLIPSE v6b) from the GAINS model (Stohl et al., 2015), Global Carbon Project (GCP 614 

2024) (Saunois et al., 2025), Peking University (PKU v2) (Liu et al., 2021), United Nations Framework 615 

Convention on Climate Change (UNFCCC, 2020), and the United States Environmental Protection 616 

Agency (EPA, 2019). In addition, we also obtained the Global Fuel Exploitation Inventory (GFEI 617 

v2) (Scarpelli et al., 2022) to assess the emissions from the coal mining sector in Shanxi Province. The 618 

top-down emissions were mainly sourced from the CarbonTracker-CH4 (Oh et al., 2023) and the 619 

research results of Chen et al. (2022), Kou et al. (2025), and Peng et al. (2023).  620 

Typically, the top-down estimates showed lower emissions than the bottom-up inventories. Although 621 

our posterior estimates were the lowest across all datasets, they closely matched CEDS, PKU, and 622 

CarbonTracker-CH4 and were comparable to the ensemble mean of GCP ground-based inversions 623 

(Wang et al., 2025). Overall, our posterior emissions were 22.0% lower than the average of bottom-up 624 

inventories and 16.6% lower than the previous top-down estimates. The lower emissions in this study 625 

were predominantly driven by the downward revision of coal emissions. Overestimated emission 626 

factors and the difficulty in tracking the spatial distribution of coal mines due to mine closures and 627 

regional transfers remain significant obstacles to the assessment of coal mine emissions (Gao et al., 628 

2021). Our estimate was lower than the previous top-down studies (53–65 Tg yr⁻¹), likely because 629 

those previous studies were conducted at much coarser resolutions (0.3°–2.5° versus 27 km) or with 630 

much sparser observations (in-situ ground measurements and GOSAT versus TROPOMI). For Shanxi 631 

Province, compared with the bottom-up inventories, our results were close to those of GAINS and fell 632 

within the uncertainty range of Qin et al. (2024), which set multiple groups of emission factors 633 

according to coal types, mining methods, and geological structures. There were substantial disparities 634 

among the top-down inversions. Notably, for CarbonTracker-CH4, despite having minimal divergence 635 
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at the national scale when contrasted with other estimations, the values for Shanxi Province were 636 

markedly lower than those of other estimates. This could be attributed to the insufficient assimilation 637 

of China's surface observations and systematic biases in the spatial distribution of prior emissions. 638 

Overall, the coal-mining emissions in this study were 29.2% lower than the bottom-up inventories and 639 

19.3% lower than the previous top-down inversions. 640 

 641 

Figure 6 Total anthropogenic CH4 emissions (TgCH4·yr−1) in China (a) and CH4 emissions from the 642 

coal mining sector in Shanxi Province (b). GCP 2024 BU and GCP 2024 TD represent the bottom-up 643 

and top-down ensemble means included in the dataset, respectively. The grey bars in panel b represent 644 

the range of CH4 emissions estimated by Qin et al. (2024) using four different methods. The latest year 645 

in the inventory is marked above the bars. 646 
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Uncertainties in boundary conditions constitute a significant source of error in regional inversion. 647 

Despite the optimization of concentration fields in the CAMS, significant biases remained evident 648 

(Figure 7a). To address this issue, we implemented additional constraints on the CAMS concentration 649 

fields using TROPOMI XCH4 observations, resulting in a notably improved agreement with the 650 

observations. Specifically, the average bias decreased from -3.7 ppb to -1.0 ppb, representing a 651 

reduction of 73.7%. A sensitivity experiment (SENS1) was further conducted (Table S6), where the 652 

unadjusted CAMS global fields were extracted as boundary conditions to invert anthropogenic CH4 653 

emissions, aiming to evaluate the impact of boundary condition uncertainties on regional emission 654 

inversions. Compared with the base experiment (BASE), the largest discrepancies in monthly 655 

variations were observed during the winter months, indicating significant overestimations. The 656 

emission differences across different months closely aligned with the concentration differences, 657 

suggesting that underestimations in concentrations prompted more substantial emission adjustments 658 

for compensation. Regarding the spatial distribution, due to the relative long lifetime of CH4, emission 659 

changes caused by boundary condition biases were not confined to regional boundaries, such as in 660 

Northeast and Northwest China, but were also observable throughout the entire region. In the outer 661 

national inversion, the average CH4 emissions increased by 7.5%, while in the inner Shanxi Province, 662 

the increase was 3.9%. This highlights the necessity of expanding the inversion scope to mitigate the 663 

influence of boundary condition errors on the inversion of central regions. 664 

Furthermore, we compared two sets of emission differences over the inner domain: one between the 665 

two national inversions, and the other between the two inner nested regional inversions (BASE and 666 

SENS1). We found that the two inner inversions exhibited a 23.1% smaller discrepancy. This indicates 667 

that adopting a nested inversion approach is essential, which can further reduce boundary condition 668 

errors during inner inversion through outer optimization, thereby enhancing the robustness of the 669 

inversion process. 670 
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 671 

Figure 7 Differences in XCH4 column concentrations (ppb) between TROPOMI-adjusted and 672 

unadjusted CAMS fields, along with the induced monthly posterior CH4 emission differences (SENS 673 

- BASE) over China (a); differences in two posterior emissions (MgCH4·km−2·yr−1) derived from 674 

unadjusted and adjusted boundaries over China (b) and Shanxi Province (c) 675 

To better evaluate the potential impact of prior uncertainties on posterior emission estimates, we 676 

conducted additional inversion experiments (SENS2) using the 2022 CAMS-GLOB-ANT v6.2 677 

inventory as prior emissions. Nationwide, the posterior emissions in SENS2 increased by 5.2% 678 

compared with those in the BASE experiment. More importantly, the initial difference between the 679 

two prior inventories (6.0 Tg) converged to a much smaller difference of 2.3 Tg in the posterior results, 680 

indicating good robustness of the assimilation system at the national scale. However, in southern China 681 
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(south of 30°N), due to limited observational constraints, the difference between the two prior 682 

inventories (5.8 Tg) only decreased to 4.8 Tg in the posterior results. In contrast, in observation-dense 683 

regions such as Shanxi Province, even though the difference in prior emissions was only 61.9 Gg, the 684 

difference in optimized posterior emissions further converged to 39.0 Gg. 685 

Uncertainty in atmospheric transport models can contribute to model-data mismatch errors. Consistent 686 

with previous studies (Chen et al., 2022), this study initially omitted CH4 chemical reactions to 687 

accelerate model integration and inversion efficiency. To quantify the impact of this simplification, we 688 

further conducted an additional inversion experiment (SENS3) where CH4 chemical reactions were 689 

incorporated into the CMAQ model. Results showed that the inclusion of chemical reactions led to a 690 

6.6% difference compared to the base experiment. Specifically, the difference was small in winter 691 

(only 1.7%), whereas in summer, the OH concentration in the lower troposphere was one order of 692 

magnitude higher than that in winter (Lelieveld et al., 2016). This stronger OH-driven CH4 oxidation 693 

resulted in an increase of over 10% in posterior emissions. This indicates that accounting for CH4 694 

chemical reactions in summer is still necessary for accurate emission inversion. The impact of 695 

chemical reactions only increased emission estimates by 1.9% in Shanxi Province.  696 

Different satellite products employ distinct inversion algorithms, which in turn determine the quality 697 

and quantity of the data. To assess how satellite product selection influences emission inversion, the 698 

TROPOMI/WFMD product was assimilated in SENS4. Compared with the operational TROPOMI 699 

product in BASE experiment, the TROPOMI/WFMD product provided a 59.3% increase in the 700 

number of observations, particularly notable in winter. In mainland China, posterior emissions derived 701 

from SENS4 increased by 4.4%, primarily driven by higher emission estimates in March and April. In 702 

Shanxi Province, posterior emissions showed a more modest increase of 2.2%. 703 

Our results may also be subject to several uncertainties associated with the settings of assimilation 704 

system parameters. In particular, background and observation errors influence the weight assigned to 705 

prior emissions versus observations in determining posterior emissions, while the localization scale 706 

dictates the distance over which observational information affects the inversion results. To quantify 707 

these impacts, we conducted sensitivity tests by adjusting key parameters: observation errors were set 708 

to 0.5% and 0.9% (SENS5-6), background errors to 30% and 50% (SENS7-8), and localization scales 709 

to 250 km and 350 km (SENS9-10), respectively. However, our sensitivity analysis revealed that 710 
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varying these parameters, whether increasing or decreasing their values, only led to differences of -711 

0.7% to 1.7% in posterior emission estimates across mainland China. This indicates that the CH4 712 

emission estimates were not significantly affected by adjustments to the system parameters. 713 

Following the methods of Feng et al. (2024) and Nassar et al. (2017), we estimated the overall 714 

uncertainty of our results by accounting for the combined effects of the aforementioned factors (e.g., 715 

parameter settings, prior inventories). In general, sparsely observed regions, such as western China 716 

and Northeast China, showed over-reliance on the prior inventory (SENS2) and exhibited relatively 717 

high posterior emission uncertainty (28.0–44.1%). In contrast, densely observed regions including East 718 

China and North China showed relatively low uncertainty (7.9–17.4%). Across mainland China, 719 

boundary condition errors contributed the most to total uncertainty. Specifically, boundary conditions 720 

caused substantial differences in emission estimates for Northeast China. The overall posterior 721 

emission uncertainty for mainland China was 8.5%, while that for Shanxi Province was even lower at 722 

7.8%, with this uncertainty primarily driven by uncertainties in the prior inventory. 723 

 724 

 725 
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 726 

Figure 8. Posterior CH4 emissions from the base and different sensitivity experiments (Table S6). B 727 

denotes the BASE experiment. S1 to S10 denote the SENS1 to SENS10 experiments, respectively. S1 728 

represents the experiment using the unadjusted CAMS global concentration field as the boundary; S2 729 

denotes the experiment adopting CAMS-GLOB-ANT v6.2 inventory as the prior emission inventory; 730 

S3 denotes the inversion experiment accounting for CH4 chemical reactions; S4 denotes the inversion 731 

experiment assimilating the TROPOMI/WFMD product; S5 and S6 denote the experiments with 732 

observation errors set to 0.5% and 0.9%, respectively; S7 and S8 denote the experiments with 733 

background errors set to 30% and 50%, respectively; S9 and S10 denote the experiments with the 734 

localization scale adjusted to 250 km and 350 km, respectively. The numbers on the figure represent 735 

the uncertainty values of different regions. 736 

Our inversion results are generally lower than previous emission estimates. By comparing the emission 737 

differences over the inner region at different resolutions across the BASE and all SENS experiments, 738 

we found that emissions inverted at a 9 km resolution were typically 7.6% and 8.45.4-10.6% lower 739 

than those at a 27 km resolution, respectively. This indicates that higher-resolution inversion 740 

consistently yields lower emission estimates, a discrepancy likely driven by the fact thatThis 741 
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discrepancy likely arises because higher-resolution simulations excel at capturing localized emission 742 

hotspots that lead to elevated concentration values. Therefore, compared with other coarse-resolution 743 

inversions, this study tends to adjust emissions downward to better align with observations. To further 744 

understand the extent to which different sensitivity factors affect our relatively low posterior emission 745 

results, we compared the emission differences between SENS experiments and the BASE experiment 746 

under the inner domain coverage at the same 27 or 9 km resolution (Figure S7). In every sensitivity 747 

experiment with a positive difference (SENS – BASE), the magnitude varies between 0.3-7.2%, which 748 

is always smaller than the emission reduction caused by high-resolution inversion under the 749 

corresponding SENS experiment. This confirms that higher resolution remains the dominant driver of 750 

our lower inversion results relative to previous studies, while the aforementioned factors contribute to 751 

secondary, manageable uncertainties. Additionally, China's 2022 COVID-19 restrictions, the most 752 

stringent since 2020, may be another factor driving lower emissions due to production shutdowns and 753 

home quarantine. Peng et al. (2022) combined bottom-up and top-down approaches to quantify CH4 754 

source changes, revealing a 1.2 Tg·CH4 yr−1 reduction in anthropogenic CH4 emissions in 2020 755 

compared to 2019. Taking oil and gas sector as an example, an IEA report stated that global CH4 756 

emissions from oil and gas operations decreased by approximately 10% year-on-year in 2020 (IEA, 757 

2021), primarily attributed to reduced oil and gas production during the pandemic (Thorpe et al., 2023). 758 

5 Summary and conclusions 759 

In this study, we developed a Regional Methane Assimilation System (RegGCAS-CH4) based on the 760 

WRF-CMAQ model and EnKF algorithm to perform high-resolution nested inversions of China's CH4 761 

emissions using TROPOMI XCH4 retrievals. Taking the EDGAR v8 as prior emissions, we inferred 762 

the daily anthropogenic CH4 emissions over China in 2022.  763 

Using TROPOMI XCH4 as constraints, we revealed significant overestimations in the prior emissions. 764 

Nationally, the posterior anthropogenic CH4 emissions in 2022 were estimated to be 45.1 ± 3.8 765 

TgCH4·yr⁻¹, 36.5% lower than the EDGAR inventory, mainly driven by the decreases in the coal and 766 

waste sectors. North China experienced the most substantial reduction, with a 56.9% decrease, mainly 767 

due to downward revisions in the coal and enteric fermentation sectors. In Shanxi Province, influenced 768 

by dominant sources of coal mining, the posterior emissions decreased by 46.3% compared to the 769 

EDGAR inventory, with value of 4.8 ± 0.4 TgCH4·yr−1. The monthly variation of posterior emissions 770 
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showed a pattern of being low in winter and high in summer. Except for the rice cultivation and waste 771 

sectors, which showed some increases in certain months related to seasonal growth stages and 772 

temperature-driven methanogen activity, respectively, other sectors exhibited varying degrees of 773 

reduction. Observation-constrained emissions significantly improved the CH4 simulation performance. 774 

Specifically, for the entire region and Shanxi Province, the biases were reduced by 46.0% and 68.7% 775 

for XCH4 columns, and by 58.6% and 96.0% for surface CH4, respectively. This highlights the 776 

effectiveness of RegGCAS-CH4 in reducing uncertainty in CH4 emissions. Sensitivity inversions 777 

highlight the importance of high-resolution satellite-based nested inversions in accurately estimating 778 

CH4 emissions, especially in reducing the impact of boundary condition errors on emission inversions. 779 

Top-down inversions usually result in lower emissions compared to those constructed by bottom-up 780 

methods. When comparing our posterior emissions with other inventories, our estimates were the 781 

lowest among both bottom-up and top-down estimations. On average, they were 22.0% lower than 782 

bottom-up inventories and 16.6% lower than previous top-down estimates. The high-resolution 783 

inversion employed in this study is capable of more accurately simulating local high concentration 784 

values, and thus, the reduction in emissions is greater than that in previous studies. The overestimation 785 

of China's CH4 emissions may have led to an overestimation of the country's climate change mitigation 786 

burden. The more accurate emission estimates presented here not only enhance our understanding of 787 

the CH4 budget but also contribute to more effective global climate change mitigation efforts. 788 
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