
1 
 

Evaluating the E3SMv2-MPAS Oocean-Ssea Iice Ccoupled 

Uunstructured Mmodel in the Arctic: Atlantification Pprocesses and 

Ssystematic Bbiases 

Xinyuan Lv1, Huizan Wang1, Yu Cao1, Kaijun Ren1, Yangjun Wang2 and Hao Ding1 

1College of Meteorology and Oceanology, National University of Defense Technology, Changsha, 410073, China  5 
2College of Advanced Interdisciplinary Studies, National University of Defense Technology, Nanjing, 211101, China  

Correspondence to: Huizan Wang (wanghuizan@126.com) and Kaijun Ren (renkaijun@nudt.edu.cn)  

Abstract. Advancing high-resolution Arctic ocean-sea ice modeling is critical for understanding polar amplification and 

improving climate projections but faces challenges from computational limits and cross-scale interactions. The simulation 

capabilities of the ocean-sea ice coupled model (E3SMv2-MPAS) from the Energy Exascale Earth System Model (E3SM) 10 

2.1 for the Arctic sea ocean-sea ice system are systematically evaluated using multi-source observational data and model 

outputs. The model employs aA latitudinally varying mesh, with resolution increasing from (60 km in the Southern 

Hemisphere to 10 km in the Arctic.) This design balances computational efficiency with the accurate integration of while 

integrating low-latitude oceanic influences,. while the Uunstructured meshes also enhances the geometric representation of 

Arctic straits., coupled with a suitable mesoscale eddy transport parameterization to establish Together, these features form a 15 

simulation framework capable of resolving processes from seasonal to decadal timescalesa multi-scale simulation 

framework. Numerical results demonstrate E3SMv2-MPAS's superior Arctic simulation performance: (1) Accurate 

reproduction of spatial heterogeneity in sea ice concentration, thickness, and sea surface temperature, including their 1995–

2020 trend patterns; (2) Faithful reproduction of both the freshwater content and transports through key Arctic gateways ; 

(32) Successful reconstruction of three-dimensional thermohaline structures within the Atlantic Water layer, capturing 20 

Atlantic Water's decadal warming trends and accelerated Atlantification processes –— specifically mid-layer shoaling, heat 

content amplification, and reduced heat transfer lag times in the Eurasian Basin. Persistent systematic biases are identified : 

0.5–1 m sea ice thickness overestimation in the Canadian Basin compared to ICESat observations; Coordinated sea surface 

temperature/salinity underestimation and sea ice concentration overestimation in the Greenland and Barents Seas; Atlantic 

Water core temperature overestimation; Regional asymmetries in decadal thermohaline field evolution. These systematic 25 

biases may be attributed to three principal sources: inadequate representation of eddy dynamics, limitations in mixing 

parameterizations, and insufficient resolution of cross-scale interactions in key gateways (e.g., Fram Strait).  
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1 Introduction 

The Arctic region has emerged as one of the most rapidly transforming areacomponents of the Earth system under 

contemporary climate change (Calvin et al., 2023). However, persistent gaps in oceanic observational networks, particularly 30 

the lack of systematic full-depth and pan-strait measurements across key Arctic gateways, have significantly constrained our 

understanding of Arctic oceanic transport dynamics. To address these observational limitations, numerical modeling has 

become an indispensable tool (Wang et al., 2023). Of particular scientific significance is the thermohaline transport through 

Fram Strait – the principal conduit for Atlantic Water (AW) intrusion into the Arctic basins (Fu et al., 2023; Karami et al., 

2021; Long et al., 2024). Recent studies highlight the necessity to quantify both the spatiotemporal evolution of AW-derived 35 

heat distribution across Arctic marginal seas and the relative contributions of different vertical heat flux mechanisms 

(Carmack et al., 2015; Polyakov et al., 2020b). State-of-the-art global climate models (GCMs) provide critical insights into 

the evolving climate system under sustained global warming scenarios, enabling the investigation of multi-sphere 

interactions and their associated feedback mechanisms (Dörr et al., 2021; Hinrichs et al., 2021; Rieke et al., 2023; Shu et al., 

2022) (Duarte et al., 2020; Hinrichs et al., 2021; Liang and Losch, 2018a; Tian et al., 2022; Wassmann et al., 2015) .  40 

While climate models remain indispensable tools for deciphering Earth system dynamics (Landrum and Holland, 2020), 

their representation of Arctic processes exhibits persistent uncertainties that challenge predictive capabilities (Pan et al., 

2023). Systematic biases plague the simulation of critical Arctic phenomena, including amplified warming rates, sea ice 

retreat patterns, and AW layer evolution (Heuzé et al., 2023; Khosravi et al., 2022; Muilwijk et al., 2023; Shu et al., 2019) . 

These limitations persist across successive model generations, as evidenced by Coupled Model Intercomparison Project 45 

Phase 5 (CMIP5) and Phase 6 (CMIP6) revealing substantial errors in Arctic three-dimensional thermohaline structure 

reproduction (Khosravi et al., 2022; Shu et al., 2019). There are mainly four common biases of contemporary models in the 

Arctic include: (1) Overestimated AW layer thickness and depth. This systematic vertical structure misrepresentation persists 

across model generations, from early Arctic Ocean Model Intercomparison Project (AOMIP) simulations (Holloway et al., 

2007) through the Coordinated Ocean-ice Reference Experiments, phase II (CORE-II; Ilıcak et al. (2016)), toand the most 50 

widely used CMIP5/CMIP6 ensembles (Heuzé et al., 2023; Khosravi et al., 2022; Shu et al., 2019). Among 41 CMIP5 

models evaluated by Shu et al. (2019), 22% failed basic AW identification criteria, while the remaining 32-model mean 

overestimated AW layer vertical extent compared to observational benchmarks. CMIP6 shows limited improvement, with 

multi-model mean AW upper boundaries erroneously positioned at ~400 m depth in the Nansen Basin – deeper than 

observed values – and excessive thickness extending to seafloor regions in some regions (Khosravi et al., 2022). (2) Cold 55 

bias in AW core temperatures. The Alfred Wegener Institute coupled climate model (AWI-CM1) exhibits thermal 

underestimation at 200–600m depths in Eurasian Basin simulations (Hinrichs et al., 2021), consistent with CMIP6's 0.4°C 

cold bias relative to hydrographic climatologies (Heuzé et al., 2023). (3) Failure to capture AW warming trends. CMIP5 

models collectively underestimate observed decadal temperature variability, with no model replicating post -2000 

acceleration in AW warming (Shu et al., 2019). (4) Underestimated "Atlantification" (referring to the Arctic Ocean water 60 
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properties becoming increasingly akin to the warmer and saltier AWAtlantic water). While models project gradual boreal 

water encroachment in the Barents Sea by 2100 (Wassmann et al., 2015), observational analyzesanalyses suggest this regime 

shifts is likely to occur at a faster pace (Lind et al., 2018). Discrepancies extend to sea ice thermodynamics, where Seasonal 

Forecast System 5 (SEAS5) simulations yield only 10–20 cm winter ice production decline (Polyakov et al., 2022), versus 

78–93 cm observed losses (Polyakov et al., 2020b). 65 

There are numerous and complex reasons that lead to the common deviations in models when simulating the AW. These 

challenges can be categorized into four primary domains: (1) Insufficient horizontal resolution (>50 km in most CMIP6 

models) fails to resolve critical boundary currents and mesoscale eddies (Hinrichs et al., 2021); (2) Unrealistic Atlantic-

Arctic exchange through Fram Strait (Hinrichs et al., 2021); (3) Parameterization deficiencies, including the incorrect 

representation of horizontal advection and vertical mixing (Lind et al., 2018); (4) Imperfect knowledge of ocean-sea ice- 70 

atmosphere triadic feedbacks, especially during winter convection events, hampers accurate simulation of AW ventilation 

processes (Heuzé et al., 2023). To advance model fidelity and reduce uncertainty sources, comprehensive investigations into 

systematic model biases are imperative (Hinrichs et al., 2021; Pan et al., 2023). 

Current numerical simulations for polar regions are primarily based on structured grid models. However, the inherent 

limitations of structured grids, particularly the singularity at the North Pole and meridional convergence artifacts, 75 

fundamentally constrain their capacity to represent Arctic-specific physical processes (Liu et al., 2016). These geometric 

constraints not only distort parameterization schemes but also introduce systematic biases in both regional and decadal -scale 

simulations. While global high-resolution configurations could theoretically mitigate such issues, their prohibitive 

computational costs render them impractical for climate-scale applications (Golaz et al., 2019). This technological impasse 

has driven the development of two complementary approaches: (1) Nested grid systems: Though offering advantages in 80 

spatialtemporal discretization flexibility and geometric simplification, their implementation introduces nontrivial challenges 

in mass conservation, interface coupling fidelity, and numerical noise suppression (Hoch et al., 2020). (2) Unstructured 

mesh: By enabling localized resolution enhancement in dynamically critical zones while maintaining coarse resolutions 

elsewhere, these meshes eliminate the need for explicit nesting procedures (Scholz et al., 2019). Their continuous spatial 

adaptability allows direct resolution of sub-mesoscale processes without compromising computational efficiency (Wang et 85 

al., 2018).  

The application of variable-resolution models with a global unstructured meshes offers distinct advantages for Arctic Ocean 

studies. By employing high-resolution meshes over the Arctic region, these configurations enable accurate simulation of 

energy exchange processes across narrow critical channels (e.g., Fram Strait, Bering Strait, Barents Sea Opening and Davis 

Strait). Coarser resolutions in other domains maintain computational efficiency while preserving connectivity between the 90 

Arctic and extratropical regions (Wang et al., 2018). Among global implementations, two widely adopted models are the 

Finite-Volume Coastal Ocean Model (FVCOM; Chen et al. (2016)) and the Finite-Element Sea ice-Ocean circulation Model 

(FESOM; Danilov et al. (2017)). In Arctic studies, FVCOM predominantly operates as a regional model, as evidenced by its 

frequent implementation in localized domains (e.g., Zhang et al. (2016)). This regional focus aligns with FVCOM's original 
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design paradigm prioritizing coastal and shelf-sea dynamics through its finite-volume discretization scheme. In contrast, 95 

FESOM has been predominantly implemented as a global model in Arctic studies, where its implementation has 

demonstrated unprecedented skill in simulating Arctic intermediate water dynamics (Danilov et al., 2017; Wang et al., 2018; 

Wekerle et al., 2013). Notably, Wang et al. (2018) established that FESOM's (a relatively low resolution, ~24 km in the 

Arctic) outperforms a set of the then state-of-the-art structured-grid models evaluated by Ilıcak et al. (2016), particularly in 

correcting systematic AW core biases.  100 

As a more recent modeling framework relative to FESOM and FVCOM, the Model for Prediction Across Scales (MPAS) 

remains in the nascent phase of Arctic performance evaluation (Huo et al., 2024; Ringler et al., 2013), particularly regarding 

its capacity to simulate intermediate water masses and Atlantification processes. The Energy Exascale Earth System Model 

(E3SM), evolved from the Community Earth System Model (CESM), incorporates MPAS-Ocean and MPAS-Seaice as its 

ocean and sea ice components. Initial assessments using E3SMv1's ocean-sea ice coupled configuration (60to10 km variable 105 

resolution) demonstrate promising skill in reproducing pan-Arctic freshwater budgets, gateway current exchanges, and 

vertical hydrographic profiles (Veneziani et al., 2022). Persistent errors in sea ice thickness (SIT) distribution and upper 100 

m stratification emerge across resolutions, suggesting common structural models deficiencies rather than discretization 

artifacts. However, their diagnostic lack the rigorous validation metrics employed by Wang et al. (2018) for FESOM's AW 

representation. Existing assessments predominantly rely on pan-Arctic-basin-averaged diagnostics, obscuring critical vertical 110 

and regional heterogeneities in intermediate AW layer dynamics (Veneziani et al., 2022).  

This study presents a tripartite evaluation framework for the coupled system of MPAS-Ocean and MPAS-Seaice in E3SM 

version 2 (E3SMv2-MPAS), which compares it with the observational datasets and reanalysis products and high-resolution 

model outputs from CMIP6 and the Ocean Model Intercomparison Project Phase 2 (OMIP2) to systematically assess 

MPAS's capacity in simulating key Arctic processesto address persistent Arctic AW biases. In addition, we conduct a 115 

comprehensive assessment of Arctic sea ice dynamics, surface layer hydrographic properties, and three-dimensional 

thermohaline profile evolution (particular emphasis on the AW layer), as well as freshwater content and key gateway 

transports., with particular emphasis on their respective  The assessment highlights the model's strengths, identifies its 

limitations, and discusses potential sources of uncertainty. Innovatively, this work implements a multi-layer connectivity 

analysis examining cross-layer interactions between surface (10 m) and intermediate (400 m) depths. 120 

The subsequent sections are structured as follows: Section 2 provides comprehensive documentation of the E3SMv2 -MPAS 

configuration and validation datasets. Section 3 and Section 4 conduct rigorous multi -faceted analyzesanalyses of Arctic-

specific simulations, employing both domain-wide diagnostics and sub-regional decomposition approaches. These sections 

also discuss remaining challenges in polar ocean-sea ice modeling, and proposes targeted development pathways for next-

generation Earth system models.  Section 5 discusses the potential advantages of higher resolution and unstructured meshes, 125 

summarizes simulated biases and their possible sources, and identifies limitations in our model design and configuration. 

Finally, Section 6 synthesizes the key findings and outlines broader implications. The concluding Section 5 synthesizes key 

findings. 
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2 Model Cconfigurations and Ddata 

2.1 Model Cconfiguration 130 

Veneziani et al. (2022) demonstrated that refining mesh resolution from 10 km to 6 km triples computational costs without 

yielding significant improvements in simulation fidelity. Their findings suggest that resolving the local Rossby radius of 

deformation across most Arctic regions necessitates resolutions ≤3 km –— a requirement currently constrained by 

prohibitive computational demands. The model configuration in this paper is described as follows. To address the trade-off 

between high-resolution requirements and computational constraints, our study employs a variable-resolution unstructured 135 

mesh featuring a meridional transition from 60 km resolution in the Southern Hemisphere to 10 km in the Arctic domain 

(hereafter 60to10 km, same as Veneziani et al. (2022); Fig. 1a). This adaptive meshing approach optimizes computational 

efficiency while resolving critical processes: (1) Antarctic coastal regions (80° S–90° S) maintain a 25 km resolution to 

capture fine-scale dynamics; (2) theThe North Atlantic sector is strategically refineddemonstrates strategically prioritized 

mesh refinement, transitioning from 20 km to 10 km resolution earlier than theits Pacific counterpart to guarantee at least 15 140 

km resolution in the Gulf Stream extension region (~40° N; Veneziani et al. (2022)); (3) theThe North Pacific sector 

configuration maintains computational efficiency while achieving approximately 10 km resolution in itsthe subpolar 

regionNorth Atlantic sector adjacent to the Arctic Ocean (north of 50° N). 
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 145 

Figure 1. (a) Geographical distribution of grid cell size (km) of the E3SMv2-MPAS framework. (b) Bbathymetry from the ETOPO 

2022 and key basins/straits north of 60° N. EEB and WEB refer to the eastern and the western Eurasian Basin respectively. The 

black dashed transect along 70° E and 145° W (crossing the North Pole) denotes the location of the transect shown in Fig. 14. 

Numerical stability wasis achieved through a 5-minute baroclinic time step for ocean dynamics. For sea ice, we employed a 

15-minute dynamic time step and a 30-minute thermodynamic time step (a 2:1 ratio).and a 2:1 ratio of sea ice 150 

thermodynamic to dynamic time-stepping. MPAS-Ocean adopts finite volume discretization of primitive governing 

equations within a staggered C-grid framework, incorporating hydrostatic, incompressible, and Boussinesq approximation 

assumptions (with a z-star vertical grid) (Golaz et al., 2019). Vertical mixing processes wereare parameterized using the K-

profile scheme (KPP; Large et al. (1994)). For mesoscale eddy representation, similarly to what was done in Veneziani et al. 

(2022), we implemented a spatially varying Gent-McWilliams (GM) parameterization, incorporating both bolus advection 155 

and Redi isopycnal diffusion components (Gent and Mcwilliams, 1990). The eddy diffusivity coefficient (κ) exhibits was 

given a latitudinal dependence: 300 m2 s-1⁻¹ in high-resolution Arctic regions (<20 km grid spacing) to maintain moderate 

mixing intensity, transitioning linearly to 1800 m2 s-1⁻¹ in low-resolution zones (>30 km grid spacing) to compensate for 

unresolved eddy fluxes (Fig. 2). MPAS-Seaice builds upon the core numerical and physical framework of the Los Alamos 

Sea Ice Model (CICE). The dynamics are governed by the elastic-viscous-plastic (EVP) rheology, with the internal ice stress 160 

divergence operator adapted for MPAS's unstructured polygonal mesh (Turner et al., 2022). Sea ice and tracer transport are 

handled by an incremental remapping scheme (Lipscomb and Ringler, 2005), adapted for polygonal cells. The 

thermodynamics and vertical column physics remain consistent with CICE (Turner et al., 2022). The configuration includes 

the "mushy layer" thermodynamics for vertical heat transfer, the delta-Eddington shortwave radiation scheme, a level-ice 

melt pond parameterization, ice thickness distribution mechanics, and transport in thickness space  (Petersen et al., 2019). 165 

The specific configurations of MPAS-Ocean and MPAS-Seaice within the E3SMv2, including their coupling mechanisms, 

have been comprehensively documented in Turner et al. (2022), and Golaz et al. (2022) and Huo et al. (2024). 
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In addition to the ocean and sea ice components, the atmospheric and river modules in E3SMv2-MPAS (see Fig. 2 for 

specific variables used) are were forced by the JRA55-do (v1.5; Tsujino et al. (2018)) from the Japan Meteorological 

Agency (JMA). This dataset has high spatiotemporal resolution (3-hourly temporal and 0.5625° spatial resolution) and spans 170 

the period from 1958 to 2020. Sea surface salinity (SSS) is was relaxed toward Polar science center Hydrographic 

Climatology (PHC) 3.0 climatology (Steele et al., 2001) with an annual restoring timescale. The initial conditions for the 

MPAS-Ocean and MPAS-Seaice components (including salinity, temperature, sea surface height gradients, and surface 

velocities) were sourced from the E3SMv2 predefined benchmark case files (specifically ocean.ARRM60to10.180715.nc). 

These fields were generated through a prior forward simulation of the MPAS-Ocean model. This initial state is intrinsically 175 

consistent with E3SM's dynamical core, having undergone a spin-up process within the MPAS-Ocean framework prior to 

being archived as a standard case. Following the configuration of forcing and initial conditions (see Fig. 2 for parameter 

details), E3SMv2-MPAS achieves rapid surface state alignment with observational benchmarks during initial integration 

(surface temperature anomalies <5% within the first month). The simulation periods explicitly configured in this study are 

1960–1980 and 1995–2020. The exclusion of intermediate years (1981–1994) preserves computational resources while 180 

maintaining climatological fidelity, as verified through overlapping-period consistency checks (1995–2020). 
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Figure 2. Configuration details for E3SMv2-MPAS: forcing/initial conditions, runtime settings, and output fields. 

Given the prohibitive computational cost of a continuous high-resolution simulation from 1958 to 2020, we adopted a 185 

strategic two-period integration scheme to prioritize computational resources for our core analysis period (1995–2020). The 

model's climatological fidelity during this satellite era is verified using multi-source observational data, ensuring a reliable 

assessment of both sea ice and ocean variability. 

The MPAS-Ocean component was initialized from a pre-processed state (ocean.ARRM60to10.180715.nc). This state was 

derived from a prior short-term (5-day) adjustment run of the standalone ocean model, which itself started from a state of 190 

rest with three-dimensional temperature and salinity fields prescribed from the PHC. Consequently, this initial condition 

provided a dynamically adjusted and physically consistent starting point for our coupled simulation, mitigating the initial 

shock that would otherwise occur from a purely cold start. In contrast, the MPAS-Seaice component was initialized from 

an idealized, uniform ice cover. A 1-meter thick ice layer with 100% concentration was prescribed on all ocean grid points 

between 60° S and 70° N, with zero initial snow depth and stationary ice velocity. This simple state allowed the sea ice cover 195 

to evolve self-consistently in response to the model's atmospheric forcing and ocean coupling from the beginning of the 

simulation. Following this spin-up phase, the full interannual JRA55 forcing was applied from 1958 to 1981. 

To begin the simulation for our main analysis period (1995–2020), we used the model state from December 1981 as the 

initial conditions for January 1995. This 13-year gap (1982–1994) was a strategic choice to conserve computational 

resources while ensuring physical consistency in the key variables of interest. This computational strategy was motivated by 200 

the fact that, under forcings such as CORE-II or JRA55 and when initialized with PHC hydrography, upper-ocean and 

surface variables are known to reach quasi-equilibrium within a few decades, as demonstrated in several previous studies. 

For instance, Wang et al. (2018) reported that temperature and salinity in the upper 1000 m reached near-equilibrium within 

20–30 years. Wekerle et al. (2013) began their analysis of surface variables and freshwater content in the 0–500 m layer after 

a 10-year initialization in a 1958–2007 simulation using FESOM under CORE-II forcing. Likewise, in the analysis of 205 
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multiple high-resolution the Ocean Model Intercomparison Project Phase 2 (OMIP2) models simulating the full 1958–2020 

period under JRA55 forcing, Wang, Shu, Bozec, et al. (2024) focused their evaluation on the period 1971–2000 – 

commencing approximately 13 years after the model initialization. In our simulation, the 24-year spin-up from 1958 to 1981 

is largely sufficient for the adjustment of surface fields (e.g., sea ice, surface temperature, and salinity) and AW layer (above 

1000 m), which are the focus of this study. Although the deep ocean remains far from equilibrium, the targeted variables had 210 

largely stabilized by 1981.  

From a physical perspective, the potential impact of this initialization approach for the 1995–2020 simulation is expected to 

be short-lived. The upper ocean and sea ice (the primary focus of this study), adjust much more rapidly than the deep ocean, 

and their evolution is predominantly governed by contemporaneous atmospheric forcing rather than by the initial conditions . 

Therefore, the disequilibrium introduced by the initial condition from 1981 would be rapidly overwritten and adjusted by the 215 

realistic, synchronous atmospheric forcing applied from 1995 onward. 

Therefore, initializing the 1995 run from the 1981 output allows a computationally efficient hot start and ensures that the 

model is in an appropriate state for evaluating the 1995–2020 period. 

The model output initialized from the 1981 state also demonstrates physically consistent behavior during the 1995 –2020 

period, further supporting the validity of this approach. The temporal evolution of key diagnostic variables  – including sea 220 

surface temperature (Fig. 8d) and sea ice-related variables (Fig. 7) – shows that the simulation quickly aligns with the 

observed/reanalysis trajectory after 1995, with no persistent systematic bias. Spatial distributions of these variables are a lso 

in good agreement with evaluation datasets (Figs. 3–5, 8a–c), and the long-term trends from 1995 to 2020 closely match 

those in the references (Fig. 7). These results, which will be discussed in detail in the following sections, indicate that t he 

initialization from 1981 did not adversely affect the simulation of central climate features during the study period.  225 

Accordingly, our primary evaluation focuses on the performance of E3SMv2-MPAS during the period 1995–2020. In 

addition, a comparative assessment of the 1960–1980 period is also included to briefly examine the decadal variability of 

key ocean and sea ice variables and to verify the model 's capability under distinctly different climatic backgrounds. 

2.2 Evaluation Ddatasets 

2.2.1 Sea Iice Cconcentration, extent, and Tthickness, and volume  230 

To comprehensively evaluate sea ice concentration (SIC) performance, both the observations and reanalysis data were 

adopted for validation. SIC datasets used here include: (1) Passive microwave remote sensing data: Sourced from the 

National Oceanic and Atmospheric Administration (NOAA) / National Snow and Ice Data Center (NSIDC) Climate Data 

Record (Version 4; Meier et al. (2021)) with a spatial resolution of 25 km × 25 km; (2) HadISST1 data: Provided by the UK 

Met Office Hadley Centre (Rayner et al., 2003) at 1° × 1° resolution; (3) ERA5 reanalysis: Generated by the European 235 

Centre for Medium-Range Weather Forecasts (ECMWF; Hersbach et al. (2020)) at 0.25° × 0.25° resolution. 
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For sea ice thickness (SIT) validation, we utilize four key datasets: (1) Pan-Arctic Ice-Ocean Modeling and Assimilation 

System (PIOMAS; Zhang and Rothrock (2003)): This reanalysis product, extensively validated against satellite and in situ 

observations, provides reliable Arctic SIT spatial distributions and long-term trends (Laxon et al., 2013; Schweiger et al., 

2011; Stroeve et al., 2014). (2) PIOMAS-20C reanalysis (Schweiger et al., 2019): Driven by ECMWF's atmospheric 240 

reanalysis of the 20th century (ERA-20C) and calibrated with historical in situ/aircraft measurements, this dataset enables 

analysis of pre-satellite-era SIT variability (1960–1980). (3) CS2SMOS gridded product: developed by the Alfred Wegener 

Institute (AWI) and the University of Hamburg (Ricker et al., 2017), it combines CryoSat-2 and SMOS satellite observations 

using an Optimal Interpolation method. The data cover the period from October to April each year, when the sea ice is more 

stable, thereby minimizing signal interference from summer melt ponds and enhancing the reliability and accuracy of the 245 

dataset. Ice, Cloud, and Land Elevation Satellite-1 (ICESat-1; 2003–2008): Equipped with the Geoscience Laser Altimeter 

System (GLAS; Zwally et al., 2002), enabling pioneering lidar-based SIT retrievals. (4) ICESat-2 (2018–2020): Employing 

the Advanced Topographic Laser Altimeter System (ATLAS; Petty et al., 2020) to acquire high-resolution three-dimensional 

SIT measurements, significantly enhancing small-scale ice monitoring capabilities. 

For sea ice extent (SIE), the evaluation dataset was obtained from the NSIDC (Fetterer, 2017). Sea ice volume (SIV) was 250 

assessed using outputs from the PIOMAS and PIOMAS-20C reanalysis. 

2.2.2 Sea Surface Temperature and Salinity 

Sea surface temperature (SST) validation dataset is NOAA's 1/4° Daily Optimum Interpolation Sea Surface Temperature 

(OISST; Huang et al. (2021)) datasest, represents a long-term climate data record integrating multi-platform observations 

from satellites, ships, buoys, and Array for real-time geostrophic oceanography (Argo) floats. Spatially continuous global 255 

SST fields are reconstructed using optimal interpolation to fill data gaps. 

For open-water sea surface salinity (SSS) validation (SIC<15%), the National Aeronautics and Space Administration 

(NASA) sponsored Optimum Interpolation Sea Surface Salinity (OISSS; Melnichenko et al. (2016)) datasest was applied. 

The product integrates multi-satellite observations from Aquarius, Soil Moisture Active Passive (SMAP), and Soil Moisture 

and Ocean Salinity (SMOS) through optimal interpolation. Continuous 2011-present data are generated through cross-260 

satellite bias correction and spatial filtering, with SMOS data filling SMAP gaps. 

2.2.3 Three-Dimensional Thermohaline 

The World Ocean Atlas 2023 (WOA23; Locarnini et al. (2024); Reagan et al. (2024)) served as the primary validation 

dataset for three-dimensional thermohaline properties. WOA23 produces high-resolution global climatological temperature 

and salinity fields via interpolation of historical observations (Argo floats, ship-based measurements, satellite data), covering 265 

three periods in this study: 1991–2020, 1995–2004, and 2005–2014. 

To assess long-term thermohaline evolution (1960–1980 vs. 2000–2020), the UK Met Office's EN.4.2.2 datasest (Good et 

al., 2013) was combined. EN.4.2.2 assimilates multi-source in situ data (ship observations, Argo floats, Conductivity-
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Temperature-Depth (CTD) profilers, moored buoys), applies rigorous quality control, and reconstructs 1° × 1° gridded 

temperature/salinity fields spanning 0–5500 m depth from 1900 onward. 270 

Furthermore, annual mean temperature and salinity profiles (1970–2017) over the Eeast Eurasian Basin, the Wwest Eurasian 

Basin, the Chukchi Sea, and the Beaufort Gyre from Muilwijk et al. (2023) were included. These data derive from Russian, 

American, Canadian, and European expeditions, including ship/aircraft surveys, manned drifting stations, autonomous 

buoys, and submarine measurements. 

To evaluate E3SMv2-MPAS performance among models, comparisons were made against CMIP6's 13 high-resolution 275 

models (Muilwijk et al., 2023) and five high-low resolution model pairs from OMIP2 (Wang et al., 2024), covering 1995–

2014 and 1958–2018, respectively (see Table 1 and references for details). 

Table 1. Numerical implementations of E3SMv2-MPAS, E3SM-Arctic-OSI (Veneziani et al., 2022), 13 CMIP6 models (Muilwijk et 

al., 2023), and 5 OMIP2 model pairs (Wang et al., 2024), detailing grid type, horizontal resolution in Arctic, and vertical grid. 

 Model Grid type 

Horizontal 

resolution  

in Arctic (km) 

Vertical grid  

(No. of levels) 

E3SMv2 E3SMv2-MPAS Unstructured 10 z (80) 

E3SMv1 E3SM-Arctic-OSI Unstructured 10 z (80) 

CMIP6 

BCC-CSM2-MR Tripolar 54 z (40) 

CAMS-CSM1-0 Tripolar 54 z (50) 

CESM2 Rotated 41 z (60) 

CanESM5 Tripolar 50 z (45) 

GFDL-CM4 Tripolar 9 ρ-z* (75) 

GFDL-ESM4 Tripolar 18 ρ-z* (75) 

IPSL-CM6A-LR Tripolar 49 z* (75) 

GISS-E2-1-H Regular 46 ρ-z-σ (32) 

MIROC6 Tripolar 39 z-σ (62) 

MPI-ESM1-2-HR Tripolar 36 z (40) 

MRI-ESM2-0 Tripolar 39 z* (60) 

NorESM2-LM Tripolar 38 ρ-z (53) 

UKESM1-0-LL Tripolar 50 z* (75) 

OMIP2 
ACCESS-MOM_3.6km Tripolar 3.6 z* (70) 

ACCESS-MOM_9km Tripolar 9 z* (50) 
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AWI-FESOM_4.5km Unstructured 4.5 z (47) 

AWI-FESOM_24km Unstructured 24 z (47) 

CMCC-NEMO_3.2km Tripolar 3.2 z (98) 

CMCC-NEMO_51km Tripolar 51 z (50) 

FSU-HYCOM_3.6km Tripolar 3.6 ρ-z-σ (36) 

FSU-HYCOM_32km Tripolar 32 ρ-z-σ (41) 

IAP-LICOM_6.8km Tripolar 6.8 η (55) 

IAP-LICOM_72km Tripolar 72 η (30) 

Additionally, three-dimensional thermohaline outputs from E3SMv1 (60to10 km resolution; 2005–2016 climatology; 280 

Veneziani et al., 2022) were analyzed. Golaz et al., (2022) explicitly confirm that the oceanic component MPAS-Ocean in 

E3SMv2 contains no substantial improvements over its E3SMv1 predecessor. Key differences between E3SM-Arctic-OSI 

(Veneziani et al., 2022) and E3SMv2-MPAS involve GM eddy diffusivity coefficient (κ) settings. E3SM-Arctic-OSI 

disables GM parameterization (κ=0) in Arctic regions, while E3SMv2-MPAS maintains moderate mesoscale diffusion. 

Though GM deactivation enhances frontal sharpness (e.g., ice-edge zones and thermal gradients), most Arctic regions 285 

feature first baroclinic Rossby radii <10 km (Nurser and Bacon, 2014). At 10 km resolution, unresolved mesoscale eddies 

may cause transport deficiencies, non-physical gradients, and circulation distortions (e.g. anomalous sea ice distributions and 

systematic thermohaline circulation biases). 

2.2.4 Sea surface height, ocean heat content, and surface albedo  

Sea surface height (SSH) evaluation data were derived from the Ocean Reanalysis System 5 (ORAS5), produced by 290 

ECMWF (Zuo et al., 2019). ORAS5 integrates multivariate observations via assimilation into the Nucleus for European 

Modelling of the Ocean (NEMO) ocean model coupled with the Louvain-la-Neuve sea ice model (LIM). The primary 

assimilated data include altimetry-based sea level anomalies from the AVISO DT2014 product, incorporating an updated 

mean dynamic topography. The reanalysis has a horizontal resolution of 0.25°, enhanced to approximately 9 km in the polar 

regions. 295 

Ocean heat content (OHC) evaluation data were sourced from the gridded product developed by the Institute of Atmospheric 

Physics (IAP), Chinese Academy of Sciences (Cheng et al. 2017, 2020, 2024). It combines multi-source in situ observations 

– including Argo floats, CTD profiles, ship-based measurements, and moored buoys – on a 1° × 1° horizontal grid. An 

adaptive Optimal Interpolation method is applied to minimize bias. The dataset covers the period from 1940 to present, 

supporting analysis of long-term oceanic changes. 300 

Surface albedo evaluation data were obtained from the CLARA-A3 (Karlsson et al., 2023). Observations originate from 

multiple versions of the Advanced Very High Resolution Radiometer (AVHRR) spaceborne optical imagers employ 



13 
 

intercalibrated radiances to mitigate intersensor discrepancies (Heidinger et al., 2010). The dataset spans from January 1979 

to present, provided on a 0.25° global grid, with a 25 km equal-area grid for the polar regions. 

2.2.54 Atlantic Water Ccore 305 

Observed Atlantic Water (AW) core temperature and depth data were sourced from Richards et al. (2022), comprising 

55,841 profiles (1977–2018). AW core was defined as the warmest layer within salinity >34.7 PSU profiles. To ensure 

accuracy, only profiles exceeding 500 m depth with sampling starting above 100 m were retained. Raw profiles were 

smoothed using an 80 m vertical moving average (40 m window) to remove spikes caused by thermohaline intrusions and 

eddies while preserving overall thermal structure. 310 

Wang et al. (2024)'s OMIP2 dataset includes AW core temperature (defined as maximum temperature in water columns over 

seafloor depths >150 m; 2006–2017) from five high-low resolution model pairs. This dataset is employed to benchmark 

E3SMv2-MPAS's AW core temperature simulations against multi-model ensembles. 

3 Arctic Pphysical Ssystem Sstates 

3.1 Sea iIce Ccharacterization 315 

This study focuses on the Arctic region, systematically evaluating the simulation performance of the E3SMv2 -MPAS 

coupled model for sea ice concentration (SIC), sea ice thickness (SIT), SIE and SIVsea surface temperature (SST), and sea 

surface salinity (SSS) at first. Through comparisons with multi-source observational datasets and reanalysis products, 

combined with climate-state analysis (1995–2020) and trend diagnostics across two periods (1960–1980 and 1995–2020), 

model strengths and limitations in polar environmental simulations are identified.  320 

Multi-dataset validation using NSIDC satellite remote sensing (Meier et al., 2021), Hadley in situ assimilation (Rayner et al., 

2003), and ERA5 reanalysis (Hersbach et al., 2020) demonstrates that E3SMv2-MPAS effectively captures spatial 

heterogeneity in Arctic SIC climatology in both winter and summer (Figs. 3 and 4a–g). In winter, Cconsistent spatial bias 

patterns are observed across datasets, with persistent positive bias centers (ΔSIC>0.3) identified along the southwestern 

Greenland Sea shelf margin and the northern Barents Sea slope (Fig. 3e–g). During summer, comparisons with NSIDC and 325 

Hadley reveal predominant positive biases in the northern Barents Sea and widespread negative biases across the central 

Arctic Ocean (Fig. 4e and f). In contrast, the comparison with ERA5 shows negligible underestimation in the central Arctic 

basin, while positive biases are observed not only in the northern Barents Sea but also in the Beaufort Sea (Fig. 4g). Notably, 

E3SMv2-MPAS exhibits superior performance relative to CMIP6 ensemble members, demonstrating smaller spatial bias 

magnitudes than most models (Long et al., 2021). E3SMv2-MPAS successfully reproduces SIC seasonal cycles and 330 

interannual variability, maintaining root mean square errors (RMSE) values of 0.040, 0.052, and 0.051 against NSIDC, 

Hadley, and ERA5 datasets respectively (Fig. 3h). This validates the dynamic framework's effectiveness in capturing sea ice-

atmosphere coupling mechanisms. However, the asymmetric seasonal biases in E3SMv2-MPAS are identified, which shows: 
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systematic winter overestimation contrast with moderate summer underestimation (primarily compared with NSIDC), 

suggesting potential improvements needed in simulating ice-albedo feedback and melt pond dynamics. Trend analysis 335 

confirms the model's climate response capability. During the rapid decline period (1995–2020), E3SMv2-MPAS accurately 

captures accelerated SIC reduction trends, showing better agreement with NSIDC observations than Hadley and ERA5 

products. For the weak-trend period (1960–1980), the model reproduces quasi-stable sea ice coverage characteristics while 

maintaining overestimated seasonal variability amplitudes. The accelerated SIC decline in the recent period compared to 

historical decades highlights the model's ability to replicate trend amplification under intensified forcing, thereby bolstering 340 

confidence in its scenario-dependent projections. 
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Figure 3. During winter (December–February), (a–d) 1995–2020 climatological mean sea ice concentration (SIC) spatial 

distributions: (a) E3SMv2-MPAS simulations, (b) NSIDC observational product, (c) Hadley Centre HadISST data, (d) ERA5 345 
reanalysis. (e–g) SIC bias fields: (e) E3SMv2-MPAS vs. NSIDC, (f) E3SMv2-MPAS vs. Hadley, (g) E3SMv2-MPAS vs. ERA5. (h) 

Pan-Arctic (70°N–90°N) mean SIC time series for 1960–1980 and 1995–2020, with dashed lines indicating linear trends (E3SMv2-

MPAS: gray; NSIDC: blue; Hadley: green; ERA5: orange) derived from least-squares regression. 

 

Figure 4. The same as Fig. 3, but during summer (June–August). 350 
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Beyond SIC, SIT serves as a critical parameter governing sea ice dynamics, with its simulation accuracy directly modulating 

the spatiotemporal heterogeneity of ice volume. We systematically quantify E3SMv2-MPAS's capability in reproducing 

spatial distribution of SIT spatiotemporal evolutionduring both in winter and summer (Fig. 54). Overall, the model captures 

the climatological spatial gradient of Arctic SIT, characterized by a gradual thickening from the Barents Sea toward the 355 

central Arctic Basin and the northern Canadian Archipelago in both seasons. The model realistically represents the seasonal 

reduction in SIT over the continental shelf regions along the Arctic margin in summer compared to winter. However, 

pronounced zonal positive biases (ΔSIT>1.5 m) are present in both seasons, particularly along the eastern and northern shelf 

of the Greenland Sea, the region north of the Canadian Archipelago, and the southern Canadian Basin and Beaufort Sea (Fig. 

5c and f). Comparative analysis demonstrates the model effectively captures Arctic SIT spatial gradients (Fig. 4a–c). 360 

Although the model generally overestimates SIT, the time series analysis successfully simulates continuous thinning from 

~1.8 m to ~1.3 m during 1995–2020 (Fig. 4d). Notably, however, the simulated thinning rates remain slightly lower than 

PIOMAS results. Stable RMSE values (~0.37) throughout this period confirm robust simulation of long-term SIT evolution. 

For the pre-satellite era (1960–1980), evaluation using PIOMAS-20C shows E3SMv2-MPAS reproduces the 6-year cyclic 

"increase-decrease-increase" SIT fluctuations during 1960–1978 (Fig. 4d). While PIOMAS-20C shows no statistically 365 

significant SIT trend during 1960–1980, E3SMv2-MPAS simulates a pronounced thickening trend in this period, potentially 

linked to its systematic overestimation of regional ice thickness in areas like the Beaufort Sea (Fig. 4c). Nevertheless, across 

the multi-decadal scale (1960–2020), this coupled system demonstrates a reasonable representation of Arctic sea ice 

responses to climate forcing. 
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Figure 54. During (a–c) winter (December–February) and (d–f) summer (June–August), (a–b and d–e) 1995–2020 climatological 

mean sea ice thickness (SIT) spatial distributions: (a and d) E3SMv2-MPAS, (b and e) PIOMAS. (c and f) SIT bias field: E3SMv2-

MPAS vs. PIOMAS. (d) Pan-Arctic (70°N–90°N) mean SIT time series for 1960–1980 and 1995–2020, with dashed lines indicating 

linear trends (E3SMv2-MPAS: black; PIOMAS: red) derived from least-squares regression. 375 

Spatial analysis identifies significant zonal positive biases (ΔSIT>1.5 m) along the eastern and northern Greenland Sea shelf 

and the Canadian Archipelago (Fig. 4c). Considering PIOMAS's known limitations in overestimating thin ice while 

underestimating thick ice (Laxon et al., 2013; Schweiger et al., 2011), additional validation using CS2SMOSICESat 

altimetry data (Ricker et al., 2017) is conducted (Fig. S15). Consistent with previous findings, PIOMAS exhibits 

underestimation in regions with thicker sea ice, such as north of the Canadian Archipelago and east of Greenland  (Fig. S1e). 380 

Similarly, E3SMv2-MPAS shows pronounced positive biases relative to CS2SMOS in areas including the northern Canadian 

Archipelago, the southern Canadian Basin, and the Beaufort Sea (Fig. S1d), aligning with the bias pattern identified in 

comparisons with PIOMAS (Fig. 5c), thereby corroborating the spatial reliability of PIOMAS-indicated biases. Case studies 

of specific months (February 2005, October 2005, October 2006, March 2007, March 2019, October 2019) show improved 

agreement with ICESat observations in the Canadian Archipelago and Greenland coastal regions compared to PIOMAS.  385 

The spatial pattern of maximum positive bias in E3SMv2-MPAS remains consistent across seasons (Fig. 5c and f). This bias 

is also evident in the model's annual mean SIT distribution relative to PIOMAS (Fig. S2). Previous studies based on CMIP5 

models have established a strong correlation between inaccuracies in simulating the Beaufort Gyre and SIT distribution 
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(Stroeve et al., 2014). Since the SSH field serves as a key proxy for evaluating the fidelity of Beaufort Gyre simulations 

(Wang et al., 2018), we analyze differences in SSH between E3SMv2-MPAS and the ORAS5 reanalysis (Fig. 6a–c). The 390 

model overestimates SSH in the Beaufort Sea, suggesting an erroneously enhanced ice convergence. Additionally, the 

simulated OHC in the 0–100 m layer is underestimated in this region (Fig. 6d–f), which may further contribute to the 

positive SIT bias. Thus, the pPersistent 0.5–1 m positive biases in the Beaufort Sea Canadian Basin interior isare 

hypothesized to originate from an overestimated intensity of the Beaufort Gyre and associated upper-ocean thermal biases in 

E3SMv2-MPAS, which then may impede the realistic export of sea ice through the north of Canadian Archipelago and east 395 

of Greenland.potentially enhancing sea ice convergence processes. 

 

Figure 6. Climatological mean spatial distributions for the period 1995–2020. (a–c) SSH: (a) E3SMv2-MPAS, (b) ORAS5. (c) Bias 

in SSH between E3SMv2-MPAS and ORAS5. (d–f) OHC in the upper 100 m: (d) E3SMv2-MPAS, (e) IAP. (f) Bias in OHC 

between E3SMv2-MPAS and IAP. 400 
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Figure 5. Seasonal sea ice thickness spatial distributions. Rows: (1) E3SMv2-MPAS, (2) ICESat, (3) PIOMAS. Columns: (1) 

February 2005, (2) October 2005, (3) October 2006, (4) March 2007, (5) March 2019, (6) October 2019.  

To further analyze long-term trends in sea ice-related variables, including interannual and decadal variability, time series of 

SIC, SIT, SIE, and SIV are examined over the periods 1960–1980 and 1995–2020 (Fig. 7). 405 
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Figure 7. Time series and linear trends of sea ice properties from 1960–1980 and 1995–2020. (a) SIC of pan-Arctic (70°–90°N) for 

E3SMv2-MPAS (gray), NSIDC (blue), Hadley (green), and ERA5 (orange). (b) SIE for E3SMv2-MPAS (black) and NSIDC (red). 

(c) SIT of pan-Arctic (70°–90° N) for E3SMv2-MPAS (black) and PIOMAS (red). (d) SIV for E3SMv2-MPAS (black) and 

PIOMAS (red). Dashed lines denote linear trends based on least-squares regression. 410 

E3SMv2-MPAS successfully reproduces SIC seasonal cycles and interannual variability during 1995–2020, maintaining root 

mean square errors (RMSE) values of 0.040, 0.052, and 0.051 against NSIDC, Hadley, and ERA5 datasets respectively (Fig. 

7a3h). This validates the dynamic framework's effectiveness in capturing sea ice-atmosphere coupling mechanisms. 

However, the asymmetric seasonal biases in E3SMv2-MPAS are identified, which shows: systematic winter overestimation 

contrast with moderate summer underestimation (primarily compared with NSIDC), suggesting potential improvements 415 

needed in simulating ice-albedo feedback and melt pond dynamics. Trend analysis confirms the model's climate response 

capability. During the rapid decline period (1995–2020), E3SMv2-MPAS accurately captures accelerated SIC reduction 

trends, showing better agreement with NSIDC observations than Hadley and ERA5 products. For the weak -trend period 

(1960–1980), the model reproduces quasi-stable sea ice coverage characteristics while maintaining overestimated seasonal 

variability amplitudes. The accelerated SIC decline in the recent period compared to historical decades (1960–1980) 420 

highlights the model's ability to replicate trend amplification under intensified forcing, thereby bolstering confidence in its 

scenario-dependent projections. Similarly, the model effectively captures the interannual and decadal variability of SIE (Fig. 

7b; RMSE: 0.96). 

Consistent with NSIDC, simulated SIC and SIE exhibit certain seasonal biases . The systematic winter overestimation, 

attributable to positive SIC biases in the southern Greenland Sea and southward-expanded ice cover in the Barents Sea (Fig. 425 

3e), coinciding with pronounced cold SST biases in these regions (Fig. S3). During summer, E3SMv2-MPAS overestimates 

the seasonal minimum (Fig. 7a–b), particularly in the Greenland Sea, Barents Sea, East Siberian-Laptev Seas, and Beaufort 

Sea (Fig. 4e). These regions also exhibit elevated surface albedo values (Fig. S4), reducing absorbed shortwave radiation and 

contributing to the sea ice overestimation. 

Although the model generally overestimates SIT (Figs. 5 and S2), the time series analysis successfully simulates continuous 430 

thinning from ~1.8 m to ~1.3 m during 1995–2020 (Fig. 7c4d). Notably, however, the simulated thinning rates remain 

slightly lower than PIOMAS results. Stable RMSE values (~0.37) throughout this period confirm robust simulation of long-

term SIT evolution. Similarly, compared to PIOMAS, the simulated SIV is consistently underestimated throughout the 

period, though the declining trend during 1995–2020 is well captured (Fig. 7d). For the pre-satellite era (1960–1980), 

evaluation using PIOMAS-20C shows E3SMv2-MPAS reproduces the 6-year cyclic "increase-decrease-increase" SIT 435 

fluctuations during 1960–1978 (Fig. 7c4d). While PIOMAS-20C shows no statistically significant SIT trend during 1960–

1980, E3SMv2-MPAS simulates a pronounced thickening trend in this period, potentially linked to its systematic 

overestimation of regional ice thickness in areas like the Beaufort Sea (Fig. 5c and f, Fig. S2c4c). Nevertheless, across the 

multi-decadal scale (1960–2020), this coupled system demonstrates a reasonable representation of Arctic SIT and SIVsea ice 

responses to climate forcing.  440 
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3.2 Surface Tthermohaline Ssignatures 

SST and SSS engage in complex bidirectional coupling with the atmosphere-ice system through ice/atmosphere-ocean 

interfacial energy-mass exchange processes. This section evaluates the spatiotemporal co-variability of SST/SSS to elucidate 

E3SMv2-MPAS's representation of ocean-sea ice-atmosphere interaction mechanisms. 

OISST-based validation demonstrates E3SMv2-MPAS accurately reproduces key Arctic SST spatial patterns: (1) 445 

temperature gradients decreasing from shelves to central basins, and (2) warm-core features in southern Barents Sea open 

waters (Fig. 86a–c). Systematic regional biases are identified: the cold biases in the Greenland Sea (ΔSST≈-2–0°C) spatially 

correlate with an overestimation of SIC in the same region, while positive deviations (ΔSST≈0–2°C) occur near Svalbard's 

western coast and the Eurasian continental margins. Notably, continental coastal biases are spatially decoupled from Atlantic 

inflow pathways, with formation mechanisms likely associated with inaccurate vertical mixing processes stemming from 450 

stratification stability biases in shelf regions. E3SMv2-MPAS successfully captures Arctic SST warming trends during the 

1995–2020 period, showing high consistency with OISST in accelerated trend characteristics (Fig. 86d). Seasonal cycle and 

interannual variability simulations remain within acceptable error ranges (RMSE=0.24), confirming appropriate responses to 

surface thermal forcing. Furthermore, the model accurately captures both the pronounced SST increase and accelerated 

decadal warming trend during 1995–2020 relative to the 1960–1980 baseline period. These simulated changes show a strong 455 

coupling with the accelerated decline in SIC, SIE, SIT, and SIVT concurrently (Figs. 73h, 4d). 
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Figure 86. (a–b) 1995–2020 climatological mean sea surface temperature (SST) spatial distributions: (a) E3SMv2-MPAS, (b) 

OISST. (c) SST bias field: E3SMv2-MPAS vs. OISST. (d) Pan-Arctic (70° N–90° N) mean SST time series for 1960–1980 and 

1995–2020, with dashed lines indicating linear trends (E3SMv2-MPAS: black; OISST: red) derived from least-squares regression. 460 

E3SMv2-MPAS demonstrates comparatively weaker performance in SSS simulation versus sea ice and SST variables. 

Spatially heterogeneous biases are observed: negative deviations (ΔSSS=-0–1 PSU) in the Barents and Greenland Seas 

contrast with pronounced positive biases (ΔSSS=2–5 PSU) in the Beaufort Sea and the Kara-Beaufort shelf regions (Fig. 

97a–c). The 3 PSU overestimation in the Beaufort Sea aligns with advanced assimilation model (such as HYCOM and 

GLORYS12) biases reported by Hall et al. (2021), suggesting common limitations in Arctic shelf freshwater transport 465 

representation. Specifically, inadequate parameterization of surface freshwater budgets and associated processes (e.g., 

precipitation-evaporation fluxes, river discharge, and ice-ocean interactions) may constrain freshwater cycle simulations 

(Wang et al., 2024). The Beaufort Sea SIT overestimation identified previously (Fig. 54a–c) potentially exacerbates salinity 

biases through reduced freshwater release (Kelly et al., 2019). If the intensity of the Beaufort Gyre is overestimated (as 

discussed in Section 3.1), enhanced freshwater retention could impede westward shelf transport to  the Kara Sea, potentially 470 

driving salinity overestimation in the Kara-Beaufort shelf. Despite spatial biases, E3SMv2-MPAS demonstrates credible 
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simulation of seasonal cycle phasing and amplitude in the Barents Sea SSS, while the temporal variations in the Beaufort Sea 

show agreement levels comparable to mainstream reanalysis products (Fig. 97d–e; Hall et al. (2021)). 
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 475 

Figure 97. (a–b) September 2011–December 2020 climatological mean sea surface salinity (SSS) spatial distributions: (a) E3SMv2-

MPAS, (b) OISSS. (c) SSS bias field: E3SMv2-MPAS vs. OISSS. (d–e) Regional SSS time series in (d) the Barents Sea and (e) the 

Beaufort Sea (black boxes in a–c; E3SMv2-MPAS: black; OISSS: red). 

In the Greenland and Barents Seas, systematic underestimation of SST and SSS (Figs. 86a–c and, 97a–c) coincides with 

overestimation of SIC (Figs. 3a and –4g). Three-dimensional thermohaline profile analysis (1995–2014, with WOA23, 480 

figure omitted) reveals satisfactory mid-depth salinity simulations but overestimation of temperature in the Barents Sea 

subsurface layers. This indicates effective capture of AW inflow (characterized by high temperature and salinity) through the 

Barents Sea Opening (BSO), albeit with slight thermal influence overestimation. Surface thermohaline underestimation may 

originate from insufficient representation of subsurface-to-surface vertical mixing processes: reduced surface heat/salt fluxes 

caused by underestimated mixing efficiency could enhance sea ice maintenance mechanisms, thereby amplifying 485 

overestimation of SIC. These regions are situated within the marginal ice zone, where strong surface wind stress facilitates 

the transfer of energy to deeper ocean layers through the excitation of near-inertial oscillations and associated turbulent 

mixing processes (D’Asaro, 1985). This discrepancy may be attributed to the model's potential overestimation of this 

downward energy transfer. Similarly, Zhu et al. (2022) reported that in the equatorial Pacific cold tongue region, the KPP 

scheme overestimates downward turbulent heat flux, leading to a cold bias in both upper-ocean and sea surface temperatures. 490 
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A primary reason for these biases lies in the scheme's reliance on a single Richardson number (Ri) relationship for 

parameterization. Although this approach captures instability conditions in stratified shear flows, it is insufficient to uniquely 

determine turbulent states and mixing intensities (Zhu et al., 2022), thus limiting its performance in complex dynamic 

environments.These vertical process biases, combined with surface freshwater transport limitations, constitute key 

uncertainty sources in regional climate simulations. 495 

3.3 Three-Ddimensional Tthermohaline Sstructure 

Accurate simulation of three-dimensional thermohaline fields remains a core technical challenge in ocean model 

development, directly determining model capability in representing Arctic multi-sphere coupling processes (ocean-ice-

atmosphere). While preliminary evaluations of key sea ice properties (including concentration, extent, thickness, and 

volume)sea ice thickness-concentration and surface thermohaline diagnostics have validated E3SMv2-MPAS's capacity to 500 

simulate Arctic shallow-layer thermal states, subsurface-to-deep thermohaline structure biases may still induce circulation 

distortions, material transport deviations, cross-basin exchange inaccuracies, and climate feedback misrepresentations. A 

multi-dimensional verification framework including spatial heterogeneity diagnostics, temporal evolution analysis and three -

dimensional dynamical validation is established to assess E3SMv2-MPAS's three-dimensional thermohaline simulation 

performance comprehensively. 505 

Using the 1995–2014 climatological mean profiles, systematic comparisons are conducted between E3SMv2-MPAS, and 

observational data (Muilwijk et al., 2023) , and 13 high-resolution CMIP6 models (horizontal resolution <60 km; Muilwijk 

et al., 2023; see Table 1) across four regions: the western Eurasian Basin, the eastern Eurasian Basin, the Chukchi Sea, and 

the Beaufort Sea. Thermohaline profile characteristics (0–1000 m depth) are evaluated through vertical structure evolution 

and regional variability analyzesanalyses. 510 

Although the CMIP6 models have relative high-resolution, they exhibit systematic biases in AW core characterization as 

follows: (1) Substantial underestimation of core temperatures (e.g., <0°C in CanESM5 and GISS-E2-1-H), and (2) 

Overestimated AW layer thickness with obviously downward-shifted core depths. These challenges are particularly 

pronounced in the western Eurasian Basin influenced by the Fram Strait branch (one of two primary AW inflow pathways) 

compared to the eastern Eurasian Basin and the Amerasian Basin sector. Observational data reveal maximum temperatures 515 

(1.65°C) at 250 m depth in the western Eurasian Basin, decreasing to 0°C at 800 m (Fig. 108a). However, all CMIP6 models 

show structural biases with temperature maxima averaging 500 m depth and underestimated vertical temperature gradients. 

In contrast, E3SMv2-MPAS can successfully reproduces observed vertical temperature structure, matching the observed 250 

m temperature maximum depth and maintaining temperature decline to 0°C at 1000 m depth. Despite a ~1°C core 

temperature overestimation and 200 m layer thickness bias, its temperature profile RMSE is (0.448) significantly 520 

outperforms other CMIP6 models. 
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Figure 108. (a–d) 1995–2014 climatological mean temperature profiles from observations (Muilwijk et al., 2023), and E3SMv2-

MPAS, and the 13 models of CMIP6 (Muilwijk et al., 2023). (e–h) The same as panels (a–d) but for salinity profiles. Basins: the 525 
Wwestern Eurasian (WEB; a/e), the Eeastern Eurasian (EEB; b/f), the Chukchi Sea (c/g), the Beaufort Sea (d/h). 

Observational spatial heterogeneity shows progressive temperature core reductions (1.6°C→1.4°C→0.87°C→0.76°C) and 

deepening core depths (250 m→290 m→400 m→420 m) from the western Eurasian Basin to the Beaufort Sea (Fig. 108a–d). 

CMIP6 models fail to capture these spatial gradients, exhibiting homogeneous vertical structures. E3SMv2-MPAS maintains 

systematic temperature overestimation (~1℃ in the western Eurasian Basin, ~0.3℃ in the Chukchi Sea and the Beaufort 530 

Sea~0.5°C average) while successfully reproducing spatiotemporal evolution of vertical thermal structures. In salinity 

simulations, systematic underestimation is observed across CMIP6 models within the upper 500 m (Fig. 8e–h). E3SMv2-

MPAS demonstrates optimal salinity profile fitting capability through observational agreement starting from 200–300 m 

depth, as evidenced by the western Eurasian Basin RMSE of 0.204. 

Regional evaluations confirm E3SMv2-MPAS's optimal performance across key metrics: the western Eurasian Basin 535 

(temperature RMSE=0.448, salinity RMSE=0.204; Table 2), the eastern Eurasian Basin (0.344, 0.356), the Chukchi Sea 

(0.686, 0.302), and the Beaufort Sea (0.349, 0.811). Notably, IPSL-CM6A-LR marginally outperforms E3SMv2-MPAS in 
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the eastern Eurasian Basin and the Beaufort Sea salinity simulations, primarily due to surface salinity overestimation in 

E3SMv2-MPAS. 

 540 

Table 2. Root mean square errors (RMSE) for temperature (Temp.; °C) and salinity (Sal.; PSU) in 0–1000 m vertical profiles from 

E3SMv2-MPAS and 13 CMIP6 models (Muilwijk et al., 2023), evaluated against observation (Muilwijk et al., 2023) in four 

regions: the Western Eurasian Basin, the Eastern Eurasian Basin, the Chukchi Sea, and the Beaufort Sea. Performance ranking: * 

indicates lowest RMSE per basin/variable, underlined values denote second-lowest. 

 

Western Eurasian Basin Eastern Eurasian Basin Chukchi Sea Beaufort Sea 

Temp. Sal. Temp. Sal. Temp. Sal. Temp. Sal. 

E3SMv2-MPAS 0.448* 0.204* 0.344* 0.356 0.686* 0.302* 0.349* 0.811 

BCC-CSM2-MR 0.742 1.711 0.700 1.842 1.088 0.784 0.996 0.922 

CAMS-CSM1-0 0.692 2.276 0.635 2.263 0.913 1.094 0.916 1.007 

CESM2 0.804 0.717 0.672 1.027 0.784 0.635 0.760 0.958 

CanESM5 1.497 1.389 1.317 0.698 1.254 0.739 1.047 1.307 

GFDL-CM4 0.875 0.296 0.903 1.226 0.941 1.206 0.730 2.135 

GFDL-ESM4 0.641 0.449 0.827 0.787 1.011 1.389 0.705 2.195 

IPSL-CM6A-LR 0.620 1.389 0.584 0.256* 0.830 1.873 0.485 0.562* 

GISS-E2-1-H 1.320 0.795 1.365 1.119 1.381 1.075 1.183 1.946 

MIROC6 1.070 0.790 0.780 0.890 0.905 1.054 0.606 1.642 

MPI-ESM1-2-HR 0.795 0.856 0.687 1.200 0.833 0.693 0.564 1.309 

MRI-ESM2-0 0.839 0.556 0.768 0.930 0.913 1.198 0.701 1.817 

NorESM2-LM 0.745 0.819 0.904 1.040 0.884 0.694 0.625 1.220 

UKESM1-0-LL 1.022 1.134 1.102 1.076 1.278 1.444 0.883 2.122 

 545 

Comprehensive analysis of higher-resolution CMIP6 models reveals common thermohaline simulation biases (Fig. 8). To 

evaluate resolution sensitivity in Arctic Intermediate Water simulations, the assessment framework is extended to five 

resolution-matched model pairs from OMIP2 (Wang et al., 2024; see Table 1). Thermohaline profile characteristics in the 

Eurasian and Amerasian Basins are systematically compared between high/low-resolution model pairs (solid/dashed lines), 

E3SMv2-MPAS, and WOA23 data (Locarnini et al., 2024; Reagan et al., 2024) to elucidate ocean model grid configuration 550 

impacts (Fig. 9). Low-resolution models exhibit persistent CMIP6 systematic biases, while their high-resolution counterparts 

(excluding IAP-LICOM-6.8km) demonstrate improved intermediate water core temperature and vertical structure 
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simulations. High-resolution models successfully reproduce observed zonal gradients showing temperature maxima 

decreasing from the Eurasian Basin (1.3°C@250 m) to the Amerasian Basin (0.7°C@400 m), confirming resolution 

enhancement benefits for oceanic frontal processes. In the Eurasian Basin where simulation biases are most pronounced, the 555 

majority of high-resolution models – with the exception of E3SMv2-MPAS (10 km) and FESOM variants (4.5/24 km) – 

continue to exhibit overestimated AW layer thickness. WOA23 observations indicate temperature decline to 0°C at 800 m 

depth, whereas most models maintain ~0.5°C at 1000 m (Fig. 9a). This persistent discrepancy demonstrates that resolution 

enhancement alone remains insufficient to fully resolve key technical bottlenecks in Arctic Intermediate Water simulations. 

Notably, E3SMv2-MPAS and FESOM models exhibit breakthrough performance (Table 3). Despite comparable resolutions 560 

to other high-resolution models (e.g., ACCESS-MOM 9 km, FSU-HYCOM 32 km), unstructured mesh configurations 

enable refined representation of key hydrographic gateways like the Fram Strait. Compared to tripolar grid models suffering 

numerical dissipation near complex coastlines, variable mesh designs achieve reduced the Eurasian Basin temperature errors 

under equivalent computational resources. Model grid type and computational efficiency exhibit nonlinear relationships. 

Unstructured meshes (FESOM/MPAS) permit dynamic optimization through localized refinement in critical regions (e.g., 565 

AW intrusion pathways). This targeted refinement strategy provides new technical approaches for Arctic ocean modeling, 

particularly under accelerating Atlantification processes. 
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Figure 9. (a–b) 1995–2014 climatological mean temperature profiles in (a) the Eurasian Basin and (b) the Amerasian Basin: 

Observations (WOA23; red), E3SMv2-MPAS (black), OMIP2 models (Wang et al., 2024; dashed: low-resolution, solid: high-570 
resolution). (c–d) The same as panels (a–b) but for salinity profiles. 

Table 3. Root mean square errors (RMSE) for temperature (Temp.; °C) and salinity (Sal.; PSU) in 0–1000 m vertical profiles from 

E3SMv2-MPAS and 5 OMIP2 model pairs (Wang et al., 2024), evaluated against WOA23 in the Eurasian Basin and the 

Amerasian Basin. Performance ranking: * indicates lowest RMSE per basin/variable, underlined values denote second-lowest. 

 

Eurasian Basin Amerasian Basin 

Temp. Sal. Temp. Sal. 

E3SMv2-MPAS 0.223* 0.130* 0.143* 0.219* 

ACCESS-MOM_3.6km 0.437 0.202 0.217 0.663 

ACCESS-MOM_9km 0.583 0.208 0.423 0.557 

AWI-FESOM_4.5km 0.236 0.205 0.207 0.390 

AWI-FESOM_24km 0.230 0.187 0.253 0.397 
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CMCC-NEMO_3.2km 0.453 0.762 0.276 1.055 

CMCC-NEMO_51km 0.869 0.600 0.558 0.875 

FSU-HYCOM_3.6km 0.409 0.240 0.186 0.719 

FSU-HYCOM_32km 1.012 0.442 0.485 0.797 

IAP-LICOM_6.8km 0.716 0.457 0.346 0.882 

IAP-LICOM_72km 0.435 0.319 0.456 0.716 

 575 

Following systematic benchmarking against CMIP6/OMIP2 multi-resolution models, we investigate parameterization 

sensitivity within the same coupled framework (E3SM). By comparing mesoscale eddy parameterization schemes between 

E3SMv1 and v2 (as detailed in Section 2.2.3), we dissect their impacts on simulation fidelity and elucidate underlying 

mechanism. Comparative assessments of E3SM-Arctic-OSI (E3SMv1; Veneziani et al., 2022) and E3SMv2-MPAS (both 

60to10 km) are performed across the Eurasian Basin, the Amerasian Basin, and sub-regions (Fig. 10). E3SMv2-MPAS 580 

demonstrates improved temperature vertical structure simulations (Fig. 10a–f), reducing Eurasian Basin core temperature 

overestimation from 1.3°C to 0.5°C and correcting 100 m core depth shoaling. Optimized mesoscale transport 

parameterization better represents turbulent mixing effects on water mass structure. For salinity, E3SM-Arctic-OSI exhibits -

0.7 PSU biases above 200 m in the Eurasian Basin, reduced to -0.13 PSU in E3SMv2-MPAS (Fig. 10g). This enhancement 

likely stems from the refined vertical mixing scheme in E3SMv2-MPAS, which better captures Arctic halocline dynamics. 585 

Notably, E3SM-Arctic-OSI outperforms E3SMv2-MPAS in simulating sub-maximum temperature gradients (500–1000 m 

layer), with the Eurasian Basin RMSE reduced by 65% (0.17 vs. 0.49 in v2). This regression is attributed to excessive 

subsurface gradient smoothing in E3SMv2-MPAS caused by persistent moderate diffusion at 10 km Arctic resolution.  
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Figure 10. (a–f) 2005–2014 climatological mean temperature profiles: Observations (WOA23 for EB/AAB; observation from 590 
Muilwijk et al., 2023 for WEB/EEB/Chukchi/Beaufort; red lines), E3SMv2-MPAS (black lines), E3SM-Arctic-OSI (Veneziani et 

al., 2022; blue lines). (g–l) The same as panels (a–f) but for salinity profiles. Basins: the Eurasian Basin (EB, a/g), the Western 

Eurasian Basin (WEB, b/h), the Eastern Eurasian Basin (EEB, c/i), the Amerasian Basin (AAB, d/j), the Chukchi Sea (e/k), the 

Beaufort Sea (f/l). 

Physical parameterization upgrades and resolution enhancement demonstrate synergistic effects. E3SMv2-MPAS addresses 595 

CMIP6/OMIP2 intermediate water simulation challenges through improved subgrid parameterization  and the inherent 

advantages of unstructured meshes. The fundamental limitation of traditional eddy parameterization in variable-resolution 

meshes is revealed: complete GM deactivation (κ=0) causes structural distortions, while moderate diffusion (κ=300 m² s⁻¹) 

induces over-smoothing. FESOM_4.5km's superior temperature-depth relationships suggest potential solutions through 

MPAS resolution increases or parameterization optimization via neural networks. Opposing regional biases (Eurasian 600 

overestimation/Amerasian underestimation) indicate current parameterizations lack universality across Arctic dynamical 

regimes, highlighting critical development pathways for next-generation models. 

In order to systematically assess model capabilities in representing multi-scale Arctic thermal variations, an inter-decadal 

three-dimensional thermohaline evolution framework is established. Depth-time section comparisons between E3SMv2-

MPAS and EN.4.2.2 (Good et al., 2013) are conducted to analyze spatiotemporal heterogeneity in Arctic oceanic thermal 605 

structures (Fig. 11). 
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Figure 11. For the Arctic Basin, (a) E3SMv2-MPAS simulated temperature profiles (0–1000 m): 1960–1980 climatology (dashed) 

vs. 2000–2020 climatology (solid). Right: Hovmöller diagram of depth-time evolution (1960–1980 and 2000–2020). (b) The same as 

panel (a) but for EN.4.2.2. (c) The same as panel (a) but for E3SMv2-MPAS minus EN.4.2.2 differences. 610 

E3SMv2-MPAS successfully reproduces the solar radiation-driven seasonal thermal cycle observed in EN.4.2.2 (Fig. 11). 

Monthly thermohaline profiles (depth-month coordinates) in the upper 500 m of the Eurasian Basin better illustrate 

radiation-dominated seasonal characteristics: summer (June–August) surface temperature peaks coincide with salinity 

minima from meltwater inputs, while winter (December–February) shows sub-freezing temperatures (<-1.8°C) and salinity 

recovery (Fig. 12). These core seasonal features are accurately captured, validating high-precision surface flux 615 

representation. 
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Figure 12. (a–b) E3SMv2-MPAS simulated 1995–2020 climatological mean (left) temperature and (right) salinity profiles (0–500 

m) in the Eurasian Basin (EB), with Hovmöller diagrams of monthly variability. (c–d) The same as panels (a–b) but for WOA23. 

(e–f) The same as panels (a–b) but for model-observation differences (E3SMv2-MPAS minus WOA23). 620 

E3SMv2-MPAS demonstrates exceptional multi-temporal simulation capabilities for AW dynamics (Fig. 11). Observations 

reveal stable AW core temperatures (~1.6°C) during 1960–1980, increasing to ~2°C in 2000–2020 with core shallowing 

from 350 m to 300 m in the whole Arctic Basin (Fig. 11b). E3SMv2-MPAS accurately reproduces both the ~0.4°C warming 

magnitude and ~50 m vertical migration (Fig. 11a). However, regional-specific biases emerge in seasonal variability 

simulations (Fig. 12). EN.4.2.2 identifies semi-annual signals in the 200–500 m layer of the Eurasian Basin (September–625 

November peaks at ~1.5°C; Fig. 12c), linked to winter Atlantification intensification. E3SMv2-MPAS fails to capture this 

seasonality, producing persistent warm biases in 200–400 m layers with overestimated spring–summer core temperatures 

(0.5–0.8°C; Fig. 12e). This discrepancy may be attributed to the GM parameterization scheme, which models mesoscale 

eddy effects on heat and salt redistribution through bolus advection and Redi diffusion. In general, the Arctic winter features 

greater mixed layer depth and weaker stratification due to brine rejection during sea ice formation and wind-driven stirring 630 

(Peralta-Ferriz and Woodgate, 2015). These processes promote eddy penetration, increasing the efficiency of vertical heat 

transport. In contrast, strengthened stratification in summer restricts the vertical scale of eddies and reduces heat transfe r. 

However, the GM scheme employs a fixed diffusion coefficient, which prevents it from capturing the seasonal variability 

modulated by stratification changes. A systematic validation framework uncovers the multi-tiered optimization 

characteristics of E3SMv2-MPAS, demonstrating superior surface-layer accuracy alongside relatively excellent 635 
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intermediate-depth representations. Nevertheless, inherent constraints of current parameterization schemes under polar 

stratification conditions lead to persistent model-data discrepancies, particularly manifested in seasonal phase mismatches. 

This finding highlights the need to develop improved turbulence models based on energy transfer principles (Canuto et al., 

2001; Smagorinsky, 1963), which would better connect processes across different scales. 

We further investigate the decadal-scale thermohaline variability across Arctic basins. The results reveal regional 640 

heterogeneity in temperature and salinity trends (Fig. 13), likely modulated by differential ocean-ice feedbacks and cross-

basin transport dynamics. Inter-decadal comparisons (1970s vs. 2000s–2020s; Muilwijk et al. (2023)) reveal pan-Arctic 

synchronous warming across the Eurasian Basin sectors and the Amerasian sub-regions (Fig. 13e–h). However, E3SMv2-

MPAS underestimates the warming in the Amerasian Basin (0.1–0.5°C biases; Fig. 13c–d and g–h), indicating limitations in 

AW transport pathways and heat redistribution. 645 

 

Figure 13. (a–d) Vertical profiles of climatological mean temperature (red curves) and salinity (blue curves) in the Wwestern 

Eurasian Basin (WEB;, a), the Eeastern Eurasian Basin (EEB;, b), the Chukchi Sea (c), and the Beaufort Gyre (d) from E3SMv2-
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MPAS: dashed lines denote 1970s (1971–1979), solid lines represent 2000s–2010s (2001–2019). (e–f) Corresponding observational 

profiles from Muilwijk et al. (2023) with identical temporal averaging. 650 

In the Eurasian Basin upper layers (~100–450 m; Fig. 13a–b and e–f), observations show dual-mode thermal evolution: 

shallow warming above temperature cores (100–250 m) contrasts with systematic warming below (250–450 m). Model 

simulations exhibit spatial heterogeneity: 0.2±0.1°C underestimation of shallow warming contrasts with excessive vertical 

response ranges (250–1000 m vs. observed 250–450 m). Notably, simulated AW layer thickening in the eastern Eurasian 

Basin during 2000s–2010s lacks observational support (Fig. 13b and f). These discrepancies may be partly attributed to 655 

biases in the representation of vertical processes. As indicated by sensitivity experiments such as those of Liang & Losch 

(2018), enhanced vertical mixing could promote upward heat transport from AW, potentially causing cooling at intermediate 

depths (200–900 m). Our model uses a relatively low background diffusivity (1.0×10 -5 m2 s-1), which remains constant 

across time periods despite evidence that Arctic amplification and Atlantification in the 2000s–2010s (Polyakov et al., 2017, 

2025; Rantanen et al., 2022; Richards et al., 2022; Shu et al., 2022) may have strengthened vertical mixing compared to the 660 

1970s. The model's failure to represent this temporal increase in mixing efficiency might have limited upward heat transfer, 

confining warming mainly to intermediate and deeper layers – consistent with the underestimation of shallow warming and 

exaggerated deep response seen in our simulations. 

In the Chukchi SeaAmerasian Basin side, observations indicate basin-wide warming from core layers to AW bottom (~1000 

m), with the Chukchi Sea showing ΔT=0.2±0.1°C (Fig. 13c–d and g–h). While successfully reproducing Chukchi thermal 665 

trends, E3SMv2-MPAS the model exhibits systematic Beaufort Sea deviations. Salinity changes primarily occur in  the upper 

300 m of the Amerasian Basin (the Chukchi and Beaufort Seas; observed ΔS=-0.3±0.2 PSU), with the model failures in 

capturing the freshening of the Chukchi Sea and underestimation of trends in the shallow-layer (<80 m) of the Beaufort Sea. 

The simulated salinity biases may be related to the use of an inappropriately high and constant isopycnal diffusion 

coefficient (κ=300 m2 s-1) in the GM parameterization. This high diffusion coefficient likely results in excessively strong 670 

along-isopycnal mixing, which oversmooths horizontal salinity gradient fronts formed by freshwater accumulation (e.g., 

from melting ice and increased runoff). During the 1970s, when background freshwater signals were relatively weak, the 

effect of strong diffusion was less pronounced. However, under the strongly increased freshwater input in the 2000s –2010 

(Polyakov et al., 2013; Wang et al., 2019), the persistently high κ value continuously and excessively diffused the simulated 

upper-layer low-salinity anomalies, hindering their realistic accumulation and maintenance in the basin upper layer. As a 675 

result, the model significantly underestimates the magnitude of decadal freshening observed in the region.  

E3SMv2-MPAS demonstrates significant regional dependence in simulating interdecadal thermohaline structure changes 

across Arctic basins. Systematic biases persist between model outputs and observational data, particularly in AW layer 

thickness evolution, vertical extent of subsurface warming processes, and strength of surface freshening signals. These 

discrepancies likely originate from suboptimal parameterization schemes for key physical processes such as mesoscale eddy 680 

activities and shelf-basin interactions. 
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AW demonstrates systematic cooling and freshening (temperature and salinity reduction) during its transport from the 

Eurasian to the Amerasian Basin (Fig. 108), a transformation likely modulated by baroclinic adjustment processes in the 

inter-basin transition zone. These processes , known to govern cross-basin material-energy exchange (Aksenov et al., 2016)., 685 

necessitate a three-dimensional thermohaline diagnostic approach. To this end, weWe analyze coordinated meridional 

sections along 145° W in (the Amerasian Basin) and 70° E in (the Eurasian Basin) to, constructing a unified framework to 

evaluate spatiotemporal variability in access variability in AW properties across space (Fig. 14). WOA23-based comparisons 

confirm E3SMv2-MPAS's capability in reproducing inter-basin gradient characteristics through three key aspects: (1) AW 

thermal attenuation: Successful simulation of core temperature decreases from the Eurasian to the  Amerasian Basin, 690 

replicating thermodynamic dissipation processes; (2) Stratification depth displacement: Realistic representation of westward-

decreasing upper boundary depths matching slope current adjustments; (3) Surface freshwater transport effects: Accurate 

reproduction of the surface salinity depression in the Amerasian Basin relative to the Eurasian Basin, validating appropriate 

parameterization of Pacific-origin freshwater influx mechanisms. Persistent thermal biases in the Eurasian Basin emerge in 

145° W sections, with maximum +2°C warm deviations in 100–500 m core layers (Fig. 14e). These discrepancies may 695 

originate from overestimation of the Fram Strait heat fluxes or inadequate parameterization of mesoscale mixing. Despite 

absolute temperature biases, maintained meridional heat transport gradients confirm fundamental physical framework 

validity for large-scale advection processes. 
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Figure 14. (a–b) E3SMv2-MPAS simulated 1995–2020 climatological (left) temperature and (right) salinity distributions along the 700 
145° W–70° E transect (location mapped in Fig. 1b). (c–d) The same as panels (a–b) but for WOA23. (e–f) The same as panels (a–

b) but for the model-observation differences (E3SMv2-MPAS minus WOA23). 

3.4 Freshwater content spatiotemporal variability 

The Arctic Ocean constitutes a major freshwater reservoir within the global climate system. Since the mid -1990s, the 

freshwater content (FWC) in the Arctic Ocean has exhibited a marked increasing trend, primarily driven by persistent 705 

anticyclonic atmospheric forcing over the Beaufort Gyre region (1997–2018) and the reduction of Arctic sea ice 

(Proshutinsky et al., 2019; Wang et al., 2024). This excess freshwater is exported into the North Atlantic through Fram Strait 

and Davis Strait (Wang et al., 2019), eventually reaching convection regions in the Labrador and Greenland–Iceland–

Norwegian Seas. These areas are critical for the formation of global deep waters, which act as a key driver of large -scale 

ocean circulation systems, including the Atlantic Meridional Overturning Circulation (AMOC) (Arzel et al., 2007). The 710 

southward transport of freshwater may influence circulation dynamics by reducing seawater density and suppressing vertical 

mixing (Haine et al., 2023). Furthermore, Arctic freshwater variability significantly influences ecosystem structure and 

function (Proshutinsky et al., 2019). Therefore, accurately assessing the freshwater content in the Arctic Ocean represents a 

central challenge in physical oceanography and climate dynamics, with major implications for understanding both climate 

variability and long-term change (Haine et al., 2023). 715 
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The FWC is defined as follows (Wang et al., 2024): 

𝐹𝑊𝐶 = ∫
𝑆𝑟𝑒𝑓−𝑆

𝑆𝑟𝑒𝑓
𝑑𝑧,

0

𝐻
                                                                                (1) 

where 𝑆 denotes salinity, 𝑆𝑟𝑒𝑓 is the reference salinity – set to 34.8 psu, the mean Arctic Ocean salinity according to Aagaard 

and Carmack (1989) – and 𝐻 represents the depth at which salinity equals 𝑆𝑟𝑒𝑓. 

Based on this formulation, we evaluate the spatial distribution of the multi-year mean (1995–2020; Fig. 15a–b) and decadal 720 

differences (2005–2014 vs. 1995–2004; Fig. 15c–d) of FWC as simulated by E3SMv2-MPAS, in comparison with 

observational data from WOA23. Additionally, we analyze the basin-wide averaged time series of FWC across the Arctic 

Ocean (Fig. 15e). 
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Figure 15. Spatial distribution and temporal evolution of FWC (in meters) in the Arctic Ocean. (a–b) Multi-year mean (1995–725 
2020) FWC from (a) E3SMv2-MPAS and (b) WOA23. (c–d) Decadal difference in FWC (2005–2014 minus 1995–2004) from (c) 

E3SMv2-MPAS and (d) WOA23. (e) Time series of the Arctic Ocean-wide averaged FWC from E3SMv2-MPAS for the period 

1995–2020.  

As shown in Fig. 15a–b, E3SMv2-MPAS generally captures the spatial characteristics of Arctic FWC, such as the increase 

from the Eurasian Basin toward the Amerasian Basin and the maximum values located in the Beaufort Sea. However, the 730 

model overestimates FWC in the vicinity of Baffin Bay. 
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Observational results from WOA23 indicate a pronounced strengthening of FWC in the Beaufort Sea during 2005 –2014 

compared to 1995–2004. The model successfully reproduces this decadal change in that area (Fig. 15c–d). Nonetheless, 

E3SMv2-MPAS erroneously simulates a significant decrease in FWC across the Eurasian and Makarov Basins, where 

WOA23 shows a slight increase. Moreover, the model overestimates the increase in FWC along a pathway extending from 735 

the east of Greenland to the northern Canadian Archipelago and into the Canada Basin.  

The time series of the total Arctic FWC (Fig. 15e) exhibits a fluctuating upward trend from 1995 to 2020. Polyakov et al. 

(2013) reported a notable acceleration in Arctic FWC accumulation during the 2000s, particularly between 2003 and 2010  – 

a trend that aligns with the sharp rise simulated by E3SMv2-MPAS between 2002 and 2008. Furthermore, Wang et al. 

(2019) noted a levelling off of the FWC growth trend after 2010, which is also captured by the model.  740 

3.5 Gateway transports: volume, heat, and freshwater 

Over the past decades, the Arctic climate system has undergone rapid changes, including shifts in sea ice, atmosphere, and 

ocean conditions (Landrum and Holland, 2020; Polyakov et al., 2005; Shu et al., 2022). These rapid changes are closely 

linked to the lateral exchanges of heat and freshwater across the boundaries of the Arctic (Von Schuckmann et al., 2020). 

The Arctic Ocean's connections to other oceans are defined by four major gateways (from east to west): Bering Strait, Fram 745 

Strait, Barents Sea Opening, and Davis Strait (Tsubouchi et al., 2024). These critical gateways not – as discussed in the 

previous section – serve as major pathways for freshwater export from the Arctic, which in turn influences global deepwater 

formation, large-scale circulation, and ecosystems, but also subject Arctic sea ice and ocean conditions to strong influences 

from Atlantic and Pacific water inflows. These impacts include modulating sea ice cover (Årthun et al., 2012, 2019; 

Docquier and Koenigk, 2021), ocean stratification (Veneziani et al., 2022), ecosystem (Woodgate and Peralta‐Ferriz, 2021), 750 

ocean temperature (Barton et al., 2018), and freshwater content (Woodgate, 2018). Therefore, the accurate simulation of 

volume, heat, and freshwater transports through these four major gateways – including their interannual and decadal 

variability – is crucial. In this section, we evaluate the performance of the E3SMv2-MPAS in simulating these key 

exchanges through comparison with multi-source observational data. 

The oceanic net volume transport (VT), heat transport (HT), and freshwater transport (FWT) through the key gateways—755 

Bering Strait, Fram Strait, Barents Sea Opening, and Davis Strait—are calculated as follows (Karpouzoglou et al., 2022; Shu 

et al., 2022; Wang et al., 2024): 

𝑉𝑇 = ∫ ∫ 𝑉𝑑𝜆𝑑𝑧
𝜆2(𝑧)

𝜆1(𝑧)
,

0

−𝐻(𝜆)
                                                                           (2) 

𝐻𝑇 = 𝜌𝑜𝑐𝑝∫ ∫ 𝑉(𝑇 − 𝑇𝑟𝑒𝑓)𝑑𝜆𝑑𝑧,
𝜆2(𝑧)

𝜆1(𝑧)

0

−𝐻(𝜆)
                                                           (3) 

𝐹𝑊𝑇 = ∫ ∫ 𝑉
(𝑆𝑟𝑒𝑓−𝑆)

𝑆𝑟𝑒𝑓
𝑑𝜆𝑑𝑧,

𝜆2(𝑧)

𝜆1(𝑧)

0

−𝐻(𝜆)
                                                                   (4)  760 

Here, 𝑉 , 𝑇 , and 𝑆 denote velocity, potential temperature, and salinity, respectively; 𝜌𝑜  is the seawater density; and 𝑐𝑝 

represents the specific heat capacity of seawater. The reference temperature 𝑇𝑟𝑒𝑓 is set to 0 °C, and the reference salinity 𝑆𝑟𝑒𝑓 
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is defined as 34.8, corresponding to the mean salinity of the Arctic Ocean (Aagaard and Carmack, 1989). The integration is 

performed over the full depth 𝐻 – defined as the bathymetry along the transect – and across the lateral extent 𝜆 of each strait. 

Units for VT, HT, and FWT are Sverdrup (Sv; 1 Sv=106 m3 s-1), Terawatt (TW), and km3 year-1, respectively. 765 

3.5.1 Bering Strait 

Observational data from the Bering Strait between 2000 and 2018 (Woodgate and Peralta‐Ferriz, 2021) reveal significant 

increasing trends in volume, heat, and freshwater transports (Fig. 16a–c). However, E3SMv2-MPAS fails to reproduce these 

overall trends. The discrepancies in volume and freshwater transports may be attributed to biases in the JRA55 reanalysis 

and river runoff forcing data (Wang et al., 2024). Although the model does not capture the increasing trends in volume and 770 

freshwater transports during 2000–2012, it successfully simulates the upward trends from 2012 to 2018, including 

interannual variability, with deviations generally within 0.2 Sv and 500 km3 year-1 (Fig. 16a and c). The similar interannual 

and decadal variability between simulated volume and freshwater transports indicates that the model accurately represents 

the mechanism whereby increased freshwater transport is primarily driven by volume transport (Woodgate and Peralta‐

Ferriz, 2021). For heat transport, the model also captures the rapid increasing trend observed after 2012 (Fig. 16b). 775 
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Figure 16. Time series of net (a, d, g, j) volume, (b, e, h, k) heat, and (c, f, i, l) freshwater transport through the (a–c) Bering Strait 

(BS), (d–f) Fram Strait (FS), (g–i) Barents Sea Opening (BSO), and (j–l) Davis Strait (DS) from 1995 to 2020. Black and red lines 

denote simulated results from E3SMv2-MPAS and observational estimates, respectively. Positive values represent transport into 

the Arctic Ocean, while negative values denote transport out of the Arctic Ocean. Observational data are from Woodgate and 780 
Peralta‐Ferriz (2021) for BS; Tsubouchi et al. (2024) for volume and heat transport in FS; Karpouzoglou et al. (2022) for 

freshwater transport in FS; and Tsubouchi et al. (2024) for BSO and DS. The locations of the four straits are highlighted in green 

in Fig. 1b. 

3.5.2 Fram Strait 

A study by Schauer et al. (2004) show annual mean net volume transport through the Fram Strait between -4±2 Sv and -2±2 785 

Sv during 1997–2000. Schauer et al. (2008) further indicate values of -2±5.9 Sv (1997–2002) and -2±2.7 Sv (2002–2006). 

Despite considerable uncertainties in observations, these estimates confirm that the simulated volume transport by E3SMv2 -

MPAS falls within a plausible range (Fig. 16d). Results from Tsubouchi et al. (2024) for 2005–2009 show that, although the 

model generally overestimates southward volume transport, it reproduces the interannual variability reasonably well (Fig. 
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16d). Observations indicate that the annual mean net heat transport increased from 16±12 TW in 1997 to 41±5 TW in 1999 790 

(Schauer et al., 2004). In comparison, the model overestimates heat transport in 1997 but accurately captures both the 

pronounced increasing trend during 1997–1999 and the value in 1999 (Fig. 16e). Compared to observational data from 

2005–2009 (Tsubouchi et al., 2024), the simulated heat transport values agree well in magnitude, and the model largely 

reproduces the initial decrease followed by an increase during this period. Moreover, the model successfully captures both 

the increasing trend and the magnitude of the observed southward freshwater transport through  the Fram Strait from 2004 to 795 

2017 (Karpouzoglou et al. (2022); Fig. 16f). 

3.5.3 Barents Sea Opening 

Between 2000 and 2009, the annual mean net volume and heat transports through the Barents Sea Opening were reported as 

2.3 Sv and 70±5 TW, respectively (Smedsrud et al., 2013), which are generally consistent with the model simulations (Fig. 

16g–h). E3SMv2-MPAS also successfully reproduces the decreasing trends in both volume and heat transport during 2005–800 

2008, albeit with slight systematic overestimation. Observations indicate a pronounced decreasing trend in freshwater export 

through the Barents Sea Opening during 2005–2009 (Tsubouchi et al., 2024). While the model captures this trend, it 

overestimates the magnitude (Fig. 16i). Additionally, the mean freshwater transport through the Barents Sea Opening 

between 2000 and 2010 was -90±90 km3 year-1 (Haine et al., 2015), further supporting the model's tendency to overestimate 

freshwater export in this region. 805 

3.5.4 Davis Strait 

Observations from 2004 to 2010 report annual mean net volume and freshwater transports through  the Davis Strait as -

1.6±0.5 Sv and -2,900±190 km3 year-1, respectively (Curry et al., 2014). E3SMv2-MPAS simulations agree well with these 

values during the same period (Fig. 16j and l). The model accurately captures the increased freshwater export through the 

Davis Strait in the mid-to-late 2010s (particularly 2015–2017), which is influenced by Arctic-external atmospheric forcing 810 

affecting sea level variability (Wang et al. (2022); Fig. 16l). According to Wang et al. (2022), the freshwater export through 

the Davis Strait increased by over 1500 km3 year-1 between 2010 and 2017, a magnitude quantitatively reproduced by 

E3SMv2-MPAS. However, the simulated heat transport ranges from 13 to 19 TW during 2005–2009, underestimating the 

observed range of 19–27 TW (Tsubouchi et al. (2024); Fig. 16k). 

4 Atlantic Water Llayer Sstates 815 

4.1 Parametric Ccharacterization of Atlantic Water Ccore 

As demonstrated in Section 3, model biases predominantly manifest in two critical parameters: AW core temperature 

(AWCT) and depth (AWCD). These metrics, defined as the maximum temperature within 150–900 m depth and its 

corresponding depth (Khosravi et al., 2022; Shu et al., 2022; Wang et al., 2024), are employed to evaluate E3SMv2-MPAS's 
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performance in reproducing spatiotemporal features of AW (Fig. 1715). Observational AWCT/AWCD datasets from 820 

Richards et al. (2022) reveal successful model reproduction of baseline spatial gradients: decreasing AWCT and increasing 

AWCD from the Eurasian to the Amerasian Basin, though with marked regional heterogeneity (Fig. 15a17a–d). Systematic 

overestimation of AWCT (+0.5°C) is identified in the western Eurasian Basin off-shelf regions (high-latitude sectors), 

potentially linked to biased inflow heat flux allocation in the Fram Strait. whileSimilar negativepositive deviations (+-0.5°C) 

occur in the Beaufort Sea maybe suggest inadequate Pacific inflow mixing parameterization. AWCD simulations 825 

demonstrate higher accuracy, with minor underestimation (ΔZ<100 m) in  the eastern Eurasian Basin. 
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Figure 1715. (a–b) 1995–2018 climatological mean Atlantic Water Core Temperature (AWCT) spatial distributions: (a) E3SMv2-

MPAS vs. (b) observation from Richards et al. (2022). (c–d) The same as panels (a–b) but for Atlantic Water Core Depth (AWCD). 

(e–f) Temporal evolution of basin-averaged AWCT (top row) and AWCD (bottom row) in the Eurasian Basin (e) and the 830 
Amerasian Basin (f): E3SMv2-MPAS (black) versus observations (red). 
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Interannual variability (1995–2018) is adequately captured through basin-averaged AWCT/AWCD magnitudes (Fig. 1715e–

f). E3SMv2-MPAS successfully reproduces AWCT warming trends in both basins, AWCD shoaling in  the Eurasian Basin, 

and 1995–2013 AWCD declines in the Amerasian Basin. However, post-2013 increases in AWCD in the Amerasian Basin 

remain unresolved. While demonstrating credibility in long-term trend simulations, model responsiveness to decadal-scale 835 

climatic shifts requires boundary condition dynamization and mixing process further optimization – critical for predicting 

nonlinear Atlantification trajectories. 

Cross-validation under the OMIP2 framework (Wang et al., 2024) reveals that among five resolution-varied model groups, 

only FESOM_4.5km, MOM_3.6km, and HYCOM_3.6km demonstrate high AWCT spatial pattern simulation skills (Fig. 

16). FESOM_4.5km outperforms E3SMv2-MPAS (10 km) in representing the western Eurasian Basin shelf-basin gradients, 840 

but underperforms in the Amerasian Basin (Fig. 16b–c). Low-resolution models exhibit a systematic underestimation of 

AWCT, with FESOM_24km being the exception, reaffirming unstructured meshes' polar ocean modeling advantages (Fig. 

16h–l). 

 

Figure 16. 1995–2018 climatological mean Atlantic Water Core Temperature (AWCT) spatial patterns from (a) observations 845 
(Richards et al., 2022), (b) E3SMv2-MPAS, and (c–l) OMIP2 models (Wang et al., 2024). Middle/bottom rows: High-resolution 

and corresponding low-resolution model pairs from OMIP2. 

 



50 
 

To address the systematic underestimation of Atlantification in model simulations (mentioned in Section 1), five key 

parameters are quantified: AWCT, AWCD, AW upper boundary (0°C isotherm; Meyer et al. (2017)), AW layer thickness 850 

(between 0°C isotherms), and AW heat content. By analyzing their spatiotemporal response characteristics, this study 

investigates the trans-decadal evolution of Atlantification. 

The AW heat content is calculated as follows (Polyakov et al., 2017): 

𝑄 = ∫ 𝜌𝑤
𝑧2
𝑧1

𝑐𝑝(𝜃 − 𝜃𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔)𝑑𝑧,                                                                        (5) 

where 𝑧1/𝑧2 denote layer boundaries, 𝜌𝑤 seawater density, 𝑐𝑝 specific heat of seawater, and 𝜃𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔 freezing temperature. 855 

Both basins exhibit coordinated changes during 1960s–1980s and 2000s–2020s: AWCT increases, AWCD decreases, AW 

upper boundary shallows, layer thickness expands, and heat content accumulates (Fig. 1817). Post-2000s acceleration of 

these trends shows tight coupling with enhanced Atlantic meridional heat transport under Arctic amplification. E3SMv2 -

MPAS captures the key thermodynamic signatures of Atlantification (the Eurasian Basin vs. the Amerasian Basins between 

2000–2020), aligning closely with observationally derived mechanisms of AW Atlantic Water intrusion and its climatic 860 

impacts  (Polyakov et al., 2017): (1) A 1°C gradient in AWCT between the Eurasian and Amerasian Basins, consistent with 

zonal heat dissipation; (2) A 130-m shallower AWCD in the Eurasian Basin, reflecting intensified vertical mixing due to sea 

ice loss; (3) Synergistic changes in AW layer thickness and heat content (100 m thinner layer with +4000 MJ·m⁻² in the 

Eurasian Basin), confirming advective-diffusive redistribution. 

 865 

Figure 1817. (a–b) 1960–1980 vs. 2000–2020 climatological mean Atlantic Water Core Temperature (AWCT) in the (a) Eurasian 

basin (EB) and (b) Amerasian Basins (AAB). (c–j) The same as panels (a–b) but for Atlantic Water Core depth (AWCD; (c–d), 

Atlantic WaterAW layer upper boundary depth (AWupdepth; e–f), thickness (AWthickness; g–h), and heat content (Q_AW; i–j). 

This multi-scale validation confirms E3SMv2-MPAS's physical credibility in reproducing Atlantification mechanisms: 

cascading heat flux-stratification-heat content responses and inter-basin thermodynamic evolution. The model thus provides 870 

critical process fidelity for predicting Arctic oceanic thermal threshold transitions.  
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4.2 Coupling between the Atlantic Water and -Ssurface layers Coupling 

The AW layer constitutes the most critical oceanic heat reservoir in the Arctic Ocean (Carmack et al., 2015), containing 

sufficient thermal energy to melt all Arctic sea ice within several years (Turner, 2010) and capable of dissolving 3–4 times 

the current ice volume (Carmack et al., 2015; Polyakov et al., 2020b)(Carmack et al., 2015a). A pronounced halocline 875 

characterized by rapidly increasing salinity with depth typically separates the cold, low-salinity surface waters from the 

warm, saline AW in the Eurasian and Amerasian Basins. This strong stratification effectively inhibits vertical water mass 

exchange (Peralta-Ferriz and Woodgate, 2015), isolating the AW layer from sea ice and mixed layer interactions (Aagaard et 

al., 1981; Richards et al., 2022). Under these physical constraints, vertical heat transport primarily occurs through molecular-

scale processes involving internal wave breaking and double-diffusive mixing (Davis et al., 2016). However, since the 1970s, 880 

progressive weakening of the eastern Eurasian Basin halocline has been documented (Polyakov et al., 2010; Steele and Boyd, 

1998), culminating in its complete failure as an effective thermal barrier for intermediate AW heat by the mid-2010s 

(Polyakov et al., 2020a). Stratification collapse has triggered a regime shift from double-diffusive dominance to shear-driven 

turbulent mixing, fundamentally altering vertical heat flux dynamics (Polyakov et al., 2020a). 

The KPP scheme employed by E3SMv2-MPAS driven by Gradient Richardson Number (Ri) physics (Zhu et al., 2022). This 885 

study evaluates whether this parameterization scheme, combined with the model's unstructured mesh capability, adequately 

resolves Arctic vertical thermal coupling features, particularly in the Eurasian Basin. A diagnostic framework based on 

spatiotemporal correlation analysis is established to quantify the thermal linkageA thermal linkage framework is established 

between the upper (10 m) and intermediate (AW core layer, 400 m) ocean layers .  toThis analysis addresses two critical 

aspects: (1) spatiotemporal delay characteristics in vertical heat signal propagation relative to AW transport timescales, and 890 

(2) potential regime shifts in interlayer coupling mechanisms under climate warming. This diagnostic framework provides 

dynamic constraints for optimizing vertical mixing parameterizations while elucidating climate impacts of upper-ocean 

thermal variability. 

During 1960–1980 baseline conditions (zero time lag), statistically significant positive correlations (p<0.05) between AW 

layer and surface temperatures are confined to the Norwegian Sea, indicating direct advective heat modulation (Fig. 1918a). 895 

Lagged correlation analysis reveals basin-scale inertial transport characteristics: localized positive correlations emerge in the 

Eurasian Basin at 24-month lag, expanding basin-wide by 36 months (Fig. 1918b–h). This spatiotemporal inertia is attributed 

to: (1) Basin-scale recirculation timescales required for AW mass circumpolar transport (e.g., 2-year lag between the Fram 

Strait and the eastern Eurasian Basin 250 m temperatures; Polyakov et al. (2020b)), and (2) efficiency limitations in 

subsurface mixing processes. 900 
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Figure 1918. (a) 1960–1980 climatological mean correlation between surface (5 m) and mid-depth (400 m) temperatures. (b–h) 

Lagged correlations at 6-month intervals (lag 6 mons to 42 mons). Black dots indicate significance (p<0.05).  

The 1995–2020 period exhibits fundamental regime transition: immediate basin-wide positive correlations (p<0.05) emerge 

along AW pathways (from the Fram Strait to the Eurasian Basin) under zero-lag conditions, maintaining stable correlation 905 

strength through 42-month lags (Fig. 2019). This instantaneous response pattern reflects multiscale Arctic system changes: 

(1) Increased AWCT with decreased AWCD shortens vertical diffusion pathways, indicating intensified "Atlantification" 

(Polyakov et al., 2017); (2) Stratification weakening from sea ice loss enhances cross-layer turbulent mixing efficiency 

(Kwok, 2018; Onarheim et al., 2018; Polyakov et al., 2020a). 
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 910 

Figure 2019. The same as Fig. 1918, but for 1995–2020 period. 

A fundamental regime shift in Arctic intermediate-to-surface thermal coupling mechanisms under climate warming is 

revealed through cross-temporal-scale lagged correlation diagnostics: transitioning from historical basin-scale inertial 

transport patterns to contemporary instantaneous response modes. This regime shift, driven by altered AW thermohaline 

properties and reduced stratification stability, enhances vertical heat leakage efficiency from intermediate layers. Model 915 

evaluation demonstrates that while the KPP scheme captures accelerated heat transport trends, systematic biases persist in 

nonlinear responses to shear mixing (Figs. 1918 and –2019). Future research directions emphasize developing scale-aware 

parameterizations incorporating high-resolution turbulence observations to improve model capabilities in predicting Arctic 

energy transport regime shifts. 

5 Discussion  920 

5.1 Comparison with OMIP2 models under diverse grid configurations and resolutions 

Comprehensive analysis of higher-resolution CMIP6 models reveals common thermohaline simulation biases (Fig. 8). To 

evaluate resolution sensitivity in Arctic Intermediate Water simulations, the assessment framework is extended to To 

evaluate the performance of different ocean-sea ice coupled models in simulating the three-dimensional themohaline 

structure, particularly that of the intermediate AW layer, we further discuss five resolution-matched model pairs from 925 

OMIP2 (Wang et al., 2024) (Wang et al., 2024; see Table 1). Thermohaline profile characteristics in the Eurasian and 

Amerasian Basins are systematically compared between high/low-resolution model pairs (solid/dashed lines), E3SMv2-
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MPAS, and WOA23 data (Locarnini et al., 2024; Reagan et al., 2024) to elucidate ocean model grid configuration impacts 

(Fig. 921).  

Low-resolution models exhibit persistent CMIP6 systematic biases as follows: (1) Substantial underestimation of AWCT 930 

(e.g., <0°C in CMCC-NEMO_51km and FSU-HYCOM_32km), and (2) An inability to reproduce the characteristic vertical 

thermohaline structure, wherein temperatures decline with depth after AWCD. These challenges are particularly pronounced 

in the Eurasian Basin influenced by the Fram Strait branch (one of two primary AW inflow pathways) compared to the 

Amerasian Basin. In contrast, , while their high-resolution counterparts (excluding IAP-LICOM-6.8km) demonstrate 

improved intermediate water core temperature AWCT and vertical structure simulations. High-resolution models 935 

successfully reproduce observed zonal gradients showing AWCTtemperature maxima decreasing from the Eurasian Basin 

(1.3°C@250 m) to the Amerasian Basin (0.7°C@400 m), confirming resolution enhancement benefits for oceanic frontal 

processes.  

In the Eurasian Basin where simulation biases are most pronounced, the majority of high-resolution models – with the 

exception of E3SMv2-MPAS (10 km) and FESOM variants (4.5/24 km) – continue to exhibit overestimated AW layer 940 

thickness (between 0°C isotherms). WOA23 observations indicate temperature decline to 0°C at 800 m depth, whereas most 

models (e.g., CMCC-NEMO_3.2km, FSU-HYCOM_3.6km and IAP-LICOM_6.8km) maintain ~0.5°C at the same 

depth1000 m (Fig. 921a). This persistent discrepancy demonstrates that resolution enhancement alone remains insufficient to 

fully resolve key technical bottlenecks in Arctic Intermediate Water simulations. Notably, E3SMv2-MPAS and FESOM 

models exhibit strong breakthrough performance (Table 3).  945 

Despite comparable resolutions to other high-resolution models (e.g., ACCESS-MOM 9 km, FSU-HYCOM 32 km), 

unstructured mesh configurations enable refined representation of key hydrographic gateways like the Fram Strait. 

Compared to tripolar grid models suffering numerical dissipation near complex coastlines, variable mesh designs achieve 

reduced the Eurasian Basin temperature errors under equivalent computational resources. Model grid type and computational 

efficiency exhibit nonlinear relationships. Unstructured meshes (FESOM/MPAS) permit dynamic optimization through 950 

localized refinement in critical regions (e.g., AW intrusion pathways). This targeted refinement strategy provides new 

technical approaches for Arctic ocean modeling, particularly under accelerating Atlantification processes.  
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Figure 219. (a–b) 1995–2014 climatological mean temperature profiles in (a) the Eurasian Basin and (b) the Amerasian Basin: 

Observations (WOA23; red), E3SMv2-MPAS (black), OMIP2 models (Wang et al., 2024; dashed: low-resolution, solid: high-955 
resolution). (c–d) The same as panels (a–b) but for salinity profiles. 

Table 3. Root mean square errors (RMSE) for temperature (Temp.; °C) and salinity (Sal.; PSU) in 0–1000 m vertical profiles from 

E3SMv2-MPAS and 5 OMIP2 model pairs (Wang et al., 2024), evaluated against WOA23 in the Eurasian Basin and the 

Amerasian Basin. Performance ranking: * indicates lowest RMSE per basin/variable, underlined values denote second-lowest. 

 

Eurasian Basin Amerasian Basin 

Temp. Sal. Temp. Sal. 

E3SMv2-MPAS 0.223* 0.130* 0.143* 0.219* 

ACCESS-MOM_3.6km 0.437 0.202 0.217 0.663 

ACCESS-MOM_9km 0.583 0.208 0.423 0.557 

AWI-FESOM_4.5km 0.236 0.205 0.207 0.390 

AWI-FESOM_24km 0.230 0.187 0.253 0.397 
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CMCC-NEMO_3.2km 0.453 0.762 0.276 1.055 

CMCC-NEMO_51km 0.869 0.600 0.558 0.875 

FSU-HYCOM_3.6km 0.409 0.240 0.186 0.719 

FSU-HYCOM_32km 1.012 0.442 0.485 0.797 

IAP-LICOM_6.8km 0.716 0.457 0.346 0.882 

IAP-LICOM_72km 0.435 0.319 0.456 0.716 

 960 

Following the evaluation of the three-dimensional thermohaline structure simulations in the OMIP2 models, we further 

examine their capability to reproduce the spatial distribution of AWCT. As indicated by Ccross-validation withinunder the 

OMIP2 framework, (Wang et al., 2024) reveals that  among the five resolution-varied model groups, only FESOM_4.5km, 

MOM_3.6km, and HYCOM_3.6km demonstrate high AWCT spatial pattern simulation skills (Fig. 1622). FESOM_4.5km 

outperforms E3SMv2-MPAS (10 km) in representing the western Eurasian Basin shelf-basin gradients, but underperforms in 965 

the Amerasian Basin (Fig. 1622b–c). Low-resolution models exhibit a systematic underestimation of AWCT, with 

FESOM_24km being the exception, reaffirming unstructured meshes' polar ocean modeling advantages (Fig. 1622h–l). 
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Figure 2216. 1995–2018 climatological mean Atlantic Water Core Temperature (AWCT) spatial patterns from (a) observations 

(Richards et al., 2022), (b) E3SMv2-MPAS, and (c–l) OMIP2 models (Wang et al., 2024). Middle/bottom rows: High-resolution 970 
and corresponding low-resolution model pairs from OMIP2. 

Despite comparable resolutions to other high-resolution models (e.g., ACCESS-MOM 9 km, FSU-HYCOM 32 km), 

unstructured mesh configurations enable refined representation of key hydrographic gateways like the Fram Strait. 

Compared to tripolar grid models suffering numerical dissipation near complex coastlines, variable mesh designs achieve 

reduced the Eurasian Basin temperature errors under equivalent computational resources. Model grid type and computational 975 

efficiency exhibit nonlinear relationships. Unstructured meshes (FESOM/MPAS) permit dynamic optimization through 

localized refinement in critical regions (e.g., AW intrusion pathways). This targeted refinement strategy provides new 

technical approaches for Arctic ocean modeling, particularly under accelerating Atlantification processes.  

5.2 Sources of systematic biases and trade-offs between resolution and parameterizations 

Analyses in Section 3 not only discussed the simulation biases of E3SMv2-MPAS but also traced their potential origins. For 980 

most biases, the primary causes can be attributed to inadequacies in physical parameterizations. First, the inadequate 

representation of eddy dynamics is a key source. For instance, the underestimation of freshening in the Amerasian Basin may 

result from the use of a fixed eddy diffusivity (κ=300 m2 s-1 in the Arctic), which oversmooths salinity fronts. Similarly, the 

model's failure to capture the seasonal variability of the AW layer likely stems from the invariant κ in the GM scheme, which 

cannot respond to the seasonal cycle of sea ice retreat and associated changes in stratification. Second, limitations in vertical 985 

mixing parameterizations act as another key source. The coordinated biases in SST, SSS, and SIC in the Greenland and 

Barents Seas, for example, may arise from the inherent limitations of the KPP scheme's single Ri-based approach in defining 

turbulent states and mixing intensities within complex dynamic environments. Additionally, the misrepresentation of the 

warming layer in the Eurasian Basin could be linked to inappropriate background diffusion coefficients within the KPP 

framework. 990 

Increasing model resolution presents an effective pathway to reduce reliance on empirical parameterizations by more directly 

resolving key physical processes, such as mesoscale eddies. Enhanced resolution can, to some extent, mitigate the 

inaccuracies of existing schemes. For instance, studies have shown that higher resolution improves the simulation of the AW 

layer's temperature, thickness, spatial distribution, and its decadal warming trends (Wang et al., 2024). However, the small 

Rossby radius of deformation (often ≤3 km) in the Arctic (Veneziani et al., 2022) implies that even with computationally 995 

feasible resolution increases, critical processes (e.g. mesoscale eddies, vertical mixing, and ice-ocean interactions) may 

remain under-resolved (Chassignet et al., 2020; Wang et al., 2018). Therefore, the development of more advanced physical 

parameterizations remains imperative. It is noteworthy that resolution increases have proven effective in improving the 

simulation of volume, heat, and freshwater transports through critical gateways such as the Fram Strait and Davis Strait 

(Wang et al., 2024). The Fram Strait, in particular, serves as a pivotal channel for Atlantic heat influx into the Arctic Ocean 1000 

(Herbaut et al., 2022; Pnyushkov et al., 2021). In conclusion, we propose that a cost-effective strategy involves targetedly 



58 
 

increasing resolution in key gateway regions while concurrently refining parameterizations for mesoscale eddies and vertical 

mixing. 

5.3 Limitations of the experimental design 

Due to computational resource constraints, this study adopted a two-phase simulation strategy with non-consecutive time 1005 

periods: first, the model was integrated from 1958 to 1981, and the final state of this period was used as the initial condition 

to directly start the simulation for the 1995–2020 period. Although this approach effectively reduced computational costs, 

and both previous studies and our model diagnostics indicate that key upper-ocean and sea ice variables had reached a quasi-

equilibrium state by 1981, skipping the continuous integration of the 1982–1994 period may introduce certain limitations. 

For instance, the simulation of some medium- to long-term fluctuations or memory-dependent processes might be affected. 1010 

Should computational resources allow in the future, we will perform a continuous simulation from 1958 to 2020 to more 

accurately reproduce the evolution of the climate system. 

Furthermore, since only a single JRA55 forcing cycle was applied, the deep ocean and some physical quantities may not 

have fully departed from the influence of the initial PHC hydrographic fields or reached complete equilibrium. This could 

potentially affect the stability and initial-condition independence of the simulation results. In subsequent work, given 1015 

sufficient resources, we plan to carry out at least three full JRA55 forcing cycles to promote more complete adjustment of 

the ocean state, reduce dependence on initial conditions, and thereby enable a more comprehensive and robust evaluation of 

the climate performance of the E3SMv2-MPAS. 

5.4 Limitations from the atmospheric forcing: the JRA55 warm bias 

The JRA55 reanalysis forcing data employed in E3SMv2-MPAS exhibits a known warm bias over the central Arctic deep 1020 

basin (Batrak and Müller, 2019). This bias may systematically suppress sea ice growth and induce upper-ocean warming in 

the simulation by enhancing downward longwave radiation and reducing oceanic sensible heat loss. Therefore, the 

overestimated SST (Fig. 8c) and underestimated summer SIC (Fig. 4e–g) simulated in the central Arctic basin may be 

partially attributable to the inherent bias in the forcing data, rather than solely to inaccuracies in the model's physical 

processes.  1025 

The enhanced ice melt driven by this warm bias releases additional freshwater, leading to a stronger and shallower 

freshwater layer (a more pronounced halocline) in the surface ocean, which significantly strengthens the stratification 

stability of the upper ocean. This inhibits vertical mixing between layers and impedes the upward heat transfer from the 

warmer, saltier AW below. This bias may partly explain the overestimation of the intermediate AW layer temperature 

alongside the underestimation of the mixed-layer temperature (Fig. 12e). Future work will consider employing alternative 1030 

reanalysis products or applying bias-correction methods to better constrain the impact of forcing uncertainties on simulation 

results. 
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65 Conclusions 

This study systematically evaluates the Arctic ocean-sea ice simulation capabilities of E3SMv2-MPAS through multi-source 

observations (in situ profiles, satellite remote sensing, optimum interpolation dataesets), and reanalysis products (NSIDC, 1035 

HadISST1, ERA5, PIOMAS, ORAS5) and model outputs (CMIP6, OMIP2), with focus on core parameters including sea ice 

(concentration/extent/thickness/volume; SIC/SIE/SIT/SIV), surface thermohaline properties (sea surface 

temperature/salinity; SST/SSS), three-dimensional thermohaline structures, freshwater content (FWC), gateway transports, 

Atlantic Water (AW) heat characteristics, and vertical thermal linkages. Spatial distribution patterns, seasonal -to-decadal 

variability, and three-dimensional evolutionary processes are comprehensively analyzed. 1040 

E3SMv2-MPAS demonstrates significant advantages in Arctic climatology simulations: (1) Accurate representation of 

spatial heterogeneity and temporal evolution trends in SIC, SIT, and SST (Figs. 3a–5g, 48a–c, 6a–c); (2) Realistic simulation 

of interannual and decadal variability in SIC, SIE, SIT, SIV and SST, along with a highly consistent reproduction of 

theSuperior simulation accuracy for 1995–2020 SIC decline trends compared to NSIDC observation, outperforming Hadley 

and ERA5 reanalysis products (NSIDC-benchmarked; Fig. 37ah); (3) Enhanced SIT reliability in the Greenland Sea and the 1045 

Canadian Archipelago versus PIOMAS (ICESat-validated; Fig. 5); (34) Consistent SSS spatial patterns and seasonal 

evolution with leading reanalysis products including HYCOM and GLORYS12 (Fig. 97; Hall et al. (2021));. (4) Faithful 

reproduction of both the spatial distribution and long-term trend of Arctic FWC (Fig. 15); (5) Accurate simulation of volume, 

heat, and freshwater transports through key Arctic gateways, capturing their observed magnitudes and essential variability 

trends (Fig. 16). 1050 

E3SMv2-MPAS demonstrates exceptional capability in simulating the three-dimensional thermohaline structure and 

variability of the AW layer, accurately capturing its key thermodynamic and dynamic processes in the Arctic 

OceanE3SMv2-MPAS successfully addresses longstanding Arctic simulation biases through synergistic integration of high -

resolution Arctic domains, flexible global unstructured meshes, and suitable mesoscale eddy parameterization: (1) Precise 

reproduction of AW layer thickness/depth and core temperatures (Figs. 10 and 178–10, 15–16), achieving minimal RMSE in 1055 

three-dimensional thermohaline simulations across Arctic basins compared to CMIP6 and OMIP2 models (Tables 1–2); (2) 

Effective capture of AW warming trends including decadal-scale intermediate layer heating and vertical shoaling of warm 

cores (Figs. 11 and, 13); (3) Realistic simulation of accelerated Atlantification processes, evidenced by post-2000 

intensification in AW core temperature and heat content while reduced AW core depth, upper boundary and layer thickness, 

and instantaneous surface-intermediate heat transfer in the Eurasian Basin (Figs. 1817–2019). Additional breakthroughs 1060 

include successful representation of solar-driven seasonal upper-ocean thermal cycles (Fig. 12) and inter-basin water mass 

gradient evolution from the Eurasian Basin to the Amerasian Basin (e.g., AW thermohaline attenuation, vertical stratification 

shifts, and surface freshwater transport effects; Fig. 14). These advancements establish critical numerical platforms for 

investigating Arctic stratification destabilization and cross-scale energy transfer mechanisms, particularly for quantifying 

mesoscale modulation of ocean-sea ice-atmosphere feedbacks. 1065 
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Notwithstanding these achievements, key limitations persist: (1) Systematic overestimation of SIT in the Canadian Basin 

(0.5–1 m bias; Fig. 5), potentially linked to misrepresentation of Beaufort Gyre intensity enhancing ice convergence, 

requiring verification through eddy kinetic energy budget analysis; (2) Coordinated underestimation of SST/SSS and 

overestimation of SIC in the Greenland and Barent Seas (Figs. 3a–4g, 84a–c, 96a–c), attributable to underestimated 

efficiency of vertical mixing in intermediate-to-surface heat transfer, recommending implementation of shear turbulence 1070 

closure schemes or dynamic mixed-layer penetration mechanisms; (3) Residual overestimation of AW core temperature (0–

1°C) and errors in seasonal Atlantification phase (Figs. 8–10 and, 123), reflecting constraints of mesoscale parameterization 

on water mass transformation, necessitating development of depth-dependent eddy energy dissipation parameterizations; (4) 

Asymmetries in regional decadal thermohaline evolution (e.g., underestimated upper-layer warming and overestimated deep 

warming in the Eurasian Basin, unresolved mid-layer warming and upper-layer freshening trends in the Amerasian Basin; 1075 

Fig. 13), potentially arising from inadequate resolution of key gateways (e.g., Fram Strait) and oversimplified 

parameterizations of shelf-basin interactions, demanding optimization through nested grids or regional mesh refinement . 

This study confirms that E3SMv2-MPAS significantly enhances simulation capabilities for Arctic oceanic thermal structures 

and cross-layer coupling processes through integration of high-resolution unstructured meshes with optimized physical 

parameterization schemes, establishing crucial technical references for polar climate model development in the CMIP7 era. 1080 

However, persistent biases highlight remaining challenges in mesoscale process representation and boundary flux 

constraints. Future priorities include: (1) Development of process-oriented parameterizations enabling eddy-mixing-

stratification feedback coupling; (2) Implementation of Arctic-focused data assimilation systems to reduce boundary forcing 

uncertainties; (3) Execution of perturbed-parameter ensemble experiments to quantify sensitivity thresholds. Such 

improvements will enhance predictive capabilities for Arctic amplification and tipping point dynamics, ultimately supporting 1085 

evidence-based climate governance. 

 

 

 

Code and data availability. The E3SM model code is publicly available via the https://github.com/E3SM-1090 

Project/E3SM/releases. Instructions on how to configure and execute E3SM are available at https://e3sm.org/model/running-

e3sm/e3sm-quick-start/. All simulations detailed in Section 2.1 can be regenerated by executing the code hosted in this 

repository: https://doi.org/10.5281/zenodo.15493256 (Lv, 2025). Preprocessing of E3SMv2-MPAS outputs utilized nco-

5.1.1, accessible through the https://nco.sourceforge.net/. The JRA55-v1.5 atmospheric forcing data driving the simulations 

were obtained from the https://aims2.llnl.gov/search/input4mips/. ETOPO 2022 bathymetry was derived from the 1095 

https://www.ncei.noaa.gov/products/etopo-global-relief-model. Model evaluations employed the following observational and 

reanalysis products: Sea ice concentration: NSIDC (https://noaadata.apps.nsidc.org/NOAA/G02202_V4/north/aggregate/), 

Met Office Hadley Centre observational datasets (https://www.metoffice.gov.uk/hadobs/), and ERA5 monthly single-level 

data (https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=overview); Sea ice extent: 

https://github.com/E3SM-Project/E3SM/releases
https://github.com/E3SM-Project/E3SM/releases
https://e3sm.org/model/running-e3sm/e3sm-quick-start/
https://e3sm.org/model/running-e3sm/e3sm-quick-start/
https://doi.org/10.5281/zenodo.15493256
https://nco.sourceforge.net/
https://aims2.llnl.gov/search/input4mips/
https://www.ncei.noaa.gov/products/etopo-global-relief-model
https://noaadata.apps.nsidc.org/NOAA/G02202_V4/north/aggregate/
https://www.metoffice.gov.uk/hadobs/
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=overview
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NSIDC (https://doi.org/10.7265/N5K072F8); Sea ice thickness and sea ice volume: PIOMAS 1100 

(http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/model_grid), PIOMAS-20C reconstruction 

(https://psc.apl.uw.edu/research/projects/piomas-20c/) and CS2SMOSICESat/ICESat-2 L4 gridded products 

(https://data.meereisportal.de/data/cs2smos_awi/v206/nhttps://nsidc.org/data/issitgr4/versions/1 and 

https://nsidc.org/data/is2sitmogr4/versions/3); Sea surface properties: OISST (https://www.ncei.noaa.gov/products/optimum-

interpolation-sst) and OISSS (https://www.esr.org/data-products/oisss/overview/); Oceanographic profiles: WOA2023 1105 

(https://www.ncei.noaa.gov/products/world-ocean-atlas), EN.4.2.2 objective analyzesanalyses 

(https://www.metoffice.gov.uk/hadobs/en4/);. Sea surface height: ORAS5 

(https://cds.climate.copernicus.eu/datasets/reanalysis-oras5?tab=overview); Ocean heat content: IAP 

(http://www.ocean.iap.ac.cn/ftp/cheng/IAPv4.2_Ocean_heat_content_0_6000m/); Surface albedo: CLARA-A3 

(https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V003). In situ observational profiles from four key Arctic 1110 

regions (the western/eastern Eurasian Basin, the Chukchi Sea, and the Beaufort Sea), vertical profiles from 13 CMIP6 

models, thermohaline profiles and Atlantic Water core temperature outputs from five OMIP2 ensemble groups, along with 

E3SM-Arctic-OSI simulations and Atlantic Water core temperature and depth observational benchmarks, are described in 

the main text. Detailed metadata specifications and data access instructions for these datasets are provided in the 

corresponding references cited therein. 1115 
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