Responses to the comments of Reviewer #1:

We would like to thank the anonymous referee for his/her comprehensive review and
valuable suggestions. These suggestions help us to present our results more clearly. In
response, we have made changes according to the referee’s suggestions and replied to
all comments point by point. All the page and line number for corrections are referred
to the revised manuscript, while the page and line number from original reviews are

kept intact.

Main comments:

1. The study discussed methane emissions from different sectors, but how the sector
partitioning is done is not described. I'd suggest authors to provide further

methodological details.

Response: We appreciate the reviewer for the insightful comments. Actually, the
observed total atmospheric CH4 concentration integrates emission signals from all
sectors, making it difficult to distinguish emission information from different source
sectors overlapping in a pixel grid (Saunois et al., 2025). Therefore, the emissions
derived from inversion are generally the total emissions at the pixel scale. Following
Kou et al. (2025), Zhang et al. (2022), and Miller et al. (2019), we partitioned the
optimized total emissions based on the prior proportional information of different
sectors within the same model grid. However, it is true that errors in the sectoral

proportions of the prior inventory introduce uncertainties into the posterior statistics.

We have added following descriptions and discussions in the revised manuscript. See

Lines 377-381, Pages 16-17.

“Assimilating total CH4 observations alone cannot disentangle emissions from different
source sectors overlapping in individual grid cells (Saunois et al., 2025). Consequently,
we partitioned the inversion results into respective emission sectors based on the
monthly prior proportions at the model grid points (Kou et al., 2025; Zhang et al., 2022),

though this approach does introduce a certain degree of uncertainty in sectoral



attribution. The sectoral patterns offer insights into the underlying factors influencing
China's emission changes. We concentrated on interpreting the emissions from the coal,

gas, rice cultivation... ...

2. The authors have applied TROPOMI XCH4 L2 data. An earlier version of the
TROPOMI data have shown substantial regional biases over East China, which may
cause errors in the inversion. It would be good if the authors can have some discussion

or conduct evaluation on this issue, for instance, using TCCON sites in China.

Response: Thanks for your comments. Indeed, the TROPOMI XCH4 L2 data product
used in this study is Version 02.04.00, and we also identified a considerable number of
unrealistically low values in the raw data, particularly during summer (Figure R1). To
evaluate the data quality, we compared the raw TROPOMI data with observations from
two domestic TCCON stations in China (i.e., Hefei Station and Xianghe Station). The
results showed that the raw TROPOMI data underestimated the XCH4 concentration by
13.2 ppb and 7.8 ppb at these two stations, respectively. This magnitude of negative
bias is comparable to the global evaluation results based on 12 TCCON stations, which
reported a  bias range of  -8.5 to -155 ppb  (PRF-CH4,
https://sentiwiki.copernicus.eu/web/sSp-products#S5PProducts-L2S5P-Products-L.2).

Such negative biases, if unaddressed, would inevitably lead to the underestimation of
inverted emissions. However, to avoid the impact of such negative biases on the
inversion results, we not only excluded pixels with a ga value below 0.5 but also
selected an alternative XCHjy product (derived from the WFMD algorithm) to conduct
cross-validation. Only the data that met both of the aforementioned criteria were used
in the final assimilation. Figure R2 displays the time series of the data after final quality
control. It can be observed that this data aligns well with TCCON observations, with

relatively small overall differences.

We have added following discussions in the revised manuscript. See lines 294-300,

Pages 12-13.



“However, we still found many unrealistic low values, especially in summer. These
negative biases can inevitably lead to the underestimation of inverted emissions. To
further minimize the impact of outliers, ... ... Only those pixels that were concurrently
available in the TROPOMI/WFMD product and met the quality flag requirements were
assimilated. Subsequently, the final quality-controlled TROPOMI data demonstrated
good consistency with observations from two TCCON stations, namely the Hefei and

Xianghe stations (Figure S3).”
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Figure R1 Comparison of time series between operational TROPOMI XCHj4 product
filtered by qa_value > 0.5 and TCCON observations at Hefei and Xianghe stations. For
the evaluation, only TROPOMI pixels that are located within a 0.1° radius of the
respective TCCON station and have a time difference of less than 1 hour relative to
TCCON observational records (two spatiotemporal matching criteria) were selected.
Specifically, the number of valid matching pairs was 62 for the Hefei station and 163

for the Xianghe station.
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Figure R2 Same as Figure R1, but for the evaluation of TROPOMI data after final
quality control. The number of valid matching pairs was 57 for the Hefei station and

155 for the Xianghe station. (Figure S3 in the revised supplementary information)

3. I do appreciate that the authors have performed evaluation for meteorology
parameters against independent data, which most of existing studies have not done. This
is crucial for characterizing model transport errors and understanding the difference
between inversion systems. However, the discussion is overly simple. I'd suggest the
authors to expand the results on meteorology evaluation (especially wind). In particular,
the evaluation over the D02 domain provides crucial information because of the

complex terrain in Shanxi.



Response: We fully agree that CH4 emission estimates are highly sensitive to biases in
meteorological simulations. This is because meteorological processes exert a
significant influence on atmospheric transport, which in turn shapes the source-receptor
relationships and determines the flow-dependent background error covariance. As
shown in Figure R3, we expanded the meteorological evaluation with a specific focus
on wind conditions and incorporated an assessment of the meteorological field
simulations over Shanxi Province. Overall, across the China domain, the WRF model
simulations exhibited biases of -0.4°C for T2, -4.9% for RH2, and 0.5 m/s for WS10.
For Shanxi Province, which features complex terrain, the biases were 1.5°C for T2, -
12.5% for RH2, and 0.4 m/s for WS10. Notably, the overestimated wind speed in the
simulations accelerated the transportation of simulated CH4 concentrations, which to

some extent contributed to the overestimation of inverted CH4 emissions.

Relevant discussions have been added to the revised manuscript. See Lines 523-537,

Pages 22-23.

“CH4 emission estimates are highly sensitive to biases in meteorological simulations,
as meteorological processes significantly influence atmospheric transport, which in turn
shapes the source-receptor relationships and determines the flow-dependent
background error covariance. Overall, the model demonstrated satisfactory
performance in reproducing domain-wide meteorological conditions across China
(Figure S6), with minimal biases of -0.4°C for T2 and -4.9% for RH2, alongside high
correlation coefficients (CORR) of 1.0 and 0.96, respectively. The model’s performance
over Shanxi Province was slightly less optimal, likely due to the region’s complex
terrain. The biases for T2 and RH2 were 1.5°C and -12.5%, respectively, while the
CORR remained high at 0.99 and 0.90. Additionally, the WRF model effectively
captured the temporal variations in wind direction both across China and Shanxi
Province. However, WS10 was generally slightly overestimated, with biases of 0.5 m/s
and 0.4 m/s and CORR of 0.88 and 0.81 over China mainland and Shanxi province,
respectively. Such overestimation of wind speed in WRF simulations has also been

widely reported in other studies (e.g., Hu et al., 2016). An overestimated wind speed



causes the model to simulate faster and more extensive diffusion of CH4 concentrations
than occurs in reality. To compensate for the simulated reduction in CH4 concentrations
due to this excessive diffusion, the inversion system potentially increases the estimated

emissions.”
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Figure R3 Time series of observed and simulated wind direction at 10 m (WD10), wind
speeds at 10 m (WS10, m/s), temperature at 2 m (T2, °C), and relative humidity at 2 m
(RH2, %) across (a-d) China and (e-h) Shanxi Province. China and Shanxi Province
include 400 and 26 stations, respectively. (Figure S6 in the revised supplementary

information)

4. The authors used the optimized emissions from the DO1 inversion as prior
emissions for the D02 inversion. This implies that the observations over D02 are used

twice in the optimization of emissions. From the Bayesian standpoint, this is



problematic as it leads to over-confidence in observations.

Response: Thanks for this comment. It is important to clarify that in the first inversion
window, the prior emissions for both the DO1 and D02 domains were derived from the
EDGAR inventory. For subsequent inversion windows, the prior emissions (Xj) for DO1
and D02 were each obtained from their respective optimized emissions (X;) in the
previous window (Figure R4). Notably, the observational data were used sequentially
to optimize the prior emissions of D01 and D02. Specifically, the observations were not
reused for the optimization of the same emissions. Instead, DO1 only provided a more
optimized boundary condition for the emission simulation of D02, rather than serving

as the prior emission input for D02.

To enhance clarity on this process, we have added the following description in the

revised manuscript. See Lines 152-161, Pages 6-7.

e For the same domain, the RegGCAS-CH4 performed a “two-step” inversion

scheme in each data assimilation (DA) window. First, the prior emissions were
optimized using the available atmospheric observations. Then, the optimized emissions
were input back into the CTM to generate the initial fields for the next assimilation
window. Simultaneously, the optimized emissions were transferred to the next window
to serve as prior emissions (Figure S1). It is noted that the system optimizes the prior
emissions for the D01 and D02 domains separately. Specifically, DO1 only provides an
optimized boundary field for D02, rather than the prior emission source for D02. Thus,
the uncertainties in boundary conditions for D02 emission estimates were

2

reduced. ... ...
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Figure R4 RegGCAS-CH4 assimilation process (Figure SI in the revised

supplementary information)

5. The paper in general lacks uncertainty characterization for emission flux estimates.
For regions with limited observation coverage (e.g., Southern China), it is unclear to

what degree the posterior estimates depend on prior estimates.

Response: Thank you for this insightful comment. To quantify the overall posterior
uncertainty of our emission estimates, we evaluated the combined impacts of multiple
influential factors, including the representation of CH4 chemical processes, boundary
conditions, selection of prior inventories, satellite products, and assimilation system
parameter settings (Figure R5). Meanwhile, we paid special attention to southern China

(a region with limited observation coverage) to assess the degree to which posterior



emissions rely on prior estimates.

Nationwide, adopting the CAMS-GLOB-ANT v6.2 inventory (instead of the base
EDGAR inventory) led to a 5.2% increase in posterior emissions. More importantly,
the initial difference between the two prior inventories (6.0 Tg) converged to a much
smaller difference of 2.3 Tg in the posterior results, indicating good robustness of the
assimilation system at the national scale. However, in southern China (south of 30°N),
limited observational constraints weakened this convergence. The difference between
the two prior inventories (5.8 Tg) only decreased to 4.8 Tg in the posterior emissions,
clearly reflecting a higher dependence of posterior estimates on prior information in
this region. Using the default CAMS global concentration field (relative to adjusted
fields) resulted in a 7.5% increase in posterior emissions; incorporating CHa chemical
reactions (vs. omitting them) caused a 6.6% increase; assimilating the
TROPOMI/WFMD product (vs. the TROPOMI/SRON product) led to a 4.4% increase.
In contrast, variations in assimilation system parameters (e.g., observation error,
background error, and localization scale) had minimal impacts, restricting changes in
posterior emissions to a narrow range of -0.8% to 1.7%. Based on these analyses, we
quantified the overall posterior emission uncertainty as 8.5% for mainland China and

7.8% for Shanxi Province.

We have added the above discussion on uncertainty characterization in the revised

manuscript.
See Lines 676-736, Pages 31-34.

...... To better evaluate the potential impact of prior uncertainties on posterior
emission estimates, we conducted additional inversion experiments (SENS2) using the
2022 CAMS-GLOB-ANT v6.2 inventory as prior emissions. Nationwide, the posterior
emissions in SENS2 increased by 5.2% compared with those in the BASE experiment.
More importantly, the initial difference between the two prior inventories (6.0 Tg)
converged to a much smaller difference of 2.3 Tg in the posterior results, indicating

good robustness of the assimilation system at the national scale. However, in southern



China (south of 30°N), due to limited observational constraints, the difference between
the two prior inventories (5.8 Tg) only decreased to 4.8 Tg in the posterior results. In
contrast, in observation-dense regions such as Shanxi Province, even though the
difference in prior emissions was only 61.9 Gg, the difference in optimized posterior

emissions further converged to 39.0 Gg.

Uncertainty in atmospheric transport models can contribute to model-data mismatch
errors. Consistent with previous studies (Chen et al., 2022), this study initially omitted
CH4 chemical reactions to accelerate model integration and inversion efficiency. To
quantify the impact of this simplification, we further conducted an additional inversion
experiment (SENS3) where CH4 chemical reactions were incorporated into the CMAQ
model. Results showed that the inclusion of chemical reactions led to a 6.6% difference
compared to the base experiment. Specifically, the difference was small in winter (only
1.7%), whereas in summer, the OH concentration in the lower troposphere was one
order of magnitude higher than that in winter (Lelieveld et al., 2016). This stronger OH-
driven CH4 oxidation resulted in an increase of over 10% in posterior emissions. This
indicates that accounting for CH4 chemical reactions in summer is still necessary for
accurate emission inversion. The impact of chemical reactions only increased emission

estimates by 1.9% in Shanxi Province.

Different satellite products employ distinct inversion algorithms, which in turn
determine the quality and quantity of the data. To assess how satellite product selection
influences emission inversion, the TROPOMI/WFMD product was assimilated in
SENS4. Compared with the operational TROPOMI product in BASE experiment, the
TROPOMI/WFMD product provided a 59.3% increase in the number of observations,
particularly notable in winter. In mainland China, posterior emissions derived from
SENS4 increased by 4.4%, primarily driven by higher emission estimates in March and

April. In Shanxi Province, posterior emissions showed a more modest increase of 2.2%.

Our results may also be subject to several uncertainties associated with the settings of
assimilation system parameters. In particular, background and observation errors

influence the weight assigned to prior emissions versus observations in determining



posterior emissions, while the localization scale dictates the distance over which
observational information affects the inversion results. To quantify these impacts, we
conducted sensitivity tests by adjusting key parameters: observation errors were set to
0.5% and 0.9% (SENS5-6), background errors to 30% and 50% (SENS7-8), and
localization scales to 250 km and 350 km (SENS9-10), respectively. However, our
sensitivity analysis revealed that varying these parameters, whether increasing or
decreasing their values, only led to differences of -0.7% to 1.7% in posterior emission
estimates across mainland China. This indicates that the CH4 emission estimates were

not significantly affected by adjustments to the system parameters.

Following the methods of Feng et al. (2024) and Nassar et al. (2017), we estimated the
overall uncertainty of our results by accounting for the combined effects of the
aforementioned factors (e.g., parameter settings, prior inventories). In general, sparsely
observed regions, such as western China and Northeast China, showed over-reliance on
the prior inventory (SENS2) and exhibited relatively high posterior emission
uncertainty (28.0—44.1%). In contrast, densely observed regions including East China
and North China showed relatively low uncertainty (7.9-17.4%). Across mainland
China, boundary condition errors contributed the most to total uncertainty. Specifically,
boundary conditions caused substantial differences in emission estimates for Northeast
China. The overall posterior emission uncertainty for mainland China was 8.5%, while
that for Shanxi Province was even lower at 7.8%, with this uncertainty primarily driven

by uncertainties in the prior inventory.”
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Figure RS Posterior CH4 emissions from the base and different sensitivity experiments
(Table S6). B denotes the BASE experiment. S1 to S10 denote the SENS1 to SENS10
experiments, respectively. S1 represents the experiment using the unadjusted CAMS
global concentration field as the boundary; S2 denotes the experiment adopting CAMS-
GLOB-ANT v6.2 inventory as the prior emission inventory; S3 denotes the inversion
experiment accounting for CH4 chemical reactions; S4 denotes the inversion
experiment assimilating the TROPOMI/WFMD product; S5 and S6 denote the
experiments with observation errors set to 0.5% and 0.9%, respectively; S7 and S8
denote the experiments with background errors set to 30% and 50%, respectively; S9
and S10 denote the experiments with the localization scale adjusted to 250 km and 350
km, respectively. The numbers on the figure represent the uncertainty values of

different regions. (Figure 8 in the revised manuscript)



Minor suggestions:
1. L8O0: key source-> "point source scale" or "local scale"?

Response: We have changed “key source scales” to “local scales”. See Line 80, Page

4.

2. L95: unclear -> uncertain

Response: We have changed “unclear” to “uncertain”. See Line 95, Page 4.

3. L103: To my knowledge, IMI is not an operational inversion system, but more like
open-source software. So it may be improper to characterize it as a US system. Similar

issues may exist for other listed systems.

Response: Thank you for pointing out this important issue. we have revised the

description to accurately reflect its characteristics. See Lines 99-105, Pages 4-5.

“Currently, global-scale CH4 assimilation systems are widely applied, such as
CarbonTracker-CH4 in the United States (Bruhwiler et al., 2014), CAMS in Europe
(Agusti-Panareda et al., 2023), NTFVAR in Japan (Wang et al., 2019), and GONGGA.-
CHy in China (Zhao et al., 2024)... ... There are relatively few existing regional CHy
assimilation systems, such as the ICON-ART-CTDAS (Steiner et al., 2024) and
CarbonTracker Europe-CHs (Tsuruta et al., 2017) in Europe. Additionally, several
open-source frameworks offer inversion tools adaptable to different scales, such as
LMDz-SACS-CIF in France (Thanwerdas et al., 2022) and the IMI in the United States
(Varon et al., 2022). Nevertheless, most existing regional inversions still rely on global

atmospheric transport models with relatively coarse resolutions and... ...

4. L188-189: Any quantitative estimates how much error it will incur for DO1 and for

D02 respectively, by deactivating the chemical oxidation?



Response: Thank you for this valuable comment. To address your question regarding
the quantitative error in CHa emission estimates caused by deactivating CH4 chemical
oxidation, we conducted a dedicated sensitivity experiment (SENS3) where full CH4
chemical reactions were incorporated into the CMAQ model. For the mainland China,
the omission of CH4 chemical reactions results in an overall underestimation of
posterior emissions by approximately 6.6% compared to the SENS3 experiment (with
reactions activated). For the Shanxi Province, the bias induced by deactivating chemical
oxidation is more modest, with an average underestimation of only 1.9% across all
seasons. We have supplemented error estimates in the revised manuscript. Please refer

to our response to Main Comment 5.

5. L230: How do you specify the R matrix? Also explain specifically that R is an error

covariance matrix for what.

Response: We sincerely appreciate your meticulous review. The matrix R is an
observation error covariance matrix. It is specified as a diagonal matrix, which assumes
that observation errors from different stations at different times are mutually
independent (i.e., no covariance between distinct observations). The diagonal elements
correspond to the observation errors of the satellite data, set here to be 0.7% (~ 13.3
ppb in mainland China) of the column concentration values. This specification is based
on the product's quarterly validation report, which indicates that for the bias-corrected
TROPOMI product, the 1o spread of the relative difference between TROPOMI

retrievals and TCCON observations is on the order of 0.7% (Lambert et al., 2025).
We have added a description of the R matrix. See Lines 232-233, Page 10.

“where R is an observation error covariance matrix, which is specified as a diagonal
matrix with the assumption that observation errors from different pixels are mutually

independent (Feng et al., 2020). K is the Kalman gain matrix ... ...



6. L232: Ep: Power plant sources? Seems something copied from a CO2 study.

Response: Thank you for your comment. Indeed, the prior inventory (EDGAR) used
in this study includes the "Power Industry" sector (ENE). Given that power plants are
typically elevated point sources, they are usually not located in the same model grid as
ground-based area sources. This spatial distinction allows for effective separation
between these two types of sources. Therefore, even though power plant sources
account for a small proportion (0.6%) of total emissions, we treated area sources and

power plant sources as separate state vectors for optimization in the inversion process.
We have added additional explanations. See Lines 239-241, Page 11.

...... industry, transport sources, etc. Given that power plants are typically elevated
point sources, this spatial distinction allows for effective separation from ground-based
area sources. Therefore, even though power plant sources account for a small
proportion (0.6%) of total emissions, we treated them as separate state vectors for

optimization. The updated emissions are then... ...

7. L234: No need to capitalize O in oil

Response: The capitalization of "O" in "oil" has been corrected. Thanks. See Line 238,

Page 10.

L251: Would 1 day be too short for adequate observation constraint, if you assume that

prior errors are independent from one day to the next (L272-273)?

Response: Thank you for this comment. In fact, the prior errors across different
inversion windows are not independent, as the prior emissions for each day are derived
from the optimized emissions of the previous day. The 40% uncertainty setting is
intended to cover the error statistical characteristics of emission variations from one
day to the next. This temporal continuity ensures that prior errors do not become

completely decoupled between consecutive days.



Theoretically, a longer inversion window would allow CH4 to undergo more extensive
atmospheric transport, enabling more observations to capture the signal of emission
changes in a given grid cell. However, as the distance between an observation site and
an emission source increases, the emission signal detected by the observation weakens
significantly, while noise interference intensifies. Particularly, constrained by the EnKF
method with a limited ensemble size, this weakened emission signal tends to be masked
by unphysical signals (unrealistic long-distance spurious correlations). Consequently, a
longer inversion window does not necessarily yield better performance than a shorter
one (Jiang et al., 2021). On the other hand, the TROPOMI satellite provides relatively
dense observational data. Even with a short assimilation window (e.g., 1 day), the
abundant observations can still effectively capture meaningful emission signals from
surrounding grid cells, which is sufficient to optimize regional-scale CH4 emissions. In
contrast, for sparse observational data, a longer assimilation window is typically

required to capture emission signals from distant sources.

We have calculated the average number of surrounding observations (all quality-
controlled pixels falling into the same grid are averaged into a single observation) that
each grid is constrained by per day (Figure R6). Overall, most grids in northern China
can be constrained by over 40 observations, while most grids in southern China can be
constrained by approximately 10 observations. Additionally, during the assimilation
process, we filtered out observations with a correlation coefficient < 0.27 (low
significance, with p > 0.05) between the emission ensemble and the concentration
ensemble at the observation locations. As a result, in the southwest region, some grids
are not constrained by observations, accounting for approximately 4.8% of the total
grids nationwide; however, the emissions from these unconstrained grids constitute less
than 0.0004% of the national total emissions. Therefore, in most parts of the country, a

1-day assimilation window can provide adequate observation constraint.
We have added additional explanations. See Lines 305-309, Page 13.

“For regions with limited observation coverage (e.g., southern China), posterior

emission estimates may rely heavily on prior information (see Discussion). On one hand,



the system optimizes emissions in grids surrounding observations through the source-
receptor relationship of atmospheric transport, allowing it to impose extensive

constraints on emissions (Figure S4); on the other hand, ... ...
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Figure R6 Average number of observations constraining each grid per day. (Figure S4

in the Supplementary Information)

8. Table 1: What do the last two columns (building, mature) stand for?

Response: Thank you for pointing out this ambiguity. "Mature" in the table is a spelling
error and should be corrected to "Manure", which corresponds to the "Manure
management" sector, a key source of CH4 emissions from agricultural activities. The
"building" represents emissions from small-scale non-industrial stationary combustion,
including fuel combustion for heating, cooking, or other energy uses in residential,

commercial, or small non-industrial buildings.

We have corrected the typo ("Mature" — "Manure") and added brief annotations for



both columns in the revised Table 1. See Lines 441-443, Page 19

“* Waste includes wastewater treatment, solid waste landfills, and solid waste
incineration; Building represents emissions from small-scale non-industrial stationary

combustion; Manure refers to emissions from the manure management sector.”

9. Table 1 and related discussion (e.g., L360): EDGAR v8.0 is used as prior
information. Recent studies have shown that EDGAR has large errors in the spatial and
seasonal distribution in rice emissions (Chen et al., 2025; Liang et al., 2024). I'd suggest
the authors to briefly discuss the impact on emission quantification and sector

attribution in Northeast and East China.

Chen et al.: Global Rice Paddy Inventory (GRPI): a high-resolution inventory of
methane emissions from rice agriculture based on Landsat satellite inundation data,

Earth's Future, 2025.

Liang et al.: Satellite-based Monitoring of Methane Emissions from China's Rice Hub,

Environmental Science & Technology, 2024.

Response: Thank you for this critical comment. We acknowledge that these limitations
could potentially affect the accuracy of our prior-based emission quantification and
sector attribution, especially for Northeast and East China, dominated by paddy field
CH4 emissions. We have supplemented a discussion of this impact in the revised

manuscript.
See Lines 403-412, Pages 17-18.

“Recent studies have highlighted significant errors in the spatial distribution of rice CHs4
emissions in EDGAR v8.0, which relies on outdated rice paddy maps and incorrectly
overspreads rice emissions across non-rice agricultural grids (Chen et al., 2025). These
limitations not only cause EDGAR to overestimate rice emissions but also lead to
overestimation in subsequent posterior emissions. Specifically, this overestimation may

inflate the contribution of rice to total CH4 emissions in posterior attribution, while



simultaneously underestimating the contribution of other CHs sources (e.g., coal,
wetlands) that coexist in these misclassified grids. Conversely, EDGAR fails to capture
recent expansions of rice cultivation in Northeast China, particularly the rapid growth
of rice paddies in the Sanjiang Plain (Liang et al., 2024). This omission may result in a

systematic underestimation of rice emission hotspots in this region.”
See Lines 497-505, Page 21.

“However, EDGAR v8.0 adopts a uniform seasonal profile for rice CH4 emissions
across China, assigning a single emission peak in June to all rice-growing regions. This
simplification contradicts the findings of Chen et al. (2025), who reported that rice CH4
emissions in China generally peak in July—August, with the length of the emission
season varying significantly due to the diversity of regional rice cropping systems.
Notably, our posterior emission results align well with the seasonal pattern, with the
highest monthly rice emissions occurring in August, followed by July (Table S3). This
consistency confirms that the TROPOMI satellite observations have effectively

corrected the unrealistic uniform seasonal bias inherent in EDGAR.”

10. Table 2: Just a comment: The comparison with local observations, which are

sensitive to emission adjustment, is valuable.

Response: Thank you very much for your positive comment.
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Responses to the comments of Reviewer #2:

We would like to thank the anonymous referee for his/her comprehensive review and
valuable suggestions. These suggestions help us to present our results more clearly. In
response, we have made changes according to the referee’s suggestions and replied to
all comments point by point. All the page and line number for corrections are referred
to the revised manuscript, while the page and line number from original reviews are

kept intact.

1. Lines 33-35 and 548-550: Regarding the conclusion that this study's top-down
emission inversion is lower compared to others, the authors mainly attribute this to the
higher resolution used here, which captures finer emission details—a point supported
by comparing results from the inner and outer nested domains. While this explanation
is reasonable, it may not be entirely sufficient. Other factors like differences in methods,
models, and observations—including how chemical processes, soil sinks, and boundary
conditions are represented—could also contribute significantly. It would be good if the

authors could briefly discuss these aspects in the Discussion.

Response: Thank you for this insightful comment. We agree that factors beyond spatial
resolution, including representations of chemical processes, soil sinks, and boundary
conditions, could influence top-down emission inversion results. First, regarding soil
sinks, the flux of CH4 uptake by soils in China is relatively small. According to the
Global Methane Budget report, the latest bottom-up soil sink results for China in 2020
are 1.9-2.3 Tg-yr!, while the top-down inversion results are 1.2-2.7 Tg-yr'! (Saunois et
al., 2025). Thus, uncertainties associated with soil sinks have a negligible influence on

China’s overall CH4 emission estimates.

We also evaluated the impacts of other key factors on inversion results through
sensitivity experiments (Figure R1). Using the default CAMS global concentration field
(relative to adjusted fields) leads to a 7.5% increase in posterior emissions; adopting

the CAMS-GLOB-ANT v6.2 inventory (instead of the base EDGAR inventory) as a



prior results in a 5.2% increase in posterior emissions; incorporating CHa chemical
reactions (vs. omitting them) causes a 6.6% increase in posterior emissions;
assimilating the TROPOMI/WFMD product (vs. TROPOMI/SRON) leads to a 4.4%
increase in posterior emissions; and variations in assimilation system parameters (e.g.,
observation error, background error and local scale) have minimal impacts, limiting

posterior emission changes to a range of -0.8% to 1.7%.

To further understand the extent to which different sensitivity factors affect our
relatively low posterior emission results, we first compared the inversion results of the
same experiment under the D02 domain coverage at different resolutions. Overall, we
found that in the BASE experiment and all SENS experiments, emissions inverted at a
9 km resolution were typically 5.4-10.6% lower than those inverted at a 27 km
resolution. This indicates that higher-resolution inversion consistently yields lower
emission estimates. Second, we compared the emission differences between SENS
experiments and the BASE experiment under the D02 domain coverage at the same 27
or 9 km resolution. It is important to note that only positive differences (i.e., SENS
emissions > BASE emissions) can indicate that this factor, unaccounted for in the
present study (i.e., the BASE scenario), may explain the low emission results observed
in this study. For example, Figure R2 shows that, for grids within the D02 domain
coverage, the emissions inverted in the SENS1 experiment increased by 5.1% and 4.3%
compared with those in the BASE experiment at 27 km and 9 km resolutions,
respectively. However, under the same D02 domain coverage (i.e., for the same set of
grids), SENS1 showed that emissions inverted at 9 km resolution are 8.4% lower than
those inverted at 27 km resolution. Overall, in every sensitivity experiment with a
positive difference (SENS — BASE: 0.3-7.2%), the magnitude of this positive
difference was smaller than the emission reduction caused by high-resolution inversion
(9 km — 27 km: 5.4-10.6%) under the corresponding SENS experiment. This confirms
that higher resolution remains the dominant driver of our lower inversion results
relative to previous studies, while the aforementioned factors (chemical processes,

boundary conditions, etc.) contribute secondary, manageable uncertainties. To address



this concern comprehensively, we have added the above discussion in the revised

manuscript.
See Lines 676-713, Pages 31-34.

“To better evaluate the potential impact of prior uncertainties on posterior emission
estimates, we conducted additional inversion experiments (SENS2) using the 2022
CAMS-GLOB-ANT v6.2 inventory as prior emissions. Nationwide, the posterior
emissions in SENS2 increased by 5.2% compared with those in the BASE experiment.
More importantly, the initial difference between the two prior inventories (6.0 Tg)
converged to a much smaller difference of 2.3 Tg in the posterior results, indicating
good robustness of the assimilation system at the national scale. However, in southern
China (south of 30°N), due to limited observational constraints, the difference between
the two prior inventories (5.8 Tg) only decreased to 4.8 Tg in the posterior results. In
contrast, in observation-dense regions such as Shanxi Province, even though the
difference in prior emissions was only 61.9 Gg, the difference in optimized posterior

emissions further converged to 39.0 Gg.

Uncertainty in atmospheric transport models can contribute to model-data mismatch
errors. Consistent with previous studies (Chen et al., 2022), this study initially omitted
CH4 chemical reactions to accelerate model integration and inversion efficiency. To
quantify the impact of this simplification, we further conducted an additional inversion
experiment (SENS3) where CH4 chemical reactions were incorporated into the CMAQ
model. Results showed that the inclusion of chemical reactions led to a 6.6% difference
compared to the base experiment. Specifically, the difference was small in winter (only
1.7%), whereas in summer, the OH concentration in the lower troposphere was one
order of magnitude higher than that in winter (Lelieveld et al., 2016). This stronger OH-
driven CH4 oxidation resulted in an increase of over 10% in posterior emissions. This
indicates that accounting for CH4 chemical reactions in summer is still necessary for
accurate emission inversion. The impact of chemical reactions only increased emission

estimates by 1.9% in Shanxi Province.



Different satellite products employ distinct inversion algorithms, which in turn
determine the quality and quantity of the data. To assess how satellite product selection
influences emission inversion, the TROPOMI/WFMD product was assimilated in
SENS4. Compared with the operational TROPOMI product in BASE experiment, the
TROPOMI/WFMD product provided a 59.3% increase in the number of observations,
particularly notable in winter. In mainland China, posterior emissions derived from
SENS4 increased by 4.4%, primarily driven by higher emission estimates in March and

April. In Shanxi Province, posterior emissions showed a more modest increase of 2.2%.

Our results may also be subject to several uncertainties associated with the settings of
assimilation system parameters. In particular, background and observation errors
influence the weight assigned to prior emissions versus observations in determining
posterior emissions, while the localization scale dictates the distance over which
observational information affects the inversion results. To quantify these impacts, we
conducted sensitivity tests by adjusting key parameters: observation errors were set to
0.5% and 0.9% (SENS5-6), background errors to 30% and 50% (SENS7-8), and
localization scales to 250 km and 350 km (SENS9-10), respectively. However, our
sensitivity analysis revealed that varying these parameters, whether increasing or
decreasing their values, only led to differences of -0.7% to 1.7% in posterior emission
estimates across mainland China. This indicates that the CH4 emission estimates were

not significantly affected by adjustments to the system parameters.”
See Lines 739-752, Pages 34-35.

“Our inversion results are generally lower than previous emission estimates... ... we
found that emissions inverted at a 9 km resolution were typically 5.4-10.6% lower than
those at a 27 km resolution. This indicates that higher-resolution inversion consistently
yields lower emission estimates, a discrepancy likely driven by the fact that higher-
resolution simulations excel at capturing localized emission hotspots that lead to
elevated concentration values... ... To further understand the extent to which different
sensitivity factors affect our relatively low posterior emission results, we compared the

emission differences between SENS experiments and the BASE experiment under the



inner domain coverage at the same 27 or 9 km resolution (Figure R7). In every
sensitivity experiment with a positive difference (SENS — BASE), the magnitude varies
between 0.3-7.2%, which is always smaller than the emission reduction caused by high-
resolution inversion under the corresponding SENS experiment. This confirms that
higher resolution remains the dominant driver of our lower inversion results relative to

previous studies, while the aforementioned factors contribute to secondary, manageable
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Figure R1 Posterior CH4 emissions from the base and different sensitivity experiments
(Table S6). B denotes the BASE experiment. S1 to S10 denote the SENS1 to SENS10
experiments, respectively. Posterior CH4 emissions from the base and different
sensitivity experiments. B denotes the BASE experiment. S1 to S10 denote the SENSI
to SENS10 experiments, respectively. S1 represents the experiment using the
unadjusted CAMS global concentration field as the boundary, S2 denotes the
experiment adopting CAMS-GLOB-ANT v6.2 inventory as the prior emission
inventory; S3 denotes the inversion experiment accounting for CH4 chemical reactions;

S4 denotes the inversion experiment assimilating the TROPOMI/WFMD product; S5



and S6 denote the experiments with observation errors set to 0.5% and 0.9%,
respectively; S7 and S8 denote the experiments with background errors set to 30% and
50%, respectively; S9 and S10 denote the experiments with the localization scale
adjusted to 250 km and 350 km, respectively. The numbers on the figure represent the
uncertainty values of different regions. The numbers on the figure represent the

uncertainty values of different regions. (Figure 8 in the revised manuscript)
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Figure R2 Comparison of emission differences under the D02 domain coverage: one
between 9 km and 27 km resolutions within the same BASE or SENS experiment (red),
and the other between corresponding SENS and BASE experiments at either 27 km
(dark blue) or 9 km (light blue) resolution. Note that only positive differences (i.e.,
SENS > BASE emissions) can indicate unconsidered factors that might lead to the low

emission results in our study. (Figure S7 in the Supplementary Information)

2. Figure 1b: It shows that TROPOMI data has a high missing rate across the country,
especially in the south, with some areas having coverage for only 10% of the dates. For
regions with long periods of no observation, how are the posterior emissions
represented? Also, what is the impact of this representation on daily, monthly and yearly

CH4 emission estimates? It would be helpful if the authors could discuss this as well.

Response: Thank you for this comment. First, regarding the representation of posterior

emissions in observation-sparse regions, our assimilation system addresses data gaps



through two key mechanisms. On one hand, the system not only optimizes grids with
direct observations but also uses the atmospheric transport model to capture the source-
receptor relationship between emissions from surrounding grids and CHg
concentrations at observation sites, thereby enabling the optimization of emissions in
surrounding grids within a 300 km localization scale. On the other hand, we adopt an
iterative approach where emissions optimized in the current assimilation window serve
as prior emissions for the next window, facilitating rolling assimilation to sustain the

influence of observational information over time.

Therefore, at the daily scale, grids without observational constraints directly adopt
emissions from the previous window. This approach may slightly underestimate short-
term emission fluctuations but maintains temporal continuity in emission trends. At the
monthly scale, grids with no continuous observational constraints throughout the month
directly use EDGAR data. Such grids account for 7.9% of all grids and contribute 0.3%
to total posterior emissions. While this may lead to insufficient observational
constraints on posterior emissions, particularly in southern regions during summer, it
effectively avoids seasonal distortions in posterior estimates caused by variations in
emissions. At the annual scale, 4.8% of grids remain unadjusted, and the unadjusted
emissions in these grids are mainly distributed in uninhabited areas of Southwest China,

resulting in a negligible overall impact (0.00037%) on annual CH4 emission estimates.

To further verify the robustness of our emission optimization under limited observations,
we conducted additional sensitivity experiments (e.g., SENS2, detailed in Response to
Comment 1) where we compared the impact of different prior inventories on posterior
emission estimates. We have added the following discussion in the revised manuscript.

See Lines 305-319, Page 13.

“For regions with limited observation coverage (e.g., southern China), posterior
emission estimates may rely heavily on prior information (see Discussion). On one hand,
the system optimizes emissions in grids surrounding observations through the source-
receptor relationship of atmospheric transport, allowing it to impose extensive

constraints on emissions (Figure S4); on the other hand, it adopts an iterative approach



where emissions optimized in the current window serve as prior emissions for the next
window, facilitating rolling assimilation and thereby sustaining the influence of
observational information on emission estimates. However, intermittent observations
may cause posterior emissions to underestimate short-term emission fluctuations. At
the monthly scale, grids without continuous observational constraints throughout the
month directly use EDGAR data. Such grids account for 7.9% of all grids and
contribute 0.3% to total posterior emissions. Although this may lead to insufficient
observational constraints on posterior emissions, particularly in southern regions during
summer, it effectively avoids seasonal distortions in posterior estimates caused by
variations in emissions. At the annual scale, 4.8% of grids remain unadjusted. These
unadjusted emissions are mainly distributed in uninhabited areas of Southwest China,

resulting in a negligible overall impact on annual CH4 emission estimates.”

3. Figure 3 on page 20 shows the differences in prior and posterior emissions for
different sectors. How are the sectors distinguished in the posterior emissions? It is
indeed challenging to differentiate sectoral emissions in top-down emission inversion.
Typically, sectoral emissions in the posterior are calculated based on the proportional

grid emissions from the prior inventory. Does this study use the same method?

Response: Thank you for this comment. Yes, that’s correct. Following Kou et al. (2025),
Zhang et al. (2022), and Miller et al. (2019), we partitioned the optimized total
emissions based on the prior proportional information of different sectors within the
same model grid. This method is adopted because the observed total atmospheric CH4
concentration integrates emission signals from all sectors, making it difficult to
distinguish emission information from different source sectors overlapping in a pixel
grid (Saunois et al., 2025). As a result, the emissions derived directly from our inversion
represent the total CHs4 flux at the pixel scale. We acknowledge that uncertainties may
be introduced into posterior sectoral statistics by potential errors in the sectoral
proportionality of the prior inventory, and this limitation is noted in the revised

manuscript.



See Lines 377-381, Pages 16-17.

“Assimilating total CH4 observations alone cannot disentangle emissions from different
source sectors overlapping in individual grid cells (Saunois et al., 2025). Consequently,
we partitioned the inversion results into respective emission sectors based on the
monthly prior proportions at the model grid points (Kou et al., 2025; Zhang et al., 2022),
though this approach does introduce a certain degree of uncertainty in sectoral
attribution. The sectoral patterns offer insights into the underlying factors influencing
China's emission changes. We concentrated on interpreting the emissions from the coal,

gas, rice cultivation... ...

4. The title of Figure 4 needs to specify the time period covered by the data. Is it the

average for the entire year of 2022?

Response: Yes. Figure 4 presents the evaluation of XCH4 averaged over the entire year
0f2022. We have supplemented the time information in the figure caption to clarify this

detail.
See Line 560, Page 24.

“Figure 4 Comparison of simulated XCH4 (ppb) from prior and posterior emissions
with TROPOMI observations over (a-c¢) China and (d-f) Shanxi Province for the 2022

annual average.”

5. On line 509, P24, 'Except for LF site...", this description is incorrect. Not only is
the LF site underestimated, but the TY site is also significantly underestimated, as well

as the JC site. It is recommended to correct the description."

Response: Thank you for pointing out this ambiguity in our description. The original
intent was to highlight that the LF site showed a worsened bias, shifting to a severe
negative bias and larger RMSE in VEP experiment (posterior simulations). Although

the TY and JC sites still showed an underestimation in the VEP experiment, their overall



performance has improved in VEP experiment.
We have revised the sentence. See Lines 588-589, Page 26.

“Except for the LF site, which shifted to a severe negative bias and exhibited a larger
RMSE, the VEP experiment demonstrated varying degrees of improvement at the other

five sites.”
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