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Abstract. Advancing high-resolution Arctic ocean-sea ice modeling is critical for understanding polar amplification and
improving climate projections but faces challenges from computational limits and cross-scale interactions. The simulation
capabilities of the ocean-sea ice coupled model (E3SMv2-MPAS) from the Energy Exascale Earth System Model (E3SM)
2.1 for the Arctic ocean-sea ice system are systematically evaluated using multi-source observational data. The model
employs a latitudinally varying mesh, with resolution increasing from 60 km in the Southern Hemisphere to 10 km in the
Arctic. This design balances computational efficiency with the accurate integration of low-latitude oceanic influences, while
the unstructured mesh also enhances the geometric representation of Arctic straits. Together, these features form a simulation
framework capable of resolving processes from seasonal to decadal timescales. Numerical results demonstrate E3SMv2-
MPAS's superior Arctic simulation performance: (1) Accurate reproduction of spatial heterogeneity in sea ice concentration,
thickness, and sea surface temperature, including their 1995-2020 trend patterns; (2) Faithful reproduction of both the
freshwater content and transports through key Arctic gateways; (3) Successful reconstruction of three-dimensional
thermohaline structures within the Atlantic Water layer, capturing Atlantic Water's decadal warming trends and accelerated
Atlantification processes — specifically mid-layer shoaling, heat content amplification, and reduced heat transfer lag times in
the Eurasian Basin. Persistent systematic biases are identified: 0.5-1 m sea ice thickness overestimation in the Canadian
Basin; Coordinated sea surface temperature/salinity underestimation and sea ice concentration overestimation in the
Greenland and Barents Seas; Atlantic Water core temperature overestimation; Regional asymmetries in decadal

thermohaline field evolution.

1 Introduction

The Arctic region has emerged as one of the most rapidly transforming area of the Earth system under contemporary climate
change (Calvin et al., 2023). However, persistent gaps in oceanic observational networks, particularly the lack of systematic
full-depth and pan-strait measurements across key Arctic gateways, have significantly constrained our understanding of
Arctic oceanic transport dynamics. To address these observational limitations, numerical modeling has become an

indispensable tool (Wang et al., 2023). Of particular scientific significance is the thermohaline transport through Fram Strait
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— the principal conduit for Atlantic Water (AW) intrusion into the Arctic basins (Fu et al., 2023; Karami et al., 2021; Long et
al., 2024). Recent studies highlight the necessity to quantify both the spatiotemporal evolution of AW-derived heat
distribution across Arctic marginal seas and the relative contributions of different vertical heat flux mechanisms (Carmack et
al., 2015; Polyakov et al., 2020b). State-of-the-art global climate models (GCMs) provide critical insights into the evolving
climate system under sustained global warming scenarios, enabling the investigation of multi-sphere interactions and their
associated feedback mechanisms (Dorr et al., 2021; Hinrichs et al., 2021; Rieke et al., 2023; Shu et al., 2022).

While climate models remain indispensable tools for deciphering Earth system dynamics (Landrum and Holland, 2020),
their representation of Arctic processes exhibits persistent uncertainties that challenge predictive capabilities (Pan et al.,
2023). Systematic biases plague the simulation of critical Arctic phenomena, including amplified warming rates, sea ice
retreat patterns, and AW layer evolution (Heuzé et al., 2023; Khosravi et al., 2022; Muilwijk et al., 2023; Shu et al., 2019).
These limitations persist across successive model generations, as evidenced by Coupled Model Intercomparison Project
Phase 5 (CMIP5) and Phase 6 (CMIP6) revealing substantial errors in Arctic three-dimensional thermohaline structure
reproduction (Khosravi et al., 2022; Shu et al., 2019). There are mainly four common biases of contemporary models in the
Arctic include: (1) Overestimated AW layer thickness and depth. This systematic vertical structure misrepresentation persists
across model generations, from early Arctic Ocean Model Intercomparison Project (AOMIP) simulations (Holloway et al.,
2007) through the Coordinated Ocean-ice Reference Experiments, phase II (CORE-II; Ilicak et al. (2016)), to the most
widely used CMIP5/CMIP6 ensembles (Heuzé et al., 2023; Khosravi et al., 2022; Shu et al., 2019). Among 41 CMIP5
models evaluated by Shu et al. (2019), 22% failed basic AW identification criteria, while the remaining 32-model mean
overestimated AW layer vertical extent compared to observational benchmarks. CMIP6 shows limited improvement, with
multi-model mean AW upper boundaries erroneously positioned at ~400 m depth in the Nansen Basin — deeper than
observed values — and excessive thickness extending to the seafloor in some regions (Khosravi et al., 2022). (2) Cold bias in
AW core temperatures. The Alfred Wegener Institute coupled climate model (AWI-CM1) exhibits thermal underestimation
at 200-600m depths in Eurasian Basin simulations (Hinrichs et al., 2021), consistent with CMIP6's 0.4°C cold bias relative
to hydrographic climatologies (Heuzé et al., 2023). (3) Failure to capture AW warming trends. CMIP5 models collectively
underestimate observed decadal temperature variability, with no model replicating the post-2000 acceleration in AW
warming (Shu et al., 2019). (4) Underestimated "Atlantification" (referring to the Arctic Ocean water properties becoming
increasingly akin to the warmer and saltier AW). While models project gradual boreal water encroachment in the Barents
Sea by 2100 (Wassmann et al., 2015), observational analyses suggest this regime shift is likely to occur at a faster pace (Lind
et al., 2018). Discrepancies extend to sea ice thermodynamics, where Seasonal Forecast System 5 (SEASS) simulations yield
only 10-20 cm winter ice production decline (Polyakov et al., 2022), versus 78-93 cm observed losses (Polyakov et al.,
2020b).

There are numerous and complex reasons that lead to the common deviations in models when simulating the AW. These
challenges can be categorized into four primary domains: (1) Insufficient horizontal resolution (>50 km in most CMIP6

models) fails to resolve critical boundary currents and mesoscale eddies (Hinrichs et al., 2021); (2) Unrealistic Atlantic-
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Arctic exchange through Fram Strait (Hinrichs et al., 2021); (3) Parameterization deficiencies, including the incorrect
representation of horizontal advection and vertical mixing (Lind et al., 2018); (4) Imperfect knowledge of ocean-sea ice-
atmosphere triadic feedbacks, especially during winter convection events, hampers accurate simulation of AW ventilation
processes (Heuzé et al., 2023). To advance model fidelity and reduce uncertainty sources, comprehensive investigations into
systematic model biases are imperative (Hinrichs et al., 2021; Pan et al., 2023).

Current numerical simulations for polar regions are primarily based on structured grid models. However, the inherent
limitations of structured grids, particularly the singularity at the North Pole and meridional convergence artifacts,
fundamentally constrain their capacity to represent Arctic-specific physical processes (Liu et al., 2016). These geometric
constraints not only distort parameterization schemes but also introduce systematic biases in both regional and decadal-scale
simulations. While global high-resolution configurations could theoretically mitigate such issues, their prohibitive
computational costs render them impractical for climate-scale applications (Golaz et al., 2019). This technological impasse
has driven the development of two complementary approaches: (1) Nested grid systems: Though offering advantages in
spatial discretization flexibility and geometric simplification, their implementation introduces nontrivial challenges in mass
conservation, interface coupling fidelity, and numerical noise suppression (Hoch et al., 2020). (2) Unstructured mesh: By
enabling localized resolution enhancement in dynamically critical zones while maintaining coarse resolutions elsewhere,
these meshes eliminate the need for explicit nesting procedures (Scholz et al., 2019). Their continuous spatial adaptability
allows direct resolution of sub-mesoscale processes without compromising computational efficiency (Wang et al., 2018).
The application of variable-resolution models with a global unstructured mesh offers distinct advantages for Arctic Ocean
studies. By employing high-resolution meshes over the Arctic region, these configurations enable accurate simulation of
energy exchange processes across narrow critical channels (e.g., Fram Strait, Bering Strait, Barents Sea Opening and Davis
Strait). Coarser resolutions in other domains maintain computational efficiency while preserving connectivity between the
Arctic and extratropical regions (Wang et al., 2018). Among global implementations, two widely adopted models are the
Finite-Volume Coastal Ocean Model (FVCOM; Chen et al. (2016)) and the Finite-Element Sea ice-Ocean circulation Model
(FESOM; Danilov et al. (2017)). In Arctic studies, FVCOM predominantly operates as a regional model, as evidenced by its
frequent implementation in localized domains (e.g., Zhang et al. (2016)). This regional focus aligns with FVCOM's original
design paradigm prioritizing coastal and shelf-sea dynamics through its finite-volume discretization scheme. In contrast,
FESOM has been predominantly implemented as a global model in Arctic studies, where its implementation has
demonstrated unprecedented skill in simulating Arctic intermediate water dynamics (Danilov et al., 2017; Wang et al., 2018;
Wekerle et al., 2013). Notably, Wang et al. (2018) established that FESOM (a relatively low resolution, ~24 km in the
Arctic) outperforms a set of the state-of-the-art structured-grid models evaluated by Ilicak et al. (2016), particularly in
correcting systematic AW core biases.

As a more recent modeling framework relative to FESOM and FVCOM, the Model for Prediction Across Scales (MPAS)
remains in the nascent phase of Arctic performance evaluation (Huo et al., 2024; Ringler et al., 2013), particularly regarding

its capacity to simulate intermediate water masses and Atlantification processes. The Energy Exascale Earth System Model
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(E3SM), evolved from the Community Earth System Model (CESM), incorporates MPAS-Ocean and MPAS-Seaice as its
ocean and sea ice components. Initial assessments using E3SMvl's ocean-sea ice coupled configuration (60to10 km variable
resolution) demonstrate promising skill in reproducing pan-Arctic freshwater budgets, gateway current exchanges, and
vertical hydrographic profiles (Veneziani et al., 2022). Persistent errors in sea ice thickness (SIT) distribution and upper 100
m stratification emerge across resolutions, suggesting common structural model deficiencies rather than discretization
artifacts. However, their diagnostic lack the rigorous validation metrics employed by Wang et al. (2018) for FESOM's AW
representation. Existing assessments predominantly rely on pan-Arctic-basin-averaged diagnostics, obscuring critical vertical
and regional heterogeneities in intermediate AW layer dynamics (Veneziani et al., 2022).

This study presents a tripartite evaluation framework for the coupled system of MPAS-Ocean and MPAS-Seaice in E3SM
version 2 (E3SMv2-MPAS), which compares it with the observational datasets and reanalysis products to systematically
assess MPAS's capacity in simulating key Arctic processes. In addition, we conduct a comprehensive assessment of Arctic
sea ice dynamics, surface layer hydrographic properties, three-dimensional thermohaline profile evolution (particular
emphasis on the AW layer), as well as freshwater content and key gateway transports. The assessment highlights the model's
strengths, identifies its limitations, and discusses potential sources of uncertainty. Innovatively, this work implements a
multi-layer connectivity analysis examining cross-layer interactions between surface (10 m) and intermediate (400 m)
depths.

The subsequent sections are structured as follows: Section 2 provides comprehensive documentation of the E3SMv2-MPAS
configuration and validation datasets. Section 3 and Section 4 conduct rigorous multi-faceted analyses of Arctic-specific
simulations, employing both domain-wide diagnostics and sub-regional decomposition approaches. Section 5 discusses the
potential advantages of higher resolution and unstructured meshes, summarizes simulated biases and their possible sources,
and identifies limitations in our model design and configuration. Finally, Section 6 synthesizes the key findings and outlines

broader implications.

2 Model configurations and data
2.1 Model configuration

Veneziani et al. (2022) demonstrated that refining mesh resolution from 10 km to 6 km triples computational costs without
yielding significant improvements in simulation fidelity. Their findings suggest that resolving the local Rossby radius of
deformation across most Arctic regions necessitates resolutions <3 km — a requirement currently constrained by prohibitive
computational demands. The model configuration in this paper is described as follows. To address the trade-off between
high-resolution requirements and computational constraints, our study employs a variable-resolution unstructured mesh
featuring a meridional transition from 60 km resolution in the Southern Hemisphere to 10 km in the Arctic domain (hereafter
60to10 km, same as Veneziani et al. (2022); Fig. 1a). This adaptive meshing approach optimizes computational efficiency

while resolving critical processes: (1) Antarctic coastal regions (80° S—90° S) maintain a 25 km resolution to capture fine-
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scale dynamics; (2) the North Atlantic sector is strategically refined, transitioning from 20 km to 10 km resolution earlier
than the Pacific to guarantee at least 15 km resolution in the Gulf Stream extension region (~40° N; Veneziani et al. (2022));
(3) the North Pacific sector maintains computational efficiency while achieving approximately 10 km resolution in its

subpolar region adjacent to the Arctic Ocean (north of 50° N).
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Figure 1. (a) Geographical distribution of grid cell size (km) of the E3SMv2-MPAS framework. (b) bathymetry from the ETOPO
2022 and key basins/straits north of 60° N. EEB and WEB refer to the eastern and the western Eurasian Basin respectively. The
black dashed transect along 70° E and 145° W (crossing the North Pole) denotes the location of the transect shown in Fig. 14.

Numerical stability was achieved through a 5-minute baroclinic time step for ocean dynamics. For sea ice, we employed a
15-minute dynamic time step and a 30-minute thermodynamic time step (a 2:1 ratio). MPAS-Ocean adopts finite volume
discretization of primitive governing equations within a staggered C-grid framework, incorporating hydrostatic,
incompressible, and Boussinesq approximation assumptions (with a z-star vertical grid) (Golaz et al., 2019). Vertical mixing
processes were parameterized using the K-profile scheme (KPP; Large et al. (1994)). For mesoscale eddy representation,
similarly to what was done in Veneziani et al. (2022), we implemented a spatially varying Gent-McWilliams (GM)
parameterization, incorporating both bolus advection and Redi isopycnal diffusion components (Gent and Mcwilliams,
1990). The eddy diffusivity coefficient (k) was given a latitudinal dependence: 300 m? s! in high-resolution Arctic regions
(<20 km grid spacing) to maintain moderate mixing intensity, transitioning linearly to 1800 m? s! in low-resolution zones
(>30 km grid spacing) to compensate for unresolved eddy fluxes (Fig. 2). MPAS-Seaice builds upon the core numerical and
physical framework of the Los Alamos Sea Ice Model (CICE). The dynamics are governed by the elastic-viscous-plastic
(EVP) rheology, with the internal ice stress divergence operator adapted for MPAS's unstructured polygonal mesh (Turner et
al., 2022). Sea ice and tracer transport are handled by an incremental remapping scheme (Lipscomb and Ringler, 2005),
adapted for polygonal cells. The thermodynamics and vertical column physics remain consistent with CICE (Turner et al.,
2022). The configuration includes the "mushy layer" thermodynamics for vertical heat transfer, the delta-Eddington

shortwave radiation scheme, a level-ice melt pond parameterization, ice thickness distribution mechanics, and transport in
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thickness space (Petersen et al., 2019). The specific configurations of MPAS-Ocean and MPAS-Seaice within the E3SMv2,
including their coupling mechanisms, have been comprehensively documented in Turner et al. (2022), Golaz et al. (2022)
and Huo et al. (2024).

In addition to the ocean and sea ice components, the atmospheric and river modules in E3SMv2-MPAS (see Fig. 2 for
specific variables used) were forced by the JRA55-do (v1.5; Tsujino et al. (2018)) from the Japan Meteorological Agency
(JMA). This dataset has high spatiotemporal resolution (3-hourly temporal and 0.5625° spatial resolution) and spans the

period from 1958 to 2020. Sea surface salinity (SSS) was relaxed toward Polar science center Hydrographic Climatology

(PHC) 3.0 climatology (Steele et al., 2001) with an annual restoring timescale.
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Figure 2. Configuration details for E3SMv2-MPAS: forcing/initial conditions, runtime settings, and output fields.

Given the prohibitive computational cost of a continuous high-resolution simulation from 1958 to 2020, we adopted a
strategic two-period integration scheme to prioritize computational resources for our core analysis period (1995-2020). The
model's climatological fidelity during this satellite era is verified using multi-source observational data, ensuring a reliable
assessment of both sea ice and ocean variability.

The MPAS-Ocean component was initialized from a pre-processed state (ocean.ARRM60t010.180715.nc). This state was
derived from a prior short-term (5-day) adjustment run of the standalone ocean model, which itself started from a state of
rest with three-dimensional temperature and salinity fields prescribed from the PHC. Consequently, this initial condition
provided a dynamically adjusted and physically consistent starting point for our coupled simulation, mitigating the initial
shock that would otherwise occur from a purely cold start. In contrast, the MPAS-Seaice component was initialized from
an idealized, uniform ice cover. A 1-meter thick ice layer with 100% concentration was prescribed on all ocean grid points
between 60° S and 70° N, with zero initial snow depth and stationary ice velocity. This simple state allowed the sea ice cover
to evolve self-consistently in response to the model's atmospheric forcing and ocean coupling from the beginning of the

simulation. Following this spin-up phase, the full interannual JRASS5 forcing was applied from 1958 to 1981.
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To begin the simulation for our main analysis period (1995-2020), we used the model state from December 1981 as the
initial conditions for January 1995. This 13-year gap (1982-1994) was a strategic choice to conserve computational
resources while ensuring physical consistency in the key variables of interest. This computational strategy was motivated by
the fact that, under forcings such as CORE-II or JRAS55 and when initialized with PHC hydrography, upper-ocean and
surface variables are known to reach quasi-equilibrium within a few decades, as demonstrated in several previous studies.
For instance, Wang et al. (2018) reported that temperature and salinity in the upper 1000 m reached near-equilibrium within
20-30 years. Wekerle et al. (2013) began their analysis of surface variables and freshwater content in the 0-500 m layer after
a 10-year initialization in a 1958-2007 simulation using FESOM under CORE-II forcing. Likewise, in the analysis of
multiple high-resolution Ocean Model Intercomparison Project Phase 2 (OMIP2) models simulating the full 1958-2020
period under JRASS forcing, Wang, Shu, Bozec, et al. (2024) focused their evaluation on the period 1971-2000 —
commencing approximately 13 years after the model initialization. In our simulation, the 24-year spin-up from 1958 to 1981
is largely sufficient for the adjustment of surface fields (e.g., sea ice, surface temperature, and salinity) and AW layer (above
1000 m), which are the focus of this study. Although the deep ocean remains far from equilibrium, the targeted variables had
largely stabilized by 1981.

From a physical perspective, the potential impact of this initialization approach for the 1995-2020 simulation is expected to
be short-lived. The upper ocean and sea ice (the primary focus of this study), adjust much more rapidly than the deep ocean,
and their evolution is predominantly governed by contemporaneous atmospheric forcing rather than by the initial conditions.
Therefore, the disequilibrium introduced by the initial condition from 1981 would be rapidly overwritten and adjusted by the
realistic, synchronous atmospheric forcing applied from 1995 onward.

Therefore, initializing the 1995 run from the 1981 output allows a computationally efficient hot start and ensures that the
model is in an appropriate state for evaluating the 1995-2020 period.

The model output initialized from the 1981 state also demonstrates physically consistent behavior during the 1995-2020
period, further supporting the validity of this approach. The temporal evolution of key diagnostic variables — including sea
surface temperature (Fig. 8d) and sea ice-related variables (Fig. 7) — shows that the simulation quickly aligns with the
observed/reanalysis trajectory after 1995, with no persistent systematic bias. Spatial distributions of these variables are also
in good agreement with evaluation datasets (Figs. 3-5, 8a—c), and the long-term trends from 1995 to 2020 closely match
those in the references (Fig. 7). These results, which will be discussed in detail in the following sections, indicate that the
initialization from 1981 did not adversely affect the simulation of central climate features during the study period.
Accordingly, our primary evaluation focuses on the performance of E3SMv2-MPAS during the period 1995-2020. In
addition, a comparative assessment of the 1960—1980 period is also included to briefly examine the decadal variability of

key ocean and sea ice variables and to verify the model's capability under distinctly different climatic backgrounds.
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2.2 Evaluation datasets
2.2.1 Sea ice concentration, extent, thickness, and volume

To comprehensively evaluate sea ice concentration (SIC) performance, both the observations and reanalysis data were
adopted for validation. SIC datasets used here include: (1) Passive microwave remote sensing data: Sourced from the
NOAA/NSIDC Climate Data Record (Version 4; Meier et al. (2021)) with a spatial resolution of 25 km x 25 km; (2)
HadISST1 data: Provided by the UK Met Office Hadley Centre (Rayner et al., 2003) at 1° x 1° resolution; (3) ERAS
reanalysis: Generated by the European Centre for Medium-Range Weather Forecasts (ECMWF; Hersbach et al. (2020)) at
0.25° x 0.25° resolution.

For SIT validation, we utilize four key datasets: (1) Pan-Arctic Ice-Ocean Modeling and Assimilation System (PIOMAS;
Zhang and Rothrock (2003)): This reanalysis product, extensively validated against satellite and in situ observations,
provides reliable Arctic SIT spatial distributions and long-term trends (Laxon et al., 2013; Schweiger et al., 2011; Stroeve et
al., 2014). (2) PIOMAS-20C reanalysis (Schweiger et al., 2019): Driven by ECMWF's atmospheric reanalysis of the 20th
century (ERA-20C) and calibrated with historical in situ/aircraft measurements, this dataset enables analysis of pre-satellite-
era SIT variability (1960-1980). (3) CS2SMOS gridded product: developed by the Alfred Wegener Institute (AWI) and the
University of Hamburg (Ricker et al., 2017), it combines CryoSat-2 and SMOS satellite observations using an Optimal
Interpolation method. The data cover the period from October to April each year, when the sea ice is more stable, thereby
minimizing signal interference from summer melt ponds and enhancing the reliability and accuracy of the dataset.

For sea ice extent (SIE), the evaluation dataset was obtained from the NSIDC (Fetterer, 2017). Sea ice volume (SIV) was
assessed using outputs from the PIOMAS and PIOMAS-20C reanalysis.

2.2.2 Sea Surface Temperature and Salinity

Sea surface temperature (SST) validation dataset is NOAA's 1/4° Daily Optimum Interpolation Sea Surface Temperature
(OISST; Huang et al. (2021)) dataset, which represents a long-term climate data record integrating multi-platform
observations from satellites, ships, buoys, and Argo floats. Spatially continuous global SST fields are reconstructed using
optimal interpolation to fill data gaps.

For open-water SSS validation (SIC<15%), the NASA sponsored Optimum Interpolation Sea Surface Salinity (OISSS;
Melnichenko et al. (2016)) dataset was applied. The product integrates multi-satellite observations from Aquarius, SMAP,
and SMOS through optimal interpolation. Continuous 2011-present data are generated through cross-satellite bias correction

and spatial filtering, with SMOS data filling SMAP gaps.

2.2.3 Three-Dimensional Thermohaline

The World Ocean Atlas 2023 (WOA23; Locarnini et al. (2024); Reagan et al. (2024)) served as the primary validation

dataset for three-dimensional thermohaline properties. WOA23 produces high-resolution global climatological temperature
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and salinity fields via interpolation of historical observations (Argo floats, ship-based measurements, satellite data), covering
three periods in this study: 1991-2020, 1995-2004, and 2005-2014.

To assess long-term thermohaline evolution (1960-1980 vs. 2000-2020), the UK Met Office's EN.4.2.2 dataset (Good et al.,
2013) was combined. EN.4.2.2 assimilates multi-source in situ data (ship observations, Argo floats, CTD profilers, moored
buoys), applies rigorous quality control, and reconstructs 1° x 1° gridded temperature/salinity fields spanning 0-5500 m
depth from 1900 onward.

Furthermore, annual mean temperature and salinity profiles (1970-2017) over the east Eurasian Basin, the west Eurasian
Basin, the Chukchi Sea, and the Beaufort Gyre from Muilwijk et al. (2023) were included. These data derive from Russian,
American, Canadian, and European expeditions, including ship/aircraft surveys, manned drifting stations, autonomous

buoys, and submarine measurements.

2.2.4 Sea surface height, ocean heat content, and surface albedo

Sea surface height (SSH) evaluation data were derived from the Ocean Reanalysis System 5 (ORASS), produced by
ECMWF (Zuo et al., 2019). ORASS integrates multivariate observations via assimilation into the Nucleus for European
Modelling of the Ocean (NEMO) ocean model coupled with the Louvain-la-Neuve sea ice model (LIM). The primary
assimilated data include altimetry-based sea level anomalies from the AVISO DT2014 product, incorporating an updated
mean dynamic topography. The reanalysis has a horizontal resolution of 0.25°, enhanced to approximately 9 km in the polar
regions.

Ocean heat content (OHC) evaluation data were sourced from the gridded product developed by the Institute of Atmospheric
Physics (IAP), Chinese Academy of Sciences (Cheng et al. 2017, 2020, 2024). It combines multi-source in situ observations
— including Argo floats, CTD profiles, ship-based measurements, and moored buoys — on a 1° x 1° horizontal grid. An
adaptive Optimal Interpolation method is applied to minimize bias. The dataset covers the period from 1940 to present,
supporting analysis of long-term oceanic changes.

Surface albedo evaluation data were obtained from the CLARA-A3 (Karlsson et al., 2023). Observations originate from
multiple versions of the Advanced Very High Resolution Radiometer (AVHRR) spaceborne optical imagers employ
intercalibrated radiances to mitigate intersensor discrepancies (Heidinger et al., 2010). The dataset spans from January 1979

to present, provided on a 0.25° global grid, with a 25 km equal-area grid for the polar regions.

2.2.5 Atlantic Water core

Observed AW core temperature and depth data were sourced from Richards et al. (2022), comprising 55,841 profiles (1977—
2018). AW core was defined as the warmest layer within salinity >34.7 PSU profiles. To ensure accuracy, only profiles
exceeding 500 m depth with sampling starting above 100 m were retained. Raw profiles were smoothed using an 80 m
vertical moving average (40 m window) to remove spikes caused by thermohaline intrusions and eddies while preserving

overall thermal structure.



275

280

285

290

Wang et al. (2024)'s OMIP2 dataset includes AW core temperature (defined as maximum temperature in water columns over
seafloor depths >150 m; 2006-2017) from five high-low resolution model pairs. This dataset is employed to benchmark

E3SMv2-MPAS's AW core temperature simulations against multi-model ensembles.

3 Arctic physical system states
3.1 Sea ice characterization

This study focuses on the Arctic region, systematically evaluating the simulation performance of the E3SMv2-MPAS
coupled model for SIC, SIT, SIE and SIV at first. Through comparisons with multi-source observational datasets and
reanalysis products, combined with climate-state analysis (1995-2020) and trend diagnostics across two periods (1960—1980
and 1995-2020), model strengths and limitations in polar environmental simulations are identified.

Multi-dataset validation using NSIDC satellite remote sensing (Meier et al., 2021), Hadley in situ assimilation (Rayner et al.,
2003), and ERAS reanalysis (Hersbach et al., 2020) demonstrates that E3SMv2-MPAS effectively captures spatial
heterogeneity in Arctic SIC climatology in both winter and summer (Figs. 3 and 4). In winter, consistent spatial bias patterns
are observed across datasets, with persistent positive bias center (ASIC>0.3) identified along the southwestern Greenland Sea
shelf margin and the northern Barents Sea slope (Fig. 3e—g). During summer, comparisons with NSIDC and Hadley reveal
predominant positive biases in the northern Barents Sea and widespread negative biases across the central Arctic Ocean (Fig.
4e and f). In contrast, the comparison with ERAS5 shows negligible underestimation in the central Arctic basin, while positive

biases are observed not only in the northern Barents Sea but also in the Beaufort Sea (Fig. 4g).

(a) SIC: E3SMv2-MPAS (b) SIC: NSIDC (c) SIC: Hadley (d) SIC: ERA5

9 5
=N
A & 0.1
/ Q) -0.3
’ f?g 04
Figure 3. During winter (December—February), (a—d) 1995-2020 climatological mean SIC spatial distributions: (a) E3SMv2-MPAS

simulations, (b) NSIDC observational product, (c) Hadley Centre HadISST data, (d) ERAS reanalysis. (e-g) SIC bias fields: (e)
E3SMv2-MPAS vs. NSIDC, (f) E3SMv2-MPAS vs. Hadley, (g) E3SMv2-MPAS vs. ERAS.
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Figure 4. The same as Fig. 3, but during summer (June—August).

Beyond SIC, SIT serves as a critical parameter governing sea ice dynamics, with its simulation accuracy directly modulating
the spatiotemporal heterogeneity of ice volume. We systematically quantify E3SMv2-MPAS's capability in reproducing
spatial distribution of SIT during both in winter and summer (Fig. 5). Overall, the model captures the climatological spatial
gradient of Arctic SIT, characterized by a gradual thickening from the Barents Sea toward the central Arctic Basin and the
northern Canadian Archipelago in both seasons. The model realistically represents the seasonal reduction in SIT over the
continental shelf regions along the Arctic margin in summer compared to winter. However, pronounced zonal positive biases
(ASIT>1.5 m) are present in both seasons, particularly along the eastern and northern shelf of the Greenland Sea, the region

north of the Canadian Archipelago, and the southern Canadian Basin and Beaufort Sea (Fig. Sc and f).
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Figure 5. During (a—c) winter (December—February) and (d-f) summer (June-August), (a-b and d—e) 1995-2020 climatological
mean SIT spatial distributions: (a and d) E3SMv2-MPAS, (b and e¢) PIOMAS. (c and f) SIT bias field: E3SMv2-MPAS vs.
PIOMAS.

Considering PIOMAS's known limitations in overestimating thin ice while underestimating thick ice (Laxon et al., 2013;
Schweiger et al., 2011), additional validation using CS2SMOS data (Ricker et al., 2017) is conducted (Fig. S1). Consistent
with previous findings, PIOMAS exhibits underestimation in regions with thicker sea ice, such as north of the Canadian
Archipelago and east of Greenland (Fig. Sle). Similarly, E3SMv2-MPAS shows pronounced positive biases relative to
CS2SMOS in areas including the northern Canadian Archipelago, the southern Canadian Basin, and the Beaufort Sea (Fig.
S1d), aligning with the bias pattern identified in comparisons with PIOMAS (Fig. 5c), thereby corroborating the spatial
reliability of PIOMAS-indicated biases.

The spatial pattern of maximum positive bias in E3SMv2-MPAS remains consistent across seasons (Fig. 5S¢ and f). This bias
is also evident in the model's annual mean SIT distribution relative to PIOMAS (Fig. S2). Previous studies based on CMIP5
models have established a strong correlation between inaccuracies in simulating the Beaufort Gyre and SIT distribution
(Stroeve et al., 2014). Since the SSH field serves as a key proxy for evaluating the fidelity of Beaufort Gyre simulations
(Wang et al., 2018), we analyze differences in SSH between E3SMv2-MPAS and the ORASS reanalysis (Fig. 6a—c). The
model overestimates SSH in the Beaufort Sea, suggesting an erroneously enhanced ice convergence. Additionally, the
simulated OHC in the 0-100 m layer is underestimated in this region (Fig. 6d—f), which may further contribute to the
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320 positive SIT bias. Thus, the persistent 0.5-1 m positive bias in the Beaufort Sea is hypothesized to originate from an
overestimated intensity of the Beaufort Gyre and associated upper-ocean thermal biases in E3SMv2-MPAS, which then may

impede the realistic export of sea ice through the north of Canadian Archipelago and east of Greenland.
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Figure 6. Climatological mean spatial distributions for the period 1995-2020. (a—c) SSH: (a) E3SMv2-MPAS, (b) ORASS. (c) Bias
325 in SSH between E3SMv2-MPAS and ORASS. (d—f) OHC in the upper 100 m: (d) E3SMv2-MPAS, (e) IAP. (f) Bias in OHC
between E3SMv2-MPAS and IAP.

To further analyze long-term trends in sea ice-related variables, including interannual and decadal variability, time series of

SIC, SIT, SIE, and SIV are examined over the periods 1960—1980 and 1995-2020 (Fig. 7).
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330 Figure 7. Time series and linear trends of sea ice properties from 1960-1980 and 1995-2020. (a) SIC of pan-Arctic (70°-90°N) for
E3SMv2-MPAS (gray), NSIDC (blue), Hadley (green), and ERAS (orange). (b) SIE for E3SMv2-MPAS (black) and NSIDC (red).
(¢) SIT of pan-Arctic (70°-90° N) for E3SMv2-MPAS (black) and PIOMAS (red). (d) SIV for E3SMv2-MPAS (black) and
PIOMAS (red). Dashed lines denote linear trends based on least-squares regression.

14



335

340

345

350

355

360

365

E3SMv2-MPAS successfully reproduces SIC seasonal cycles and interannual variability during 1995-2020, maintaining root
mean square errors (RMSE) values of 0.040, 0.052, and 0.051 against NSIDC, Hadley, and ERAS datasets respectively (Fig.
7a). This validates the dynamic framework's effectiveness in capturing sea ice-atmosphere coupling mechanisms. Trend
analysis confirms the model's climate response capability. During the rapid decline period (1995-2020), E3SMv2-MPAS
accurately captures accelerated SIC reduction trends, showing better agreement with NSIDC observations than Hadley and
ERAS products. For the weak-trend period (1960-1980), the model reproduces quasi-stable sea ice coverage characteristics.
The accelerated SIC decline in the recent period compared to historical decades (1960-1980) highlights the model's ability to
replicate trend amplification under intensified forcing, thereby bolstering confidence in its scenario-dependent projections.
Similarly, the model effectively captures the interannual and decadal variability of SIE (Fig. 7b; RMSE: 0.96).

Consistent with NSIDC, simulated SIC and SIE exhibit certain seasonal biases. The systematic winter overestimation,
attributable to positive SIC biases in the southern Greenland Sea and southward-expanded ice cover in the Barents Sea (Fig.
3e), coinciding with pronounced cold SST biases in these regions (Fig. S3). During summer, E3SMv2-MPAS overestimates
the seasonal minimum (Fig. 7a—b), particularly in the Greenland Sea, Barents Sea, East Siberian-Laptev Seas, and Beaufort
Sea (Fig. 4e). These regions also exhibit elevated surface albedo values (Fig. S4), reducing absorbed shortwave radiation and
contributing to the sea ice overestimation.

Although the model generally overestimates SIT (Figs. 5 and S2), the time series analysis successfully simulates continuous
thinning from ~1.8 m to ~1.3 m during 1995-2020 (Fig. 7c). Notably, however, the simulated thinning rates remain slightly
lower than PIOMAS results. Stable RMSE value (~0.37) throughout this period confirm robust simulation of long-term SIT
evolution. Similarly, compared to PIOMAS, the simulated SIV is consistently underestimated throughout the period, though
the declining trend during 1995-2020 is well captured (Fig. 7d). For the pre-satellite era (1960-1980), evaluation using
PIOMAS-20C shows E3SMv2-MPAS reproduces the 6-year cyclic "increase-decrease-increase" SIT fluctuations during
1960-1978 (Fig. 7c). While PIOMAS-20C shows no statistically significant SIT trend during 1960-1980, E3SMv2-MPAS
simulates a pronounced thickening trend in this period, potentially linked to its systematic overestimation of regional ice
thickness in areas like the Beaufort Sea (Fig. 5S¢ and f, Fig. S2¢). Nevertheless, across the multi-decadal scale (1960-2020),

this coupled system demonstrates a reasonable representation of Arctic SIT and SIV responses to climate forcing.

3.2 Surface thermohaline signatures

SST and SSS engage in complex bidirectional coupling with the atmosphere-ice system through ice/atmosphere-ocean
interfacial energy-mass exchange processes. This section evaluates the spatiotemporal co-variability of SST/SSS to elucidate
E3SMv2-MPAS's representation of ocean-sea ice-atmosphere interaction mechanisms.

OISST-based validation demonstrates E3SMv2-MPAS accurately reproduces key Arctic SST spatial patterns: (1)
temperature gradients decreasing from shelves to central basins, and (2) warm-core features in southern Barents Sea open
waters (Fig. 8a—c). Systematic regional biases are identified: the cold biases in the Greenland Sea (ASST=-2—0°C) spatially

correlate with an overestimation of SIC in the same region, while positive deviations (ASST=~0-2°C) occur near Svalbard's
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western coast and the Eurasian continental margins. Notably, continental coastal biases are spatially decoupled from Atlantic
inflow pathways, with formation mechanisms likely associated with inaccurate vertical mixing processes stemming from
stratification stability biases in shelf regions. E3SMv2-MPAS successfully captures Arctic SST warming trends during the
1995-2020 period, showing high consistency with OISST in accelerated trend characteristics (Fig. 8d). Seasonal cycle and
interannual variability simulations remain within acceptable error ranges (RMSE=0.24), confirming appropriate responses to
surface thermal forcing. Furthermore, the model accurately captures both the pronounced SST increase and accelerated
decadal warming trend during 1995-2020 relative to the 1960—1980 baseline period. These simulated changes show a strong
coupling with the accelerated decline in SIC, SIE, SIT, and SIV concurrently (Fig. 7).
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Figure 8. (a—b) 1995-2020 climatological mean SST spatial distributions: (a) E3SMv2-MPAS, (b) OISST. (¢) SST bias field:
E3SMv2-MPAS vs. OISST. (d) Pan-Arctic (70° N-90° N) mean SST time series for 1960-1980 and 1995-2020, with dashed lines
indicating linear trends (E3SMv2-MPAS: black; OISST: red) derived from least-squares regression.

E3SMv2-MPAS demonstrates comparatively weaker performance in SSS simulation versus sea ice and SST variables.
Spatially heterogeneous biases are observed: negative deviations (ASSS=-0—-1 PSU) in the Barents and Greenland Seas
contrast with pronounced positive biases (ASSS=2-5 PSU) in the Beaufort Sea and the Kara-Beaufort shelf regions (Fig. 9a—

c). The 3 PSU overestimation in the Beaufort Sea aligns with advanced assimilation model (such as HYCOM and
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GLORYS12) biases reported by Hall et al. (2021), suggesting common limitations in Arctic shelf freshwater transport
representation. Specifically, inadequate parameterization of surface freshwater budgets and associated processes (e.g.,
precipitation-evaporation fluxes, river discharge, and ice-ocean interactions) may constrain freshwater cycle simulations
(Wang et al., 2024). The Beaufort Sea SIT overestimation identified previously (Fig. 5) potentially exacerbates salinity
biases through reduced freshwater release (Kelly et al., 2019). If the intensity of the Beaufort Gyre is overestimated (as
discussed in Section 3.1), enhanced freshwater retention could impede westward shelf transport to the Kara Sea, potentially
driving salinity overestimation in the Kara-Beaufort shelf. Despite spatial biases, E3SMv2-MPAS demonstrates credible
simulation of seasonal cycle phasing and amplitude in the Barents Sea SSS, while the temporal variations in the Beaufort Sea

show agreement levels comparable to mainstream reanalysis products (Fig. 9d—e; Hall et al. (2021)).
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Figure 9. (a—b) September 2011-December 2020 climatological mean SSS spatial distributions: (a) E3SMv2-MPAS, (b) OISSS. (¢)

SSS bias field: E3SMv2-MPAS vs. OISSS. (d—e) Regional SSS time series in (d) the Barents Sea and (e) the Beaufort Sea (black
boxes in a—c; E3SMv2-MPAS: black; OISSS: red).

In the Greenland and Barents Seas, systematic underestimation of SST and SSS (Figs. 8c and 9c) coincides with
overestimation of SIC (Figs. 3 and 4). These regions are situated within the marginal ice zone, where strong surface wind
stress facilitates the transfer of energy to deeper ocean layers through the excitation of near-inertial oscillations and

associated turbulent mixing processes (D’Asaro, 1985). This discrepancy may be attributed to the model's potential
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overestimation of this downward energy transfer. Similarly, Zhu et al. (2022) reported that in the equatorial Pacific cold
tongue region, the KPP scheme overestimates downward turbulent heat flux, leading to a cold bias in both upper-ocean and
sea surface temperatures. A primary reason for these biases lies in the scheme's reliance on a single Richardson number (Ri)
relationship for parameterization. Although this approach captures instability conditions in stratified shear flows, it is
insufficient to uniquely determine turbulent states and mixing intensities (Zhu et al., 2022), thus limiting its performance in

complex dynamic environments.

3.3 Three-dimensional thermohaline structure

Accurate simulation of three-dimensional thermohaline fields remains a core technical challenge in ocean model
development, directly determining model capability in representing Arctic multi-sphere coupling processes (ocean-ice-
atmosphere). While preliminary evaluations of key sea ice properties (including concentration, extent, thickness, and
volume)and surface thermohaline diagnostics have validated E3SMv2-MPAS's capacity to simulate Arctic shallow-layer
thermal states, subsurface-to-deep thermohaline structure biases may still induce circulation distortions, material transport
deviations, cross-basin exchange inaccuracies, and climate feedback misrepresentations. A multi-dimensional verification
framework including spatial heterogeneity diagnostics, temporal evolution analysis and three-dimensional dynamical
validation is established to assess E3SMv2-MPAS's three-dimensional thermohaline simulation performance
comprehensively.

Using the 1995-2014 climatological mean profiles, systematic comparisons are conducted between E3SMv2-MPAS and
observational data (Muilwijk et al., 2023) across four regions: the western Eurasian Basin, the eastern Eurasian Basin, the
Chukchi Sea, and the Beaufort Sea. Thermohaline profile characteristics (0—1000 m depth) are evaluated through vertical
structure evolution and regional variability analyses.

Observational data reveal maximum temperatures (1.6°C) at 250 m depth in the western Eurasian Basin, decreasing to 0°C at
800 m (Fig. 10a). E3SMv2-MPAS can successfully reproduce observed vertical temperature structure, matching the
observed 250 m temperature maximum depth and maintaining temperature decline to 0°C at 1000 m depth. Despite a ~1°C

core temperature overestimation and 200 m layer thickness bias, its temperature profile RMSE is 0.448.
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Figure 10. (a—-d) 1995-2014 climatological mean temperature profiles from observations (Muilwijk et al., 2023), and E3SMv2-
MPAS. (e-h) The same as panels (a—d) but for salinity profiles. Basins: the western Eurasian (WEB; a/e), the eastern Eurasian
(EEB; b/f), the Chukchi Sea (c/g), the Beaufort Sea (d/h).

Observational spatial heterogeneity shows progressive temperature core reductions (1.6°C—1.4°C—0.8°C—0.7°C) and
deepening core depths (250 m—290 m—400 m—420 m) from the western Eurasian Basin to the Beaufort Sea (Fig. 10a—d).
E3SMv2-MPAS maintains systematic temperature overestimation (~1°C in the western Eurasian Basin, ~0.3°C in the
Chukchi Sea and the Beaufort Sea) while successfully reproducing spatiotemporal evolution of vertical thermal structures. In
salinity simulations, E3SMv2-MPAS demonstrates optimal salinity profile fitting capability through observational agreement
starting from 200-300 m depth, as evidenced by the western Eurasian Basin RMSE of 0.204.

In order to systematically assess model capabilities in representing multi-scale Arctic thermal variations, an inter-decadal
three-dimensional thermohaline evolution framework is established. Depth-time section comparisons between E3SMv2-
MPAS and EN.4.2.2 (Good et al., 2013) are conducted to analyze spatiotemporal heterogeneity in Arctic oceanic thermal

structures (Fig. 11).
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440 Figure 11. For the Arctic Basin, (a) E3SMv2-MPAS simulated temperature profiles (0-1000 m): 1960-1980 climatology (dashed)
vs. 2000-2020 climatology (solid). Right: Hovmaoller diagram of depth-time evolution (1960-1980 and 2000-2020). (b) The same as
panel (a) but for EN.4.2.2. (c) The same as panel (a) but for E3SMv2-MPAS minus EN.4.2.2 differences.

E3SMv2-MPAS successfully reproduces the solar radiation-driven seasonal thermal cycle observed in EN.4.2.2 (Fig. 11).
Monthly thermohaline profiles (depth-month coordinates) in the upper 500 m of the Eurasian Basin better illustrate
445 radiation-dominated seasonal characteristics: summer (June—August) surface temperature peaks coincide with salinity
minima from meltwater inputs, while winter (December—February) shows sub-freezing temperatures (<-1.8°C) and salinity
recovery (Fig. 12). These core seasonal features are accurately captured, validating high-precision surface flux

representation.
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Figure 12. (a—b) E3SMv2-MPAS simulated 1995-2020 climatological mean (left) temperature and (right) salinity profiles (0-500
m) in the Eurasian Basin (EB), with Hovmaoller diagrams of monthly variability. (c—d) The same as panels (a—b) but for WOA23.
(e—f) The same as panels (a—b) but for model-observation differences (E3SMv2-MPAS minus WOA23).

E3SMv2-MPAS demonstrates exceptional multi-temporal simulation capabilities for AW dynamics (Fig. 11). Observations
reveal stable AW core temperatures (~1.6°C) during 1960-1980, increasing to ~2°C in 2000-2020 with core shallowing
from 350 m to 300 m in the whole Arctic Basin (Fig. 11b). E3SMv2-MPAS accurately reproduces both the ~0.4°C warming
magnitude and ~50 m vertical migration (Fig. 11a). However, regional-specific biases emerge in seasonal variability
simulations (Fig. 12). EN.4.2.2 identifies semi-annual signals in the 200-500 m layer of the Eurasian Basin (September—
November peaks at ~1.5°C; Fig. 12¢), linked to winter Atlantification intensification. E3SMv2-MPAS fails to capture this
seasonality, producing persistent warm biases in 200400 m layers with overestimated spring—summer core temperatures
(0.5-0.8°C; Fig. 12e). This discrepancy may be attributed to the GM parameterization scheme, which models mesoscale
eddy effects on heat and salt redistribution through bolus advection and Redi diffusion. In general, the Arctic winter features
greater mixed layer depth and weaker stratification due to brine rejection during sea ice formation and wind-driven stirring
(Peralta-Ferriz and Woodgate, 2015). These processes promote eddy penetration, increasing the efficiency of vertical heat
transport. In contrast, strengthened stratification in summer restricts the vertical scale of eddies and reduces heat transfer.
However, the GM scheme employs a fixed diffusion coefficient, which prevents it from capturing the seasonal variability

modulated by stratification changes.
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We further investigate the decadal-scale thermohaline variability across Arctic basins. The results reveal regional
heterogeneity in temperature and salinity trends (Fig. 13). Inter-decadal comparisons (1970s vs. 2000s—2020s; Muilwijk et
al. (2023)) reveal pan-Arctic synchronous warming across the Eurasian Basin sectors and the Amerasian sub-regions (Fig.

13e-h). However, E3SMv2-MPAS underestimates the warming in the Amerasian Basin (0.1-0.5°C biases; Fig. 13c—d and
g-h).
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Figure 13. (a—d) Vertical profiles of climatological mean temperature (red curves) and salinity (blue curves) in the western
Eurasian Basin (WEB; a), the eastern Eurasian Basin (EEB; b), the Chukchi Sea (c), and the Beaufort Gyre (d) from E3SMv2-
MPAS: dashed lines denote 1970s (1971-1979), solid lines represent 2000s—2010s (2001-2019). (e—f) Corresponding observational
profiles from Muilwijk et al. (2023) with identical temporal averaging.

In the Eurasian Basin upper layers (~100—450 m; Fig. 13a-b and e—f), observations show dual-mode thermal evolution:
shallow warming above temperature cores (100250 m) contrasts with systematic warming below (250450 m). Model
simulations exhibit spatial heterogeneity: 0.2+0.1°C underestimation of shallow warming contrasts with excessive vertical
response ranges (250-1000 m vs. observed 250—450 m). Notably, simulated AW layer thickening in the eastern Eurasian
Basin during 2000s—2010s lacks observational support (Fig. 13b and f). These discrepancies may be partly attributed to
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biases in the representation of vertical processes. As indicated by sensitivity experiments such as those of Liang & Losch
(2018), enhanced vertical mixing could promote upward heat transport from AW, potentially causing cooling at intermediate
depths (200-900 m). Our model uses a relatively low background diffusivity (1.0x10° m? s™!), which remains constant
across time periods despite evidence that Arctic amplification and Atlantification in the 2000s—2010s (Polyakov et al., 2017,
2025; Rantanen et al., 2022; Richards et al., 2022; Shu et al., 2022) may have strengthened vertical mixing compared to the
1970s. The model's failure to represent this temporal increase in mixing efficiency might have limited upward heat transfer,
confining warming mainly to intermediate and deeper layers — consistent with the underestimation of shallow warming and
exaggerated deep response seen in our simulations.

In the Chukchi Sea, observations indicate basin-wide warming from core layers to AW bottom (~1000 m), showing
AT=0.2+0.1°C (Fig. 13c—d and g-h). While successfully reproducing Chukchi thermal trends, the model exhibits systematic
Beaufort Sea deviations. Salinity changes primarily occur in the upper 300 m of the Amerasian Basin (the Chukchi and
Beaufort Seas; observed AS=-0.3+0.2 PSU), with the model failures in capturing the freshening of the Chukchi Sea and
underestimation of trends in the shallow-layer (<80 m) of the Beaufort Sea. The simulated salinity biases may be related to
the use of an inappropriately high and constant isopycnal diffusion coefficient (k=300 m? s™!) in the GM parameterization.
This high diffusion coefficient likely results in excessively strong along-isopycnal mixing, which oversmooths horizontal
salinity gradient fronts formed by freshwater accumulation (e.g., from melting ice and increased runoff). During the 1970s,
when background freshwater signals were relatively weak, the effect of strong diffusion was less pronounced. However,
under the strongly increased freshwater input in the 2000s—2010 (Polyakov et al., 2013; Wang et al., 2019), the persistently
high « value continuously and excessively diffused the simulated upper-layer low-salinity anomalies, hindering their realistic
accumulation and maintenance in the basin upper layer. As a result, the model significantly underestimates the magnitude of
decadal freshening observed in the region.

AW demonstrates systematic cooling and freshening (temperature and salinity reduction) during its transport from the
Eurasian to the Amerasian Basin (Fig. 10), a transformation likely modulated by baroclinic adjustment processes in the inter-
basin transition zone. These processes govern cross-basin material-energy exchange (Aksenov et al., 2016). We analyze
coordinated meridional sections along 145° W in the Amerasian Basin and 70° E in the Eurasian Basin to access variability
in AW properties across space (Fig. 14). WOA23-based comparisons confirm E3SMv2-MPAS's capability in reproducing
inter-basin gradient characteristics through three key aspects: (1) AW thermal attenuation: Successful simulation of core
temperature decreases from the Eurasian to the Amerasian Basin, replicating thermodynamic dissipation processes; (2)
Stratification depth displacement: Realistic representation of westward-decreasing upper boundary depths matching slope
current adjustments; (3) Surface freshwater transport effects: Accurate reproduction of the surface salinity depression in the
Amerasian Basin relative to the Eurasian Basin, validating appropriate parameterization of Pacific-origin freshwater influx
mechanisms. Persistent thermal biases in the Eurasian Basin emerge in 145° W sections, with maximum +2°C warm
deviations in 100—500 m core layers (Fig. 14e). Despite absolute temperature biases, maintained meridional heat transport

gradients confirm fundamental physical framework validity for large-scale advection processes.
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Figure 14. (a—b) E3SMv2-MPAS simulated 1995-2020 climatological (left) temperature and (right) salinity distributions along the
145° W-70° E transect (location mapped in Fig. 1b). (c—d) The same as panels (a—b) but for WOA23. (e—f) The same as panels (a—
b) but for the model-observation differences (E3SMv2-MPAS minus WOA23).

3.4 Freshwater content spatiotemporal variability

The Arctic Ocean constitutes a major freshwater reservoir within the global climate system. Since the mid-1990s, the
freshwater content (FWC) in the Arctic Ocean has exhibited a marked increasing trend, primarily driven by persistent
anticyclonic atmospheric forcing over the Beaufort Gyre region (1997-2018) and the reduction of Arctic sea ice
(Proshutinsky et al., 2019; Wang et al., 2024). This excess freshwater is exported into the North Atlantic through Fram Strait
and Davis Strait (Wang et al., 2019), eventually reaching convection regions in the Labrador and Greenland—Iceland—
Norwegian Seas. These areas are critical for the formation of global deep waters, which act as a key driver of large-scale
ocean circulation systems, including the Atlantic Meridional Overturning Circulation (AMOC) (Arzel et al., 2007). The
southward transport of freshwater may influence circulation dynamics by reducing seawater density and suppressing vertical
mixing (Haine et al., 2023). Furthermore, Arctic freshwater variability significantly influences ecosystem structure and
function (Proshutinsky et al., 2019). Therefore, accurately assessing the freshwater content in the Arctic Ocean represents a
central challenge in physical oceanography and climate dynamics, with major implications for understanding both climate

variability and long-term change (Haine et al., 2023).

24



The FWC is defined as follows (Wang et al., 2024):

FWC = f:%dz, (1)

where S denotes salinity, S, is the reference salinity — set to 34.8 psu, the mean Arctic Ocean salinity according to Aagaard

and Carmack (1989) — and H represents the depth at which salinity equals S,

535

Based on this formulation, we evaluate the spatial distribution of the multi-year mean (1995-2020; Fig. 15a—b) and decadal
differences (2005-2014 vs. 1995-2004; Fig. 15¢c—d) of FWC as simulated by E3SMv2-MPAS, in comparison with

observational data from WOA23. Additionally, we analyze the basin-wide averaged time series of FWC across the Arctic
540 Ocean (Fig. 15e).

(a) E3SM_MPAS: FWC (b) WOA23: FWC
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Figure 15. Spatial distribution and temporal evolution of FWC (in meters) in the Arctic Ocean. (a—b) Multi-year mean (1995-
2020) FWC from (a) E3SMv2-MPAS and (b) WOA23. (c-d) Decadal difference in FWC (2005-2014 minus 1995-2004) from (c)
E3SMv2-MPAS and (d) WOA23. (e) Time series of the Arctic Ocean-wide averaged FWC from E3SMv2-MPAS for the period
545 1995-2020.

25



550

555

560

565

570

575

As shown in Fig. 15a-b, E3SMv2-MPAS generally captures the spatial characteristics of Arctic FWC, such as the increase
from the Eurasian Basin toward the Amerasian Basin and the maximum values located in the Beaufort Sea. However, the
model overestimates FWC in the vicinity of Baffin Bay.

Observational results from WOA23 indicate a pronounced strengthening of FWC in the Beaufort Sea during 2005-2014
compared to 1995-2004. The model successfully reproduces this decadal change in that area (Fig. 15c—d). Nonetheless,
E3SMv2-MPAS erroneously simulates a significant decrease in FWC across the Eurasian and Makarov Basins, where
WOAZ23 shows a slight increase. Moreover, the model overestimates the increase in FWC along a pathway extending from
the east of Greenland to the northern Canadian Archipelago and into the Canada Basin.

The time series of the total Arctic FWC (Fig. 15¢) exhibits a fluctuating upward trend from 1995 to 2020. Polyakov et al.
(2013) reported a notable acceleration in Arctic FWC accumulation during the 2000s, particularly between 2003 and 2010 —
a trend that aligns with the sharp rise simulated by E3SMv2-MPAS between 2002 and 2008. Furthermore, Wang et al.
(2019) noted a levelling off of the FWC growth trend after 2010, which is also captured by the model.

3.5 Gateway transports: volume, heat, and freshwater

Over the past decades, the Arctic climate system has undergone rapid changes, including shifts in sea ice, atmosphere, and
ocean conditions (Landrum and Holland, 2020; Polyakov et al., 2005; Shu et al., 2022). These rapid changes are closely
linked to the lateral exchanges of heat and freshwater across the boundaries of the Arctic (Von Schuckmann et al., 2020).
The Arctic Ocean's connections to other oceans are defined by four major gateways (from east to west): Bering Strait, Fram
Strait, Barents Sea Opening, and Davis Strait (Tsubouchi et al., 2024). These critical gateways not — as discussed in the
previous section — serve as major pathways for freshwater export from the Arctic, which in turn influences global deepwater
formation, large-scale circulation, and ecosystems, but also subject Arctic sea ice and ocean conditions to strong influences
from Atlantic and Pacific water inflows. These impacts include modulating sea ice cover (Arthun et al., 2012, 2019;
Docquier and Koenigk, 2021), ocean stratification (Veneziani et al., 2022), ecosystem (Woodgate and Peralta-Ferriz, 2021),
ocean temperature (Barton et al., 2018), and freshwater content (Woodgate, 2018). Therefore, the accurate simulation of
volume, heat, and freshwater transports through these four major gateways — including their interannual and decadal
variability — is crucial. In this section, we evaluate the performance of the E3SMv2-MPAS in simulating these key
exchanges through comparison with multi-source observational data.

The oceanic net volume transport (VT), heat transport (HT), and freshwater transport (FWT) through the key gateways—
Bering Strait, Fram Strait, Barents Sea Opening, and Davis Strait—are calculated as follows (Karpouzoglou et al., 2022; Shu

et al., 2022; Wang et al., 2024):

_(° A2(2)
VT = f_m) fh(z) Vdadz, ()
0 212(2)
HT = p,c, f—H(A) fhz(z) V(T — Tyep)dAdz, 3)
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22(2) (Sref_s)
Hwhwvsm dAdz, @)

Here, V, T, and S denote velocity, potential temperature, and salinity, respectively; p, is the seawater density; and c,
represents the specific heat capacity of seawater. The reference temperature T;.. ¢ is set to 0 °C, and the reference salinity S,..¢
is defined as 34.8, corresponding to the mean salinity of the Arctic Ocean (Aagaard and Carmack, 1989). The integration is
performed over the full depth H — defined as the bathymetry along the transect — and across the lateral extent A of each strait.
Units for VT, HT, and FWT are Sverdrup (Sv; 1 Sv=10° m® s!), Terawatt (TW), and km? year’!, respectively.

3.5.1 Bering Strait

Observational data from the Bering Strait between 2000 and 2018 (Woodgate and Peralta-Ferriz, 2021) reveal significant
increasing trends in volume, heat, and freshwater transports (Fig. 16a—c). However, E3SMv2-MPAS fails to reproduce these
overall trends. The discrepancies in volume and freshwater transports may be attributed to biases in the JRASS5 reanalysis
and river runoff forcing data (Wang et al., 2024). Although the model does not capture the increasing trends in volume and
freshwater transports during 2000-2012, it successfully simulates the upward trends from 2012 to 2018, including
interannual variability, with deviations generally within 0.2 Sv and 500 km?3 year! (Fig. 16a and c¢). The similar interannual
and decadal variability between simulated volume and freshwater transports indicates that the model accurately represents
the mechanism whereby increased freshwater transport is primarily driven by volume transport (Woodgate and Peralta-

Ferriz, 2021). For heat transport, the model also captures the rapid increasing trend observed after 2012 (Fig. 16b).
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Figure 16. Time series of net (a, d, g, j) volume, (b, e, h, k) heat, and (c, f, i, 1) freshwater transport through the (a—c) Bering Strait
(BS), (d—f) Fram Strait (FS), (g-i) Barents Sea Opening (BSO), and (j-1) Davis Strait (DS) from 1995 to 2020. Black and red lines
denote simulated results from E3SMv2-MPAS and observational estimates, respectively. Positive values represent transport into
the Arctic Ocean, while negative values denote transport out of the Arctic Ocean. Observational data are from Woodgate and
Peralta-Ferriz (2021) for BS; Tsubouchi et al. (2024) for volume and heat transport in FS; Karpouzoglou et al. (2022) for
freshwater transport in FS; and Tsubouchi et al. (2024) for BSO and DS. The locations of the four straits are highlighted in green

in Fig. 1b.
3.5.2 Fram Strait

A study by Schauer et al. (2004) shows annual mean net volume transport through the Fram Strait between -44+2 Sv and -24+2
Sv during 1997-2000. Schauer et al. (2008) further indicate values of -24+5.9 Sv (1997-2002) and -2+2.7 Sv (2002-2006).
Despite considerable uncertainties in observations, these estimates confirm that the simulated volume transport by E3SMv2-
MPAS falls within a plausible range (Fig. 16d). Results from Tsubouchi et al. (2024) for 2005-2009 show that, although the

model generally overestimates southward volume transport, it reproduces the interannual variability reasonably well (Fig.
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16d). Observations indicate that the annual mean net heat transport increased from 16+12 TW in 1997 to 4145 TW in 1999
(Schauer et al., 2004). In comparison, the model overestimates heat transport in 1997 but accurately captures both the
pronounced increasing trend during 1997-1999 and the value in 1999 (Fig. 16e). Compared to observational data from
2005-2009 (Tsubouchi et al., 2024), the simulated heat transport values agree well in magnitude, and the model largely
reproduces the initial decrease followed by an increase during this period. Moreover, the model successfully captures both
the increasing trend and the magnitude of the observed southward freshwater transport through the Fram Strait from 2004 to

2017 (Karpouzoglou et al. (2022); Fig. 161).

3.5.3 Barents Sea Opening

Between 2000 and 2009, the annual mean net volume and heat transports through the Barents Sea Opening were reported as
2.3 Sv and 70+5 TW, respectively (Smedsrud et al., 2013), which are generally consistent with the model simulations (Fig.
16g-h). E3SMv2-MPAS also successfully reproduces the decreasing trends in both volume and heat transport during 2005—
2008, albeit with slight systematic overestimation. Observations indicate a pronounced decreasing trend in freshwater export
through the Barents Sea Opening during 2005-2009 (Tsubouchi et al., 2024). While the model captures this trend, it
overestimates the magnitude (Fig. 16i). Additionally, the mean freshwater transport through the Barents Sea Opening
between 2000 and 2010 was -90+£90 km? year!' (Haine et al., 2015), further supporting the model's tendency to overestimate

freshwater export in this region.

3.5.4 Davis Strait

Observations from 2004 to 2010 report annual mean net volume and freshwater transports through the Davis Strait as -
1.6+0.5 Sv and -2,900:190 km? year™!, respectively (Curry et al., 2014). E3SMv2-MPAS simulations agree well with these
values during the same period (Fig. 16j and 1). The model accurately captures the increased freshwater export through the
Davis Strait in the mid-to-late 2010s (particularly 2015-2017), which is influenced by Arctic-external atmospheric forcing
affecting sea level variability (Wang et al. (2022); Fig. 161). According to Wang et al. (2022), the freshwater export through
the Davis Strait increased by over 1500 km® year! between 2010 and 2017, a magnitude quantitatively reproduced by
E3SMv2-MPAS. However, the simulated heat transport ranges from 13 to 19 TW during 2005-2009, underestimating the
observed range of 19-27 TW (Tsubouchi et al. (2024); Fig. 16k).

4 Atlantic Water layer states
4.1 Parametric characterization of Atlantic Water core

As demonstrated in Section 3, model biases predominantly manifest in two critical parameters: AW core temperature
(AWCT) and depth (AWCD). These metrics, defined as the maximum temperature within 150-900 m depth and its
corresponding depth (Khosravi et al., 2022; Shu et al., 2022; Wang et al., 2024), are employed to evaluate E3SMv2-MPAS's
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performance in reproducing spatiotemporal features of AW (Fig. 17). Observational AWCT/AWCD datasets from Richards
et al. (2022) reveal successful model reproduction of baseline spatial gradients: decreasing AWCT and increasing AWCD
from the Eurasian to the Amerasian Basin, though with marked regional heterogeneity (Fig. 17a—d). Systematic
overestimation of AWCT (+0.5°C) is identified in the western Eurasian Basin off-shelf regions (high-latitude sectors), while
negative deviations (-0.5°C) occur in the Beaufort Sea. AWCD simulations demonstrate higher accuracy, with minor

underestimation (AZ<100 m) in the eastern Eurasian Basin.

(a) AWCT: E3SMv2-MPAS (b) AWCT: OBS
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Figure 17. (a-b) 1995-2018 climatological mean AWCT spatial distributions: (a) E3SMv2-MPAS vs. (b) observation from
Richards et al. (2022). (c—d) The same as panels (a—b) but for AWCD. (e-f) Temporal evolution of basin-averaged AWCT (top
row) and AWCD (bottom row) in the Eurasian Basin (e) and the Amerasian Basin (f): E3SMv2-MPAS (black) versus observations
(red).
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Interannual variability (1995-2018) is adequately captured through basin-averaged AWCT/AWCD magnitudes (Fig. 17e—f).
However, post-2013 increases in AWCD in the Amerasian Basin remain unresolved. While demonstrating credibility in
long-term trend simulations, model responsiveness to decadal-scale climatic shifts requires further optimization — critical for
predicting nonlinear Atlantification trajectories.

To address the systematic underestimation of Atlantification in model simulations (mentioned in Section 1), five key
parameters are quantified: AWCT, AWCD, AW upper boundary (0°C isotherm; Meyer et al. (2017)), AW layer thickness
(between 0°C isotherms), and AW heat content. By analyzing their spatiotemporal response characteristics, this study
investigates the trans-decadal evolution of Atlantification.

The AW heat content is calculated as follows (Polyakov et al., 2017):

Q = 1,7 pw cp(0 = Oprecaing)dz, )
where z,/z, denote layer boundaries, p,, seawater density, ¢, specific heat of seawater, and Ofy¢ezing freezing temperature.
Both basins exhibit coordinated changes during 1960s—1980s and 2000s—2020s: AWCT increases, AWCD decreases, AW
upper boundary shallows, layer thickness expands, and heat content accumulates (Fig. 18). Post-2000s acceleration of these
trends shows tight coupling with enhanced Atlantic meridional heat transport under Arctic amplification. E3SMv2-MPAS
captures the key thermodynamic signatures of Atlantification (the Eurasian Basin vs. the Amerasian Basins between 2000
2020), aligning closely with observationally derived mechanisms of AW intrusion and its climatic impacts (Polyakov et al.,
2017): (1) A 1°C gradient in AWCT between the Eurasian and Amerasian Basins, consistent with zonal heat dissipation; (2)
A 130-m shallower AWCD in the Eurasian Basin, reflecting intensified vertical mixing due to sea ice loss; (3) Synergistic
changes in AW layer thickness and heat content (100 m thinner layer with +4000 MJ-m2 in the Eurasian Basin), confirming

advective-diffusive redistribution.

(a) AWCT_EB (b) AWCT_AAB
3 T T 1.2 T T
25 ' ' o1 ' 1
o2 — © 081 | —
15 " 064
1 —T 7 T 0.4 ———— T T
1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
(c) AWCD_EB (d) AWCD_AAB
300 T 500 T T
=260 ' 1 =450 1 >
o — '\—W’-\M__’J E,,oo -\_) N
18 — T —————————T——T—T——T— 17 350 L +
1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
(e) AWupdepth_EB (f) AWupdepth_AAB
160 T 300 T
—140 | 1 =501 ‘“\-——\._,___‘ +
Ei20 o m— E3a0] | —
100 i T 220 L ;
80 200
1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
(9) AWthickness_EB (h) AWthickness_AAB
1000 T T 850 T T
— 900 = 7504 1
£ o — :___/_...-—-—"“"" . —
= 700 1 6504 1 1
600 L 4 550 L h
1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
. ()Q_AW_EB - (1) Q_AW_AAB
216 T T 212 T T
G4 ' ' 1 ' '
iz — _//"— € 04 — M
208 L 4 Sos L
1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 = 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Figure 18. (a—b) 1960-1980 vs. 2000-2020 climatological mean AWCT in the (a) Eurasian basin (EB) and (b) Amerasian Basin
(AAB). (c—j) The same as panels (a—b) but for AWCD (c—d), AW layer upper boundary depth (AWupdepth; e—f), thickness
(AWthickness; g—h), and heat content (Q_AW; i—j).
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This multi-scale validation confirms E3SMv2-MPAS's physical credibility in reproducing Atlantification mechanisms:
cascading heat flux-stratification-heat content responses and inter-basin thermodynamic evolution. The model thus provides

critical process fidelity for predicting Arctic oceanic thermal threshold transitions.

4.2 Coupling between the Atlantic Water and surface layers

The AW layer constitutes the most critical oceanic heat reservoir in the Arctic Ocean (Carmack et al., 2015), containing
sufficient thermal energy to melt all Arctic sea ice within several years (Turner, 2010) and capable of dissolving 3—4 times
the current ice volume (Carmack et al., 2015; Polyakov et al., 2020b). A pronounced halocline characterized by rapidly
increasing salinity with depth typically separates the cold, low-salinity surface waters from the warm, saline AW in the
Eurasian and Amerasian Basins. This strong stratification effectively inhibits vertical water mass exchange (Peralta-Ferriz
and Woodgate, 2015), isolating the AW layer from sea ice and mixed layer interactions (Aagaard et al., 1981; Richards et al.,
2022). Under these physical constraints, vertical heat transport primarily occurs through molecular-scale processes involving
internal wave breaking and double-diffusive mixing (Davis et al., 2016). However, since the 1970s, progressive weakening
of the eastern Eurasian Basin halocline has been documented (Polyakov et al., 2010; Steele and Boyd, 1998), culminating in
its complete failure as an effective thermal barrier for intermediate AW heat by the mid-2010s (Polyakov et al., 2020a).
Stratification collapse has triggered a regime shift from double-diffusive dominance to shear-driven turbulent mixing,
fundamentally altering vertical heat flux dynamics (Polyakov et al., 2020a).

The KPP scheme employed by E3SMv2-MPAS driven by Gradient Ri physics (Zhu et al., 2022). This study evaluates
whether this parameterization scheme, combined with the model's unstructured mesh capability, adequately resolves Arctic
vertical thermal coupling features, particularly in the Eurasian Basin. A diagnostic framework based on spatiotemporal
correlation analysis is established to quantify the thermal linkage between the upper (10 m) and intermediate (AW core layer,
400 m) ocean layers. This analysis addresses two critical aspects: (1) spatiotemporal delay characteristics in vertical heat
signal propagation relative to AW transport timescales, and (2) potential regime shifts in interlayer coupling mechanisms
under climate warming. This diagnostic framework provides dynamic constraints for optimizing vertical mixing
parameterizations while elucidating climate impacts of upper-ocean thermal variability.

During 1960-1980 baseline conditions (zero time lag), statistically significant positive correlations (p<0.05) between AW
layer and surface temperatures are confined to the Norwegian Sea, indicating direct advective heat modulation (Fig. 19a).
Lagged correlation analysis reveals basin-scale inertial transport characteristics: localized positive correlations emerge in the
Eurasian Basin at 24-month lag, expanding basin-wide by 36 months (Fig. 19b-h). This spatiotemporal inertia is attributed to:
(1) Basin-scale recirculation timescales required for AW mass circumpolar transport (e.g., 2-year lag between the Fram
Strait and the eastern FEurasian Basin 250 m temperatures; Polyakov et al. (2020b)), and (2) efficiency limitations in

subsurface mixing processes.
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Figure 19. (a) 1960-1980 climatological mean correlation between surface (5 m) and mid-depth (400 m) temperatures. (b—h)
Lagged correlations at 6-month intervals (Iag 6 mons to 42 mons). Black dots indicate significance (p<0.05).

The 1995-2020 period exhibits fundamental regime transition: immediate basin-wide positive correlations (p<0.05) emerge
along AW pathways (from the Fram Strait to the Eurasian Basin) under zero-lag conditions, maintaining stable correlation
strength through 42-month lags (Fig. 20). This instantaneous response pattern reflects multiscale Arctic system changes: (1)
Increased AWCT with decreased AWCD shortens vertical diffusion pathways, indicating intensified "Atlantification”
(Polyakov et al., 2017); (2) Stratification weakening from sea ice loss enhances cross-layer turbulent mixing efficiency

(Kwok, 2018; Onarheim et al., 2018; Polyakov et al., 2020a).
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Figure 20. The same as Fig. 19, but for 1995-2020 period.

A fundamental regime shift in Arctic intermediate-to-surface thermal coupling mechanisms under climate warming is
revealed through cross-temporal-scale lagged correlation diagnostics: transitioning from historical basin-scale inertial
transport patterns to contemporary instantaneous response modes. This regime shift, driven by altered AW thermohaline
properties and reduced stratification stability, enhances vertical heat leakage efficiency from intermediate layers. Model
evaluation demonstrates that while the KPP scheme captures accelerated heat transport trends, systematic biases persist in
nonlinear responses to shear mixing (Figs. 19 and 20). Future research directions emphasize developing scale-aware
parameterizations incorporating high-resolution turbulence observations to improve model capabilities in predicting Arctic

energy transport regime shifts.

5 Discussion
5.1 Comparison with OMIP2 models under diverse grid configurations and resolutions

To evaluate the performance of different ocean-sea ice coupled models in simulating the three-dimensional themohaline
structure, particularly that of the intermediate AW layer, we further discuss five resolution-matched model pairs from
OMIP2 (Wang et al., 2024). Thermohaline profile characteristics in the Eurasian and Amerasian Basins are systematically
compared between high/low-resolution model pairs (solid/dashed lines), E3SMv2-MPAS, and WOA23 data (Locarnini et
al., 2024; Reagan et al., 2024) to elucidate ocean model grid configuration impacts (Fig. 21).

Low-resolution models exhibit systematic biases as follows: (1) Substantial underestimation of AWCT (e.g., <0°C in

CMCC-NEMO 51km and FSU-HYCOM _32km), and (2) An inability to reproduce the characteristic vertical thermohaline
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structure, wherein temperatures decline with depth after AWCD. These challenges are particularly pronounced in the
Eurasian Basin influenced by the Fram Strait branch (one of two primary AW inflow pathways) compared to the Amerasian
Basin. In contrast, their high-resolution counterparts (excluding IAP-LICOM-6.8km) demonstrate improved AWCT and
vertical structure simulations. High-resolution models successfully reproduce observed zonal gradients showing AWCT
decreasing from the Eurasian Basin (1.3°C@250 m) to the Amerasian Basin (0.7°C@400 m), confirming resolution
enhancement benefits for oceanic frontal processes.

In the Eurasian Basin where simulation biases are most pronounced, the majority of high-resolution models — with the
exception of E3SMv2-MPAS (10 km) and FESOM variants (4.5/24 km) — continue to exhibit overestimated AW layer
thickness (between 0°C isotherms). WOA23 observations indicate temperature decline to 0°C at 800 m depth, whereas most
models (e.g., CMCC-NEMO_3.2km, FSU-HYCOM_3.6km and IAP-LICOM_6.8km) maintain ~0.5°C at the same depth
(Fig. 21a). This persistent discrepancy demonstrates that resolution enhancement alone remains insufficient to fully resolve
key technical bottlenecks in Arctic Intermediate Water simulations. Notably, E3SMv2-MPAS and FESOM models exhibit

strong performance.
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745  Figure 21. (a-b) 1995-2014 climatological mean temperature profiles in (a) the Eurasian Basin and (b) the Amerasian Basin:

Observations (WOA23; red), E3SMv2-MPAS (black), OMIP2 models (Wang et al. (2024); dashed: low-resolution, solid: high-
resolution). (c—d) The same as panels (a—b) but for salinity profiles.
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Following the evaluation of the three-dimensional thermohaline structure simulations in the OMIP2 models, we further
examine their capability to reproduce the spatial distribution of AWCT. As indicated by cross-validation within the OMIP2
framework, among the five resolution-varied model groups, only FESOM 4.5km, MOM_3.6km, and HYCOM_3.6km
demonstrate high AWCT spatial pattern simulation skills (Fig. 22). FESOM_4.5km outperforms E3SMv2-MPAS (10 km) in
representing the western Eurasian Basin shelf-basin gradients, but underperforms in the Amerasian Basin (Fig. 22b—c). Low-
resolution models exhibit a systematic underestimation of AWCT, with FESOM_24km being the exception, reaffirming

unstructured meshes' polar ocean modeling advantages (Fig. 22h-1).

(b) E3SMV2-MPAS (~10km)

AWCT [°C]

0 0.5 1 15 2 25

() CMCC-NEMO_3.2km (f) FSU-HYCOM_3.6km

Figure 22. 1995-2018 climatological mean AWCT spatial patterns from (a) observations (Richards et al., 2022), (b) E3SMv2-
MPAS, and (c-1) OMIP2 models (Wang et al., 2024). Middle/bottom rows: High-resolution and corresponding low-resolution
model pairs from OMIP2.

Despite comparable resolutions to other high-resolution models (e.g., ACCESS-MOM 9 km, FSU-HYCOM 32 km),
unstructured mesh configurations enable refined representation of key hydrographic gateways like the Fram Strait.
Compared to tripolar grid models suffering numerical dissipation near complex coastlines, variable mesh designs achieve
reduced the Eurasian Basin temperature errors under equivalent computational resources. Model grid type and computational
efficiency exhibit nonlinear relationships. Unstructured meshes (FESOM/MPAS) permit dynamic optimization through
localized refinement in critical regions (e.g., AW intrusion pathways). This targeted refinement strategy provides new

technical approaches for Arctic ocean modeling, particularly under accelerating Atlantification processes.
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5.2 Sources of systematic biases and trade-offs between resolution and parameterizations

Analyses in Section 3 not only discussed the simulation biases of E3SMv2-MPAS but also traced their potential origins. For
most biases, the primary causes can be attributed to inadequacies in physical parameterizations. First, the inadequate
representation of eddy dynamics is a key source. For instance, the underestimation of freshening in the Amerasian Basin may
result from the use of a fixed eddy diffusivity (k=300 m? s™! in the Arctic), which oversmooths salinity fronts. Similarly, the
model's failure to capture the seasonal variability of the AW layer likely stems from the invariant k in the GM scheme, which
cannot respond to the seasonal cycle of sea ice retreat and associated changes in stratification. Second, limitations in vertical
mixing parameterizations act as another key source. The coordinated biases in SST, SSS, and SIC in the Greenland and
Barents Seas, for example, may arise from the inherent limitations of the KPP scheme's single Ri-based approach in defining
turbulent states and mixing intensities within complex dynamic environments. Additionally, the misrepresentation of the
warming layer in the Eurasian Basin could be linked to inappropriate background diffusion coefficients within the KPP
framework.

Increasing model resolution presents an effective pathway to reduce reliance on empirical parameterizations by more directly
resolving key physical processes, such as mesoscale eddies. Enhanced resolution can, to some extent, mitigate the
inaccuracies of existing schemes. For instance, studies have shown that higher resolution improves the simulation of the AW
layer's temperature, thickness, spatial distribution, and its decadal warming trends (Wang et al., 2024). However, the small
Rossby radius of deformation (often <3 km) in the Arctic (Veneziani et al., 2022) implies that even with computationally
feasible resolution increases, critical processes (e.g. mesoscale eddies, vertical mixing, and ice-ocean interactions) may
remain under-resolved (Chassignet et al., 2020; Wang et al., 2018). Therefore, the development of more advanced physical
parameterizations remains imperative. It is noteworthy that resolution increases have proven effective in improving the
simulation of volume, heat, and freshwater transports through critical gateways such as the Fram Strait and Davis Strait
(Wang et al., 2024). The Fram Strait, in particular, serves as a pivotal channel for Atlantic heat influx into the Arctic Ocean
(Herbaut et al., 2022; Pnyushkov et al., 2021). In conclusion, we propose that a cost-effective strategy involves targetedly
increasing resolution in key gateway regions while concurrently refining parameterizations for mesoscale eddies and vertical

mixing.

5.3 Limitations of the experimental design

Due to computational resource constraints, this study adopted a two-phase simulation strategy with non-consecutive time
periods: first, the model was integrated from 1958 to 1981, and the final state of this period was used as the initial condition
to directly start the simulation for the 1995-2020 period. Although this approach effectively reduced computational costs,
and both previous studies and our model diagnostics indicate that key upper-ocean and sea ice variables had reached a quasi-
equilibrium state by 1981, skipping the continuous integration of the 1982—1994 period may introduce certain limitations.

For instance, the simulation of some medium- to long-term fluctuations or memory-dependent processes might be affected.
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Should computational resources allow in the future, we will perform a continuous simulation from 1958 to 2020 to more
accurately reproduce the evolution of the climate system.

Furthermore, since only a single JRASS forcing cycle was applied, the deep ocean and some physical quantities may not
have fully departed from the influence of the initial PHC hydrographic fields or reached complete equilibrium. This could
potentially affect the stability and initial-condition independence of the simulation results. In subsequent work, given
sufficient resources, we plan to carry out at least three full JRAS55 forcing cycles to promote more complete adjustment of
the ocean state, reduce dependence on initial conditions, and thereby enable a more comprehensive and robust evaluation of

the climate performance of the E3SMv2-MPAS.

5.4 Limitations from the atmospheric forcing: the JRASS warm bias

The JRASS reanalysis forcing data employed in E3SMv2-MPAS exhibits a known warm bias over the central Arctic deep
basin (Batrak and Miiller, 2019). This bias may systematically suppress sea ice growth and induce upper-ocean warming in
the simulation by enhancing downward longwave radiation and reducing oceanic sensible heat loss. Therefore, the
overestimated SST (Fig. 8c) and underestimated summer SIC (Fig. 4e—g) simulated in the central Arctic basin may be
partially attributable to the inherent bias in the forcing data, rather than solely to inaccuracies in the model's physical
processes.

The enhanced ice melt driven by this warm bias releases additional freshwater, leading to a stronger and shallower
freshwater layer (a more pronounced halocline) in the surface ocean, which significantly strengthens the stratification
stability of the upper ocean. This inhibits vertical mixing between layers and impedes the upward heat transfer from the
warmer, saltier AW below. This bias may partly explain the overestimation of the intermediate AW layer temperature
alongside the underestimation of the mixed-layer temperature (Fig. 12e). Future work will consider employing alternative
reanalysis products or applying bias-correction methods to better constrain the impact of forcing uncertainties on simulation

results.

6 Conclusions

This study systematically evaluates the Arctic ocean-sea ice simulation capabilities of E3SMv2-MPAS through multi-source
observations (in situ profiles, satellite remote sensing, optimum interpolation datasets) and reanalysis products (NSIDC,
HadISST1, ERAS, PIOMAS, ORASS5), with focus on core parameters including sea ice
(concentration/extent/thickness/volume; ~ SIC/SIE/SIT/SIV),  surface  thermohaline  properties (sea  surface
temperature/salinity; SST/SSS), three-dimensional thermohaline structures, freshwater content (FWC), gateway transports,
Atlantic Water (AW) heat characteristics, and vertical thermal linkages. Spatial distribution patterns, seasonal-to-decadal

variability, and three-dimensional evolutionary processes are comprehensively analyzed.
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E3SMv2-MPAS demonstrates significant advantages in Arctic climatology simulations: (1) Accurate representation of
spatial heterogeneity in SIC, SIT, and SST (Figs. 3—-5, 8a—c); (2) Realistic simulation of interannual and decadal variability
in SIC, SIE, SIT, SIV and SST, along with a highly consistent reproduction of the 1995-2020 SIC decline trend compared to
NSIDC observation, outperforming Hadley and ERAS reanalysis products (Fig. 7a); (3) Consistent SSS spatial patterns and
seasonal evolution with leading reanalysis products including HYCOM and GLORYS12 (Fig. 9; Hall et al. (2021)); (4)
Faithful reproduction of both the spatial distribution and long-term trend of Arctic FWC (Fig. 15); (5) Accurate simulation of
volume, heat, and freshwater transports through key Arctic gateways, capturing their observed magnitudes and essential
variability trends (Fig. 16).

E3SMv2-MPAS demonstrates exceptional capability in simulating the three-dimensional thermohaline structure and
variability of the AW layer, accurately capturing its key thermodynamic and dynamic processes in the Arctic Ocean: (1)
Precise reproduction of AW layer thickness/depth and core temperature (Figs. 10 and 17); (2) Effective capture of AW
warming trends including decadal-scale intermediate layer heating and vertical shoaling of warm cores (Figs. 11 and 13); (3)
Realistic simulation of accelerated Atlantification processes, evidenced by post-2000 intensification in AW core temperature
and heat content while reduced AW core depth, upper boundary and layer thickness, and instantaneous surface-intermediate
heat transfer in the Eurasian Basin (Figs. 18-20). Additional breakthroughs include successful representation of solar-driven
seasonal upper-ocean thermal cycles (Fig. 12) and inter-basin water mass gradient evolution from the Eurasian Basin to the
Amerasian Basin (e.g., AW thermohaline attenuation, vertical stratification shifts, and surface freshwater transport effects;
Fig. 14). These advancements establish critical numerical platforms for investigating Arctic stratification destabilization and
cross-scale energy transfer mechanisms.

Notwithstanding these achievements, key limitations persist: (1) Systematic overestimation of SIT in the Canadian Basin
(0.5-1 m bias; Fig. 5); (2) Coordinated underestimation of SST/SSS and overestimation of SIC in the Greenland and Barent
Seas (Figs. 3—4, 8a—c, 9a—c); (3) Residual overestimation of AW core temperature (0-1°C) and errors in seasonal
Atlantification phase (Figs. 10 and 12); (4) Asymmetries in regional decadal thermohaline evolution (e.g., underestimated
upper-layer warming and overestimated deep warming in the Eurasian Basin, unresolved mid-layer warming and upper-layer
freshening trends in the Amerasian Basin; Fig. 13).

This study confirms that E3SMv2-MPAS significantly enhances simulation capabilities for Arctic oceanic thermal structures
and cross-layer coupling processes through high-resolution unstructured meshes, establishing crucial technical references for

polar climate model development in the CMIP7 era.
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Code and data availability. The E3SM model code is publicly available via the https:/github.com/E3SM-
Project/E3SM/releases. Instructions on how to configure and execute E3SM are available at https://e3sm.org/model/running-
e3sm/e3sm-quick-start/. All simulations detailed in Section 2.1 can be regenerated by executing the code hosted in this
repository: https://doi.org/10.5281/zenodo.15493256 (Lv, 2025). Preprocessing of E3SMv2-MPAS outputs utilized nco-
5.1.1, accessible through the https://nco.sourceforge.net/. The JRAS55-v1.5 atmospheric forcing data driving the simulations
were obtained from the https://aims2.1Inl.gov/search/input4mips/. ETOPO 2022 bathymetry was derived from the
https://www.ncei.noaa.gov/products/etopo-global-relief-model. Model evaluations employed the following observational and
reanalysis products: Sea ice concentration: NSIDC (https://noaadata.apps.nsidc.org/NOAA/G02202_V4/north/aggregate/),
Met Office Hadley Centre observational datasets (https://www.metoffice.gov.uk/hadobs/), and ERAS5 monthly single-level
data (https://cds.climate.copernicus.cu/datasets/reanalysis-eraS-single-levels-monthly-means?tab=overview); Sea ice extent:
NSIDC  (https://doi.org/10.7265/N5K072F8);  Sea  ice  thickness and sea ice  volume: PIOMAS

(http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/model grid), ~PIOMAS-20C  reconstruction

(https://psc.apl.uw.edu/research/projects/piomas-20c/) and CS2SMOS gridded products
(https://data.meereisportal.de/data/cs2smos_awi/v206/n); Sea surface properties: OISST
(https://www.ncei.noaa.gov/products/optimum-interpolation-sst) and OISSS (https://www.esr.org/data-

products/oisss/overview/); Oceanographic profiles: WOA2023 (https://www.ncei.noaa.gov/products/world-ocean-atlas),
EN.4.2.2  objective analyses  (https://www.metoffice.gov.uk/hadobs/en4/);  Sea  surface  height:  ORASS
(https://cds.climate.copernicus.cu/datasets/reanalysis-oras5?tab=overview); Ocean heat content: IAP
(http://www.ocean.iap.ac.cn/ftp/cheng/IAPv4.2 Ocean_heat content 0_6000m/); Surface albedo: CLARA-A3
(https://doi.org/10.5676/EUM_SAF CM/CLARA AVHRR/V003). In situ observational profiles from four key Arctic
regions (the western/eastern Eurasian Basin, the Chukchi Sea, and the Beaufort Sea), thermohaline profiles and Atlantic
Water core temperature outputs from five OMIP2 ensemble groups, and Atlantic Water core temperature and depth
observational benchmarks, are described in the main text. Detailed metadata specifications and data access instructions for

these datasets are provided in the corresponding references cited therein.
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