
Responses to the comments of Reviewer #2: 

We would like to thank the anonymous referee for his/her comprehensive review and 

valuable suggestions. These suggestions help us to present our results more clearly. In 

response, we have made changes according to the referee’s suggestions and replied to 

all comments point by point. All the page and line number for corrections are referred 

to the revised manuscript, while the page and line number from original reviews are 

kept intact. 

 

1. Lines 33–35 and 548–550: Regarding the conclusion that this study's top-down 

emission inversion is lower compared to others, the authors mainly attribute this to the 

higher resolution used here, which captures finer emission details—a point supported 

by comparing results from the inner and outer nested domains. While this explanation 

is reasonable, it may not be entirely sufficient. Other factors like differences in methods, 

models, and observations—including how chemical processes, soil sinks, and boundary 

conditions are represented—could also contribute significantly. It would be good if the 

authors could briefly discuss these aspects in the Discussion. 

Response: Thank you for this insightful comment. We agree that factors beyond spatial 

resolution, including representations of chemical processes, soil sinks, and boundary 

conditions, could influence top-down emission inversion results. First, regarding soil 

sinks, the flux of CH4 uptake by soils in China is relatively small. According to the 

Global Methane Budget report, the latest bottom-up soil sink results for China in 2020 

are 1.9-2.3 Tg·yr-1, while the top-down inversion results are 1.2-2.7 Tg·yr-1 (Saunois et 

al., 2025). Thus, uncertainties associated with soil sinks have a negligible influence on 

China’s overall CH4 emission estimates.  

We also evaluated the impacts of other key factors on inversion results through 

sensitivity experiments (Figure R1). Using the default CAMS global concentration field 

(relative to adjusted fields) leads to a 7.5% increase in posterior emissions; adopting 

the CAMS-GLOB-ANT v6.2 inventory (instead of the base EDGAR inventory) as a 



prior results in a 5.2% increase in posterior emissions; incorporating CH₄ chemical 

reactions (vs. omitting them) causes a 6.6% increase in posterior emissions; 

assimilating the TROPOMI/WFMD product (vs. TROPOMI/SRON) leads to a 4.4% 

increase in posterior emissions; and variations in assimilation system parameters (e.g., 

observation error, background error and local scale) have minimal impacts, limiting 

posterior emission changes to a range of -0.8% to 1.7%.  

To further understand the extent to which different sensitivity factors affect our 

relatively low posterior emission results, we first compared the inversion results of the 

same experiment under the D02 domain coverage at different resolutions. Overall, we 

found that in the BASE experiment and all SENS experiments, emissions inverted at a 

9 km resolution were typically 5.4–10.6% lower than those inverted at a 27 km 

resolution. This indicates that higher-resolution inversion consistently yields lower 

emission estimates. Second, we compared the emission differences between SENS 

experiments and the BASE experiment under the D02 domain coverage at the same 27 

or 9 km resolution. It is important to note that only positive differences (i.e., SENS 

emissions > BASE emissions) can indicate that this factor, unaccounted for in the 

present study (i.e., the BASE scenario), may explain the low emission results observed 

in this study. For example, Figure R2 shows that, for grids within the D02 domain 

coverage, the emissions inverted in the SENS1 experiment increased by 5.1% and 4.3% 

compared with those in the BASE experiment at 27 km and 9 km resolutions, 

respectively. However, under the same D02 domain coverage (i.e., for the same set of 

grids), SENS1 showed that emissions inverted at 9 km resolution are 8.4% lower than 

those inverted at 27 km resolution. Overall, in every sensitivity experiment with a 

positive difference (SENS – BASE: 0.3–7.2%), the magnitude of this positive 

difference was smaller than the emission reduction caused by high-resolution inversion 

(9 km – 27 km: 5.4–10.6%) under the corresponding SENS experiment. This confirms 

that higher resolution remains the dominant driver of our lower inversion results 

relative to previous studies, while the aforementioned factors (chemical processes, 

boundary conditions, etc.) contribute secondary, manageable uncertainties. To address 



this concern comprehensively, we have added the above discussion in the revised 

manuscript. 

See Lines 676-713, Pages 31-34. 

“To better evaluate the potential impact of prior uncertainties on posterior emission 

estimates, we conducted additional inversion experiments (SENS2) using the 2022 

CAMS-GLOB-ANT v6.2 inventory as prior emissions. Nationwide, the posterior 

emissions in SENS2 increased by 5.2% compared with those in the BASE experiment. 

More importantly, the initial difference between the two prior inventories (6.0 Tg) 

converged to a much smaller difference of 2.3 Tg in the posterior results, indicating 

good robustness of the assimilation system at the national scale. However, in southern 

China (south of 30°N), due to limited observational constraints, the difference between 

the two prior inventories (5.8 Tg) only decreased to 4.8 Tg in the posterior results. In 

contrast, in observation-dense regions such as Shanxi Province, even though the 

difference in prior emissions was only 61.9 Gg, the difference in optimized posterior 

emissions further converged to 39.0 Gg. 

Uncertainty in atmospheric transport models can contribute to model-data mismatch 

errors. Consistent with previous studies (Chen et al., 2022), this study initially omitted 

CH4 chemical reactions to accelerate model integration and inversion efficiency. To 

quantify the impact of this simplification, we further conducted an additional inversion 

experiment (SENS3) where CH4 chemical reactions were incorporated into the CMAQ 

model. Results showed that the inclusion of chemical reactions led to a 6.6% difference 

compared to the base experiment. Specifically, the difference was small in winter (only 

1.7%), whereas in summer, the OH concentration in the lower troposphere was one 

order of magnitude higher than that in winter (Lelieveld et al., 2016). This stronger OH-

driven CH4 oxidation resulted in an increase of over 10% in posterior emissions. This 

indicates that accounting for CH4 chemical reactions in summer is still necessary for 

accurate emission inversion. The impact of chemical reactions only increased emission 

estimates by 1.9% in Shanxi Province.  



Different satellite products employ distinct inversion algorithms, which in turn 

determine the quality and quantity of the data. To assess how satellite product selection 

influences emission inversion, the TROPOMI/WFMD product was assimilated in 

SENS4. Compared with the operational TROPOMI product in BASE experiment, the 

TROPOMI/WFMD product provided a 59.3% increase in the number of observations, 

particularly notable in winter. In mainland China, posterior emissions derived from 

SENS4 increased by 4.4%, primarily driven by higher emission estimates in March and 

April. In Shanxi Province, posterior emissions showed a more modest increase of 2.2%. 

Our results may also be subject to several uncertainties associated with the settings of 

assimilation system parameters. In particular, background and observation errors 

influence the weight assigned to prior emissions versus observations in determining 

posterior emissions, while the localization scale dictates the distance over which 

observational information affects the inversion results. To quantify these impacts, we 

conducted sensitivity tests by adjusting key parameters: observation errors were set to 

0.5% and 0.9% (SENS5-6), background errors to 30% and 50% (SENS7-8), and 

localization scales to 250 km and 350 km (SENS9-10), respectively. However, our 

sensitivity analysis revealed that varying these parameters, whether increasing or 

decreasing their values, only led to differences of -0.7% to 1.7% in posterior emission 

estimates across mainland China. This indicates that the CH4 emission estimates were 

not significantly affected by adjustments to the system parameters.” 

See Lines 739-752, Pages 34-35. 

“Our inversion results are generally lower than previous emission estimates… …we 

found that emissions inverted at a 9 km resolution were typically 5.4-10.6% lower than 

those at a 27 km resolution. This indicates that higher-resolution inversion consistently 

yields lower emission estimates, a discrepancy likely driven by the fact that higher-

resolution simulations excel at capturing localized emission hotspots that lead to 

elevated concentration values… ... To further understand the extent to which different 

sensitivity factors affect our relatively low posterior emission results, we compared the 

emission differences between SENS experiments and the BASE experiment under the 



inner domain coverage at the same 27 or 9 km resolution (Figure R7). In every 

sensitivity experiment with a positive difference (SENS – BASE), the magnitude varies 

between 0.3-7.2%, which is always smaller than the emission reduction caused by high-

resolution inversion under the corresponding SENS experiment. This confirms that 

higher resolution remains the dominant driver of our lower inversion results relative to 

previous studies, while the aforementioned factors contribute to secondary, manageable 

uncertainties… …” 

 

Figure R1 Posterior CH4 emissions from the base and different sensitivity experiments 

(Table S6). B denotes the BASE experiment. S1 to S10 denote the SENS1 to SENS10 

experiments, respectively. Posterior CH4 emissions from the base and different 

sensitivity experiments. B denotes the BASE experiment. S1 to S10 denote the SENS1 

to SENS10 experiments, respectively. S1 represents the experiment using the 

unadjusted CAMS global concentration field as the boundary; S2 denotes the 

experiment adopting CAMS-GLOB-ANT v6.2 inventory as the prior emission 

inventory; S3 denotes the inversion experiment accounting for CH4 chemical reactions; 

S4 denotes the inversion experiment assimilating the TROPOMI/WFMD product; S5 



and S6 denote the experiments with observation errors set to 0.5% and 0.9%, 

respectively; S7 and S8 denote the experiments with background errors set to 30% and 

50%, respectively; S9 and S10 denote the experiments with the localization scale 

adjusted to 250 km and 350 km, respectively. The numbers on the figure represent the 

uncertainty values of different regions. The numbers on the figure represent the 

uncertainty values of different regions. (Figure 8 in the revised manuscript) 

 

Figure R2 Comparison of emission differences under the D02 domain coverage: one 

between 9 km and 27 km resolutions within the same BASE or SENS experiment (red), 

and the other between corresponding SENS and BASE experiments at either 27 km 

(dark blue) or 9 km (light blue) resolution. Note that only positive differences (i.e., 

SENS > BASE emissions) can indicate unconsidered factors that might lead to the low 

emission results in our study.  (Figure S7 in the Supplementary Information) 

 

2. Figure 1b: It shows that TROPOMI data has a high missing rate across the country, 

especially in the south, with some areas having coverage for only 10% of the dates. For 

regions with long periods of no observation, how are the posterior emissions 

represented? Also, what is the impact of this representation on daily, monthly and yearly 

CH4 emission estimates? It would be helpful if the authors could discuss this as well. 

Response: Thank you for this comment. First, regarding the representation of posterior 

emissions in observation-sparse regions, our assimilation system addresses data gaps 



through two key mechanisms. On one hand, the system not only optimizes grids with 

direct observations but also uses the atmospheric transport model to capture the source-

receptor relationship between emissions from surrounding grids and CH4 

concentrations at observation sites, thereby enabling the optimization of emissions in 

surrounding grids within a 300 km localization scale. On the other hand, we adopt an 

iterative approach where emissions optimized in the current assimilation window serve 

as prior emissions for the next window, facilitating rolling assimilation to sustain the 

influence of observational information over time. 

Therefore, at the daily scale, grids without observational constraints directly adopt 

emissions from the previous window. This approach may slightly underestimate short-

term emission fluctuations but maintains temporal continuity in emission trends. At the 

monthly scale, grids with no continuous observational constraints throughout the month 

directly use EDGAR data. Such grids account for 7.9% of all grids and contribute 0.3% 

to total posterior emissions. While this may lead to insufficient observational 

constraints on posterior emissions, particularly in southern regions during summer, it 

effectively avoids seasonal distortions in posterior estimates caused by variations in 

emissions. At the annual scale, 4.8% of grids remain unadjusted, and the unadjusted 

emissions in these grids are mainly distributed in uninhabited areas of Southwest China, 

resulting in a negligible overall impact (0.00037%) on annual CH4 emission estimates. 

To further verify the robustness of our emission optimization under limited observations, 

we conducted additional sensitivity experiments (e.g., SENS2, detailed in Response to 

Comment 1) where we compared the impact of different prior inventories on posterior 

emission estimates. We have added the following discussion in the revised manuscript. 

See Lines 305-319, Page 13. 

“For regions with limited observation coverage (e.g., southern China), posterior 

emission estimates may rely heavily on prior information (see Discussion). On one hand, 

the system optimizes emissions in grids surrounding observations through the source-

receptor relationship of atmospheric transport, allowing it to impose extensive 

constraints on emissions (Figure S4); on the other hand, it adopts an iterative approach 



where emissions optimized in the current window serve as prior emissions for the next 

window, facilitating rolling assimilation and thereby sustaining the influence of 

observational information on emission estimates. However, intermittent observations 

may cause posterior emissions to underestimate short-term emission fluctuations. At 

the monthly scale, grids without continuous observational constraints throughout the 

month directly use EDGAR data. Such grids account for 7.9% of all grids and 

contribute 0.3% to total posterior emissions. Although this may lead to insufficient 

observational constraints on posterior emissions, particularly in southern regions during 

summer, it effectively avoids seasonal distortions in posterior estimates caused by 

variations in emissions. At the annual scale, 4.8% of grids remain unadjusted. These 

unadjusted emissions are mainly distributed in uninhabited areas of Southwest China, 

resulting in a negligible overall impact on annual CH4 emission estimates.” 

 

3. Figure 3 on page 20 shows the differences in prior and posterior emissions for 

different sectors. How are the sectors distinguished in the posterior emissions? It is 

indeed challenging to differentiate sectoral emissions in top-down emission inversion. 

Typically, sectoral emissions in the posterior are calculated based on the proportional 

grid emissions from the prior inventory. Does this study use the same method? 

Response: Thank you for this comment. Yes, that’s correct. Following Kou et al. (2025), 

Zhang et al. (2022), and Miller et al. (2019), we partitioned the optimized total 

emissions based on the prior proportional information of different sectors within the 

same model grid. This method is adopted because the observed total atmospheric CH4 

concentration integrates emission signals from all sectors, making it difficult to 

distinguish emission information from different source sectors overlapping in a pixel 

grid (Saunois et al., 2025). As a result, the emissions derived directly from our inversion 

represent the total CH4 flux at the pixel scale. We acknowledge that uncertainties may 

be introduced into posterior sectoral statistics by potential errors in the sectoral 

proportionality of the prior inventory, and this limitation is noted in the revised 

manuscript.  



See Lines 377-381, Pages 16-17. 

“Assimilating total CH4 observations alone cannot disentangle emissions from different 

source sectors overlapping in individual grid cells (Saunois et al., 2025). Consequently, 

we partitioned the inversion results into respective emission sectors based on the 

monthly prior proportions at the model grid points (Kou et al., 2025; Zhang et al., 2022), 

though this approach does introduce a certain degree of uncertainty in sectoral 

attribution. The sectoral patterns offer insights into the underlying factors influencing 

China's emission changes. We concentrated on interpreting the emissions from the coal, 

gas, rice cultivation… …” 

 

4. The title of Figure 4 needs to specify the time period covered by the data. Is it the 

average for the entire year of 2022? 

Response: Yes. Figure 4 presents the evaluation of XCH4 averaged over the entire year 

of 2022. We have supplemented the time information in the figure caption to clarify this 

detail.  

See Line 560, Page 24. 

“Figure 4 Comparison of simulated XCH4 (ppb) from prior and posterior emissions 

with TROPOMI observations over (a-c) China and (d-f) Shanxi Province for the 2022 

annual average.” 

 

5. On line 509, P24, 'Except for LF site...', this description is incorrect. Not only is 

the LF site underestimated, but the TY site is also significantly underestimated, as well 

as the JC site. It is recommended to correct the description." 

Response: Thank you for pointing out this ambiguity in our description. The original 

intent was to highlight that the LF site showed a worsened bias, shifting to a severe 

negative bias and larger RMSE in VEP experiment (posterior simulations). Although 

the TY and JC sites still showed an underestimation in the VEP experiment, their overall 



performance has improved in VEP experiment. 

We have revised the sentence. See Lines 588-589, Page 26. 

“Except for the LF site, which shifted to a severe negative bias and exhibited a larger 

RMSE, the VEP experiment demonstrated varying degrees of improvement at the other 

five sites.” 
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