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Abstract. Advancing high-resolution Arctic ocean-sea ice modeling is critical for understanding polar amplification and 

improving climate projections but faces challenges from computational limits and cross-scale interactions. The simulation 

capabilities of the ocean-sea ice coupled model (E3SMv2-MPAS) from the Energy Exascale Earth System Model (E3SM) 

2.1 for the Arctic ocean-sea ice system are systematically evaluated using multi-source observational data. The model 10 

employs a latitudinally varying mesh, with resolution increasing from 60 km in the Southern Hemisphere to 10 km in the 

Arctic. This design balances computational efficiency with the accurate integration of low-latitude oceanic influences, while 

the unstructured mesh also enhances the geometric representation of Arctic straits. Together, these features form a simulation 

framework capable of resolving processes from seasonal to decadal timescales. Numerical results demonstrate E3SMv2-

MPAS's superior Arctic simulation performance: (1) Accurate reproduction of spatial heterogeneity in sea ice concentration, 15 

thickness, and sea surface temperature, including their 1995–2020 trend patterns; (2) Faithful reproduction of both the 

freshwater content and transports through key Arctic gateways; (3) Successful reconstruction of three-dimensional 

thermohaline structures within the Atlantic Water layer, capturing Atlantic Water's decadal warming trends and accelerated 

Atlantification processes – specifically mid-layer shoaling, heat content amplification, and reduced heat transfer lag times in 

the Eurasian Basin. Persistent systematic biases are identified: 0.5–1 m sea ice thickness overestimation in the Canadian 20 

Basin; Coordinated sea surface temperature/salinity underestimation and sea ice concentration overestimation in the 

Greenland and Barents Seas; Atlantic Water core temperature overestimation; Regional asymmetries in decadal 

thermohaline field evolution.  

1 Introduction 

The Arctic region has emerged as one of the most rapidly transforming area of the Earth system under contemporary climate 25 

change (Calvin et al., 2023). However, persistent gaps in oceanic observational networks, particularly the lack of systematic 

full-depth and pan-strait measurements across key Arctic gateways, have significantly constrained our understanding of 

Arctic oceanic transport dynamics. To address these observational limitations, numerical modeling has become an 

indispensable tool (Wang et al., 2023). Of particular scientific significance is the thermohaline transport through Fram Strait 



2 

 

– the principal conduit for Atlantic Water (AW) intrusion into the Arctic basins (Fu et al., 2023; Karami et al., 2021; Long et 30 

al., 2024). Recent studies highlight the necessity to quantify both the spatiotemporal evolution of AW-derived heat 

distribution across Arctic marginal seas and the relative contributions of different vertical heat flux mechanisms (Carmack et 

al., 2015; Polyakov et al., 2020b). State-of-the-art global climate models (GCMs) provide critical insights into the evolving 

climate system under sustained global warming scenarios, enabling the investigation of multi-sphere interactions and their 

associated feedback mechanisms (Dörr et al., 2021; Hinrichs et al., 2021; Rieke et al., 2023; Shu et al., 2022).  35 

While climate models remain indispensable tools for deciphering Earth system dynamics (Landrum and Holland, 2020), 

their representation of Arctic processes exhibits persistent uncertainties that challenge predictive capabilities (Pan et al., 

2023). Systematic biases plague the simulation of critical Arctic phenomena, including amplified warming rates, sea ice 

retreat patterns, and AW layer evolution (Heuzé et al., 2023; Khosravi et al., 2022; Muilwijk et al., 2023; Shu et al., 2019). 

These limitations persist across successive model generations, as evidenced by Coupled Model Intercomparison Project 40 

Phase 5 (CMIP5) and Phase 6 (CMIP6) revealing substantial errors in Arctic three-dimensional thermohaline structure 

reproduction (Khosravi et al., 2022; Shu et al., 2019). There are mainly four common biases of contemporary models in the 

Arctic include: (1) Overestimated AW layer thickness and depth. This systematic vertical structure misrepresentation persists 

across model generations, from early Arctic Ocean Model Intercomparison Project (AOMIP) simulations (Holloway et al., 

2007) through the Coordinated Ocean-ice Reference Experiments, phase II (CORE-II; Ilıcak et al. (2016)), to the most 45 

widely used CMIP5/CMIP6 ensembles (Heuzé et al., 2023; Khosravi et al., 2022; Shu et al., 2019). Among 41 CMIP5 

models evaluated by Shu et al. (2019), 22% failed basic AW identification criteria, while the remaining 32-model mean 

overestimated AW layer vertical extent compared to observational benchmarks. CMIP6 shows limited improvement, with 

multi-model mean AW upper boundaries erroneously positioned at ~400 m depth in the Nansen Basin – deeper than 

observed values – and excessive thickness extending to the seafloor in some regions (Khosravi et al., 2022). (2) Cold bias in 50 

AW core temperatures. The Alfred Wegener Institute coupled climate model (AWI-CM1) exhibits thermal underestimation 

at 200–600m depths in Eurasian Basin simulations (Hinrichs et al., 2021), consistent with CMIP6's 0.4°C cold bias relative 

to hydrographic climatologies (Heuzé et al., 2023). (3) Failure to capture AW warming trends. CMIP5 models collectively 

underestimate observed decadal temperature variability, with no model replicating the post-2000 acceleration in AW 

warming (Shu et al., 2019). (4) Underestimated "Atlantification" (referring to the Arctic Ocean water properties becoming 55 

increasingly akin to the warmer and saltier AW). While models project gradual boreal water encroachment in the Barents 

Sea by 2100 (Wassmann et al., 2015), observational analyses suggest this regime shift is likely to occur at a faster pace (Lind 

et al., 2018). Discrepancies extend to sea ice thermodynamics, where Seasonal Forecast System 5 (SEAS5) simulations yield 

only 10–20 cm winter ice production decline (Polyakov et al., 2022), versus 78–93 cm observed losses (Polyakov et al., 

2020b). 60 

There are numerous and complex reasons that lead to the common deviations in models when simulating the AW. These 

challenges can be categorized into four primary domains: (1) Insufficient horizontal resolution (>50 km in most CMIP6 

models) fails to resolve critical boundary currents and mesoscale eddies (Hinrichs et al., 2021); (2) Unrealistic Atlantic-
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Arctic exchange through Fram Strait (Hinrichs et al., 2021); (3) Parameterization deficiencies, including the incorrect 

representation of horizontal advection and vertical mixing (Lind et al., 2018); (4) Imperfect knowledge of ocean-sea ice- 65 

atmosphere triadic feedbacks, especially during winter convection events, hampers accurate simulation of AW ventilation 

processes (Heuzé et al., 2023). To advance model fidelity and reduce uncertainty sources, comprehensive investigations into 

systematic model biases are imperative (Hinrichs et al., 2021; Pan et al., 2023). 

Current numerical simulations for polar regions are primarily based on structured grid models. However, the inherent 

limitations of structured grids, particularly the singularity at the North Pole and meridional convergence artifacts, 70 

fundamentally constrain their capacity to represent Arctic-specific physical processes (Liu et al., 2016). These geometric 

constraints not only distort parameterization schemes but also introduce systematic biases in both regional and decadal-scale 

simulations. While global high-resolution configurations could theoretically mitigate such issues, their prohibitive 

computational costs render them impractical for climate-scale applications (Golaz et al., 2019). This technological impasse 

has driven the development of two complementary approaches: (1) Nested grid systems: Though offering advantages in 75 

spatial discretization flexibility and geometric simplification, their implementation introduces nontrivial challenges in mass 

conservation, interface coupling fidelity, and numerical noise suppression (Hoch et al., 2020). (2) Unstructured mesh: By 

enabling localized resolution enhancement in dynamically critical zones while maintaining coarse resolutions elsewhere, 

these meshes eliminate the need for explicit nesting procedures (Scholz et al., 2019). Their continuous spatial adaptability 

allows direct resolution of sub-mesoscale processes without compromising computational efficiency (Wang et al., 2018).  80 

The application of variable-resolution models with a global unstructured mesh offers distinct advantages for Arctic Ocean 

studies. By employing high-resolution meshes over the Arctic region, these configurations enable accurate simulation of 

energy exchange processes across narrow critical channels (e.g., Fram Strait, Bering Strait, Barents Sea Opening and Davis 

Strait). Coarser resolutions in other domains maintain computational efficiency while preserving connectivity between the 

Arctic and extratropical regions (Wang et al., 2018). Among global implementations, two widely adopted models are the 85 

Finite-Volume Coastal Ocean Model (FVCOM; Chen et al. (2016)) and the Finite-Element Sea ice-Ocean circulation Model 

(FESOM; Danilov et al. (2017)). In Arctic studies, FVCOM predominantly operates as a regional model, as evidenced by its 

frequent implementation in localized domains (e.g., Zhang et al. (2016)). This regional focus aligns with FVCOM's original 

design paradigm prioritizing coastal and shelf-sea dynamics through its finite-volume discretization scheme. In contrast, 

FESOM has been predominantly implemented as a global model in Arctic studies, where its implementation has 90 

demonstrated unprecedented skill in simulating Arctic intermediate water dynamics (Danilov et al., 2017; Wang et al., 2018; 

Wekerle et al., 2013). Notably, Wang et al. (2018) established that FESOM (a relatively low resolution, ~24 km in the 

Arctic) outperforms a set of the state-of-the-art structured-grid models evaluated by Ilıcak et al. (2016), particularly in 

correcting systematic AW core biases.  

As a more recent modeling framework relative to FESOM and FVCOM, the Model for Prediction Across Scales (MPAS) 95 

remains in the nascent phase of Arctic performance evaluation (Huo et al., 2024; Ringler et al., 2013), particularly regarding 

its capacity to simulate intermediate water masses and Atlantification processes. The Energy Exascale Earth System Model 
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(E3SM), evolved from the Community Earth System Model (CESM), incorporates MPAS-Ocean and MPAS-Seaice as its 

ocean and sea ice components. Initial assessments using E3SMv1's ocean-sea ice coupled configuration (60to10 km variable 

resolution) demonstrate promising skill in reproducing pan-Arctic freshwater budgets, gateway current exchanges, and 100 

vertical hydrographic profiles (Veneziani et al., 2022). Persistent errors in sea ice thickness (SIT) distribution and upper 100 

m stratification emerge across resolutions, suggesting common structural model deficiencies rather than discretization 

artifacts. However, their diagnostic lack the rigorous validation metrics employed by Wang et al. (2018) for FESOM's AW 

representation. Existing assessments predominantly rely on pan-Arctic-basin-averaged diagnostics, obscuring critical vertical 

and regional heterogeneities in intermediate AW layer dynamics (Veneziani et al., 2022).  105 

This study presents a tripartite evaluation framework for the coupled system of MPAS-Ocean and MPAS-Seaice in E3SM 

version 2 (E3SMv2-MPAS), which compares it with the observational datasets and reanalysis products to systematically 

assess MPAS's capacity in simulating key Arctic processes. In addition, we conduct a comprehensive assessment of Arctic 

sea ice dynamics, surface layer hydrographic properties, three-dimensional thermohaline profile evolution (particular 

emphasis on the AW layer), as well as freshwater content and key gateway transports. The assessment highlights the model's 110 

strengths, identifies its limitations, and discusses potential sources of uncertainty. Innovatively, this work implements a 

multi-layer connectivity analysis examining cross-layer interactions between surface (10 m) and intermediate (400 m) 

depths. 

The subsequent sections are structured as follows: Section 2 provides comprehensive documentation of the E3SMv2-MPAS 

configuration and validation datasets. Section 3 and Section 4 conduct rigorous multi-faceted analyses of Arctic-specific 115 

simulations, employing both domain-wide diagnostics and sub-regional decomposition approaches. Section 5 discusses the 

potential advantages of higher resolution and unstructured meshes, summarizes simulated biases and their possible sources, 

and identifies limitations in our model design and configuration. Finally, Section 6 synthesizes the key findings and outlines 

broader implications.  

2 Model configurations and data 120 

2.1 Model configuration 

Veneziani et al. (2022) demonstrated that refining mesh resolution from 10 km to 6 km triples computational costs without 

yielding significant improvements in simulation fidelity. Their findings suggest that resolving the local Rossby radius of 

deformation across most Arctic regions necessitates resolutions ≤3 km – a requirement currently constrained by prohibitive 

computational demands. The model configuration in this paper is described as follows. To address the trade-off between 125 

high-resolution requirements and computational constraints, our study employs a variable-resolution unstructured mesh 

featuring a meridional transition from 60 km resolution in the Southern Hemisphere to 10 km in the Arctic domain (hereafter 

60to10 km, same as Veneziani et al. (2022); Fig. 1a). This adaptive meshing approach optimizes computational efficiency 

while resolving critical processes: (1) Antarctic coastal regions (80° S–90° S) maintain a 25 km resolution to capture fine-
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scale dynamics; (2) the North Atlantic sector is strategically refined, transitioning from 20 km to 10 km resolution earlier 130 

than the Pacific to guarantee at least 15 km resolution in the Gulf Stream extension region (~40° N; Veneziani et al. (2022)); 

(3) the North Pacific sector maintains computational efficiency while achieving approximately 10 km resolution in its 

subpolar region adjacent to the Arctic Ocean (north of 50° N). 

 

Figure 1. (a) Geographical distribution of grid cell size (km) of the E3SMv2-MPAS framework. (b) bathymetry from the ETOPO 135 
2022 and key basins/straits north of 60° N. EEB and WEB refer to the eastern and the western Eurasian Basin respectively. The 

black dashed transect along 70° E and 145° W (crossing the North Pole) denotes the location of the transect shown in Fig. 14. 

Numerical stability was achieved through a 5-minute baroclinic time step for ocean dynamics. For sea ice, we employed a 

15-minute dynamic time step and a 30-minute thermodynamic time step (a 2:1 ratio). MPAS-Ocean adopts finite volume 

discretization of primitive governing equations within a staggered C-grid framework, incorporating hydrostatic, 140 

incompressible, and Boussinesq approximation assumptions (with a z-star vertical grid) (Golaz et al., 2019). Vertical mixing 

processes were parameterized using the K-profile scheme (KPP; Large et al. (1994)). For mesoscale eddy representation, 

similarly to what was done in Veneziani et al. (2022), we implemented a spatially varying Gent-McWilliams (GM) 

parameterization, incorporating both bolus advection and Redi isopycnal diffusion components (Gent and Mcwilliams, 

1990). The eddy diffusivity coefficient (κ) was given a latitudinal dependence: 300 m2 s-1 in high-resolution Arctic regions 145 

(<20 km grid spacing) to maintain moderate mixing intensity, transitioning linearly to 1800 m2 s-1 in low-resolution zones 

(>30 km grid spacing) to compensate for unresolved eddy fluxes (Fig. 2). MPAS-Seaice builds upon the core numerical and 

physical framework of the Los Alamos Sea Ice Model (CICE). The dynamics are governed by the elastic-viscous-plastic 

(EVP) rheology, with the internal ice stress divergence operator adapted for MPAS's unstructured polygonal mesh (Turner et 

al., 2022). Sea ice and tracer transport are handled by an incremental remapping scheme (Lipscomb and Ringler, 2005), 150 

adapted for polygonal cells. The thermodynamics and vertical column physics remain consistent with CICE (Turner et al., 

2022). The configuration includes the "mushy layer" thermodynamics for vertical heat transfer, the delta-Eddington 

shortwave radiation scheme, a level-ice melt pond parameterization, ice thickness distribution mechanics, and transport in 
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thickness space (Petersen et al., 2019). The specific configurations of MPAS-Ocean and MPAS-Seaice within the E3SMv2, 

including their coupling mechanisms, have been comprehensively documented in Turner et al. (2022), Golaz et al. (2022) 155 

and Huo et al. (2024). 

In addition to the ocean and sea ice components, the atmospheric and river modules in E3SMv2-MPAS (see Fig. 2 for 

specific variables used) were forced by the JRA55-do (v1.5; Tsujino et al. (2018)) from the Japan Meteorological Agency 

(JMA). This dataset has high spatiotemporal resolution (3-hourly temporal and 0.5625° spatial resolution) and spans the 

period from 1958 to 2020. Sea surface salinity (SSS) was relaxed toward Polar science center Hydrographic Climatology 160 

(PHC) 3.0 climatology (Steele et al., 2001) with an annual restoring timescale.  

 

Figure 2. Configuration details for E3SMv2-MPAS: forcing/initial conditions, runtime settings, and output fields. 

Given the prohibitive computational cost of a continuous high-resolution simulation from 1958 to 2020, we adopted a 

strategic two-period integration scheme to prioritize computational resources for our core analysis period (1995–2020). The 165 

model's climatological fidelity during this satellite era is verified using multi-source observational data, ensuring a reliable 

assessment of both sea ice and ocean variability. 

The MPAS-Ocean component was initialized from a pre-processed state (ocean.ARRM60to10.180715.nc). This state was 

derived from a prior short-term (5-day) adjustment run of the standalone ocean model, which itself started from a state of 

rest with three-dimensional temperature and salinity fields prescribed from the PHC. Consequently, this initial condition 170 

provided a dynamically adjusted and physically consistent starting point for our coupled simulation, mitigating the initial 

shock that would otherwise occur from a purely cold start. In contrast, the MPAS-Seaice component was initialized from 

an idealized, uniform ice cover. A 1-meter thick ice layer with 100% concentration was prescribed on all ocean grid points 

between 60° S and 70° N, with zero initial snow depth and stationary ice velocity. This simple state allowed the sea ice cover 

to evolve self-consistently in response to the model's atmospheric forcing and ocean coupling from the beginning of the 175 

simulation. Following this spin-up phase, the full interannual JRA55 forcing was applied from 1958 to 1981. 
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To begin the simulation for our main analysis period (1995–2020), we used the model state from December 1981 as the 

initial conditions for January 1995. This 13-year gap (1982–1994) was a strategic choice to conserve computational 

resources while ensuring physical consistency in the key variables of interest. This computational strategy was motivated by 

the fact that, under forcings such as CORE-II or JRA55 and when initialized with PHC hydrography, upper-ocean and 180 

surface variables are known to reach quasi-equilibrium within a few decades, as demonstrated in several previous studies. 

For instance, Wang et al. (2018) reported that temperature and salinity in the upper 1000 m reached near-equilibrium within 

20–30 years. Wekerle et al. (2013) began their analysis of surface variables and freshwater content in the 0–500 m layer after 

a 10-year initialization in a 1958–2007 simulation using FESOM under CORE-II forcing. Likewise, in the analysis of 

multiple high-resolution the Ocean Model Intercomparison Project Phase 2 (OMIP2) models simulating the full 1958–2020 185 

period under JRA55 forcing, Wang, Shu, Bozec, et al. (2024) focused their evaluation on the period 1971–2000 – 

commencing approximately 13 years after the model initialization. In our simulation, the 24-year spin-up from 1958 to 1981 

is largely sufficient for the adjustment of surface fields (e.g., sea ice, surface temperature, and salinity) and AW layer (above 

1000 m), which are the focus of this study. Although the deep ocean remains far from equilibrium, the targeted variables had 

largely stabilized by 1981.  190 

From a physical perspective, the potential impact of this initialization approach for the 1995–2020 simulation is expected to 

be short-lived. The upper ocean and sea ice (the primary focus of this study), adjust much more rapidly than the deep ocean, 

and their evolution is predominantly governed by contemporaneous atmospheric forcing rather than by the initial conditions. 

Therefore, the disequilibrium introduced by the initial condition from 1981 would be rapidly overwritten and adjusted by the 

realistic, synchronous atmospheric forcing applied from 1995 onward. 195 

Therefore, initializing the 1995 run from the 1981 output allows a computationally efficient hot start and ensures that the 

model is in an appropriate state for evaluating the 1995–2020 period. 

The model output initialized from the 1981 state also demonstrates physically consistent behavior during the 1995–2020 

period, further supporting the validity of this approach. The temporal evolution of key diagnostic variables – including sea 

surface temperature (Fig. 8d) and sea ice-related variables (Fig. 7) – shows that the simulation quickly aligns with the 200 

observed/reanalysis trajectory after 1995, with no persistent systematic bias. Spatial distributions of these variables are also 

in good agreement with evaluation datasets (Figs. 3–5, 8a–c), and the long-term trends from 1995 to 2020 closely match 

those in the references (Fig. 7). These results, which will be discussed in detail in the following sections, indicate that the 

initialization from 1981 did not adversely affect the simulation of central climate features during the study period. 

Accordingly, our primary evaluation focuses on the performance of E3SMv2-MPAS during the period 1995–2020. In 205 

addition, a comparative assessment of the 1960–1980 period is also included to briefly examine the decadal variability of 

key ocean and sea ice variables and to verify the model's capability under distinctly different climatic backgrounds. 
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2.2 Evaluation datasets 

2.2.1 Sea ice concentration, extent, thickness, and volume  

To comprehensively evaluate sea ice concentration (SIC) performance, both the observations and reanalysis data were 210 

adopted for validation. SIC datasets used here include: (1) Passive microwave remote sensing data: Sourced from the 

NOAA/NSIDC Climate Data Record (Version 4; Meier et al. (2021)) with a spatial resolution of 25 km × 25 km; (2) 

HadISST1 data: Provided by the UK Met Office Hadley Centre (Rayner et al., 2003) at 1° × 1° resolution; (3) ERA5 

reanalysis: Generated by the European Centre for Medium-Range Weather Forecasts (ECMWF; Hersbach et al. (2020)) at 

0.25° × 0.25° resolution. 215 

For SIT validation, we utilize four key datasets: (1) Pan-Arctic Ice-Ocean Modeling and Assimilation System (PIOMAS; 

Zhang and Rothrock (2003)): This reanalysis product, extensively validated against satellite and in situ observations, 

provides reliable Arctic SIT spatial distributions and long-term trends (Laxon et al., 2013; Schweiger et al., 2011; Stroeve et 

al., 2014). (2) PIOMAS-20C reanalysis (Schweiger et al., 2019): Driven by ECMWF's atmospheric reanalysis of the 20th 

century (ERA-20C) and calibrated with historical in situ/aircraft measurements, this dataset enables analysis of pre-satellite-220 

era SIT variability (1960–1980). (3) CS2SMOS gridded product: developed by the Alfred Wegener Institute (AWI) and the 

University of Hamburg (Ricker et al., 2017), it combines CryoSat-2 and SMOS satellite observations using an Optimal 

Interpolation method. The data cover the period from October to April each year, when the sea ice is more stable, thereby 

minimizing signal interference from summer melt ponds and enhancing the reliability and accuracy of the dataset.  

For sea ice extent (SIE), the evaluation dataset was obtained from the NSIDC (Fetterer, 2017). Sea ice volume (SIV) was 225 

assessed using outputs from the PIOMAS and PIOMAS-20C reanalysis. 

2.2.2 Sea Surface Temperature and Salinity 

Sea surface temperature (SST) validation dataset is NOAA's 1/4° Daily Optimum Interpolation Sea Surface Temperature 

(OISST; Huang et al. (2021)) dataset, which represents a long-term climate data record integrating multi-platform 

observations from satellites, ships, buoys, and Argo floats. Spatially continuous global SST fields are reconstructed using 230 

optimal interpolation to fill data gaps. 

For open-water SSS validation (SIC<15%), the NASA sponsored Optimum Interpolation Sea Surface Salinity (OISSS; 

Melnichenko et al. (2016)) dataset was applied. The product integrates multi-satellite observations from Aquarius, SMAP, 

and SMOS through optimal interpolation. Continuous 2011-present data are generated through cross-satellite bias correction 

and spatial filtering, with SMOS data filling SMAP gaps. 235 

2.2.3 Three-Dimensional Thermohaline 

The World Ocean Atlas 2023 (WOA23; Locarnini et al. (2024); Reagan et al. (2024)) served as the primary validation 

dataset for three-dimensional thermohaline properties. WOA23 produces high-resolution global climatological temperature 
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and salinity fields via interpolation of historical observations (Argo floats, ship-based measurements, satellite data), covering 

three periods in this study: 1991–2020, 1995–2004, and 2005–2014. 240 

To assess long-term thermohaline evolution (1960–1980 vs. 2000–2020), the UK Met Office's EN.4.2.2 dataset (Good et al., 

2013) was combined. EN.4.2.2 assimilates multi-source in situ data (ship observations, Argo floats, CTD profilers, moored 

buoys), applies rigorous quality control, and reconstructs 1° × 1° gridded temperature/salinity fields spanning 0–5500 m 

depth from 1900 onward. 

Furthermore, annual mean temperature and salinity profiles (1970–2017) over the east Eurasian Basin, the west Eurasian 245 

Basin, the Chukchi Sea, and the Beaufort Gyre from Muilwijk et al. (2023) were included. These data derive from Russian, 

American, Canadian, and European expeditions, including ship/aircraft surveys, manned drifting stations, autonomous 

buoys, and submarine measurements. 

2.2.4 Sea surface height, ocean heat content, and surface albedo  

Sea surface height (SSH) evaluation data were derived from the Ocean Reanalysis System 5 (ORAS5), produced by 250 

ECMWF (Zuo et al., 2019). ORAS5 integrates multivariate observations via assimilation into the Nucleus for European 

Modelling of the Ocean (NEMO) ocean model coupled with the Louvain-la-Neuve sea ice model (LIM). The primary 

assimilated data include altimetry-based sea level anomalies from the AVISO DT2014 product, incorporating an updated 

mean dynamic topography. The reanalysis has a horizontal resolution of 0.25°, enhanced to approximately 9 km in the polar 

regions. 255 

Ocean heat content (OHC) evaluation data were sourced from the gridded product developed by the Institute of Atmospheric 

Physics (IAP), Chinese Academy of Sciences (Cheng et al. 2017, 2020, 2024). It combines multi-source in situ observations 

– including Argo floats, CTD profiles, ship-based measurements, and moored buoys – on a 1° × 1° horizontal grid. An 

adaptive Optimal Interpolation method is applied to minimize bias. The dataset covers the period from 1940 to present, 

supporting analysis of long-term oceanic changes. 260 

Surface albedo evaluation data were obtained from the CLARA-A3 (Karlsson et al., 2023). Observations originate from 

multiple versions of the Advanced Very High Resolution Radiometer (AVHRR) spaceborne optical imagers employ 

intercalibrated radiances to mitigate intersensor discrepancies (Heidinger et al., 2010). The dataset spans from January 1979 

to present, provided on a 0.25° global grid, with a 25 km equal-area grid for the polar regions. 

2.2.5 Atlantic Water core 265 

Observed AW core temperature and depth data were sourced from Richards et al. (2022), comprising 55,841 profiles (1977–

2018). AW core was defined as the warmest layer within salinity >34.7 PSU profiles. To ensure accuracy, only profiles 

exceeding 500 m depth with sampling starting above 100 m were retained. Raw profiles were smoothed using an 80 m 

vertical moving average (40 m window) to remove spikes caused by thermohaline intrusions and eddies while preserving 

overall thermal structure. 270 
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Wang et al. (2024)'s OMIP2 dataset includes AW core temperature (defined as maximum temperature in water columns over 

seafloor depths >150 m; 2006–2017) from five high-low resolution model pairs. This dataset is employed to benchmark 

E3SMv2-MPAS's AW core temperature simulations against multi-model ensembles. 

3 Arctic physical system states 

3.1 Sea ice characterization 275 

This study focuses on the Arctic region, systematically evaluating the simulation performance of the E3SMv2-MPAS 

coupled model for SIC, SIT, SIE and SIV at first. Through comparisons with multi-source observational datasets and 

reanalysis products, combined with climate-state analysis (1995–2020) and trend diagnostics across two periods (1960–1980 

and 1995–2020), model strengths and limitations in polar environmental simulations are identified. 

Multi-dataset validation using NSIDC satellite remote sensing (Meier et al., 2021), Hadley in situ assimilation (Rayner et al., 280 

2003), and ERA5 reanalysis (Hersbach et al., 2020) demonstrates that E3SMv2-MPAS effectively captures spatial 

heterogeneity in Arctic SIC climatology in both winter and summer (Figs. 3 and 4). In winter, consistent spatial bias patterns 

are observed across datasets, with persistent positive bias center (ΔSIC>0.3) identified along the southwestern Greenland Sea 

shelf margin and the northern Barents Sea slope (Fig. 3e–g). During summer, comparisons with NSIDC and Hadley reveal 

predominant positive biases in the northern Barents Sea and widespread negative biases across the central Arctic Ocean (Fig. 285 

4e and f). In contrast, the comparison with ERA5 shows negligible underestimation in the central Arctic basin, while positive 

biases are observed not only in the northern Barents Sea but also in the Beaufort Sea (Fig. 4g).  
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Figure 3. During winter (December–February), (a–d) 1995–2020 climatological mean SIC spatial distributions: (a) E3SMv2-MPAS 290 
simulations, (b) NSIDC observational product, (c) Hadley Centre HadISST data, (d) ERA5 reanalysis. (e–g) SIC bias fields: (e) 

E3SMv2-MPAS vs. NSIDC, (f) E3SMv2-MPAS vs. Hadley, (g) E3SMv2-MPAS vs. ERA5.  
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Figure 4. The same as Fig. 3, but during summer (June–August). 295 

Beyond SIC, SIT serves as a critical parameter governing sea ice dynamics, with its simulation accuracy directly modulating 

the spatiotemporal heterogeneity of ice volume. We systematically quantify E3SMv2-MPAS's capability in reproducing 

spatial distribution of SIT during both in winter and summer (Fig. 5). Overall, the model captures the climatological spatial 

gradient of Arctic SIT, characterized by a gradual thickening from the Barents Sea toward the central Arctic Basin and the 

northern Canadian Archipelago in both seasons. The model realistically represents the seasonal reduction in SIT over the 300 

continental shelf regions along the Arctic margin in summer compared to winter. However, pronounced zonal positive biases 

(ΔSIT>1.5 m) are present in both seasons, particularly along the eastern and northern shelf of the Greenland Sea, the  region 

north of the Canadian Archipelago, and the southern Canadian Basin and Beaufort Sea (Fig. 5c and f).  
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Figure 5. During (a–c) winter (December–February) and (d–f) summer (June–August), (a–b and d–e) 1995–2020 climatological 305 
mean SIT spatial distributions: (a and d) E3SMv2-MPAS, (b and e) PIOMAS. (c and f) SIT bias field: E3SMv2-MPAS vs. 

PIOMAS.  

Considering PIOMAS's known limitations in overestimating thin ice while underestimating thick ice (Laxon et al., 2013; 

Schweiger et al., 2011), additional validation using CS2SMOS data (Ricker et al., 2017) is conducted (Fig. S1). Consistent 

with previous findings, PIOMAS exhibits underestimation in regions with thicker sea ice, such as north of the Canadian 310 

Archipelago and east of Greenland (Fig. S1e). Similarly, E3SMv2-MPAS shows pronounced positive biases relative to 

CS2SMOS in areas including the northern Canadian Archipelago, the southern Canadian Basin, and the Beaufort Sea (Fig. 

S1d), aligning with the bias pattern identified in comparisons with PIOMAS (Fig. 5c), thereby corroborating the spatial 

reliability of PIOMAS-indicated biases.  

The spatial pattern of maximum positive bias in E3SMv2-MPAS remains consistent across seasons (Fig. 5c and f). This bias 315 

is also evident in the model's annual mean SIT distribution relative to PIOMAS (Fig. S2). Previous studies based on CMIP5 

models have established a strong correlation between inaccuracies in simulating the Beaufort Gyre and SIT distribution 

(Stroeve et al., 2014). Since the SSH field serves as a key proxy for evaluating the fidelity of Beaufort Gyre simulations 

(Wang et al., 2018), we analyze differences in SSH between E3SMv2-MPAS and the ORAS5 reanalysis (Fig. 6a–c). The 

model overestimates SSH in the Beaufort Sea, suggesting an erroneously enhanced ice convergence. Additionally, the 320 

simulated OHC in the 0–100 m layer is underestimated in this region (Fig. 6d–f), which may further contribute to the 
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positive SIT bias. Thus, the persistent 0.5–1 m positive bias in the Beaufort Sea is hypothesized to originate from an 

overestimated intensity of the Beaufort Gyre and associated upper-ocean thermal biases in E3SMv2-MPAS, which then may 

impede the realistic export of sea ice through the north of Canadian Archipelago and east of Greenland. 

 325 

Figure 6. Climatological mean spatial distributions for the period 1995–2020. (a–c) SSH: (a) E3SMv2-MPAS, (b) ORAS5. (c) Bias 

in SSH between E3SMv2-MPAS and ORAS5. (d–f) OHC in the upper 100 m: (d) E3SMv2-MPAS, (e) IAP. (f) Bias in OHC 

between E3SMv2-MPAS and IAP. 

To further analyze long-term trends in sea ice-related variables, including interannual and decadal variability, time series of 

SIC, SIT, SIE, and SIV are examined over the periods 1960–1980 and 1995–2020 (Fig. 7). 330 
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Figure 7. Time series and linear trends of sea ice properties from 1960–1980 and 1995–2020. (a) SIC of pan-Arctic (70°–90°N) for 

E3SMv2-MPAS (gray), NSIDC (blue), Hadley (green), and ERA5 (orange). (b) SIE for E3SMv2-MPAS (black) and NSIDC (red). 

(c) SIT of pan-Arctic (70°–90° N) for E3SMv2-MPAS (black) and PIOMAS (red). (d) SIV for E3SMv2-MPAS (black) and 

PIOMAS (red). Dashed lines denote linear trends based on least-squares regression. 335 
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E3SMv2-MPAS successfully reproduces SIC seasonal cycles and interannual variability during 1995–2020, maintaining root 

mean square errors (RMSE) values of 0.040, 0.052, and 0.051 against NSIDC, Hadley, and ERA5 datasets respectively (Fig. 

7a). This validates the dynamic framework's effectiveness in capturing sea ice-atmosphere coupling mechanisms. Trend 

analysis confirms the model's climate response capability. During the rapid decline period (1995–2020), E3SMv2-MPAS 

accurately captures accelerated SIC reduction trends, showing better agreement with NSIDC observations than Hadley and 340 

ERA5 products. For the weak-trend period (1960–1980), the model reproduces quasi-stable sea ice coverage characteristics. 

The accelerated SIC decline in the recent period compared to historical decades (1960–1980) highlights the model's ability to 

replicate trend amplification under intensified forcing, thereby bolstering confidence in its scenario-dependent projections. 

Similarly, the model effectively captures the interannual and decadal variability of SIE (Fig. 7b; RMSE: 0.96). 

Consistent with NSIDC, simulated SIC and SIE exhibit certain seasonal biases. The systematic winter overestimation, 345 

attributable to positive SIC biases in the southern Greenland Sea and southward-expanded ice cover in the Barents Sea (Fig. 

3e), coinciding with pronounced cold SST biases in these regions (Fig. S3). During summer, E3SMv2-MPAS overestimates 

the seasonal minimum (Fig. 7a–b), particularly in the Greenland Sea, Barents Sea, East Siberian-Laptev Seas, and Beaufort 

Sea (Fig. 4e). These regions also exhibit elevated surface albedo values (Fig. S4), reducing absorbed shortwave radiation and 

contributing to the sea ice overestimation. 350 

Although the model generally overestimates SIT (Figs. 5 and S2), the time series analysis successfully simulates continuous 

thinning from ~1.8 m to ~1.3 m during 1995–2020 (Fig. 7c). Notably, however, the simulated thinning rates remain slightly 

lower than PIOMAS results. Stable RMSE value (~0.37) throughout this period confirm robust simulation of long-term SIT 

evolution. Similarly, compared to PIOMAS, the simulated SIV is consistently underestimated throughout the period, though 

the declining trend during 1995–2020 is well captured (Fig. 7d). For the pre-satellite era (1960–1980), evaluation using 355 

PIOMAS-20C shows E3SMv2-MPAS reproduces the 6-year cyclic "increase-decrease-increase" SIT fluctuations during 

1960–1978 (Fig. 7c). While PIOMAS-20C shows no statistically significant SIT trend during 1960–1980, E3SMv2-MPAS 

simulates a pronounced thickening trend in this period, potentially linked to its systematic overestimation of regional ice 

thickness in areas like the Beaufort Sea (Fig. 5c and f, Fig. S2c). Nevertheless, across the multi-decadal scale (1960–2020), 

this coupled system demonstrates a reasonable representation of Arctic SIT and SIV responses to climate forcing.  360 

3.2 Surface thermohaline signatures 

SST and SSS engage in complex bidirectional coupling with the atmosphere-ice system through ice/atmosphere-ocean 

interfacial energy-mass exchange processes. This section evaluates the spatiotemporal co-variability of SST/SSS to elucidate 

E3SMv2-MPAS's representation of ocean-sea ice-atmosphere interaction mechanisms. 

OISST-based validation demonstrates E3SMv2-MPAS accurately reproduces key Arctic SST spatial patterns: (1) 365 

temperature gradients decreasing from shelves to central basins, and (2) warm-core features in southern Barents Sea open 

waters (Fig. 8a–c). Systematic regional biases are identified: the cold biases in the Greenland Sea (ΔSST≈-2–0°C) spatially 

correlate with an overestimation of SIC in the same region, while positive deviations (ΔSST≈0–2°C) occur near Svalbard's 
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western coast and the Eurasian continental margins. Notably, continental coastal biases are spatially decoupled from Atlantic 

inflow pathways, with formation mechanisms likely associated with inaccurate vertical mixing processes stemming from 370 

stratification stability biases in shelf regions. E3SMv2-MPAS successfully captures Arctic SST warming trends during the 

1995–2020 period, showing high consistency with OISST in accelerated trend characteristics (Fig. 8d). Seasonal cycle and 

interannual variability simulations remain within acceptable error ranges (RMSE=0.24), confirming appropriate responses to 

surface thermal forcing. Furthermore, the model accurately captures both the pronounced SST increase and accelerated 

decadal warming trend during 1995–2020 relative to the 1960–1980 baseline period. These simulated changes show a strong 375 

coupling with the accelerated decline in SIC, SIE, SIT, and SIV concurrently (Fig. 7). 

 

Figure 8. (a–b) 1995–2020 climatological mean SST spatial distributions: (a) E3SMv2-MPAS, (b) OISST. (c) SST bias field: 

E3SMv2-MPAS vs. OISST. (d) Pan-Arctic (70° N–90° N) mean SST time series for 1960–1980 and 1995–2020, with dashed lines 

indicating linear trends (E3SMv2-MPAS: black; OISST: red) derived from least-squares regression. 380 

E3SMv2-MPAS demonstrates comparatively weaker performance in SSS simulation versus sea ice and SST variables. 

Spatially heterogeneous biases are observed: negative deviations (ΔSSS=-0–1 PSU) in the Barents and Greenland Seas 

contrast with pronounced positive biases (ΔSSS=2–5 PSU) in the Beaufort Sea and the Kara-Beaufort shelf regions (Fig. 9a–

c). The 3 PSU overestimation in the Beaufort Sea aligns with advanced assimilation model (such as HYCOM and 
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GLORYS12) biases reported by Hall et al. (2021), suggesting common limitations in Arctic shelf freshwater transport 385 

representation. Specifically, inadequate parameterization of surface freshwater budgets and associated processes (e.g., 

precipitation-evaporation fluxes, river discharge, and ice-ocean interactions) may constrain freshwater cycle simulations 

(Wang et al., 2024). The Beaufort Sea SIT overestimation identified previously (Fig. 5) potentially exacerbates salinity 

biases through reduced freshwater release (Kelly et al., 2019). If the intensity of the Beaufort Gyre is overestimated (as 

discussed in Section 3.1), enhanced freshwater retention could impede westward shelf transport to the Kara Sea, potentially 390 

driving salinity overestimation in the Kara-Beaufort shelf. Despite spatial biases, E3SMv2-MPAS demonstrates credible 

simulation of seasonal cycle phasing and amplitude in the Barents Sea SSS, while the temporal variations in the Beaufort Sea 

show agreement levels comparable to mainstream reanalysis products (Fig. 9d–e; Hall et al. (2021)). 

 

Figure 9. (a–b) September 2011–December 2020 climatological mean SSS spatial distributions: (a) E3SMv2-MPAS, (b) OISSS. (c) 395 
SSS bias field: E3SMv2-MPAS vs. OISSS. (d–e) Regional SSS time series in (d) the Barents Sea and (e) the Beaufort Sea (black 

boxes in a–c; E3SMv2-MPAS: black; OISSS: red). 

In the Greenland and Barents Seas, systematic underestimation of SST and SSS (Figs. 8c and 9c) coincides with 

overestimation of SIC (Figs. 3 and 4). These regions are situated within the marginal ice zone, where strong surface wind 

stress facilitates the transfer of energy to deeper ocean layers through the excitation of near-inertial oscillations and 400 

associated turbulent mixing processes (D’Asaro, 1985). This discrepancy may be attributed to the model's potential 
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overestimation of this downward energy transfer. Similarly, Zhu et al. (2022) reported that in the equatorial Pacific cold 

tongue region, the KPP scheme overestimates downward turbulent heat flux, leading to a cold bias in both upper-ocean and 

sea surface temperatures. A primary reason for these biases lies in the scheme's reliance on a single Richardson number (Ri) 

relationship for parameterization. Although this approach captures instability conditions in stratified shear flows, it is 405 

insufficient to uniquely determine turbulent states and mixing intensities (Zhu et al., 2022), thus limiting its performance in 

complex dynamic environments. 

3.3 Three-dimensional thermohaline structure 

Accurate simulation of three-dimensional thermohaline fields remains a core technical challenge in ocean model 

development, directly determining model capability in representing Arctic multi-sphere coupling processes (ocean-ice-410 

atmosphere). While preliminary evaluations of key sea ice properties (including concentration, extent, thickness, and 

volume)and surface thermohaline diagnostics have validated E3SMv2-MPAS's capacity to simulate Arctic shallow-layer 

thermal states, subsurface-to-deep thermohaline structure biases may still induce circulation distortions, material transport 

deviations, cross-basin exchange inaccuracies, and climate feedback misrepresentations. A multi-dimensional verification 

framework including spatial heterogeneity diagnostics, temporal evolution analysis and three-dimensional dynamical 415 

validation is established to assess E3SMv2-MPAS's three-dimensional thermohaline simulation performance 

comprehensively. 

Using the 1995–2014 climatological mean profiles, systematic comparisons are conducted between E3SMv2-MPAS and 

observational data (Muilwijk et al., 2023) across four regions: the western Eurasian Basin, the eastern Eurasian Basin, the 

Chukchi Sea, and the Beaufort Sea. Thermohaline profile characteristics (0–1000 m depth) are evaluated through vertical 420 

structure evolution and regional variability analyses. 

Observational data reveal maximum temperatures (1.6°C) at 250 m depth in the western Eurasian Basin, decreasing to 0°C at 

800 m (Fig. 10a). E3SMv2-MPAS can successfully reproduces observed vertical temperature structure, matching the 

observed 250 m temperature maximum depth and maintaining temperature decline to 0°C at 1000 m depth. Despite a ~1°C 

core temperature overestimation and 200 m layer thickness bias, its temperature profile RMSE is 0.448. 425 
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Figure 10. (a–d) 1995–2014 climatological mean temperature profiles from observations (Muilwijk et al., 2023), and E3SMv2-

MPAS. (e–h) The same as panels (a–d) but for salinity profiles. Basins: the western Eurasian (WEB; a/e), the eastern Eurasian 

(EEB; b/f), the Chukchi Sea (c/g), the Beaufort Sea (d/h). 430 

Observational spatial heterogeneity shows progressive temperature core reductions (1.6°C→1.4°C→0.8°C→0.7°C) and 

deepening core depths (250 m→290 m→400 m→420 m) from the western Eurasian Basin to the Beaufort Sea (Fig. 10a–d). 

E3SMv2-MPAS maintains systematic temperature overestimation (~1℃ in the western Eurasian Basin, ~0.3℃ in the 

Chukchi Sea and the Beaufort Sea) while successfully reproducing spatiotemporal evolution of vertical thermal structures. In 

salinity simulations, E3SMv2-MPAS demonstrates optimal salinity profile fitting capability through observational agreement 435 

starting from 200–300 m depth, as evidenced by the western Eurasian Basin RMSE of 0.204. 

In order to systematically assess model capabilities in representing multi-scale Arctic thermal variations, an inter-decadal 

three-dimensional thermohaline evolution framework is established. Depth-time section comparisons between E3SMv2-

MPAS and EN.4.2.2 (Good et al., 2013) are conducted to analyze spatiotemporal heterogeneity in Arctic oceanic thermal 

structures (Fig. 11). 440 
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Figure 11. For the Arctic Basin, (a) E3SMv2-MPAS simulated temperature profiles (0–1000 m): 1960–1980 climatology (dashed) 

vs. 2000–2020 climatology (solid). Right: Hovmöller diagram of depth-time evolution (1960–1980 and 2000–2020). (b) The same as 

panel (a) but for EN.4.2.2. (c) The same as panel (a) but for E3SMv2-MPAS minus EN.4.2.2 differences. 

E3SMv2-MPAS successfully reproduces the solar radiation-driven seasonal thermal cycle observed in EN.4.2.2 (Fig. 11). 445 

Monthly thermohaline profiles (depth-month coordinates) in the upper 500 m of the Eurasian Basin better illustrate 

radiation-dominated seasonal characteristics: summer (June–August) surface temperature peaks coincide with salinity 

minima from meltwater inputs, while winter (December–February) shows sub-freezing temperatures (<-1.8°C) and salinity 

recovery (Fig. 12). These core seasonal features are accurately captured, validating high-precision surface flux 

representation. 450 
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Figure 12. (a–b) E3SMv2-MPAS simulated 1995–2020 climatological mean (left) temperature and (right) salinity profiles (0–500 

m) in the Eurasian Basin (EB), with Hovmöller diagrams of monthly variability. (c–d) The same as panels (a–b) but for WOA23. 

(e–f) The same as panels (a–b) but for model-observation differences (E3SMv2-MPAS minus WOA23). 

E3SMv2-MPAS demonstrates exceptional multi-temporal simulation capabilities for AW dynamics (Fig. 11). Observations 455 

reveal stable AW core temperatures (~1.6°C) during 1960–1980, increasing to ~2°C in 2000–2020 with core shallowing 

from 350 m to 300 m in the whole Arctic Basin (Fig. 11b). E3SMv2-MPAS accurately reproduces both the ~0.4°C warming 

magnitude and ~50 m vertical migration (Fig. 11a). However, regional-specific biases emerge in seasonal variability 

simulations (Fig. 12). EN.4.2.2 identifies semi-annual signals in the 200–500 m layer of the Eurasian Basin (September–

November peaks at ~1.5°C; Fig. 12c), linked to winter Atlantification intensification. E3SMv2-MPAS fails to capture this 460 

seasonality, producing persistent warm biases in 200–400 m layers with overestimated spring–summer core temperatures 

(0.5–0.8°C; Fig. 12e). This discrepancy may be attributed to the GM parameterization scheme, which models mesoscale 

eddy effects on heat and salt redistribution through bolus advection and Redi diffusion. In general, the Arctic winter features 

greater mixed layer depth and weaker stratification due to brine rejection during sea ice formation and wind-driven stirring 

(Peralta-Ferriz and Woodgate, 2015). These processes promote eddy penetration, increasing the efficiency of vertical heat 465 

transport. In contrast, strengthened stratification in summer restricts the vertical scale of eddies and reduces heat transfer. 

However, the GM scheme employs a fixed diffusion coefficient, which prevents it from capturing the seasonal variability 

modulated by stratification changes.  
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We further investigate the decadal-scale thermohaline variability across Arctic basins. The results reveal regional 

heterogeneity in temperature and salinity trends (Fig. 13). Inter-decadal comparisons (1970s vs. 2000s–2020s; Muilwijk et 470 

al. (2023)) reveal pan-Arctic synchronous warming across the Eurasian Basin sectors and the Amerasian sub-regions (Fig. 

13e–h). However, E3SMv2-MPAS underestimates the warming in the Amerasian Basin (0.1–0.5°C biases; Fig. 13c–d and 

g–h). 

 

Figure 13. (a–d) Vertical profiles of climatological mean temperature (red curves) and salinity (blue curves) in the western 475 
Eurasian Basin (WEB; a), the eastern Eurasian Basin (EEB; b), the Chukchi Sea (c), and the Beaufort Gyre (d) from E3SMv2-

MPAS: dashed lines denote 1970s (1971–1979), solid lines represent 2000s–2010s (2001–2019). (e–f) Corresponding observational 

profiles from Muilwijk et al. (2023) with identical temporal averaging. 

In the Eurasian Basin upper layers (~100–450 m; Fig. 13a–b and e–f), observations show dual-mode thermal evolution: 

shallow warming above temperature cores (100–250 m) contrasts with systematic warming below (250–450 m). Model 480 

simulations exhibit spatial heterogeneity: 0.2±0.1°C underestimation of shallow warming contrasts with excessive vertical 

response ranges (250–1000 m vs. observed 250–450 m). Notably, simulated AW layer thickening in the eastern Eurasian 

Basin during 2000s–2010s lacks observational support (Fig. 13b and f). These discrepancies may be partly attributed to 
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biases in the representation of vertical processes. As indicated by sensitivity experiments such as those of Liang & Losch 

(2018), enhanced vertical mixing could promote upward heat transport from AW, potentially causing cooling at intermediate 485 

depths (200–900 m). Our model uses a relatively low background diffusivity (1.0×10-5 m2 s-1), which remains constant 

across time periods despite evidence that Arctic amplification and Atlantification in the 2000s–2010s (Polyakov et al., 2017, 

2025; Rantanen et al., 2022; Richards et al., 2022; Shu et al., 2022) may have strengthened vertical mixing compared to the 

1970s. The model's failure to represent this temporal increase in mixing efficiency might have limited upward heat transfer, 

confining warming mainly to intermediate and deeper layers – consistent with the underestimation of shallow warming and 490 

exaggerated deep response seen in our simulations. 

In the Chukchi Sea, observations indicate basin-wide warming from core layers to AW bottom (~1000 m), showing 

ΔT=0.2±0.1°C (Fig. 13c–d and g–h). While successfully reproducing Chukchi thermal trends, the model exhibits systematic 

Beaufort Sea deviations. Salinity changes primarily occur in the upper 300 m of the Amerasian Basin (the Chukchi and 

Beaufort Seas; observed ΔS=-0.3±0.2 PSU), with the model failures in capturing the freshening of the Chukchi Sea and 495 

underestimation of trends in the shallow-layer (<80 m) of the Beaufort Sea. The simulated salinity biases may be related to 

the use of an inappropriately high and constant isopycnal diffusion coefficient (κ=300 m2 s-1) in the GM parameterization. 

This high diffusion coefficient likely results in excessively strong along-isopycnal mixing, which oversmooths horizontal 

salinity gradient fronts formed by freshwater accumulation (e.g., from melting ice and increased runoff). During the 1970s, 

when background freshwater signals were relatively weak, the effect of strong diffusion was less pronounced. However, 500 

under the strongly increased freshwater input in the 2000s–2010 (Polyakov et al., 2013; Wang et al., 2019), the persistently 

high κ value continuously and excessively diffused the simulated upper-layer low-salinity anomalies, hindering their realistic 

accumulation and maintenance in the basin upper layer. As a result, the model significantly underestimates the magnitude of 

decadal freshening observed in the region.  

AW demonstrates systematic cooling and freshening (temperature and salinity reduction) during its transport from the 505 

Eurasian to the Amerasian Basin (Fig. 10), a transformation likely modulated by baroclinic adjustment processes in the inter-

basin transition zone. These processes govern cross-basin material-energy exchange (Aksenov et al., 2016). We analyze 

coordinated meridional sections along 145° W in the Amerasian Basin and 70° E in the Eurasian Basin to access variability 

in AW properties across space (Fig. 14). WOA23-based comparisons confirm E3SMv2-MPAS's capability in reproducing 

inter-basin gradient characteristics through three key aspects: (1) AW thermal attenuation: Successful simulation of core 510 

temperature decreases from the Eurasian to the Amerasian Basin, replicating thermodynamic dissipation processes; (2) 

Stratification depth displacement: Realistic representation of westward-decreasing upper boundary depths matching slope 

current adjustments; (3) Surface freshwater transport effects: Accurate reproduction of the surface salinity depression in the 

Amerasian Basin relative to the Eurasian Basin, validating appropriate parameterization of Pacific-origin freshwater influx 

mechanisms. Persistent thermal biases in the Eurasian Basin emerge in 145° W sections, with maximum +2°C warm 515 

deviations in 100–500 m core layers (Fig. 14e). Despite absolute temperature biases, maintained meridional heat transport 

gradients confirm fundamental physical framework validity for large-scale advection processes. 
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Figure 14. (a–b) E3SMv2-MPAS simulated 1995–2020 climatological (left) temperature and (right) salinity distributions along the 

145° W–70° E transect (location mapped in Fig. 1b). (c–d) The same as panels (a–b) but for WOA23. (e–f) The same as panels (a–520 
b) but for the model-observation differences (E3SMv2-MPAS minus WOA23). 

3.4 Freshwater content spatiotemporal variability 

The Arctic Ocean constitutes a major freshwater reservoir within the global climate system. Since the mid-1990s, the 

freshwater content (FWC) in the Arctic Ocean has exhibited a marked increasing trend, primarily driven by persistent 

anticyclonic atmospheric forcing over the Beaufort Gyre region (1997–2018) and the reduction of Arctic sea ice 525 

(Proshutinsky et al., 2019; Wang et al., 2024). This excess freshwater is exported into the North Atlantic through Fram Strait 

and Davis Strait (Wang et al., 2019), eventually reaching convection regions in the Labrador and Greenland–Iceland–

Norwegian Seas. These areas are critical for the formation of global deep waters, which act as a key driver of large-scale 

ocean circulation systems, including the Atlantic Meridional Overturning Circulation (AMOC) (Arzel et al., 2007). The 

southward transport of freshwater may influence circulation dynamics by reducing seawater density and suppressing vertical 530 

mixing (Haine et al., 2023). Furthermore, Arctic freshwater variability significantly influences ecosystem structure and 

function (Proshutinsky et al., 2019). Therefore, accurately assessing the freshwater content in the Arctic Ocean represents a 

central challenge in physical oceanography and climate dynamics, with major implications for understanding both climate 

variability and long-term change (Haine et al., 2023). 
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The FWC is defined as follows (Wang et al., 2024): 535 

𝐹𝑊𝐶 = ∫
𝑆𝑟𝑒𝑓−𝑆

𝑆𝑟𝑒𝑓
𝑑𝑧,

0

𝐻
                                                                                (1) 

where 𝑆 denotes salinity, 𝑆𝑟𝑒𝑓  is the reference salinity – set to 34.8 psu, the mean Arctic Ocean salinity according to Aagaard 

and Carmack (1989) – and 𝐻 represents the depth at which salinity equals 𝑆𝑟𝑒𝑓 . 

Based on this formulation, we evaluate the spatial distribution of the multi-year mean (1995–2020; Fig. 15a–b) and decadal 

differences (2005–2014 vs. 1995–2004; Fig. 15c–d) of FWC as simulated by E3SMv2-MPAS, in comparison with 540 

observational data from WOA23. Additionally, we analyze the basin-wide averaged time series of FWC across the Arctic 

Ocean (Fig. 15e). 

 

Figure 15. Spatial distribution and temporal evolution of FWC (in meters) in the Arctic Ocean. (a–b) Multi-year mean (1995–

2020) FWC from (a) E3SMv2-MPAS and (b) WOA23. (c–d) Decadal difference in FWC (2005–2014 minus 1995–2004) from (c) 545 
E3SMv2-MPAS and (d) WOA23. (e) Time series of the Arctic Ocean-wide averaged FWC from E3SMv2-MPAS for the period 

1995–2020.  



27 

 

As shown in Fig. 15a–b, E3SMv2-MPAS generally captures the spatial characteristics of Arctic FWC, such as the increase 

from the Eurasian Basin toward the Amerasian Basin and the maximum values located in the Beaufort Sea. However, the 

model overestimates FWC in the vicinity of Baffin Bay. 550 

Observational results from WOA23 indicate a pronounced strengthening of FWC in the Beaufort Sea during 2005–2014 

compared to 1995–2004. The model successfully reproduces this decadal change in that area (Fig. 15c–d). Nonetheless, 

E3SMv2-MPAS erroneously simulates a significant decrease in FWC across the Eurasian and Makarov Basins, where 

WOA23 shows a slight increase. Moreover, the model overestimates the increase in FWC along a pathway extending from 

the east of Greenland to the northern Canadian Archipelago and into the Canada Basin. 555 

The time series of the total Arctic FWC (Fig. 15e) exhibits a fluctuating upward trend from 1995 to 2020. Polyakov et al. 

(2013) reported a notable acceleration in Arctic FWC accumulation during the 2000s, particularly between 2003 and 2010 – 

a trend that aligns with the sharp rise simulated by E3SMv2-MPAS between 2002 and 2008. Furthermore, Wang et al. 

(2019) noted a levelling off of the FWC growth trend after 2010, which is also captured by the model. 

3.5 Gateway transports: volume, heat, and freshwater 560 

Over the past decades, the Arctic climate system has undergone rapid changes, including shifts in sea ice, atmosphere, and 

ocean conditions (Landrum and Holland, 2020; Polyakov et al., 2005; Shu et al., 2022). These rapid changes are closely 

linked to the lateral exchanges of heat and freshwater across the boundaries of the Arctic (Von Schuckmann et al., 2020). 

The Arctic Ocean's connections to other oceans are defined by four major gateways (from east to west): Bering Strait, Fram 

Strait, Barents Sea Opening, and Davis Strait (Tsubouchi et al., 2024). These critical gateways not – as discussed in the 565 

previous section – serve as major pathways for freshwater export from the Arctic, which in turn influences global deepwater 

formation, large-scale circulation, and ecosystems, but also subject Arctic sea ice and ocean conditions to strong influences 

from Atlantic and Pacific water inflows. These impacts include modulating sea ice cover (Årthun et al., 2012, 2019; 

Docquier and Koenigk, 2021), ocean stratification (Veneziani et al., 2022), ecosystem (Woodgate and Peralta‐Ferriz, 2021), 

ocean temperature (Barton et al., 2018), and freshwater content (Woodgate, 2018). Therefore, the accurate simulation of 570 

volume, heat, and freshwater transports through these four major gateways – including their interannual and decadal 

variability – is crucial. In this section, we evaluate the performance of the E3SMv2-MPAS in simulating these key 

exchanges through comparison with multi-source observational data. 

The oceanic net volume transport (VT), heat transport (HT), and freshwater transport (FWT) through the key gateways—

Bering Strait, Fram Strait, Barents Sea Opening, and Davis Strait—are calculated as follows (Karpouzoglou et al., 2022; Shu 575 

et al., 2022; Wang et al., 2024): 

𝑉𝑇 = ∫ ∫ 𝑉𝑑𝜆𝑑𝑧
𝜆2(𝑧)

𝜆1(𝑧)
,

0

−𝐻(𝜆)
                                                                           (2) 

𝐻𝑇 = 𝜌𝑜𝑐𝑝 ∫ ∫ 𝑉(𝑇 − 𝑇𝑟𝑒𝑓)𝑑𝜆𝑑𝑧,
𝜆2(𝑧)

𝜆1(𝑧)

0

−𝐻(𝜆)
                                                           (3) 
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𝐹𝑊𝑇 = ∫ ∫ 𝑉
(𝑆𝑟𝑒𝑓−𝑆)

𝑆𝑟𝑒𝑓
𝑑𝜆𝑑𝑧,

𝜆2(𝑧)

𝜆1(𝑧)

0

−𝐻(𝜆)
                                                                   (4)  

Here, 𝑉 , 𝑇 , and 𝑆  denote velocity, potential temperature, and salinity, respectively; 𝜌𝑜  is the seawater density; and 𝑐𝑝 580 

represents the specific heat capacity of seawater. The reference temperature 𝑇𝑟𝑒𝑓 is set to 0 °C, and the reference salinity 𝑆𝑟𝑒𝑓  

is defined as 34.8, corresponding to the mean salinity of the Arctic Ocean (Aagaard and Carmack, 1989). The integration is 

performed over the full depth 𝐻 – defined as the bathymetry along the transect – and across the lateral extent 𝜆 of each strait. 

Units for VT, HT, and FWT are Sverdrup (Sv; 1 Sv=106 m3 s-1), Terawatt (TW), and km3 year-1, respectively. 

3.5.1 Bering Strait 585 

Observational data from the Bering Strait between 2000 and 2018 (Woodgate and Peralta‐Ferriz, 2021) reveal significant 

increasing trends in volume, heat, and freshwater transports (Fig. 16a–c). However, E3SMv2-MPAS fails to reproduce these 

overall trends. The discrepancies in volume and freshwater transports may be attributed to biases in the JRA55 reanalysis 

and river runoff forcing data (Wang et al., 2024). Although the model does not capture the increasing trends in volume and 

freshwater transports during 2000–2012, it successfully simulates the upward trends from 2012 to 2018, including 590 

interannual variability, with deviations generally within 0.2 Sv and 500 km3 year-1 (Fig. 16a and c). The similar interannual 

and decadal variability between simulated volume and freshwater transports indicates that the model accurately represents 

the mechanism whereby increased freshwater transport is primarily driven by volume transport (Woodgate and Peralta‐

Ferriz, 2021). For heat transport, the model also captures the rapid increasing trend observed after 2012 (Fig. 16b). 
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 595 

Figure 16. Time series of net (a, d, g, j) volume, (b, e, h, k) heat, and (c, f, i, l) freshwater transport through the (a–c) Bering Strait 

(BS), (d–f) Fram Strait (FS), (g–i) Barents Sea Opening (BSO), and (j–l) Davis Strait (DS) from 1995 to 2020. Black and red lines 

denote simulated results from E3SMv2-MPAS and observational estimates, respectively. Positive values represent transport into 

the Arctic Ocean, while negative values denote transport out of the Arctic Ocean. Observational data are from Woodgate and 

Peralta‐Ferriz (2021) for BS; Tsubouchi et al. (2024) for volume and heat transport in FS; Karpouzoglou et al. (2022) for 600 
freshwater transport in FS; and Tsubouchi et al. (2024) for BSO and DS. The locations of the four straits are highlighted in green 

in Fig. 1b. 

3.5.2 Fram Strait 

A study by Schauer et al. (2004) shows annual mean net volume transport through the Fram Strait between -4±2 Sv and -2±2 

Sv during 1997–2000. Schauer et al. (2008) further indicate values of -2±5.9 Sv (1997–2002) and -2±2.7 Sv (2002–2006). 605 

Despite considerable uncertainties in observations, these estimates confirm that the simulated volume transport by E3SMv2-

MPAS falls within a plausible range (Fig. 16d). Results from Tsubouchi et al. (2024) for 2005–2009 show that, although the 

model generally overestimates southward volume transport, it reproduces the interannual variability reasonably well (Fig. 
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16d). Observations indicate that the annual mean net heat transport increased from 16±12 TW in 1997 to 41±5 TW in 1999 

(Schauer et al., 2004). In comparison, the model overestimates heat transport in 1997 but accurately captures both the 610 

pronounced increasing trend during 1997–1999 and the value in 1999 (Fig. 16e). Compared to observational data from 

2005–2009 (Tsubouchi et al., 2024), the simulated heat transport values agree well in magnitude, and the model largely 

reproduces the initial decrease followed by an increase during this period. Moreover, the model successfully captures both 

the increasing trend and the magnitude of the observed southward freshwater transport through the Fram Strait from 2004 to 

2017 (Karpouzoglou et al. (2022); Fig. 16f). 615 

3.5.3 Barents Sea Opening 

Between 2000 and 2009, the annual mean net volume and heat transports through the Barents Sea Opening were reported as 

2.3 Sv and 70±5 TW, respectively (Smedsrud et al., 2013), which are generally consistent with the model simulations (Fig. 

16g–h). E3SMv2-MPAS also successfully reproduces the decreasing trends in both volume and heat transport during 2005–

2008, albeit with slight systematic overestimation. Observations indicate a pronounced decreasing trend in freshwater export 620 

through the Barents Sea Opening during 2005–2009 (Tsubouchi et al., 2024). While the model captures this trend, it 

overestimates the magnitude (Fig. 16i). Additionally, the mean freshwater transport through the Barents Sea Opening 

between 2000 and 2010 was -90±90 km3 year-1 (Haine et al., 2015), further supporting the model's tendency to overestimate 

freshwater export in this region. 

3.5.4 Davis Strait 625 

Observations from 2004 to 2010 report annual mean net volume and freshwater transports through the Davis Strait as -

1.6±0.5 Sv and -2,900±190 km3 year-1, respectively (Curry et al., 2014). E3SMv2-MPAS simulations agree well with these 

values during the same period (Fig. 16j and l). The model accurately captures the increased freshwater export through the 

Davis Strait in the mid-to-late 2010s (particularly 2015–2017), which is influenced by Arctic-external atmospheric forcing 

affecting sea level variability (Wang et al. (2022); Fig. 16l). According to Wang et al. (2022), the freshwater export through 630 

the Davis Strait increased by over 1500 km3 year-1 between 2010 and 2017, a magnitude quantitatively reproduced by 

E3SMv2-MPAS. However, the simulated heat transport ranges from 13 to 19 TW during 2005–2009, underestimating the 

observed range of 19–27 TW (Tsubouchi et al. (2024); Fig. 16k). 

4 Atlantic Water layer states 

4.1 Parametric characterization of Atlantic Water core 635 

As demonstrated in Section 3, model biases predominantly manifest in two critical parameters: AW core temperature 

(AWCT) and depth (AWCD). These metrics, defined as the maximum temperature within 150–900 m depth and its 

corresponding depth (Khosravi et al., 2022; Shu et al., 2022; Wang et al., 2024), are employed to evaluate E3SMv2-MPAS's 
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performance in reproducing spatiotemporal features of AW (Fig. 17). Observational AWCT/AWCD datasets from Richards 

et al. (2022) reveal successful model reproduction of baseline spatial gradients: decreasing AWCT and increasing AWCD 640 

from the Eurasian to the Amerasian Basin, though with marked regional heterogeneity (Fig. 17a–d). Systematic 

overestimation of AWCT (+0.5°C) is identified in the western Eurasian Basin off-shelf regions (high-latitude sectors), while 

negative deviations (-0.5°C) occur in the Beaufort Sea. AWCD simulations demonstrate higher accuracy, with minor 

underestimation (ΔZ<100 m) in the eastern Eurasian Basin. 

 645 

Figure 17. (a–b) 1995–2018 climatological mean AWCT spatial distributions: (a) E3SMv2-MPAS vs. (b) observation from 

Richards et al. (2022). (c–d) The same as panels (a–b) but for AWCD. (e–f) Temporal evolution of basin-averaged AWCT (top 

row) and AWCD (bottom row) in the Eurasian Basin (e) and the Amerasian Basin (f): E3SMv2-MPAS (black) versus observations 

(red). 



32 

 

Interannual variability (1995–2018) is adequately captured through basin-averaged AWCT/AWCD magnitudes (Fig. 17e–f). 650 

However, post-2013 increases in AWCD in the Amerasian Basin remain unresolved. While demonstrating credibility in 

long-term trend simulations, model responsiveness to decadal-scale climatic shifts requires further optimization – critical for 

predicting nonlinear Atlantification trajectories. 

To address the systematic underestimation of Atlantification in model simulations (mentioned in Section 1), five key 

parameters are quantified: AWCT, AWCD, AW upper boundary (0°C isotherm; Meyer et al. (2017)), AW layer thickness 655 

(between 0°C isotherms), and AW heat content. By analyzing their spatiotemporal response characteristics, this study 

investigates the trans-decadal evolution of Atlantification. 

The AW heat content is calculated as follows (Polyakov et al., 2017): 

𝑄 = ∫ 𝜌𝑤
𝑧2
𝑧1

𝑐𝑝(𝜃 − 𝜃𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔)𝑑𝑧,                                                                        (5) 

where 𝑧1/𝑧2 denote layer boundaries, 𝜌𝑤 seawater density, 𝑐𝑝 specific heat of seawater, and 𝜃𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔 freezing temperature. 660 

Both basins exhibit coordinated changes during 1960s–1980s and 2000s–2020s: AWCT increases, AWCD decreases, AW 

upper boundary shallows, layer thickness expands, and heat content accumulates (Fig. 18). Post-2000s acceleration of these 

trends shows tight coupling with enhanced Atlantic meridional heat transport under Arctic amplification. E3SMv2-MPAS 

captures the key thermodynamic signatures of Atlantification (the Eurasian Basin vs. the Amerasian Basins between 2000–

2020), aligning closely with observationally derived mechanisms of AW intrusion and its climatic impacts  (Polyakov et al., 665 

2017): (1) A 1°C gradient in AWCT between the Eurasian and Amerasian Basins, consistent with zonal heat dissipation; (2) 

A 130-m shallower AWCD in the Eurasian Basin, reflecting intensified vertical mixing due to sea ice loss; (3) Synergistic 

changes in AW layer thickness and heat content (100 m thinner layer with +4000 MJ·m⁻² in the Eurasian Basin), confirming 

advective-diffusive redistribution. 

 670 

Figure 18. (a–b) 1960–1980 vs. 2000–2020 climatological mean AWCT in the (a) Eurasian basin (EB) and (b) Amerasian Basin 

(AAB). (c–j) The same as panels (a–b) but for AWCD (c–d), AW layer upper boundary depth (AWupdepth; e–f), thickness 

(AWthickness; g–h), and heat content (Q_AW; i–j). 
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This multi-scale validation confirms E3SMv2-MPAS's physical credibility in reproducing Atlantification mechanisms: 

cascading heat flux-stratification-heat content responses and inter-basin thermodynamic evolution. The model thus provides 675 

critical process fidelity for predicting Arctic oceanic thermal threshold transitions. 

4.2 Coupling between the Atlantic Water and surface layers 

The AW layer constitutes the most critical oceanic heat reservoir in the Arctic Ocean (Carmack et al., 2015), containing 

sufficient thermal energy to melt all Arctic sea ice within several years (Turner, 2010) and capable of dissolving 3–4 times 

the current ice volume (Carmack et al., 2015; Polyakov et al., 2020b). A pronounced halocline characterized by rapidly 680 

increasing salinity with depth typically separates the cold, low-salinity surface waters from the warm, saline AW in the 

Eurasian and Amerasian Basins. This strong stratification effectively inhibits vertical water mass exchange (Peralta-Ferriz 

and Woodgate, 2015), isolating the AW layer from sea ice and mixed layer interactions (Aagaard et al., 1981; Richards et al., 

2022). Under these physical constraints, vertical heat transport primarily occurs through molecular-scale processes involving 

internal wave breaking and double-diffusive mixing (Davis et al., 2016). However, since the 1970s, progressive weakening 685 

of the eastern Eurasian Basin halocline has been documented (Polyakov et al., 2010; Steele and Boyd, 1998), culminating in 

its complete failure as an effective thermal barrier for intermediate AW heat by the mid-2010s (Polyakov et al., 2020a). 

Stratification collapse has triggered a regime shift from double-diffusive dominance to shear-driven turbulent mixing, 

fundamentally altering vertical heat flux dynamics (Polyakov et al., 2020a). 

The KPP scheme employed by E3SMv2-MPAS driven by Gradient Ri physics (Zhu et al., 2022). This study evaluates 690 

whether this parameterization scheme, combined with the model's unstructured mesh capability, adequately resolves Arctic 

vertical thermal coupling features, particularly in the Eurasian Basin. A diagnostic framework based on spatiotemporal 

correlation analysis is established to quantify the thermal linkage between the upper (10 m) and intermediate (AW core layer, 

400 m) ocean layers. This analysis addresses two critical aspects: (1) spatiotemporal delay characteristics in vertical heat 

signal propagation relative to AW transport timescales, and (2) potential regime shifts in interlayer coupling mechanisms 695 

under climate warming. This diagnostic framework provides dynamic constraints for optimizing vertical mixing 

parameterizations while elucidating climate impacts of upper-ocean thermal variability. 

During 1960–1980 baseline conditions (zero time lag), statistically significant positive correlations (p<0.05) between AW 

layer and surface temperatures are confined to the Norwegian Sea, indicating direct advective heat modulation (Fig. 19a). 

Lagged correlation analysis reveals basin-scale inertial transport characteristics: localized positive correlations emerge in the 700 

Eurasian Basin at 24-month lag, expanding basin-wide by 36 months (Fig. 19b–h). This spatiotemporal inertia is attributed to: 

(1) Basin-scale recirculation timescales required for AW mass circumpolar transport (e.g., 2-year lag between the Fram 

Strait and the eastern Eurasian Basin 250 m temperatures; Polyakov et al. (2020b)), and (2) efficiency limitations in 

subsurface mixing processes. 
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 705 

Figure 19. (a) 1960–1980 climatological mean correlation between surface (5 m) and mid-depth (400 m) temperatures. (b–h) 

Lagged correlations at 6-month intervals (lag 6 mons to 42 mons). Black dots indicate significance (p<0.05). 

The 1995–2020 period exhibits fundamental regime transition: immediate basin-wide positive correlations (p<0.05) emerge 

along AW pathways (from the Fram Strait to the Eurasian Basin) under zero-lag conditions, maintaining stable correlation 

strength through 42-month lags (Fig. 20). This instantaneous response pattern reflects multiscale Arctic system changes: (1) 710 

Increased AWCT with decreased AWCD shortens vertical diffusion pathways, indicating intensified "Atlantification" 

(Polyakov et al., 2017); (2) Stratification weakening from sea ice loss enhances cross-layer turbulent mixing efficiency 

(Kwok, 2018; Onarheim et al., 2018; Polyakov et al., 2020a). 



35 

 

 

Figure 20. The same as Fig. 19, but for 1995–2020 period. 715 

A fundamental regime shift in Arctic intermediate-to-surface thermal coupling mechanisms under climate warming is 

revealed through cross-temporal-scale lagged correlation diagnostics: transitioning from historical basin-scale inertial 

transport patterns to contemporary instantaneous response modes. This regime shift, driven by altered AW thermohaline 

properties and reduced stratification stability, enhances vertical heat leakage efficiency from intermediate layers. Model 

evaluation demonstrates that while the KPP scheme captures accelerated heat transport trends, systematic biases persist in 720 

nonlinear responses to shear mixing (Figs. 19 and 20). Future research directions emphasize developing scale-aware 

parameterizations incorporating high-resolution turbulence observations to improve model capabilities in predicting Arctic 

energy transport regime shifts. 

5 Discussion  

5.1 Comparison with OMIP2 models under diverse grid configurations and resolutions 725 

To evaluate the performance of different ocean-sea ice coupled models in simulating the three-dimensional themohaline 

structure, particularly that of the intermediate AW layer, we further discuss five resolution-matched model pairs from 

OMIP2 (Wang et al., 2024). Thermohaline profile characteristics in the Eurasian and Amerasian Basins are systematically 

compared between high/low-resolution model pairs (solid/dashed lines), E3SMv2-MPAS, and WOA23 data (Locarnini et 

al., 2024; Reagan et al., 2024) to elucidate ocean model grid configuration impacts (Fig. 21).  730 

Low-resolution models exhibit systematic biases as follows: (1) Substantial underestimation of AWCT (e.g., <0°C in 

CMCC-NEMO_51km and FSU-HYCOM_32km), and (2) An inability to reproduce the characteristic vertical thermohaline 



36 

 

structure, wherein temperatures decline with depth after AWCD. These challenges are particularly pronounced in the 

Eurasian Basin influenced by the Fram Strait branch (one of two primary AW inflow pathways) compared to the Amerasian 

Basin. In contrast, their high-resolution counterparts (excluding IAP-LICOM-6.8km) demonstrate improved AWCT and 735 

vertical structure simulations. High-resolution models successfully reproduce observed zonal gradients showing AWCT 

decreasing from the Eurasian Basin (1.3°C@250 m) to the Amerasian Basin (0.7°C@400 m), confirming resolution 

enhancement benefits for oceanic frontal processes.  

In the Eurasian Basin where simulation biases are most pronounced, the majority of high-resolution models – with the 

exception of E3SMv2-MPAS (10 km) and FESOM variants (4.5/24 km) – continue to exhibit overestimated AW layer 740 

thickness (between 0°C isotherms). WOA23 observations indicate temperature decline to 0°C at 800 m depth, whereas most 

models (e.g., CMCC-NEMO_3.2km, FSU-HYCOM_3.6km and IAP-LICOM_6.8km) maintain ~0.5°C at the same depth 

(Fig. 21a). This persistent discrepancy demonstrates that resolution enhancement alone remains insufficient to fully resolve 

key technical bottlenecks in Arctic Intermediate Water simulations. Notably, E3SMv2-MPAS and FESOM models exhibit 

strong performance.  745 

 

Figure 21. (a–b) 1995–2014 climatological mean temperature profiles in (a) the Eurasian Basin and (b) the Amerasian Basin: 

Observations (WOA23; red), E3SMv2-MPAS (black), OMIP2 models (Wang et al. (2024); dashed: low-resolution, solid: high-

resolution). (c–d) The same as panels (a–b) but for salinity profiles. 
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Following the evaluation of the three-dimensional thermohaline structure simulations in the OMIP2 models, we further 750 

examine their capability to reproduce the spatial distribution of AWCT. As indicated by cross-validation within the OMIP2 

framework, among the five resolution-varied model groups, only FESOM_4.5km, MOM_3.6km, and HYCOM_3.6km 

demonstrate high AWCT spatial pattern simulation skills (Fig. 22). FESOM_4.5km outperforms E3SMv2-MPAS (10 km) in 

representing the western Eurasian Basin shelf-basin gradients, but underperforms in the Amerasian Basin (Fig. 22b–c). Low-

resolution models exhibit a systematic underestimation of AWCT, with FESOM_24km being the exception, reaffirming 755 

unstructured meshes' polar ocean modeling advantages (Fig. 22h–l). 

 

Figure 22. 1995–2018 climatological mean AWCT spatial patterns from (a) observations (Richards et al., 2022), (b) E3SMv2-

MPAS, and (c–l) OMIP2 models (Wang et al., 2024). Middle/bottom rows: High-resolution and corresponding low-resolution 

model pairs from OMIP2. 760 

Despite comparable resolutions to other high-resolution models (e.g., ACCESS-MOM 9 km, FSU-HYCOM 32 km), 

unstructured mesh configurations enable refined representation of key hydrographic gateways like the Fram Strait. 

Compared to tripolar grid models suffering numerical dissipation near complex coastlines, variable mesh designs achieve 

reduced the Eurasian Basin temperature errors under equivalent computational resources. Model grid type and computational 

efficiency exhibit nonlinear relationships. Unstructured meshes (FESOM/MPAS) permit dynamic optimization through 765 

localized refinement in critical regions (e.g., AW intrusion pathways). This targeted refinement strategy provides new 

technical approaches for Arctic ocean modeling, particularly under accelerating Atlantification processes. 
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5.2 Sources of systematic biases and trade-offs between resolution and parameterizations 

Analyses in Section 3 not only discussed the simulation biases of E3SMv2-MPAS but also traced their potential origins. For 

most biases, the primary causes can be attributed to inadequacies in physical parameterizations. First, the inadequate 770 

representation of eddy dynamics is a key source. For instance, the underestimation of freshening in the Amerasian Basin may 

result from the use of a fixed eddy diffusivity (κ=300 m2 s-1 in the Arctic), which oversmooths salinity fronts. Similarly, the 

model's failure to capture the seasonal variability of the AW layer likely stems from the invariant κ in the GM scheme, which 

cannot respond to the seasonal cycle of sea ice retreat and associated changes in stratification. Second, limitations in vertical 

mixing parameterizations act as another key source. The coordinated biases in SST, SSS, and SIC in the Greenland and 775 

Barents Seas, for example, may arise from the inherent limitations of the KPP scheme's single Ri-based approach in defining 

turbulent states and mixing intensities within complex dynamic environments. Additionally, the misrepresentation of the 

warming layer in the Eurasian Basin could be linked to inappropriate background diffusion coefficients within the KPP 

framework. 

Increasing model resolution presents an effective pathway to reduce reliance on empirical parameterizations by more directly 780 

resolving key physical processes, such as mesoscale eddies. Enhanced resolution can, to some extent, mitigate the 

inaccuracies of existing schemes. For instance, studies have shown that higher resolution improves the simulation of the AW 

layer's temperature, thickness, spatial distribution, and its decadal warming trends (Wang et al., 2024). However, the small 

Rossby radius of deformation (often ≤3 km) in the Arctic (Veneziani et al., 2022) implies that even with computationally 

feasible resolution increases, critical processes (e.g. mesoscale eddies, vertical mixing, and ice-ocean interactions) may 785 

remain under-resolved (Chassignet et al., 2020; Wang et al., 2018). Therefore, the development of more advanced physical 

parameterizations remains imperative. It is noteworthy that resolution increases have proven effective in improving the 

simulation of volume, heat, and freshwater transports through critical gateways such as the Fram Strait and Davis Strait 

(Wang et al., 2024). The Fram Strait, in particular, serves as a pivotal channel for Atlantic heat influx into the Arctic Ocean 

(Herbaut et al., 2022; Pnyushkov et al., 2021). In conclusion, we propose that a cost-effective strategy involves targetedly 790 

increasing resolution in key gateway regions while concurrently refining parameterizations for mesoscale eddies and vertical 

mixing. 

5.3 Limitations of the experimental design 

Due to computational resource constraints, this study adopted a two-phase simulation strategy with non-consecutive time 

periods: first, the model was integrated from 1958 to 1981, and the final state of this period was used as the initial condition 795 

to directly start the simulation for the 1995–2020 period. Although this approach effectively reduced computational costs, 

and both previous studies and our model diagnostics indicate that key upper-ocean and sea ice variables had reached a quasi-

equilibrium state by 1981, skipping the continuous integration of the 1982–1994 period may introduce certain limitations. 

For instance, the simulation of some medium- to long-term fluctuations or memory-dependent processes might be affected. 
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Should computational resources allow in the future, we will perform a continuous simulation from 1958 to 2020 to more 800 

accurately reproduce the evolution of the climate system. 

Furthermore, since only a single JRA55 forcing cycle was applied, the deep ocean and some physical quantities may not 

have fully departed from the influence of the initial PHC hydrographic fields or reached complete equilibrium. This could 

potentially affect the stability and initial-condition independence of the simulation results. In subsequent work, given 

sufficient resources, we plan to carry out at least three full JRA55 forcing cycles to promote more complete adjustment of 805 

the ocean state, reduce dependence on initial conditions, and thereby enable a more comprehensive and robust evaluation of 

the climate performance of the E3SMv2-MPAS. 

5.4 Limitations from the atmospheric forcing: the JRA55 warm bias 

The JRA55 reanalysis forcing data employed in E3SMv2-MPAS exhibits a known warm bias over the central Arctic deep 

basin (Batrak and Müller, 2019). This bias may systematically suppress sea ice growth and induce upper-ocean warming in 810 

the simulation by enhancing downward longwave radiation and reducing oceanic sensible heat loss. Therefore, the 

overestimated SST (Fig. 8c) and underestimated summer SIC (Fig. 4e–g) simulated in the central Arctic basin may be 

partially attributable to the inherent bias in the forcing data, rather than solely to inaccuracies in the model's physical 

processes.  

The enhanced ice melt driven by this warm bias releases additional freshwater, leading to a stronger and shallower 815 

freshwater layer (a more pronounced halocline) in the surface ocean, which significantly strengthens the stratification 

stability of the upper ocean. This inhibits vertical mixing between layers and impedes the upward heat transfer from the 

warmer, saltier AW below. This bias may partly explain the overestimation of the intermediate AW layer temperature 

alongside the underestimation of the mixed-layer temperature (Fig. 12e). Future work will consider employing alternative 

reanalysis products or applying bias-correction methods to better constrain the impact of forcing uncertainties on simulation 820 

results. 

6 Conclusions 

This study systematically evaluates the Arctic ocean-sea ice simulation capabilities of E3SMv2-MPAS through multi-source 

observations (in situ profiles, satellite remote sensing, optimum interpolation datasets) and reanalysis products (NSIDC, 

HadISST1, ERA5, PIOMAS, ORAS5), with focus on core parameters including sea ice 825 

(concentration/extent/thickness/volume; SIC/SIE/SIT/SIV), surface thermohaline properties (sea surface 

temperature/salinity; SST/SSS), three-dimensional thermohaline structures, freshwater content (FWC), gateway transports, 

Atlantic Water (AW) heat characteristics, and vertical thermal linkages. Spatial distribution patterns, seasonal-to-decadal 

variability, and three-dimensional evolutionary processes are comprehensively analyzed. 
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E3SMv2-MPAS demonstrates significant advantages in Arctic climatology simulations: (1) Accurate representation of 830 

spatial heterogeneity in SIC, SIT, and SST (Figs. 3–5, 8a–c); (2) Realistic simulation of interannual and decadal variability 

in SIC, SIE, SIT, SIV and SST, along with a highly consistent reproduction of the 1995–2020 SIC decline trend compared to 

NSIDC observation, outperforming Hadley and ERA5 reanalysis products (Fig. 7a); (3) Consistent SSS spatial patterns and 

seasonal evolution with leading reanalysis products including HYCOM and GLORYS12 (Fig. 9; Hall et al. (2021)); (4) 

Faithful reproduction of both the spatial distribution and long-term trend of Arctic FWC (Fig. 15); (5) Accurate simulation of 835 

volume, heat, and freshwater transports through key Arctic gateways, capturing their observed magnitudes and essential 

variability trends (Fig. 16). 

E3SMv2-MPAS demonstrates exceptional capability in simulating the three-dimensional thermohaline structure and 

variability of the AW layer, accurately capturing its key thermodynamic and dynamic processes in the Arctic Ocean: (1) 

Precise reproduction of AW layer thickness/depth and core temperature (Figs. 10 and 17); (2) Effective capture of AW 840 

warming trends including decadal-scale intermediate layer heating and vertical shoaling of warm cores (Figs. 11 and 13); (3) 

Realistic simulation of accelerated Atlantification processes, evidenced by post-2000 intensification in AW core temperature 

and heat content while reduced AW core depth, upper boundary and layer thickness, and instantaneous surface-intermediate 

heat transfer in the Eurasian Basin (Figs. 18–20). Additional breakthroughs include successful representation of solar-driven 

seasonal upper-ocean thermal cycles (Fig. 12) and inter-basin water mass gradient evolution from the Eurasian Basin to the 845 

Amerasian Basin (e.g., AW thermohaline attenuation, vertical stratification shifts, and surface freshwater transport effects; 

Fig. 14). These advancements establish critical numerical platforms for investigating Arctic stratification destabilization and 

cross-scale energy transfer mechanisms. 

Notwithstanding these achievements, key limitations persist: (1) Systematic overestimation of SIT in the Canadian Basin 

(0.5–1 m bias; Fig. 5); (2) Coordinated underestimation of SST/SSS and overestimation of SIC in the Greenland and Barent 850 

Seas (Figs. 3–4, 8a–c, 9a–c); (3) Residual overestimation of AW core temperature (0–1°C) and errors in seasonal 

Atlantification phase (Figs. 10 and 12); (4) Asymmetries in regional decadal thermohaline evolution (e.g., underestimated 

upper-layer warming and overestimated deep warming in the Eurasian Basin, unresolved mid-layer warming and upper-layer 

freshening trends in the Amerasian Basin; Fig. 13). 

This study confirms that E3SMv2-MPAS significantly enhances simulation capabilities for Arctic oceanic thermal structures 855 

and cross-layer coupling processes through high-resolution unstructured meshes, establishing crucial technical references for 

polar climate model development in the CMIP7 era.   
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Code and data availability. The E3SM model code is publicly available via the https://github.com/E3SM-

Project/E3SM/releases. Instructions on how to configure and execute E3SM are available at https://e3sm.org/model/running-

e3sm/e3sm-quick-start/. All simulations detailed in Section 2.1 can be regenerated by executing the code hosted in this 860 

repository: https://doi.org/10.5281/zenodo.15493256 (Lv, 2025). Preprocessing of E3SMv2-MPAS outputs utilized nco-

5.1.1, accessible through the https://nco.sourceforge.net/. The JRA55-v1.5 atmospheric forcing data driving the simulations 

were obtained from the https://aims2.llnl.gov/search/input4mips/. ETOPO 2022 bathymetry was derived from the 

https://www.ncei.noaa.gov/products/etopo-global-relief-model. Model evaluations employed the following observational and 

reanalysis products: Sea ice concentration: NSIDC (https://noaadata.apps.nsidc.org/NOAA/G02202_V4/north/aggregate/), 865 

Met Office Hadley Centre observational datasets (https://www.metoffice.gov.uk/hadobs/), and ERA5 monthly single-level 

data (https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=overview); Sea ice extent: 

NSIDC (https://doi.org/10.7265/N5K072F8); Sea ice thickness and sea ice volume: PIOMAS 

(http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/model_grid), PIOMAS-20C reconstruction 

(https://psc.apl.uw.edu/research/projects/piomas-20c/) and CS2SMOS gridded products 870 

(https://data.meereisportal.de/data/cs2smos_awi/v206/n); Sea surface properties: OISST 

(https://www.ncei.noaa.gov/products/optimum-interpolation-sst) and OISSS (https://www.esr.org/data-

products/oisss/overview/); Oceanographic profiles: WOA2023 (https://www.ncei.noaa.gov/products/world-ocean-atlas), 

EN.4.2.2 objective analyses (https://www.metoffice.gov.uk/hadobs/en4/); Sea surface height: ORAS5 

(https://cds.climate.copernicus.eu/datasets/reanalysis-oras5?tab=overview); Ocean heat content: IAP 875 

(http://www.ocean.iap.ac.cn/ftp/cheng/IAPv4.2_Ocean_heat_content_0_6000m/); Surface albedo: CLARA-A3 

(https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V003). In situ observational profiles from four key Arctic 

regions (the western/eastern Eurasian Basin, the Chukchi Sea, and the Beaufort Sea), thermohaline profiles and Atlantic 

Water core temperature outputs from five OMIP2 ensemble groups, and Atlantic Water core temperature and depth 

observational benchmarks, are described in the main text. Detailed metadata specifications and data access instructions for 880 

these datasets are provided in the corresponding references cited therein. 

 

 

Author contributions. XL led the manuscript writing and paper analysis. XL, YC, and HD performed the installation, 

configuration, and execution of the E3SMv2-MPAS model. HW, KR, and YW were primarily responsible for the 885 

conceptualization of the study and manuscript revisions. All co-authors reviewed and commented on the final version of the 

manuscript. 

 

 

Competing interests. No competing interests are present. 890 

 

https://github.com/E3SM-Project/E3SM/releases
https://github.com/E3SM-Project/E3SM/releases
https://e3sm.org/model/running-e3sm/e3sm-quick-start/
https://e3sm.org/model/running-e3sm/e3sm-quick-start/
https://doi.org/10.5281/zenodo.15493256
https://nco.sourceforge.net/
https://aims2.llnl.gov/search/input4mips/
https://www.ncei.noaa.gov/products/etopo-global-relief-model
https://noaadata.apps.nsidc.org/NOAA/G02202_V4/north/aggregate/
https://www.metoffice.gov.uk/hadobs/
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=overview
http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/model_grid
https://www.ncei.noaa.gov/products/optimum-interpolation-sst
https://www.esr.org/data-products/oisss/overview/
https://www.esr.org/data-products/oisss/overview/
https://www.ncei.noaa.gov/products/world-ocean-atlas
https://www.metoffice.gov.uk/hadobs/en4/
https://cds.climate.copernicus.eu/datasets/reanalysis-oras5?tab=overview
http://www.ocean.iap.ac.cn/ftp/cheng/IAPv4.2_Ocean_heat_content_0_6000m/


42 

 

 

Acknowledgments. The public availability of different observational data sets and reanalysis data used in this work is a great 

help for model development, so the efforts of respective working groups are appreciated. This work was supported by the 

National Key R&D Program of China (Grant No. 2021YFC3101503), the Science and Technology Innovation Program of 895 

Hunan Province (Grant No.2022RC3070), the National Natural Science Foundation of China (Grant No. 42305176), the 

Hunan Provincial Natural Science Foundation of China (Grant No. 2023JJ10053), the National Natural Science Foundation 

of China (Grant No. 42276205) and the Hunan Provincial Science and Technology Innovation Leading Talent Fund. 

  



43 

 

References 900 

Aagaard, K. and Carmack, E. C.: The role of sea ice and other fresh water in the Arctic circulation, J. Geophys. Res., 94, 

14485–14498, https://doi.org/10.1029/JC094iC10p14485, 1989. 

Aagaard, K., Coachman, L. K., and Carmack, E.: On the halocline of the Arctic Ocean, Deep Sea Research Part A. 

Oceanographic Research Papers, 28, 529–545, https://doi.org/10.1016/0198-0149(81)90115-1, 1981. 

Aksenov, Y., Karcher, M., Proshutinsky, A., Gerdes, R., De Cuevas, B., Golubeva, E., Kauker, F., Nguyen, A. T., Platov, G. 905 

A., Wadley, M., Watanabe, E., Coward, A. C., and Nurser, A. J. G.: Arctic pathways of P acific W ater: Arctic O cean M 

odel I ntercomparison experiments, JGR Oceans, 121, 27–59, https://doi.org/10.1002/2015JC011299, 2016. 

Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, Ø., and Ingvaldsen, R. B.: Quantifying the Influence of Atlantic Heat on 

Barents Sea Ice Variability and Retreat*, Journal of Climate, 25, 4736–4743, https://doi.org/10.1175/JCLI-D-11-00466.1, 

2012. 910 

Årthun, M., Eldevik, T., and Smedsrud, L. H.: The Role of Atlantic Heat Transport in Future Arctic Winter Sea Ice Loss, 

Journal of Climate, 32, 3327–3341, https://doi.org/10.1175/JCLI-D-18-0750.1, 2019. 

Arzel, O., Fichefet, T., Goosse, H., and Dufresne, J.-L.: Causes and impacts of changes in the Arctic freshwater budget 

during the twentieth and twenty-first centuries in an AOGCM, Clim Dyn, 30, 37–58, https://doi.org/10.1007/s00382-007-

0258-5, 2007. 915 

Barton, B. I., Lenn, Y.-D., and Lique, C.: Observed Atlantification of the Barents Sea Causes the Polar Front to Limit the 

Expansion of Winter Sea Ice, Journal of Physical Oceanography, 48, 1849–1866, https://doi.org/10.1175/JPO-D-18-0003.1, 

2018. 

Batrak, Y. and Müller, M.: On the warm bias in atmospheric reanalyses induced by the missing snow over Arctic sea-ice, 

Nat Commun, 10, 4170, https://doi.org/10.1038/s41467-019-11975-3, 2019. 920 

Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, 

G., Cheung, W. W. L., Connors, S., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., 

Jones, C., Jotzo, F., Krug, T., Lasco, R., Lee, Y.-Y., Masson-Delmotte, V., Meinshausen, M., Mintenbeck, K., Mokssit, A., 

Otto, F. E. L., Pathak, M., Pirani, A., Poloczanska, E., Pörtner, H.-O., Revi, A., Roberts, D. C., Roy, J., Ruane, A. C., Skea, 

J., Shukla, P. R., Slade, R., Slangen, A., Sokona, Y., Sörensson, A. A., Tignor, M., Van Vuuren, D., Wei, Y.-M., Winkler, 925 

H., Zhai, P., Zommers, Z., Hourcade, J.-C., Johnson, F. X., Pachauri, S., Simpson, N. P., Singh, C., Thomas, A., Totin, E., 

Arias, P., Bustamante, M., Elgizouli, I., Flato, G., Howden, M., Méndez-Vallejo, C., Pereira, J. J., Pichs-Madruga, R., Rose, 

S. K., Saheb, Y., Sánchez Rodríguez, R., Ürge-Vorsatz, D., Xiao, C., Yassaa, N., Alegría, A., Armour, K., Bednar-Friedl, B., 

Blok, K., Cissé, G., Dentener, F., Eriksen, S., Fischer, E., Garner, G., Guivarch, C., Haasnoot, M., Hansen, G., Hauser, M., 

Hawkins, E., Hermans, T., Kopp, R., Leprince-Ringuet, N., Lewis, J., Ley, D., Ludden, C., Niamir, L., Nicholls, Z., Some, 930 

S., Szopa, S., Trewin, B., Van Der Wijst, K.-I., Winter, G., Witting, M., Birt, A., Ha, M., et al.: IPCC, 2023: Climate Change 

2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the 

Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, 

Switzerland., Intergovernmental Panel on Climate Change (IPCC), https://doi.org/10.59327/IPCC/AR6-9789291691647, 

2023. 935 

Carmack, E., Polyakov, I., Padman, L., Fer, I., Hunke, E., Hutchings, J., Jackson, J., Kelley, D., Kwok, R., Layton, C., 

Melling, H., Perovich, D., Persson, O., Ruddick, B., Timmermans, M.-L., Toole, J., Ross, T., Vavrus, S., and Winsor, P.: 

Toward Quantifying the Increasing Role of Oceanic Heat in Sea Ice Loss in the New Arctic, Bulletin of the American 

Meteorological Society, 96, 2079–2105, https://doi.org/10.1175/BAMS-D-13-00177.1, 2015. 



44 

 

Chassignet, E. P., Yeager, S. G., Fox-Kemper, B., Bozec, A., Castruccio, F., Danabasoglu, G., Horvat, C., Kim, W. M., 940 

Koldunov, N., Li, Y., Lin, P., Liu, H., Sein, D. V., Sidorenko, D., Wang, Q., and Xu, X.: Impact of horizontal resolution on 

global ocean–sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project 

phase 2 (OMIP-2), Geosci. Model Dev., 13, 4595–4637, https://doi.org/10.5194/gmd-13-4595-2020, 2020. 

Chen, C., Gao, G., Zhang, Y., Beardsley, R. C., Lai, Z., Qi, J., and Lin, H.: Circulation in the Arctic Ocean: Results from a 

high-resolution coupled ice-sea nested Global-FVCOM and Arctic-FVCOM system, Progress in Oceanography, 141, 60–80, 945 

https://doi.org/10.1016/j.pocean.2015.12.002, 2016. 

Cheng, L., Trenberth, K. E., Fasullo, J., Boyer, T., Abraham, J., and Zhu, J.: Improved estimates of ocean heat content from 

1960 to 2015, Sci. Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545, 2017. 

Cheng, L., Trenberth, K. E., Gruber, N., Abraham, J. P., Fasullo, J. T., Li, G., Mann, M. E., Zhao, X., and Zhu, J.: Improved 

Estimates of Changes in Upper Ocean Salinity and the Hydrological Cycle, Journal of Climate, 33, 10357–10381, 950 

https://doi.org/10.1175/JCLI-D-20-0366.1, 2020. 

Cheng, L., Pan, Y., Tan, Z., Zheng, H., Zhu, Y., Wei, W., Du, J., Yuan, H., Li, G., Ye, H., Gouretski, V., Li, Y., Trenberth, 

K. E., Abraham, J., Jin, Y., Reseghetti, F., Lin, X., Zhang, B., Chen, G., Mann, M. E., and Zhu, J.: IAPv4 ocean temperature 

and ocean heat content gridded dataset, Earth Syst. Sci. Data, 16, 3517–3546, https://doi.org/10.5194/essd-16-3517-2024, 

2024. 955 

Curry, B., Lee, C. M., Petrie, B., Moritz, R. E., and Kwok, R.: Multiyear Volume, Liquid Freshwater, and Sea Ice Transports 

through Davis Strait, 2004–10*, Journal of Physical Oceanography, 44, 1244–1266, https://doi.org/10.1175/JPO-D-13-

0177.1, 2014. 

Danilov, S., Sidorenko, D., Wang, Q., and Jung, T.: The Finite-volumE Sea ice–Ocean Model (FESOM2), Geosci. Model 

Dev., 10, 765–789, https://doi.org/10.5194/gmd-10-765-2017, 2017. 960 

D’Asaro, E. A.: The Energy Flux from the Wind to Near-Inertial Motions in the Surface Mixed Layer, 1985. 

Davis, P. E. D., Lique, C., Johnson, H. L., and Guthrie, J. D.: Competing Effects of Elevated Vertical Mixing and Increased 

Freshwater Input on the Stratification and Sea Ice Cover in a Changing Arctic Ocean, Journal of Physical Oceanography, 46, 

1531–1553, https://doi.org/10.1175/JPO-D-15-0174.1, 2016. 

Docquier, D. and Koenigk, T.: A review of interactions between ocean heat transport and Arctic sea ice, Environ. Res. Lett., 965 

16, 123002, https://doi.org/10.1088/1748-9326/ac30be, 2021. 

Dörr, J., Årthun, M., Eldevik, T., and Madonna, E.: Mechanisms of Regional Winter Sea-Ice Variability in a Warming 

Arctic, Journal of Climate, 34, 8635–8653, https://doi.org/10.1175/JCLI-D-21-0149.1, 2021. 

Fetterer, F. ; K. K. ; M. W. ; S. M. ; W. A.: Sea Ice Index, Version 3, https://doi.org/10.7265/N5K072F8, 2017. 

Fu, C., Pennelly, C., Garcia‐Quintana, Y., and Myers, P. G.: Pulses of Cold Atlantic Water in the Arctic Ocean From an 970 

Ocean Model Simulation, JGR Oceans, 128, e2023JC019663, https://doi.org/10.1029/2023JC019663, 2023. 

Gent, P. R. and Mcwilliams, J. C.: Isopycnal Mixing in Ocean Circulation Models, Journal of Physical Oceanography, 20, 

150–155, https://doi.org/10.1175/1520-0485(1990)020%3C0150:IMIOCM%3E2.0.CO;2, 1990. 

Golaz, J., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., Abeshu, G., Anantharaj, V., Asay‐

Davis, X. S., Bader, D. C., Baldwin, S. A., Bisht, G., Bogenschutz, P. A., Branstetter, M., Brunke, M. A., Brus, S. R., 975 



45 

 

Burrows, S. M., Cameron‐Smith, P. J., Donahue, A. S., Deakin, M., Easter, R. C., Evans, K. J., Feng, Y., Flanner, M., 

Foucar, J. G., Fyke, J. G., Griffin, B. M., Hannay, C., Harrop, B. E., Hoffman, M. J., Hunke, E. C., Jacob, R. L., Jacobsen, 

D. W., Jeffery, N., Jones, P. W., Keen, N. D., Klein, S. A., Larson, V. E., Leung, L. R., Li, H., Lin, W., Lipscomb, W. H., 

Ma, P., Mahajan, S., Maltrud, M. E., Mametjanov, A., McClean, J. L., McCoy, R. B., Neale, R. B., Price, S. F., Qian, Y., 

Rasch, P. J., Reeves Eyre, J. E. J., Riley, W. J., Ringler, T. D., Roberts, A. F., Roesler, E. L., Salinger, A. G., Shaheen, Z., 980 

Shi, X., Singh, B., Tang, J., Taylor, M. A., Thornton, P. E., Turner, A. K., Veneziani, M., Wan, H., Wang, H., Wang, S., 

Williams, D. N., Wolfram, P. J., Worley, P. H., Xie, S., Yang, Y., Yoon, J., Zelinka, M. D., Zender, C. S., Zeng, X., Zhang, 

C., Zhang, K., Zhang, Y., Zheng, X., Zhou, T., and Zhu, Q.: The DOE E3SM Coupled Model Version 1: Overview and 

Evaluation at Standard Resolution, J Adv Model Earth Syst, 11, 2089–2129, https://doi.org/10.1029/2018MS001603, 2019. 

Golaz, J., Van Roekel, L. P., Zheng, X., Roberts, A. F., Wolfe, J. D., Lin, W., Bradley, A. M., Tang, Q., Maltrud, M. E., 985 

Forsyth, R. M., Zhang, C., Zhou, T., Zhang, K., Zender, C. S., Wu, M., Wang, H., Turner, A. K., Singh, B., Richter, J. H., 

Qin, Y., Petersen, M. R., Mametjanov, A., Ma, P., Larson, V. E., Krishna, J., Keen, N. D., Jeffery, N., Hunke, E. C., Hannah, 

W. M., Guba, O., Griffin, B. M., Feng, Y., Engwirda, D., Di Vittorio, A. V., Dang, C., Conlon, L. M., Chen, C., Brunke, M. 

A., Bisht, G., Benedict, J. J., Asay‐Davis, X. S., Zhang, Y., Zhang, M., Zeng, X., Xie, S., Wolfram, P. J., Vo, T., Veneziani , 

M., Tesfa, T. K., Sreepathi, S., Salinger, A. G., Reeves Eyre, J. E. J., Prather, M. J., Mahajan, S., Li, Q., Jones, P. W., Jacob, 990 

R. L., Huebler, G. W., Huang, X., Hillman, B. R., Harrop, B. E., Foucar, J. G., Fang, Y., Comeau, D. S., Caldwell, P. M., 

Bartoletti, T., Balaguru, K., Taylor, M. A., McCoy, R. B., Leung, L. R., and Bader, D. C.: The DOE E3SM Model Version 

2: Overview of the Physical Model and Initial Model Evaluation, J Adv Model Earth Syst, 14, e2022MS003156, 

https://doi.org/10.1029/2022MS003156, 2022. 

Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean temperature and salinity profiles and monthly 995 

objective analyses with uncertainty estimates, JGR Oceans, 118, 6704–6716, https://doi.org/10.1002/2013JC009067, 2013. 

Haine, T. W. N., Curry, B., Gerdes, R., Hansen, E., Karcher, M., Lee, C., Rudels, B., Spreen, G., De Steur, L., Stewart, K. 

D., and Woodgate, R.: Arctic freshwater export: Status, mechanisms, and prospects, Global and Planetary Change, 125, 13–

35, https://doi.org/10.1016/j.gloplacha.2014.11.013, 2015. 

Haine, T. W. N., Siddiqui, A. H., and Jiang, W.: Arctic freshwater impact on the Atlantic Meridional Overturning 1000 

Circulation: status and prospects, Phil. Trans. R. Soc. A., 381, 20220185, https://doi.org/10.1098/rsta.2022.0185, 2023. 

Hall, S. B., Subrahmanyam, B., and Morison, J. H.: Intercomparison of Salinity Products in the Beaufort Gyre and Arctic 

Ocean, Remote Sensing, 14, 71, https://doi.org/10.3390/rs14010071, 2021. 

Heidinger, A. K., Straka, W. C., Molling, C. C., Sullivan, J. T., and Wu, X.: Deriving an inter-sensor consistent calibration 

for the AVHRR solar reflectance data record, International Journal of Remote Sensing, 31, 6493–6517, 1005 

https://doi.org/10.1080/01431161.2010.496472, 2010. 

Herbaut, C., Houssais, M., Blaizot, A., and Molines, J.: A Role for the Ocean in the Winter Sea Ice Distribution North of 

Svalbard, JGR Oceans, 127, e2021JC017852, https://doi.org/10.1029/2021JC017852, 2022. 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., 

Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, 1010 

M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., 

Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., 

Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q.J.R. Meteorol. Soc., 146, 

1999–2049, https://doi.org/10.1002/qj.3803, 2020. 

Heuzé, C., Zanowski, H., Karam, S., and Muilwijk, M.: The Deep Arctic Ocean and Fram Strait in CMIP6 Models, Journal 1015 

of Climate, 36, 2551–2584, https://doi.org/10.1175/JCLI-D-22-0194.1, 2023. 



46 

 

Hinrichs, C., Wang, Q., Koldunov, N., Mu, L., Semmler, T., Sidorenko, D., and Jung, T.: Atmospheric Wind Biases: A 

Challenge for Simulating the Arctic Ocean in Coupled Models?, JGR Oceans, 126, e2021JC017565, 

https://doi.org/10.1029/2021JC017565, 2021. 

Hoch, K. E., Petersen, M. R., Brus, S. R., Engwirda, D., Roberts, A. F., Rosa, K. L., and Wolfram, P. J.: MPAS‐Ocean 1020 

Simulation Quality for Variable‐Resolution North American Coastal Meshes, J Adv Model Earth Syst, 12, e2019MS001848, 

https://doi.org/10.1029/2019MS001848, 2020. 

Holloway, G., Dupont, F., Golubeva, E., Häkkinen, S., Hunke, E., Jin, M., Karcher, M., Kauker, F., Maltrud, M., Morales 

Maqueda, M. A., Maslowski, W., Platov, G., Stark, D., Steele, M., Suzuki, T., Wang, J., and Zhang, J.: Water properties and 

circulation in Arctic Ocean models, J. Geophys. Res., 112, 2006JC003642, https://doi.org/10.1029/2006JC003642, 2007. 1025 

Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T., and Zhang, H.-M.: Improvements of the 

Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1, Journal of Climate, 34, 2923–2939, 

https://doi.org/10.1175/JCLI-D-20-0166.1, 2021. 

Huo, Y., Wang, H., Veneziani, M., Comeau, D., Osinski, R., Hillman, B. R., Roesler, E. L., Maslowski, W., Rasch, P. J., 

Weijer, W., Baxter, I., Fu, Q., Garuba, O. A., Ma, W., Seefeldt, M. W., Sweeney, A. J., Wu, M., Zhang, J., Zhang, X., 1030 

Zhang, Y., Asay-Davis, X. S., Craig, A., Lee, Y. J., and Zhang, S.: E3SM-Arctic: Regionally Refined Coupled Model for 

Advanced Understanding of Arctic Systems Interactions, https://doi.org/10.22541/essoar.172745745.54113167/v1, 27 

September 2024. 

Ilıcak, M., Drange, H., Wang, Q., Gerdes, R., Aksenov, Y., Bailey, D., Bentsen, M., Biastoch, A., Bozec, A., Böning, C., 

Cassou, C., Chassignet, E., Coward, A. C., Curry, B., Danabasoglu, G., Danilov, S., Fernandez, E., Fogli, P. G., Fujii, Y., 1035 

Griffies, S. M., Iovino, D., Jahn, A., Jung, T., Large, W. G., Lee, C., Lique, C., Lu, J., Masina, S., George Nurser, A. J., 

Roth, C., Salas Y Mélia, D., Samuels, B. L., Spence, P., Tsujino, H., Valcke, S., Voldoire, A., Wang, X., and Yeager, S. G.: 

An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes, Ocean 

Modelling, 100, 141–161, https://doi.org/10.1016/j.ocemod.2016.02.004, 2016. 

Karami, M. P., Myers, P. G., De Vernal, A., Tremblay, L. B., and Hu, X.: The role of Arctic gateways on sea ice and 1040 

circulation in the Arctic and North Atlantic Oceans: a sensitivity study with an ocean-sea-ice model, Clim Dyn, 57, 2129–

2151, https://doi.org/10.1007/s00382-021-05798-6, 2021. 

Karlsson, K.-G., Riihelä, A., Trentmann, J., Stengel, M., Solodovnik, I., Meirink, J. F., Devasthale, A., Jääskeläinen, E., 

Kallio-Myers, V., Eliasson, S., Benas, N., Johansson, E., Stein, D., Finkensieper, S., Håkansson, N., Akkermans, T., 

Clerbaux, N., Selbach, N., Marc, S., and Hollmann, R.: CLARA-A3: CM SAF cLoud, Albedo and surface RAdiation dataset 1045 

from AVHRR data - Edition 3 (3.0), https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V003, 2023. 

Karpouzoglou, T., De Steur, L., Smedsrud, L. H., and Sumata, H.: Observed Changes in the Arctic Freshwater Outflow in 

Fram Strait, JGR Oceans, 127, e2021JC018122, https://doi.org/10.1029/2021JC018122, 2022. 

Kelly, S. J., Proshutinsky, A., Popova, E. K., Aksenov, Y. K., and Yool, A.: On the Origin of Water Masses in the Beaufort 

Gyre, JGR Oceans, 124, 4696–4709, https://doi.org/10.1029/2019JC015022, 2019. 1050 

Khosravi, N., Wang, Q., Koldunov, N., Hinrichs, C., Semmler, T., Danilov, S., and Jung, T.: The Arctic Ocean in CMIP6 

Models: Biases and Projected Changes in Temperature and Salinity, Earth’s Future, 10, e2021EF002282, 

https://doi.org/10.1029/2021EF002282, 2022. 

Kwok, R.: Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018), 

Environ. Res. Lett., 13, 105005, https://doi.org/10.1088/1748-9326/aae3ec, 2018. 1055 



47 

 

Landrum, L. and Holland, M. M.: Extremes become routine in an emerging new Arctic, Nat. Clim. Chang., 10, 1108–1115, 

https://doi.org/10.1038/s41558-020-0892-z, 2020. 

Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A review and a model with a nonlocal 

boundary layer parameterization, Reviews of Geophysics, 32, 363–403, https://doi.org/10.1029/94RG01872, 1994. 

Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R., Kwok, R., Schweiger, A., Zhang, J., Haas, 1060 

C., Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M.: CryoSat‐2 estimates of Arctic sea ice thickness 

and volume, Geophysical Research Letters, 40, 732–737, https://doi.org/10.1002/grl.50193, 2013. 

Liang, X. and Losch, M.: On the Effects of Increased Vertical Mixing on the Arctic Ocean and Sea Ice, JGR Oceans, 123, 

9266–9282, https://doi.org/10.1029/2018JC014303, 2018. 

Lind, S., Ingvaldsen, R. B., and Furevik, T.: Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice 1065 

import, Nature Clim Change, 8, 634–639, https://doi.org/10.1038/s41558-018-0205-y, 2018. 

Lipscomb, W. H. and Ringler, T. D.: An Incremental Remapping Transport Scheme on a Spherical Geodesic Grid, Monthly 

Weather Review, 133, 2335–2350, https://doi.org/10.1175/MWR2983.1, 2005. 

Liu, W., Liu, Y., and Zhao, S.: Global mode simulation results comparison between icosahedron spherical mesh and latitude-

longitude mesh in China, Journal of Nanjing University of Information Science and Technology: Natural Science Edition, 8, 1070 

146–151, https://doi.org/10.13878/j.cnki.jnuist.2016.02.006, 2016. 

Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Reagan, J. R., Boyer, T. P., Seidov, D., Wang, Z., Garcia, H. E., 

Bouchard, C., Cross, S. L., Paver, C. R., and Dukhovskoy, D.: World Ocean Atlas 2023, Volume 1: Temperature, 

https://doi.org/10.25923/54BH-1613, 2024. 

Long, Z., Perrie, W., Zhang, M., and Liu, Y.: Responses of Atlantic Water Inflow Through Fram Strait to Arctic Storms, 1075 

Geophysical Research Letters, 51, e2023GL107777, https://doi.org/10.1029/2023GL107777, 2024. 

Lv, X. (2025). E3SMv2-MPAS. Zenodo. https://doi.org/10.5281/zenodo.15493256 

Meier, W., Fetterer, F., Windnagel, A., and Stewart, S.: NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice 

Concentration, Version 4, https://doi.org/10.7265/EFMZ-2T65, 2021. 

Melnichenko, O., Hacker, P., Maximenko, N., Lagerloef, G., and Potemra, J.: Optimum interpolation analysis of A quarius 1080 

sea surface salinity, JGR Oceans, 121, 602–616, https://doi.org/10.1002/2015JC011343, 2016. 

Meyer, A., Fer, I., Sundfjord, A., and Peterson, A. K.: Mixing rates and vertical heat fluxes north of Svalbard from Arctic 

winter to spring, Journal of Geophysical Research: Oceans, 122, 4569–4586, https://doi.org/10.1002/2016JC012441, 2017. 

Muilwijk, M., Nummelin, A., Heuzé, C., Polyakov, I. V., Zanowski, H., and Smedsrud, L. H.: Divergence in Climate Model 

Projections of Future Arctic Atlantification, Journal of Climate, 36, 1727–1748, https://doi.org/10.1175/JCLI-D-22-0349.1, 1085 

2023. 

Onarheim, I. H., Eldevik, T., Smedsrud, L. H., and Stroeve, J. C.: Seasonal and Regional Manifestation of Arctic Sea Ice 

Loss, J. Climate, 31, 4917–4932, https://doi.org/10.1175/JCLI-D-17-0427.1, 2018. 



48 

 

Pan, R., Shu, Q., Wang, Q., Wang, S., Song, Z., He, Y., and Qiao, F.: Future Arctic Climate Change in CMIP6 Strikingly 

Intensified by NEMO‐Family Climate Models, Geophysical Research Letters, 50, e2022GL102077, 1090 

https://doi.org/10.1029/2022GL102077, 2023. 

Peralta-Ferriz, C. and Woodgate, R. A.: Seasonal and interannual variability of pan-Arctic surface mixed layer properties 

from 1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling, 

Progress in Oceanography, 134, 19–53, https://doi.org/10.1016/j.pocean.2014.12.005, 2015. 

Petersen, M. R., Asay‐Davis, X. S., Berres, A. S., Chen, Q., Feige, N., Hoffman, M. J., Jacobsen, D. W., Jones, P. W., 1095 

Maltrud, M. E., Price, S. F., Ringler, T. D., Streletz, G. J., Turner, A. K., Van Roekel, L. P., Veneziani, M., Wolfe, J. D., 

Wolfram, P. J., and Woodring, J. L.: An Evaluation of the Ocean and Sea Ice Climate of E3SM Using MPAS and 

Interannual CORE‐II Forcing, J Adv Model Earth Syst, 11, 1438–1458, https://doi.org/10.1029/2018MS001373, 2019. 

Pnyushkov, A. V., Polyakov, I. V., Alekseev, G. V., Ashik, I. M., Baumann, T. M., Carmack, E. C., Ivanov, V. V., and 

Rember, R.: A Steady Regime of Volume and Heat Transports in the Eastern Arctic Ocean in the Early 21st Century, Front. 1100 

Mar. Sci., 8, 705608, https://doi.org/10.3389/fmars.2021.705608, 2021. 

Polyakov, I. V., Beszczynska, A., Carmack, E. C., Dmitrenko, I. A., Fahrbach, E., Frolov, I. E., Gerdes, R., Hansen, E., 

Holfort, J., Ivanov, V. V., Johnson, M. A., Karcher, M., Kauker, F., Morison, J., Orvik, K. A., Schauer, U., Simmons, H. L., 

Skagseth, Ø., Sokolov, V. T., Steele, M., Timokhov, L. A., Walsh, D., and Walsh, J. E.: One more step toward a warmer 

Arctic, Geophysical Research Letters, 32, 2005GL023740, https://doi.org/10.1029/2005GL023740, 2005. 1105 

Polyakov, I. V., Timokhov, L. A., Alexeev, V. A., Bacon, S., Dmitrenko, I. A., Fortier, L., Frolov, I. E., Gascard, J. -C., 

Hansen, E., Ivanov, V. V., Laxon, S., Mauritzen, C., Perovich, D., Shimada, K., Simmons, H. L., Sokolov, V. T., Steele, M., 

and Toole, J.: Arctic Ocean Warming Contributes to Reduced Polar Ice Cap, Journal of Physical Oceanography, 40, 2743–

2756, https://doi.org/10.1175/2010JPO4339.1, 2010. 

Polyakov, I. V., Bhatt, U. S., Walsh, J. E., Abrahamsen, E. P., Pnyushkov, A. V., and Wassmann, P. F.: Recent oceanic 1110 

changes in the Arctic in the context of long‐term observations, Ecological Applications, 23, 1745–1764, 

https://doi.org/10.1890/11-0902.1, 2013. 

Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T. M., Carmack, E. C., Goszczko, I., Guthrie, J., 

Ivanov, V. V., Kanzow, T., Krishfield, R., Kwok, R., Sundfjord, A., Morison, J., Rember, R., and Yulin, A.: Greater role for 

Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean, Science, 356, 285–291, 1115 

https://doi.org/10.1126/science.aai8204, 2017. 

Polyakov, I. V., Alkire, M. B., Bluhm, B. A., Brown, K. A., Carmack, E. C., Chierici, M., Danielson, S. L., Ellingsen, I., 

Ershova, E. A., Gårdfeldt, K., Ingvaldsen, R. B., Pnyushkov, A. V., Slagstad, D., and Wassmann, P.: Borealization of the 

Arctic Ocean in Response to Anomalous Advection From Sub-Arctic Seas, Front. Mar. Sci., 7, 491, 

https://doi.org/10.3389/fmars.2020.00491, 2020a. 1120 

Polyakov, I. V., Rippeth, T. P., Fer, I., Alkire, M. B., Baumann, T. M., Carmack, E. C., Ingvaldsen, R., Ivanov, V. V., 

Janout, M., Lind, S., Padman, L., Pnyushkov, A. V., and Rember, R.: Weakening of Cold Halocline Layer Exposes Sea Ice 

to Oceanic Heat in the Eastern Arctic Ocean, Journal of Climate, 33, 8107–8123, https://doi.org/10.1175/JCLI-D-19-0976.1, 

2020b. 

Polyakov, I. V., Mayer, M., Tietsche, S., and Karpechko, A. Yu.: Climate Change Fosters Competing Effects of Dynamics 1125 

and Thermodynamics in Seasonal Predictability of Arctic Sea Ice, Journal of Climate, 35, 2849–2865, 

https://doi.org/10.1175/JCLI-D-21-0463.1, 2022. 



49 

 

Polyakov, I. V., Pnyushkov, A. V., Charette, M., Cho, K.-H., Jung, J., Kipp, L., Muilwijk, M., Whitmore, L., Yang, E. J., 

and Yoo, J.: Atlantification advances into the Amerasian Basin of the Arctic Ocean, Science AdvAnceS, 2025. 

Proshutinsky, A., Krishfield, R., Toole, J. M., Timmermans, M. ‐L., Williams, W., Zimmermann, S., Yamamoto‐Kawai, M., 1130 

Armitage, T. W. K., Dukhovskoy, D., Golubeva, E., Manucharyan, G. E., Platov, G., Watanabe, E., Kikuchi, T., Nishino, S., 

Itoh, M., Kang, S. ‐H., Cho, K. ‐H., Tateyama, K., and Zhao, J.: Analysis of the Beaufort Gyre Freshwater Content in 2003–

2018, JGR Oceans, 124, 9658–9689, https://doi.org/10.1029/2019JC015281, 2019. 

Rantanen, M., Karpechko, A. Yu., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen, 

A.: The Arctic has warmed nearly four times faster than the globe since 1979, Commun Earth Environ, 3, 168, 1135 

https://doi.org/10.1038/s43247-022-00498-3, 2022. 

Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: 

Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. 

Geophys. Res., 108, 2002JD002670, https://doi.org/10.1029/2002JD002670, 2003. 

Reagan, J. R., Seidov, D., Wang, Z., Dukhovskoy, D., Boyer, T. P., Locarnini, R. A., Baranova, O. K., Mishonov, A. V., 1140 

Garcia, H. E., Bouchard, C., Cross, S. L., and Paver, C. R.: World Ocean Atlas 2023, Volume 2: Salinity, 

https://doi.org/10.25923/70QT-9574, 2024. 

Richards, A. E., Johnson, H. L., and Lique, C.: Spatial and Temporal Variability of Atlantic Water in the Arctic From 40 

Years of Observations, JGR Oceans, 127, e2021JC018358, https://doi.org/10.1029/2021JC018358, 2022. 

Ricker, R., Hendricks, S., Kaleschke, L., Tian-Kunze, X., King, J., and Haas, C.: A weekly Arctic sea-ice thickness data 1145 

record from merged CryoSat-2 and SMOS satellite data, The Cryosphere, 11, 1607–1623, https://doi.org/10.5194/tc-11-

1607-2017, 2017. 

Rieke, O., Årthun, M., and Dörr, J. S.: Rapid sea ice changes in the future Barents Sea, The Cryosphere, 17, 1445–1456, 

https://doi.org/10.5194/tc-17-1445-2023, 2023. 

Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., and Maltrud, M.: A multi-resolution approach to global 1150 

ocean modeling, Ocean Modelling, 69, 211–232, https://doi.org/10.1016/j.ocemod.2013.04.010, 2013. 

Schauer, U., Fahrbach, E., Osterhus, S., and Rohardt, G.: Arctic warming through the Fram Strait: Oceanic heat transport 

from 3 years of measurements, J. Geophys. Res., 109, 2003JC001823, https://doi.org/10.1029/2003JC001823, 2004. 

Schauer, U., Beszczynska-Möller, A., Walczowski, W., Fahrbach, E., Piechura, J., and Hansen, E.: Variation of Measured 

Heat Flow Through the Fram Strait Between 1997 and 2006, in: Arctic–Subarctic Ocean Fluxes: Defining the Role of the 1155 

Northern Seas in Climate, edited by: Dickson, R. R., Meincke, J., and Rhines, P., Springer Netherlands, Dordrecht, 65–85, 

https://doi.org/10.1007/978-1-4020-6774-7_4, 2008. 

Scholz, P., Sidorenko, D., Gurses, O., Danilov, S., Koldunov, N., Wang, Q., Sein, D., Smolentseva, M., Rakowsky, N., and 

Jung, T.: Assessment of the Finite-volumE Sea ice-Ocean Model (FESOM2.0) – Part 1: Description of selected key model 

elements and comparison to its predecessor version, Geosci. Model Dev., 12, 4875–4899, https://doi.org/10.5194/gmd-12-1160 

4875-2019, 2019. 

Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R.: Uncertainty in modeled Arctic sea ice volume, J. 

Geophys. Res., 116, C00D06, https://doi.org/10.1029/2011JC007084, 2011. 



50 

 

Schweiger, A. J., Wood, K. R., and Zhang, J.: Arctic Sea Ice Volume Variability over 1901–2010: A Model-Based 

Reconstruction, Journal of Climate, 32, 4731–4752, https://doi.org/10.1175/JCLI-D-19-0008.1, 2019. 1165 

Shu, Q., Wang, Q., Su, J., Li, X., and Qiao, F.: Assessment of the Atlantic water layer in the Arctic Ocean in CMIP5 climate 

models, Clim Dyn, 53, 5279–5291, https://doi.org/10.1007/s00382-019-04870-6, 2019. 

Shu, Q., Wang, Q., Årthun, M., Wang, S., Song, Z., Zhang, M., and Qiao, F.: Arctic Ocean Amplification in a warming 

climate in CMIP6 models, Sci. Adv., 8, eabn9755, https://doi.org/10.1126/sciadv.abn9755, 2022. 

Smedsrud, L. H., Esau, I., Ingvaldsen, R. B., Eldevik, T., Haugan, P. M., Li, C., Lien, V. S., Olsen, A., Omar, A. M., Otterå, 1170 

O. H., Risebrobakken, B., Sandø, A. B., Semenov, V. A., and Sorokina, S. A.: THE ROLE OF THE BARENTS SEA IN 

THE ARCTIC CLIMATE SYSTEM, Reviews of Geophysics, 51, 415–449, https://doi.org/10.1002/rog.20017, 2013. 

Steele, M. and Boyd, T.: Retreat of the cold halocline layer in the Arctic Ocean, J. Geophys. Res., 103, 10419–10435, 

https://doi.org/10.1029/98JC00580, 1998. 

Steele, M., Morley, R., and Ermold, W.: PHC: A Global Ocean Hydrography with a High-Quality Arctic Ocean, J. Climate, 1175 

14, 2079–2087, https://doi.org/10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2, 2001. 

Stroeve, J., Barrett, A., Serreze, M., and Schweiger, A.: Using records from submarine, aircraft and satellites to evaluate 

climate model simulations of Arctic sea ice thickness, The Cryosphere, 8, 1839–1854, https://doi.org/10.5194/tc-8-1839-

2014, 2014. 

Tsubouchi, T., Von Appen, W.-J., Kanzow, T., and De Steur, L.: Temporal Variability of the Overturning Circulation in the 1180 

Arctic Ocean and the Associated Heat and Freshwater Transports during 2004–10, Journal of Physical Oceanography, 54, 

81–94, https://doi.org/10.1175/JPO-D-23-0056.1, 2024. 

Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G., Danabasoglu, G., Suzuki, T., Bamber, J. L., 

Bentsen, M., Böning, C. W., Bozec, A., Chassignet, E. P., Curchitser, E., Boeira Dias, F., Durack, P. J., Griffies, S. M., 

Harada, Y., Ilicak, M., Josey, S. A., Kobayashi, C., Kobayashi, S., Komuro, Y., Large, W. G., Le Sommer, J., Marsland, S. 1185 

J., Masina, S., Scheinert, M., Tomita, H., Valdivieso, M., and Yamazaki, D.: JRA-55 based surface dataset for driving 

ocean–sea-ice models (JRA55-do), Ocean Modelling, 130, 79–139, https://doi.org/10.1016/j.ocemod.2018.07.002, 2018. 

Turner, A. K., Lipscomb, W. H., Hunke, E. C., Jacobsen, D. W., Jeffery, N., Engwirda, D., Ringler, T. D., and Wolfe, J. D.: 

MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes, Geosci. Model Dev., 15, 3721–3751, 

https://doi.org/10.5194/gmd-15-3721-2022, 2022. 1190 

Turner, J. S.: The Melting of Ice in the Arctic Ocean: The Influence of Double-Diffusive Transport of Heat from Below, 

Journal of Physical Oceanography, 40, 249–256, https://doi.org/10.1175/2009JPO4279.1, 2010. 

Veneziani, M., Maslowski, W., Lee, Y. J., D’Angelo, G., Osinski, R., Petersen, M. R., Weijer, W., Craig, A. P., Wolfe, J. D., 

Comeau, D., and Turner, A. K.: An evaluation of the E3SMv1 Arctic ocean and sea-ice regionally refined model, Geosci. 

Model Dev., 15, 3133–3160, https://doi.org/10.5194/gmd-15-3133-2022, 2022. 1195 

Von Schuckmann, K., Cheng, L., Palmer, M. D., Hansen, J., Tassone, C., Aich, V., Adusumilli, S., Beltrami, H., Boyer, T., 

Cuesta-Valero, F. J., Desbruyères, D., Domingues, C., García-García, A., Gentine, P., Gilson, J., Gorfer, M., Haimberger, L., 

Ishii, M., Johnson, G. C., Killick, R., King, B. A., Kirchengast, G., Kolodziejczyk, N., Lyman, J., Marzeion, B., Mayer, M., 

Monier, M., Monselesan, D. P., Purkey, S., Roemmich, D., Schweiger, A., Seneviratne, S. I., Shepherd, A., Slater, D. A., 

Steiner, A. K., Straneo, F., Timmermans, M.-L., and Wijffels, S. E.: Heat stored in the Earth system: where does the energy 1200 

go?, Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, 2020. 



51 

 

Wang, Q., Wekerle, C., Danilov, S., Wang, X., and Jung, T.: A 4.5 km resolution Arctic Ocean simulation with the global 

multi-resolution model FESOM 1.4, Geosci. Model Dev., 11, 1229–1255, https://doi.org/10.5194/gmd-11-1229-2018, 2018. 

Wang, Q., Wekerle, C., Danilov, S., Sidorenko, D., Koldunov, N., Sein, D., Rabe, B., and Jung, T.: Recent Sea Ice Decline 

Did Not Significantly Increase the Total Liquid Freshwater Content of the Arctic Ocean, Journal of Climate, 32, 15–32, 1205 

https://doi.org/10.1175/JCLI-D-18-0237.1, 2019. 

Wang, Q., Shu, Q., Danilov, S., and Sidorenko, D.: An extreme event of enhanced Arctic Ocean export west of Greenland 

caused by the pronounced dynamic sea level drop in the North Atlantic subpolar gyre in the mid-to-late 2010s, Environ. Res. 

Lett., 17, 044046, https://doi.org/10.1088/1748-9326/ac5562, 2022. 

Wang, Q., Shu, Q., Wang, S., Beszczynska-Moeller, A., Danilov, S., Steur, L., Haine, T. W. N., Karcher, M., Lee, C. M., 1210 

Myers, P. G., Polyakov, I. V., Provost, C., Skagseth, Ø., Spreen, G., and Woodgate, R.: A Review of Arctic–Subarctic Ocean 

Linkages: Past Changes, Mechanisms, and Future Projections, Ocean-Land-Atmos Res, 2, 0013, 

https://doi.org/10.34133/olar.0013, 2023. 

Wang, Q., Shu, Q., Bozec, A., Chassignet, E. P., Fogli, P. G., Fox-Kemper, B., Hogg, A. McC., Iovino, D., Kiss, A. E., 

Koldunov, N., Le Sommer, J., Li, Y., Lin, P., Liu, H., Polyakov, I., Scholz, P., Sidorenko, D., Wang, S., and Xu, X.: Impact 1215 

of increased resolution on Arctic Ocean simulations in Ocean Model Intercomparison Project phase 2 (OMIP-2), Geosci. 

Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, 2024. 

Wassmann, P., Kosobokova, K. N., Slagstad, D., Drinkwater, K. F., Hopcroft, R. R., Moore, S. E., Ellingsen, I., Nelson, R. 

J., Carmack, E., Popova, E., and Berge, J.: The contiguous domains of Arctic Ocean advection: Trails of life and death, 

Progress in Oceanography, 139, 42–65, https://doi.org/10.1016/j.pocean.2015.06.011, 2015. 1220 

Wekerle, C., Wang, Q., Danilov, S., Jung, T., and Schröter, J.: The Canadian Arctic Archipelago throughflow in a 

multiresolution global model: Model assessment and the driving mechanism of interannual variability, JGR Oceans, 118, 

4525–4541, https://doi.org/10.1002/jgrc.20330, 2013. 

Woodgate, R. A.: Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and 

driving mechanisms from year-round Bering Strait mooring data, Progress in Oceanography, 160, 124–154, 1225 

https://doi.org/10.1016/j.pocean.2017.12.007, 2018. 

Woodgate, R. A. and Peralta‐Ferriz, C.: Warming and Freshening of the Pacific Inflow to the Arctic From 1990‐2019 

Implying Dramatic Shoaling in Pacific Winter Water Ventilation of the Arctic Water Column, Geophysical Research Letters, 

48, e2021GL092528, https://doi.org/10.1029/2021GL092528, 2021. 

Zhang, J. and Rothrock, D. A.: Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized 1230 

Curvilinear Coordinates, Mon. Wea. Rev., 131, 845–861, https://doi.org/10.1175/1520-

0493(2003)131<0845:MGSIWA>2.0.CO;2, 2003. 

Zhang, Y., Chen, C., Beardsley, R. C., Gao, G., Qi, J., and Lin, H.: Seasonal and interannual variability of the Arctic sea ice: 

A comparison between AO-FVCOM and observations: NUMERICAL STUDY ON THE ARCTIC SEA ICE, J. Geophys. 

Res. Oceans, 121, 8320–8350, https://doi.org/10.1002/2016JC011841, 2016. 1235 

Zhu, Y., Zhang, R.-H., Moum, J. N., Wang, F., Li, X., and Li, D.: Physics-informed deep-learning parameterization of ocean 

vertical mixing improves climate simulations, National Science Review, 9, nwac044, https://doi.org/10.1093/nsr/nwac044, 

2022. 



52 

 

Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M.: The ECMWF operational ensemble reanalysis-

analysis system for ocean and sea-ice: a description of the system and assessment, https://doi.org/10.5194/os-2018-154, 8 1240 

January 2019. 

 


