*Note: line numbers in the response reflect the line numbering in the change-
tracked PDF file

Response to Referee 1

We sincerely thank the reviewers for the constructive comments. Particularly, we appreciate and
are eager to address the concerns about the clarity of presentation in our methodology section,
and the motivation behind this study.

Major comments:

1. One major concern is the clarity on how the base modelling is described. Ultimately the
output comes from GCHP but the meteorology for this comes from CAM which is
provided with climate information from the MIT IGSM. There are emissions from GAINS
via TAPs etc. It is unclear what the inputs and outputs are from each of these models and
the configurations that are being used. This ultimately raises several questions revolving
around the consistency between the emissions assumptions used for the driving climate /
meteorology and the air pollution? This section of the methods needs to be significantly
clarified.

Some of this is laid out in Figure 2 which should come earlier in the methodology section
but there needs to be a significant effort to re-write the methodology is a more coherent
and straight forwards way. I would start with the MIT IGSM, explain the configuration
for that and the time-period of the model runs. Then what are the outputs from that and
how are they used by the subsequent modelling tools. Then move onto the next model and
explain its inputs and outputs.

Response: We thank the reviewer for the important comment. We agree that the inputs and
outputs of each model components warrant clearer descriptions. We have rewritten the entire
methodology section to address these issues raised by the reviewer. The new subheadings and
their order reflect the reorganization based on the reviewer’s suggestion, while the changes in
individual sub-sections will be discussed in the more specific comments below:

2.1 MIT Integrated Global System Model (IGSM) and its coupling with Community Atmosphere
Model (CAM)

2.2 GEOS-Chem High Performance model driven by CAM meteorological fields (GCHP-CAM)
2.3 Generating PM: 5 training data using GCHP-CAM

2.4 Training the Geographically Weighted Gaussian Process Regression (GW-GPR) Emulator
2.5 Cross validation of the GW-GPR emulator

2.6 Testing the emulator with IGSM-GAINS-TAPS combined air quality and climate legislation
scenarios

2.7 Demonstrating the utility of the emulator using AerChemMIP data

2.8 Health impact calculation



New figures are added to better illustrate the MIT IGSM-CAM framework (new Fig. 1) and
generation of GCHP-CAM training data (new Fig. 2). All the detailed changes in the content will
be documented in comment 18.

2. Reduced form modelling

There is also a lack of clarity about how the gaussian process emulation is being undertaken.
What is being predicted? Is it the PM2.5 or the individual tracers needed to calculate
PM?2.5? Is it all the GCHP tracers? In some places it suggests its PM2.5 but then there are
discussions of the anthropogenic PM2.5 which would suggest that individual components
have been predicted and then in other places its seem that the individual components are
being predicted.

Response: We thank for reviewer for pointing out this ambiguity. We use geographically-
weighted pollutant emissions, global mean CH4 and CO: concentration as predictors to
predict GCHP-CAM simulated changes in annual mean anthropogenic PMz.s concentration
relative to the 2014. That is, we predict PM» 5 in the aggregate, not the individual components.
We have included these passages in the revised methodology section:

L 178 — 184: Total PM» 5 mass (Eq. 1) is calculated... Anthropogenic PM» s mass (Eq. 2) is
calculated...

Total PM,s = 1.1(NHS + NO3 + SOZ7) + BC + OC + fine mineral dust + SOA +
1.86(Sea Salt) (1)
Anthropogenic PM, s = 1.1(NH} + NO; + SO}™) + BC + 0C (2)

In addition, we explicitly define the quantity we are modeling/emulating, and such definition of
APM3; 5 is consistent over the manuscript:

L 340 —332:...The GCHP-CAM output we aim to emulate (changes in annual mean
anthropogenic PM; 5 concentration relative to 2014 baseline (APM2:5)) is calculated for each
perturbation experiment.

What exactly are the input / output variables to make the prediction? A table of some sort
would be useful here.

Response: We than the reviewer for pointing out this ambiguity. We now explicitly define the
input and output of our emulator using an equation (Eq. 8):

L 436 — 440:...dyx is the distance between grid cell y and x, and L is the dispersion length scale.
Formally speaking, this implies at each grid cell x, our GW-GPR framework (f;) predicts GCHP-
CAM simulated APM3 5 using AEyeightedx (the vector of AEyeighted,x,i for all pollutants)
atmospheric CH4 and CO; concentration as input:



APMZ.S (x) = fx(AEweighted,xr CH4' COZ) (8)

1t would also be useful to know more explicitly what the training data consisted of. Data from
what period to what period. Again, this isn’t clear.

Response: We than the reviewer for pointing out this ambiguity. Our training data consists of
output from 120 GCHP-CAM perturbation runs, following a Latin Hypercube configuration to
effectively sample sensitivity of PMz s over a wide range of climate and air pollution emissions.
We clarify the input for our 2014 baseline GCHP-CAM simulation as follows:

L 186 — 191: We conduct GCHP-CAM simulations for atmospheric composition for the year
2014 (with additional 3 months of simulations as spin up (output discarded) before the start of
2014) by applying IGSM-CAM simulated meteorology, anthropogenic emissions of air
pollutants from the Community Emission Data System (Hoesly et al., 2018), and the monthly
surface CH4 concentration derived by spatially kriging the observations from National Oceanic
and Atmospheric Administration Global Monitoring Laboratory Cooperative Air Sampling
Network for 2014. The resulting modelled total and anthropogenic PM2 s concentrations serves
as a baseline for subsequent comparisons.

We clarify the input and output for our GCHP-CAM perturbation runs, and how this produces
the training data as follow:

Fig. 2 Schematic of generating the training set by GCHP-CAM perturbation experiments using an Iman-Conover (IC)
transformed Latin Hypercube Sampled (LHS) scaling factors. The orange box represents existing modelling systems,
purple boxes represent data sets, and blue boxes represents output of the perturbation experiments.

L 324 —332: Fig. 2 summarizes the workflow of the perturbation experiments. A 1-year
perturbation simulation, again with an extra 3 months before as spin-up, is performed for each
pair of global scaling factors applied to 2014 anthropogenic air pollutant emissions and surface
CH4 concentration. The CO; concentration is directly applied to the calculate CO; inhibition, and



the corresponding climate effects are represented through driving the simulation with the IGSM-
CAM simulated meteorological data from the year with the closest CO2 concentration under
“REF” scenario (e.g. A perturbation experiment having a CO; concentration of 446 ppm is
driven by the IGSM-CAM simulated meteorological data at 2030 under “REF” scenario, as 2030
has the closet COx concentration to 446 ppm among all years under “REF” scenario). The
GCHP-CAM output we aim to emulate (changes in annual mean anthropogenic PMa s
concentration relative to 2014 baseline (APM: 5)) is calculated for each perturbation experiment
as the training data set.

How is this a “geographically weighted” approach. This isn’t clear in the description. What
is meant by this?

Response: We than the reviewer for pointing out this ambiguity. We realize the term “geographic
weighting” was introduced early in our manuscript when we discussion the Pisoni et al. (2017)
emulator, without proper discussion of what that term means. We add this to our introduction:

L 109 — 110: Meanwhile, a geographically weighted (i.e. using a weighted sum of regional
emission changes as predictors to represent pollutant transport process) linear regression
emulator was shown to reproduce PM> s response to...

The term “geographically weighted” refers to the Gaussian dispersion kernel we use to calculate
the effective emission changes for each air pollutant. We had used the term “dispersion
kernel”/“blurring” interchangeably with “geographic weighting”, which could be imprecise and
underplay the essential role of the geographic weighting scheme in our emulator. Since
dispersion kernel and blurring have their own more rigorous mathematical and academic
definitions, “geographic weighting” is the most precise wording to descript our treatment to the
pollutant emission fields. To avoid such confusion, we have now made our terminology more
consistent, replacing the term “dispersion kernel” and “blurring” by “geographic weighting
scheme” and “dispersion length scale/L;” wherever possible:

L 432 —435: To emulate the process of chemical transport of emitted species, an isotropic 2D
Gaussian geographic weighting scheme is applied to calculate the effective air pollutant emission
changes (AEweightedx,i) at each grid cell x for each pollutant ...

Where AEy; is the emission change of pollutant i all individual grid cells considered within the
dispersion range yx...

L 441 — 445: The geographic weighting scheme is implemented by the Gaussian Blurring
algorithm as in Scipy version 1.10.1 (Virtanen et al., 2020). The input variables are normalized
by their corresponding global maximum value after the geographic weighting. Since the output
variables are not geographically weighted, and z» = 0 simplifies computation, the output
variables are normalized by local mean and maximum at each grid cell. We note that some
previous regional studies (e.g. Pisoni et al., 2017) have treated the parameters of the geographic
weighting scheme as optimizable hyperparameters. ..

L 795 —796: Fig. 15 shows the changes in absolute error of emulator prediction when the

disperstionkernelis-disabled;+-e-—ne geographic weighting scheme is disabled (i.e. L; = 0)dene.



L 883 — 885: The results of these sensitivity tests illustrate that the accuracy of our emulator is
sensitive to the choice of L; disperstonkernel. While our choice of a set of globally uniform
disperstonlength-seales set of L; provides a reasonable first-order approximation to emulate
pollutant dispersion, performance of the emulator could conceivably be improved by regional, or

even grid cell specific L; dispersionkernels.

L 934 —935: This hints that the mismatch between regional pollutant transport patterns and the
prescribed geographic weighting scheme dispersionkernel could be another possible source of
error. ..

L 977 —981: ...2) the disperstonkernel geographic weighting scheme ignores the advective

component of pollutant transport...(e.g. fitting anisotropic dispersionkernels geographic
weighting schemes for each grid cell, expanding the training set)

3. Improvement of the methodology

There are many ways a reduced form model can be produced. This paper describes one
way. However, there is only real utility in the methods if it is “better” than other
approaches. Table 3 includes columns describing the results from a Multilinear
regression emulator approach. It would be useful if this could be described in the
methodology more and highlighted in more detail. How does Figure 6 look like with the
MLR approach? Is the additional burden of the Gaussian Process system “worth it”
compared to the simpler MLR approach?

Response: We thank the reviewer for this thought-provoking comment. We add the description
of MLR model in Section 2.4:

L 451 — 456: Instead, we choose a globally uniform set of L; as an approximation: Lyox, Lyzz and
Lyuvoc =1 grid cell (cell = 2° latitude x 2.5° longitude); Lsoz, Lac and Loc = 2 grid cell; Lco =3
grid cell. To understand the utility of non-linear regression techniques, we conduct an
experiment by training Multiple Linear Regressors (MLR) (instead of GPR) to represent f; using
identical input. We find that GPR increases the accuracy of the emulator over MLR (particularly
over regions where the changes in NOx and SO versus NH3 emissions are large enough to
trigger non-linear responses in secondary inorganic aerosol formation) without incurring large
increase computing resources required during the prediction process, therefore justifying the use
of GPR over MLR. More details of the comparison are shown in Section 3.3.1

We think this comment invokes a two worthwhile dimension to unpack:
1) Utility of our model

We have highlighted how our approach is an improvement relative to the linearized and
regionalized source-receptor approach (able to represent sub-regional changes and non-linear
chemical processes). (L 107 — 111). However, we did not highlight how our emulator has
different use case and strengths/weaknesses compared to reduced-order chemical transport
models (e.g. INMAP). We now justify our new approach by discussing the strengths and



weaknesses of our approach relative to both major existing approaches of global reduced-form
PM: s modeling (linear regionalized source-receptor matrices and reduced-order CTM):

L 75—77: ...resulting in a reduced-order chemical transport model that can be run faster and in
higher resolutlon—@e&s&met—al—zwq—?hal&af—et—al—z@% which are applicable for regional
and global high-resolution (~1-4km) modelling with runtime of a few hundred CPU hours per
model year (Tessum et al., 2017; Thakrar et al., 2022)....

L 1011 —1014: ...climate and global change scenarios generated will increase by orders of
magnitude (Lamontagne et al., 2018; Shindell and Smith, 2019), where the runtime required by
reduced-order chemical transport models (a few hundred CPU hours per model year) could be a
hurdle for large ensemble modelling, despite their advantage of having higher spatiotemporal
resolution than global statistical emulators...

2) The choice of GPR (or any other machine learning algorithms) vs MLR

Some of the main advantages of our emulator (e.g. grid cell level input and output, account for
climate change) can be achieved by MLR. Therefore, geographically weighted MLR could be
another viable emulator, and can perform reasonably well when pollutant emission changes are
small enough to not trigger significant changes in secondary inorganic aerosol formation.

We have comprehensively compared the accuracies between GRP and MLR in section 3.3.1. We
find that GPR is more accurate when the changes in precursor emissions are large enough to shift
the chemical regime of secondary inorganic aerosol formation. We conduct additional tests and
find that the MLR emulator is only around 25% faster than GPR emulator. These indicate that
GPR can provide accurate emulation at a wider range of pollutant emission changes than MLR
without largely increasing the computing cost. We now include the computing speed factor in
justifying the use of GPR emulation at the end of section 3.3.1:

L 765 — 769: The results in this sub-section show that GPR generally outperforms MLR. When
emission changes could potentially trigger non-linear aerosol chemistry, non-linear emulators
can be significantly more accurate than linear emulators without large increase in the computing
power requirement. This justifies the use of non-linear regression techniques (e.g. GPR) in
developing air quality emulators, especially given that GPR only requires 25% more runtime
than MLR.

4. Overall, it is difficult to evaluate the work here as I can’t really understand exactly what
has been done. The paper is long and covers the development of the reduced form model
and then some application. It would be worth thinking about whether these applications
are useful. The health effects between the full model and the emulator are identical. This
isn’t a surprise given Figure 6. Similarly, it’s not obvious to me that there is much utility
in the work on the AerChemMIP comparison. The numbers calculated appear to be
sensible, but do we learn much here? Given the performance of the emulator in Figure
17, this work appears to be just a statement about the performance of the
GCHP/CAM/MIT IGCM system compared to the AerChemMIP models rather than the



emulator. There is a lot of work done here but the paper feels long. The main conclusions
get lost in this, both by the range of topics discussed and the way that they are explained.

Response: We thank the reviewer for the constructive comment. The IGSM-GAINS-TAPS
scenarios are both emulator evaluation and use case demonstration exercises. Since APMa s is
calculated using GCHP-CAM, it can be used as a fair benchmark to gauge how faithfully can the
emulator reproduce GCHP-CAM simulated APMaz 5. The accuracy of our emulator in these
evaluation cases (as acknowledged by the reviewer) provides confidence for emulator users to
apply our emulator as a “fast screening tool” to explore the possible PMz s air quality impacts
from different climate scenarios, instead of having to run expensive chemistry-climate models
that are especially infeasible when there is an ensemble of climate and air pollution control
scenarios (e.g. Shindell and Smith, 2019).

On the other hand, the AerChemMIP exercise is more of a use case demonstration than a proper
“evaluation”, since the parent model of the emulator (GCHP-CAM) is not part of AerChemMIP.
The comparison with other models exists to demonstrate that the emulator can be applied to
estimate the time evolution of PM; s under different climate scenarios, which results in
“sensible” (i.e. generally agrees with other mainstream chemistry-climate model) predictions in
global changes in anthropogenic PMa.s. We agree that the underlying differences between
GCHP-CAM with AerChemMIP models (which we did not explicitly test) is probably the reason
behind the agreement between the emulator with AerChemMIP models. But again, it only took
less than a minute of CPU time to predict APMa2 s using the emulator, rather than hundreds of
thousands (or even more) CPU hours using the standard chemistry-climate modeling framework.

We change the title of section 3 and 4 and some associated subheadings under these two sections
to further highlight the difference between the IGSM-GAINS-TAPS and AerChemMIP exercise:

3 Comparisons-with-GEHP-CAM Evaluation of the emulator

3.2 Emulator cross validation and sensitivity

3.3 Comparing Emulator performance for ever IGSM-GAINS-TAPS scenarios with GCHP-
CAM

4 Evaluating utility: Comparison with AerChemMIP ensemble

We further clarify the conclusion of this exercise and emphasize the resource saving at the end of
section 4:

L 940 — 943: The comparison between GW-GPR and AerChemMIP output shows that the GW-
GPR emulator can generate predictions of APM3 s that are within the range of output from
mainstream chemistry-climate models at global scale, while requiring much less computational
resources (at the order of 10 — 100 CPU seconds per scenario) to run. This confirms the utility
ability of GW-GPR in predicting the spatiotemporal changes in anthropogenic PMz 5 exposure
under global change scenarios ...



The question “but do we learn much here” is indeed extremely important to answer. If users
were interested in a few custom-build climate/air quality scenarios, statistical emulation would
not be that useful as the computational cost of running chemistry-climate models is manageable.
But as we move towards using ensembles of climate and air quality scenarios to quantify
uncertainties driven by human activities, running chemistry-climate (or even climate models)
alone for each individual scenario would be infeasible, which in turn limits the utility of such an
ensemble approach. Our emulator provides a much computationally cheaper way to translate
pollutant emissions and GHG concentration from climate scenarios to APM; s, which is the most
damaging outdoor air pollutant at global scale.

There are other more sophisticated architectures that can accurately emulate the higher-order
statistics of PM> 5 and other major pollutants (e.g. O3), but they require meteorological fields as
input (Li et al., 2025, 2022). Since simulating meteorological fields requires substantial
computing power, such solutions do not satisfactorily reduce the computational power required
to project APM> 5. This guides our design philosophy: we want our emulator to be embeddable
within integrated assessment modeling frameworks (coupling economic models with simple
climate models), which means our emulator only require the output of integrated assessment
models (pollutant emissions and GHG concentration) as input, while having small enough
computing time requirement (<10 CPU seconds per scenario) that would not significantly slow
down the integrate assessment workflow. This can be important for climate-air quality co-benefit
research, ensemble modeling and user-friendly interactive tools for education and stakeholder
engagement.

We agree that the motivation and design philosophy of our emulator is not advocated clearly
enough, and therefore got a bit lost within the technical details of the paper. In our revision, we
further emphasize the motivation behind our emulator design:

L 115-119: ...This results in a global reduced-form aiguality anthropogenic PM2 s model that
can account for spatially heterogenous pollutant emission changes and non-linearity in
atmospheric chemistry under multiple climate scenarios without requiring simulated
meteorological fields as input, and provide robust uncertainty estimates, without drastically
increasing the computational cost. These properties would make our reduced-form model a
highly viable candidate for specific use cases (e.g. ensemble modeling, building interactive tools,
embedding in integrated assessment workflows).

L 1011 —1017: ...As climate projections move towards including scenario design as part of the
uncertainty (Guivarch et al., 2022; Lamontagne et al., 2018; O’Neill et al., 2016, 2020), climate
and global change scenarios generated will increase by orders of magnitude (Lamontagne et al.,
2018; Shindell and Smith, 2019), where the runtime required by reduced-order chemical
transport models (a few hours per model year) could be a hurdle for large ensemble modelling,
despite their advantage of having higher spatiotemporal resolution than global statistical
emulators; and statistical emulators that require meteorological fields as input would not be
applicable as 3D climate simulations are too computationally expensive to be conducted for
individual scenario. Tools with proper balance between accuracy, and computing resource and



input data requirements become more important in enabling uncertainty analysis,and impact
assessments and human-Earth system feedback research...

5. The word “level” does a lot of work in this paper. It is used to mean “concentration”
(pollution level), the vertical coordinate of the model grid (vertical level), the “degree’
of global warming (level of global warming), a spatial scale (global level). It would be
useful if there could be some specificity in the different words used here.

’

Response: We agree that the word “level” is used to refer to several distinct quantities. To
remedy such ambiguity, we replace the word “level” with more specific wording or drop this
term altogether wherever appropriate. E.g. for spatial scale, we use the word “scale”, for
pollution we use “pollutant concentration” or “pollutant emissions”. Since there were so many
ambiguous uses of “level” in the manuscript, we provide a few representative examples rather
than an exhaustive list of changes we applied to the manuscript:

For spatial scale:

L 491 — 492: New GW-GPR models are built from the synthetic training set and predictions are
made over the synthetic testing set at grid cell scale evel.

L 582 — 583: Country-scale level baseline age- and cause-specific mortality rates are provided by
the World Health Organization (WHO) (WHO, 2018).

L 690 - 691: ...APM 5 from GCHP-CAM, and the suitability of emulator output for public
health impact calculation at global scale level.

For GHG and pollutant concentrations:

L 174 — 175: While BVOC and soil NOy emissions are both calculated online (and therefore
respond to climate and atmospheric CO; concentration level)

L 193 —194: ...GCHP-CAM perturbation experiments by scaling 9 input variables that affect
PM2: 5 and oxidant concentrations level

L 334 —335: ...to relate the changes in pollutant emissions and climate with the corresponding
changes in annual mean PMa.s concentration level...

Redundant use of the word “level”:
L 65: ...faster and easier to run while retaining a reasonable levelef accuracy...
6. The words “high fidelity” is used in several places. It'’s not clear to me what this means.

An alternative set of words should be used of more context given to what the authors
mean. At a resolution of ~200km this is not a “high resolution” model.



Response: We thank the review for the comment. We agree that these words are unnecessary.
We have deleted all the references to “high-fidelity” in our manuscript.

7. The paper title suggests an emulation of the whole model, but I think only the PM2.5
concentrations have been emulated. GCHP at this spatial resolution (~200km by 250km)
isn t really an “Air quality” model, it’s an “atmospheric composition” model or
something like that but most people would think an “air quality” model would have a
substantially higher spatial resolution.

Response: We thank the reviewer for the constructive suggestion. We agree that the title of our
paper should be more specific. We have now changed the title of our paper to:

A Geographically Weighted Gaussian Process Regression (GW-GPR) Emulator of Anthropogenic
PM, 5 the GEHP from the GEOS-Chem High Performance (GCHP) 13.0.0 Global Chemical

Transport Adr-Quality Model

8. “Widely adopted.” I don’t think any of these techniques have been “widely” adopted. 1
would remove this comment.

Response: We agree with the assessment of the reviewer. We deleted these words from the
abstract.

9. “Uncertainties resulting from both chemistry and climate variability” I understand what
climate variability is. I'm not sure what chemistry variability. However, I'm not sure that
the methodology used here addresses these issues. This should either be expanded to be
clearer or removed.

Response: We agree that the uncertainty metric from the GPR is statistical, and therefore not
specific to any particular sources of uncertainty. We change the associated sentence to:

L 28 — 30: To our knowledge, the GW-GPR emulator is the first global-scale emulator operating
at grid cell level with explicit consideration of non-linearities in atmospheric chemistry, climate

change, and provides predictive uncertainties resulting—from—both—chemistry—and—elimate
variability.

10. Line 36. Sustainable development goals. I don’t think air quality has been explicitly
stated as part of the SDGs. There isn’t an AQ SDG which is surprising. The AQ goals are
given as sub, sub, SDGs (3.9.1 and 11.6.2).

Response: We agree that AQ is not explicitly an SDG, but rather a sub-goal within other SDG. We
change the sentence to:

L 55 — 56: and addressing health and environmental impacts from ambient air pollution has been
exphlieitly stated included as-part-of withe Sustainable Development Goals (goal 3.9.1 and 11.6.2)
(United Nations, 2015).



11. Line 37. This suggests that the only way to evaluate the future air quality is through
offline models. However, there are online ESM approaches which are in general the
more used for this kind of long-term projections.

Response: We agree that our statement misses the ESM approach. We add a description of the
ESM approach at the end of the sentence:

L 59 — 61: ... as inputs to a chemical transport model to simulate the impacts on air pollutant
concentration. Alternatively, the greenhouse gas (GHG) emission or concentration, and air
pollutant emissions can be directly fed into chemistry-climate and Earth system models to further
include the feedback between atmospheric composition and other components of Earth system.

12. Line 54. “Frequently applied in recent science and policy studies” References should be
given.

Response: We thank the reviewer for the constructive comment. The citations earlier in the
sentence refer to the application of these techniques. We move the citation to make this clearer:

L 77 — 79: These SR (Huanget-al;2023: Reis-et-al52022) and reduced-order (Camilleri-et-al;

2023) models have been frequently applied in recent science and policy studies (e.g. Huang et al.,
2023; Reis et al., 2022, Camilleri et al., 2023)...

13. Line 60. “Chemical regimes” What do the authors mean here? Ozone NOx-VOC
limitations? Aerosol SO4-NO3-NH4 regimes?

Response: We thank for reviewer for the constructive comment. We refer to the secondary
inorganic aerosol regime. We now make the clarification:

L 95: ...when there are shifts in sulphate-nitrate-ammonium chemical regimes.

14. Line 63. SOA is an important component of PM2.5
Response: We thank the reviewer for the constructive comment. We acknowledge the
importance of SOA as part of PMzs. The sentences in the indicated line discuss the non-linearity
with respect to precursor emissions. We emphasize that in this sentence that we are only focusing
on inorganic PM s:
L 97: ...different precursor emissions (NOx vs NH3 vs SO for inorganic PM5s)...
We also add details relative to SOA in other part of our manuscript:
L 170 —172: ...are assumed to be non-volatile. SOA formation follows a simple yield-based

scheme that converts a fixed potion of isoprene, monoterpenes and other terpenoids into a
lumped SOA precursor pool and another lumped SOA pool (Kim et al., 2015).



L 180 — 182: Anthropogenic PM» s mass is calculated by the above method, but only summing a
subset of aerosol species (sulphate, nitrate, ammonium, BC and OC) while leaving-eut-the
omitting other aerosol species that are mestly frem driven by nataral non-industrial sources
(dust, sea salt and SOA):

L 660 — 661: ...reflecting the fact that our emulator does not consider SOA in our definition of
anthropogenic PMa s.

15. Line 64. What are the direct vs indirect impacts of climate change on air pollution?
Changes in the meteorology? Increased temperatures? Can this be more specific.

Response: We thank the reviewer for the constructive comment. The SR method essentially
ignore all climate effects, whether direct or indirect. We also provide mechanistic examples of
how climate affect PM:

L 98 — 100: Existing SR matrices and reduced-order models also often ignore the direet effects of
climate change on air pollution (e.g. changing precipitation and associated wet deposition,
temperature effects on gas-aerosol partitioning and oxidation chemistry) (Jacob and Winner,
2009).

16. Line 73. What is meany by “geographically weighted.” This is used a lot in the paper but
there isn’t a definition of what this means.

Response: We thank the reviewer for the constructive comment. This is a good place to start
defining what is meant by “geographic weighting”. We add the following description:

L 109 — 110: Meanwhile, a geographically weighted (i.e. using weighted sum of regional
emission changes as predictors to represent pollutant transport process) linear regression
emulator

17. Why was Gaussian Process Regression chosen over other methods? What is it and why is
an appropriate tool to use for this problem?

Response: We thank the reviewer for the constructive comment. We have included a
comprehensive mathematical description of GPR in section 2.4. We agree that some high-level
discussion about why GPR is chosen in the introduction will be useful. We add this discussion
when referencing the regional GPR emulators:

L 334 —336: We use Gaussian Process Regression (GPR) (Williams and Rasmussen, 1995) to
relate the changes in pollutant emissions and climate with the corresponding changes in annual
mean PM: 5 concentration at grid cell scale, because of its effectiveness in handling non-
linearity, good performance with small training set, and quantifying predictive uncertainties

18. Method



As indicated earlier I found this difficult to understand. In the first paragraph the authors
talk about GCHP but this study uses a chain of models to generate the PM2.5
concentrations under several climate and emissions scenarios. It is very hard to
understand what they have done. This section should be re-written with an introduction
to explain the system being used and then details of each model used given in turn. What
information is being used by which models? How is the data transferred between these
models. Figure 2 is a start for this. But the textual description should be clearer and
more specific. What are the inputs into the MIT GCM? What are its configurations?
What are the outputs? What are the inputs into CAM? What is the CAM configuration?
And then then what are the outputs? What emissions is it using? etc

This whole section should be rewritten in a much more coherent way. Some more section
headings to describe the MIT GCM, CAM, TAPS, GAINS, GCHP etc and the flow of
information between them. Once the model framework has been outlined the experiments
performed to develop the training data can be explained.

Response: We thank the reviewer for the constructive comment. The restructuring of the method
section discussed in comment 1 reflects the suggestion of the reviewer: “discuss the modeling
tools first, then talk about the experiments”

Apart from restructuring our method section, we also add descriptions and illustrations to better
explain the data flow and input/output at each part of our modeling system:

For the IGSM-CAM framework that provides the GHG and pollutant emissions, GHG
concentration, and the 3D meteorological fields for each climate scenario (L 137 — 153):

2.1 MIT Integrated Global System Model (IGSM) and its coupling with Community Atmosphere
Model (CAM)

; GHG |—
| EPPA  |»{ Emissions |+ MESM NTCF  |-{ CAM |+ 3D metfields
| SST/ i
! MIT IGSM Sea | :
i eaice I

Fig. 1 Schematic of the IGSM-CAM modelling framework. Orange boxes represent modelling systems, purple boxes
represent data sets. The red dashed box represents the MIT IGSM part of the framework

The climate scenarios used in this study are generated from the MIT IGSM framework (Fig. 1).

The human system component of IGSM...As-part-of the seenario-projection; EPPA prov1des

regionalized and sectorized consumptions of different fuel types under the socioeconomic

assumptlons of each scenario. Ilih%yea%beg}ebal—wefag%aﬂﬂespheﬂ&GHG—eeﬁeeH&aﬂeﬂs—}s

eefrespeﬂdmg—EPPA—eufep&t—. The assoc1ated greenhouse gas (GHG) and air pollutant emissions
drive the MIT Earth System Model (MESM) (Sokolov et al., 2018) to simulate yearly global




average atmospheric GHG concentration, and concentrations of zonally averaged climate and
near-term climate forcers (NTCF, e.g. aerosols, O3).

Since the output of IGSM is zonally-averaged, we simulate 3D meteorological fields using the
IGSM-CAM framework (Monier et al., 2013) that links the IGSM to the National Center for
Atmospheric Research Community Atmosphere Model (CAM) 3.1 (Collins et al., 2006). In this
framework, CAM is driven by the IGSM output GHG concentrations, sea surface temperature
anomalies, sea ice cover, and NTCF concentrations (Fig. 1). A pattern scaling algorithm is used
to translate 2D NTCF output from IGSM to the 3D input fields required by CAM. The
simulation outputs used in this study are described and evaluated in detail by Monier et al.
(2015). IGSM-CAM is run with a horizontal resolution of 2° x 2.5° on 26 vertical layers up to
2.2 hPa.

For GCHP-CAM, which simulates atmospheric composition using GHG concentration, pollutant
emissions and IGSM-CAM meteorological fields (L154 — 184):

2.2 GEOS-Chem High Performance model (GEHP) driven by CAM meteorological fields
(GCHP-CAM)

We use the GCHP-CAM modelling system, which was described and evaluated in Eastham et al.
(2023), to simulate global PM> s distribution, and its response to climate and pollutant emission
changes. The modelling system is based on a customized version of GCHP 13.0.0 (The
International GEOS-Chem User Community, 2024) that can be driven by the modelled
meteorological fields efthe-Community Atmesphere Model{CAM)-version3-1 derived from the
IGSM-CAM framework. Here we provide a brief description of the modelling system and
specific setups for our work.

GCHP (Eastham et al., 2018) simulates PM 5 by resolving the chemistry, transport, emission and
deposition of relevant chemical species. Oxidant chemistry is simulated using a coupled VOC-
CO-NOx-0O3-aerosol-halogen chemical mechanism (Sherwen et al., 2016). GCHP is run at C48
(~200km) horizontal resolution with the same vertical layers with the IGSM-CAM simulations.
The model output is remapped into a 2° latitude x 2.5° longitude horizontal grid conservatively
(Jones, 1999). PM 5 includes... non-volatile. SOA formations follow a simple yield-based
scheme that convert a fixed potion of isoprene, monoterpenes and other terpenoids into a lumped
SOA precursor pool and another lumped SOA pool (Kim et al., 2015).

Biogenic volatile organic compounds (BVOC) emissions follow Guenther et al. (2012) with
isoprene inhibition by CO» (Possell and Hewitt, 2011; Tai et al., 2013) included. Soil NOx
emissions follows Hudman et al. (2012). While BVOC and soil NOy emissions are both
calculated online (and therefore respond to climate and atmospheric CO; concentration), mineral
dust (Meng et al., 2021) and lightning NOx (Murray et al., 2012) emissions are held at 2014
level.




Aerosol concentrations...(fine mineral dust, sea salt). Total PM> s mass (Eq. 1) is calculated from
the aerosol mass concentration. .. Anthropogenic PM» s mass (Eq. 2) ...

Total PM,s = 1.1(NHS + NO3 + SOZ7) + BC + OC + fine mineral dust + SOA +
1.86(Sea Salt) (1)
Anthropogenic PM, s = 1.1(NH} + NO; + SO}™) + BC + 0C (2)

For the details about how to configure and run the GCHP-CAM experiments to generate the
training set:

L 185-193:

2.3 GEHP-CAM-experiments Generating PMa s training data using GCHP-CAM
We conduct GCHP-CAM simulations for atmospheric composition at 2014 (with additional 3

months of simulations as spin up (output discarded) before the start of 2014) by applying IGSM-
CAM simulated meteorology, anthropogenic emissions of air pollutants from the Community
Emission Data System (Hoesly et al., 2018), and the monthly surface CH4 concentration derived
by spatially kriging the observations from National Oceanic and Atmospheric Administration
Global Monitoring Laboratory Cooperative Air Sampling Network at 2014. The resulting
modelled total and anthropogenic PM2 5 concentration serves as a baseline for subsequent
comparisons.

To effectively sample the sensitivity...and global warming...

L 303 —332:

2.3.2. Generating training dataset through GCHP-CAM perturbation experiments



Variables Range

Air pollutant emission scaling factor 0-2

Surface CHa concentration scaling factor ~ 0.5-2.5
Atmospheric COz level concentration 369.9 — 813.5 ppm
Meteorological year corresponding to 2000 —2100

CO2

Table 1. Range of scaling factors and CO; concentration, and the meteorological year corresponding to the CO,
concentration (under “REF” scenario) of the perturbation experiments. The range of atmospheric CO; concentration is
derived from the range of CO; concentration between 2000 — 2100 under the “REF” scenario.

GCHP-CAM

Fig. 2 Schematic of generating the training set by GCHP-CAM perturbation experiments using an Iman-Conover (IC)
transformed Latin Hypercube Sampled (LHS) scaling factors. Orange box represent existing modelling systems, purple
boxes represent data sets, and blue boxes represents output of the perturbation experiments.

120 sets of scaling factors for the 9 input variables (range displaced in table 1) are generated
following a Latin Hypercube Sampling (LHS) (McKay et al., 1979) strategy...

Fig. 2 summarizes the workflow of the perturbation experiments. A 1-year perturbation
simulation, again with an extra 3 months before as spin-up, is performed for each pair of global
scaling factors applied to 2014 anthropogenic air pollutant emissions and surface CHg4
concentration. The CO2 concentration is directly applied to the CO; inhibition algorithm, and the
corresponding climate effects are represented through driving the simulation with the IGSM-
CAM simulated meteorological data from the year with the closest CO2 concentration under
“REF” scenario (e.g. A perturbation experiment having a CO; concentration of 446 ppm is
driven by the IGSM-CAM simulated meteorological data at 2030 under “REF” scenario, as 2030
has the closet COx concentration to 446 ppm among all years under “REF” scenario). The
GCHP-CAM output we aim to emulate (changes in annual mean anthropogenic PM s



concentration relative to 2014 baseline (APM: 5)) is calculated for each perturbation experiments
as the training data set.

For how we use the training set to build the GW-GPR emulator (L 334 — 483):
2.4 Training the Geographically Weighted Gaussian Process Regression (GW-GPR) Emulator

...an isotropic 2D Gaussian dispersionkernel geographic weighting scheme is applied to
calculate the effective air pollutant emission changes (AEweighted,x,i) at each grid cell x for each
pollutant i

AEweighted,x,i = Zyk e_dSZ"X/ZL% AEy,i (7)

Where AEy; is the emission change of pollutant ;/ within all individual grid cells considered
within the dispersion range yx...Formally speaking, this implies at each grid cell x, our GW-GPR
framework (f;) predicts GCHP-CAM simulated APM; 5 using AEeighted,x (the vector of
AEyeighied xi for all pollutants) atmospheric CH4 and COx concentration as input:

APM;5(x) = fx(AE yeighted CHa, CO7) (8)

For the IGSM-GAINS-TAPS modeling exercise to evaluate our emulator (L515 — 549):

] : mate e n-Seend 2.6 Testlng the
emulator Wlth IGSM-GAINS- TAPS comblned air quahty and chmate legislation scenarios

...we evaluate the ability of the emulator in reproducing GEHP GCHP-CAM output
anthropogenic PM s over 2 climate...

...Future air pollutant emissions for each scenarios can be derived through the Tool for Air
Pollution Scenarios (TAPS) (Atkinson et al., 2022) by considering climate (fuel consumption)
and air pollution (emission intensities) policies independently...

We perform 10 years of GCHP-CAM simulations for each of the four IGSM-GAINS-TAPS
scenarios with their respective anthropogenic air pollutant emissions, and CHs and CO»
concentrations in 2050. %&meteereleg*eal—yea*&@@%i—l%l—fe%ﬁ—%d—%%@—%@é@%eﬁ%

: enario): The
s1mulat10ns are drlven by IGSM CAM meteorologlcal ﬁelds from the “REF” scenario, with
meteorological years (2031 — 2041 for AA and 2040 — 2050 for CT) chosen to match the CO;
concentration and TRF (i.e. AA has similar CO» concentration and TRF at 2050 with “REF’ over
2031 — 2041, and CT has similar CO; concentration and TRF at 2050 with “REF’ over 2040 —
2050). The same GCHP-CAM input anthropogenic air pollutant emissions, CHs and CO»
concentrations in 2050 are fed into the GW-GPR emulator to estimate APMz s under each
scenario, which is then compared to the multiannual mean APM> s simulated by GCHP-CAM
(section 3.3).

19. Line 215. The choice of L appears somewhat arbitrary. Presumably it has something to
do with the lifetime of the compound and some mean wind-speed component. Given a
~250km gridbox and say a ~5ms-1 wind. The timescale for air to be blown out of the box



is ~12 hours. Thus L=1 seems appropriate for NO and potentially for some of the
shorter-lived VOCs. L=3 (36 hours) seems very short for CO. The authors should provide
more of a chemical interpretation of this in their text or identify this as a weakness of
their approach.

Response: We thank the reviewer for raising this important issue, which warrants clarification.
We agree that the choice L; seems arbitrary. We conduct another sensitivity simulation that use
another set of L; based on the atmospheric lifetime of the individual species, and find no
improvement in emulator accuracy, while the generally larger L; leads to large increase in
computing cost of the geographic weighting scheme. Therefore, we choose to retain our original
choice of L;, and explore the limitation from this approach. We add the description this
sensitivity test to our manuscript:

L 449 — 481: Instead, we choose a globally uniform set of L; as an approximation: Lyox, Lyus and
Lyuvoc =1 grid cell (cell = 2° latitude x 2.5° longitude); Lsoz, Lzc and Loc = 2 grid cell; Lco =3
grid cell...

In addition, we train the GW-GPR emulator by choosing another set of globally uniform L; based
on the typical atmospheric lifetime of individual pollutants, which results in larger L; for most
pollutants. However, we find that such set of L; increases the computing cost of the Gaussian
blurring without providing improvements in emulating APM: 5. Therefore, we retain the choice
of our original set of relatively small L;, which provides enough distinction of dispersion length
scales of different pollutants without invoking considerable additional computational cost...

And the result of this sensitivity test is shown in Section 3.3.2:

L 793 —795: In addition to regression techniques, we also conduct3 4 sensitivity tests of altering
L; the dispersiontength-seales: 1) L; = 0 (no geographic weighting) ne-dispersion; 2) halving L;
the-dispersionlengthseale, 3) doubling L; %h%d—l—Sﬁ%PSiGﬂ—l%Hg—th—S%&l% 4) directly using

atmospheric lifetime of pollutants to approximate L.

L 838 — 882: In the final sensitivity experiment, we assume L; (in km) to be approximately equal
to 10 — 20 x atmospheric lifetime of pollutant i (7;) (Li and Cohen, 2021). Anthropogenic NOx
and NHj3 have very short 7 (within a few hours) (Dammers et al., 2019; Lange et al., 2022). Also,
HNO3 (the main oxidized form of NOy) (Muller et al., 1993) and NH3 (Schrader and Briimmer,
2014) deposit rapidly. However, the secondary inorganic aerosol formed from anthropogenic
NOx and NHj3 have longer 7(3 — 5 days) (Bian et al., 2017). Balancing these two factors, we
assume Lyox and Lyyz = 1 grid cell. SO» has longer 7 (4 — 12 hours for point sources (Fioletov et
al., 2015), and 1 — 1.5 days at regional and global scale (Chen et al., 2025; Hardacre et al., 2021;
Lee et al., 2011)) and lower deposition velocity (Hardacre et al., 2021) than NOx and NHs.
Therefore, we assume Lso> = 3 grid cells. Anthropogenic NMVOC that has the most significant
contribution to photochemistry and oxidation chemistry (e.g. xylene, toluene, ethylene,
propylene) (Gu et al., 2021; Ran et al., 2011) typically have 7 of a few hours to 2 days (Franco et
al., 2022; Tiwari et al., 2010; Trentmann et al., 2003). Therefore, we assume Lyoc = 2 grid cells.
As recent studies suggests that zzc < 5 days (Lund et al., 2018), and zzc = 7oc (Gao et al., 2022),
we assume of Lpc = Loc = 7 grid cells. As 7co is at the order of months (Khalil and Rasmussen,



1990), we choose Lco = 15 grid cells to avoid excess processing time by the geographic
weighting scheme.

AError (L; ~ 1))

Fig. 18 Changes in absolute error (relative to GCHP-CAM output APMz 5s) when an alternate set
of dispersion length scales (Lnwmz = Lyox = 1 grid cell, Lyoc = 2 grid cells, Lso> = 3 grid cells, Lac
= Loc =7 grid cells, Lco = 15 grid cells, informed by the atmospheric lifetime of each pollutant i
(7)) is applied to train the GW-GPR. Red (positive) indicates that using the alternate set of L;
worsens the performance (increasing error), blue (negative) indicates the opposite.

Fig. 18 shows the changes in absolute error of emulator predictions with the set of L; described
above. The global performance metrics (MAE = 0.21 — 0.42 pg m>, MB = 0.06 — 0.11 pg m™)
are very similar to the metrics obtained by training the GW-GPR emulator with the default set of
L;. The regional pattern of changes in emulator accuracy is consistent over the 4 scenarios tested.
Using this alternate set of L; reduces the error over southern China by up to 4 ug m=, while
increasing the error over western Africa and central Asia by up to 4 ug m=. Over northern India
and Bangladesh, the emulator error could locally increase or decrease by up to 5 pg m=.
However, the generally larger L; increases the runtime of the geographic weighting scheme
(around 15 seconds), while only 0.6 second is required to run the geographic weighting scheme
using our default choice of L;. Given the GW-GPR emulator can finish its prediction within 10
seconds for each scenario, such a large increase in runtime without consistent global
improvement in emulator performance is not justified.

20. What is a random variable? Is this a normally distributed variable? This is a bit
confusing as it could be construed as a variable containing random numbers, but I don 't
think this is what is meant. What is N in equation (1)? Are the PM2.5 surface
concentrations and the input variables normally distributed? My guess is that they are
not and many of them are likely log normally distributed. Does this matter?

Response: We thank for reviewer for the interesting question. In statistical emulation, the
predicted variable (in our case APM: 5) is formulated as a distribution due to the associated
predictive uncertainty. In this case, NV refers to a multivariate normal distribution. GPR assumes
the input and output variables are jointly normally distributed, so that the prediction (more
precisely, predictive mean) (Eq. 4. in the revised manuscript) and uncertainty (predictive
standard deviation, Eq. 5 in the revised manuscript) has a clean analytic expression, reducing the
whole non-linear regression problem to finding an optimal set of parameters for the covariance



function (Eq. 6 in the revised manuscript) given the training data. i.e. The normal distribution
assumption is a commonly acknowledged working hypothesis facilitating the computation, and
the mathematics required to test this assumption is beyond the scope of this paper. We hope
these changes in the manuscript would make the mathematics a bit clearer:

L 352 —429: We use a sum of anisotropic (in the input space, not the physical distance described
below) functions GPkernels to represent the nature of our problem. These are ¢smooth functions
(rational quadratic function) with unknown points of chemical regime change + local interactions
among variables (Matern 3/2 function) + noise from climate variability (white noise)}.“Training”
the GPR essentially means optimizing the parameters of the covariance function k against the
training data set...

21. What bits of information are being used here? Exactly what is being predicted and with
what information?

Response: We thank the reviewer for the constructive comment. We make the following
clarification:

L 432 — 440: ...an isotropic 2D Gausstan dispersionkernel geographic weighting scheme is
applied to calculate the effective air pollutant emission changes (AEweighted x,i) at each grid cell x
for each pollutant i:

AEweighted,x,i = Zyk e_d}ZI'X/ZL% AEy,i (7)

Where AEy; is the emission change of pollutant ;/ within all individual grid cells considered
within the dispersion range yx...Formally speaking, this implies at each grid cell x, our GW-GPR
framework (f;) predicts GCHP-CAM simulated APM; 5 using AEeighted,x (the vector of

AEyeighted xi for all pollutants), and atmospheric CH4 and CO; concentration as input:
APM;5(x) = fx(AE eightedr CHa, CO7) (8)

22. I might move this description (section 2.4) to be in the section 4 as it feels disjointed in
the flow of the text.

Response: We thank the reviewer for this suggestion. We believe after the reorganization, the
description of AerChemMIP exercise (now section 2.7) should no longer feel out of the place.

23. Section 3.2 It would be useful there could be some description at the start of how the
evaluation is going to take place, what is going to be contained in this section. As
described early the metrics are only useful if they are compared to an alternative method
of reduced model generation. It seems like this has been done but it would be useful if this
could be the basis for the evaluation? Is the new approach better than the old, rather
than providing metrics of the performance of the new model in isolation.

Response: We thank the reviewer for this question. Our other “benchmark” would be replacing
GRP by MLR. However, as discussed above (comment 3), there are other factors (better
performance in under non-linearity, availability of predictive uncertainty) that led us to choose
GPR over MLR other than the performance metrics in cross-validation. Presenting the cross-



validation result from MLR would be distracting and confusing for readers. Therefore we only
present the cross-validation result from GPR here. We add description of the material at the start
of the sub-section, so that the reader can refer to section 2.5 if they want to know how the result
at this sub-section is generated and what it means:

L 621: In this sub section, we discuss the result of the cross validation and sensitivity test outline
in section 2.5. Fig. 7 shows...

24. Line 293. This says that Figure 6 shows the comparison with the Delta Anthropogenic
PM?2.5 but the figure caption text says that it just Delta PM2.5.

Response: We thank the reviewer for this question. In this study, we define APM: s as changes in
anthropogenic PM2.s. We added this to the figure caption:

L 610 —612: Fig 7. 2D histogram from the grid cell by grid cell comparison between changes in
annual mean anthropogenic PMa.5s (APMa.s) predicted by the GW-GPR emulator (APMz 5, GW-
GPR) and that simulated by GCHP-CAM (APM; 5, GCHP) from the 10-fold random sub-
sampling cross-validation.

1t’s not clear over what time period this is run for? What is the calculated delta between?

Response: We thank the reviewer for this question. This is a 10-fold cross validation (where 80%
of the training data is randomly selected to train a synthetic version of the model, while the
remaining 20% of the training data is held out as synthetic testing data, and repeat this procedure
for 10 times). We now refer the readers to section 2.5 for explanation (see last comment).

25. Line 300. Why does the standard deviation of the prediction and the MAE between the
prediction and GCHP indicate that emulator SD is an appropriate measure of chemical
and climate uncertainty. This should be explained in more detail.

Response: We thank the reviewer for this question. The emulator SD is from eq. 5, which is
computed jointly with the emulator prediction mean (eq. 4) (see comment 20) and measures the
predictive uncertainty of the emulator. It is naturally related the range/error of prediction (we
state explicitly the text that “the emulator output standard deviation which can characterize the
uncertainty of emulator prediction”). We can see that the standard deviation can get confused as
being calculated from some sample populations. We now reference Eq. 4 to clarify that we are
referring to the predictive uncertainty:

L 625 — 627: Fig. 7 8 shows the spatial distribution of grid cell level MAE of the GW-GPR
emulator, and the emulator output standard deviation from Eq. 4 (which can characterize the
predictive uncertainty of emulator output).

We agree that the “chemical and climate uncertainty” is confusing (see comment 9). Rather than
“indicating”, the similarity between MAE and predictive SD “confirms” that predictive SD is a
good measure of emulator uncertainty. We now remove the reference to “chemical and climate
uncertainty” in both the figure caption and main text:



L 618 — 620: Fig. 8 The mean absolute error (MAE) of emulator prediction against the parent
model (GCHP-CAM), and the average standard deviation of emulator predictions from Eq. (4)

(indicative of predictive uncertainties from-eclimate-vartabiity-and-chemistry) at grid cell level
(240 data points at each grid cell)

L 628 — 630: The emulator output standard deviation have similar magnitudes and spatial
distributions (spatial R? = 0.99) as MAE, indieating confirming that emulator output standard
deviation is an appropriate measure of ehemieal-and-elimate the uncertainties of emulator
predictions relative to the parent model.

26. Figure 9. This is very small and hard to read. I can’t see any dots in this figure, but they
are described in the caption. The colour scale isn’t very useful as to my eye as
everywhere seems to show a reduction other than a possibly over Bangladesh.

Response: We thank the reviewer for the comment We have reduced the range the color scale
from 50 pg m to 30 pg m™ and replaced the dots with hatches. We hope these changes will
increase the readability of the Fig. 9 (Fig. 10 in the revised manuscript):
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Fig. 10 Spatial patterns of GCHP-CAM and emulator predicted APM, s for each of the 4 IGSM-GAINS-TAPS scenarios at
2050 (relative to 2014). Only results in grid cells with population density > 1 person km™ are shown. The dets hatches show
where GCHP-CAM output does not fall within the 95% confidence interval of emulator prediction.

27. Table 3. The description of the multilinear approach is pages ahead in the document. It
should be in the methods section and explained properly.

Response: We thank the reviewer for the comment. We now include description of the MLR in
section 2.4 (see comment 3).

28. Is it clear why Section 3.3.2 is that rather than Section 3?

Response: We thank the reviewer for this question. Section 3.3 describes the GW-GPR
performance of the IGSM-GAINS-TAPS experiments. The most important content is the
performance of our baseline GW-GPR, while the MLR (3.3.1) and L, (3.3.2) are “sensitivity
experiments” the help exploring the strengths and limitations of baseline GW-GPR, and
therefore written as 2 subsections after describing the performance of the baseline GW-GPR.

29. I think the workflow has been applied to a number of applications outside of Engineering.
There are a number of examples of similar approaches in atmospheric composition
research.

Response: We thank the reviewer for this comment. We agree with the reviewer that neither
geographically weighted regression, Gaussian Process regression, nor extracting the sensitivity
of pollutant concentration to precursor emissions through carefully designed sensitivity
simulations are new approaches to model air pollution. This is evident at the start of our
introduction, by how we acknowledge the previous usage of such workflow in atmospheric
chemistry: “Similar techniques (also often choosing Gaussian Process Regression as the machine
learning algorithm) have been used for uncertainty analysis and parameter calibration in
atmospheric chemistry modelling (Reyes-Villegas et al., 2023; Ryan and Wild, 2021; Wild et al.,
2020), and directly emulate air quality models at local and regional scales (Conibear et al., 2021;
Vander Hoorn et al., 2022).” (L 955 — 958)

However, we are confident that we are among the first to creatively combining geographically
weighting and machine learning regression techniques to tackle the challenges in emulating a
global atmospheric chemistry model. This results in our emulator being able to provide
improvement upon the linear source-receptor framework (e.g. grid cell-level input and output,
able to handle non-linearity), while still costing much less computing resources than reduced-
order chemical transport models.

In the conclusion, we further highlight that we are not merely applying the standard Gaussian
Process surrogate techniques to atmospheric chemistry modeling. Rather, we extend this
approach by combining the classic workflow with other features (e.g. geographic weighting
scheme, using CO> to parameterize global warming):



L 959 —960: ...Our work applies extends this approach for global change scenarios, where
climate change, inter-regional chemical transport and discrepancies in chemical regimes pose
another layer of challenges.



Response to Referee 2

We sincerely thank the reviewers for the constructive comments. Here are our responses, and the
corresponding revisions in our manuscript:

Major comments:

1.

The authors make several assumptions in generating training data with GCHP-CAM
including using CO?2 levels instead of total radiative forcing to parameterize total
radiative forcing in the 21st century. Uncertainty that arises from these assumptions is
not addressed when presenting APM?2.5 and Amortality results.

Response: This is an important point. We agree with the reviewer that the related uncertainties
deserve more explanation and elaboration than what we presented in our manuscript. There are a
few facts and assumptions behind the logic of using CO» to parameterize climate impacts on
anthropogenic PMa s:

1.

2.

Response of global mean temperature to well-mixed greenhouse gases (AT) is a function
of changes in total radiative forcing from well-mixed greenhouse gases (AF).

The local responses of temperature and precipitation (which directly influence PM2 s
level through gas-aerosol partitioning and wet deposition) to well-mixed greenhouse gas
forcing can be largely predicted by changes in global mean temperature, and these local
relations (“patterns”) are time-invariant (Liitjens et al., 2025).

Therefore, total radiative forcing can parameterize the impacts of climate change on
PM: 5. The local relationships can be learned statistically, and the statistical uncertainties
is quantified by standard deviation output from Gaussian Process Regression.

In a lot of climate scenarios, CO> dominates both the overall magnitudes and trends in
long-lived greenhouse gas radiative forcing in the 21% century (Meinshausen et al., 2020).
Therefore, we can further parameterize total radiative forcing as an atmospheric CO>
level.

This simplifies our statistical model and increases its applicability, since CO> level is among the
most widely available climate forcing variables. A closer examination also reveals two potential
weaknesses of our approach:

1.

Our approach fails when climate change is not a sole function of well-mixed greenhouse
gas forcing, therefore cannot capture the effects of local climate forcing (e.g. land use
change, aerosol forcing), overshoot scenarios, etc. (Basically, this is equivalent to the
cases where pattern scaling approaches typically fail in predicting future climate) (Giani
et al., 2024)

Our approach fails when the trend of CO» emission is decoupled with that of other
greenhouse gases.

In addition, we trained another model adding greenhouse gas (CO2+CH4+N2O+CFC-11+CFC-
12) radiative forcing as a predictor, on top of the 9 predictors presented in our manuscript. The



changes in error relative to GCHP-CAM after including ERF as an additional predictor for each
IGSM-GAINS-TAPS scenarios is plotted as follows:

AError (ERF)

We find that including ERF as another predictor does not change the performance of the model
significantly (global MAE increases by 0.002 — 0.006 ug m™). Given that CO» concentration is
the most widely available global warming indicator, we maintain the use of CO; level to
parameterize global warming level. However, there are also other ways are also other ways (e.g.
cumulative GHG emissions, combination with climate emulators) to parameterize climate effects
that warrants further explorations beyond the scope of our paper.

Therefore, we add a whole section (“2.3.1 Parameterizing global warming”) in our revision to
provide a clearer explanation to our approach, and the associated uncertainties involved:

L 244 - 276:

2.3.1 Parameterizing global warming

Representing the direct impacts of climate change is an important aspect of building climate-
aware reduced-form atmospheric composition models. However, unlike the other 8 perturbed
variables, global warming cannot be directly implemented as a scaling factor in GCHP-CAM.
Some recent studies achieve this goal by including 3D meteorological fields from climate model
output as predictors (e.g. Li et al., 2025, 2022). However, this could limit the utility of the model
to scenarios where climate model outputs are archived in a correct format. We use a simpler
parameterization of climate effects in our emulator to expand its applicability.

We use the GHG concentration and IGSM-CAM simulated meteorological fields from its high-
warming “REF” scenario (10 W/m? in 2100, resulting in 4.3 °C warming in 2080 — 2100 versus
1990 —2009) to provide samples across a wide range of global warming and GHG concentration
from 2000 — 2100. While climate change can affect PMa s through pathways other than simply
warming (e.g. precipitation, regional stagnation, mixing depth) (Jacob and Winner, 2009),
changes in meteorological variables due to well-mixed GHG forcing can usually be
parameterized as spatially-varying functions (“patterns”, which are specific to individual climate
models) of global mean temperature (e.g. Liitjens et al., 2025), which is a function of total
radiative forcing by GHG (with climate sensitivity specific to each climate/Earth system model).
Therefore, the effects of GHG-forced climate change on PM2 s can be parameterized by total
radiative forcing by GHG (TRF), which largely simplifies the statistical modeling and increases
its applicability by not requiring meteorological variables as inputs. This implies the relation



between GHG-forced climate change and PM: 5 can be statistically learned by regression
algorithms at each grid cell, when TRF is included as one of the input variables.

In our emulator, we further parameterize TRF as atmospheric CO> concentration. In many
climate scenarios, CO» is projected to dominate (68 — 85%) TRF and its trend in the 21 century
(Meinshausen et al., 2020). In addition, atmospheric CO; concentration also directly affects
isoprene emission, which could affect atmospheric oxidant (e.g. OH, Os) (e.g. Tai et al., 2013),
and therefore potentially secondary inorganic aerosol formation.

Parameterizing climate effects as TRF/COz concentration allows our statistical model to include
climate effects without explicitly requiring meteorological fields as input, which makes our
emulator easy to integrate within the workflow of integrated assessments and ensemble
modelling/emulation. However, this introduces some potential sources of systematic errors: 1)
Atmospheric CO2 concentration can misrepresent TRF under climate scenarios where the trend
of CO; emission is decoupled with the trends of other GHG emissions; 2) The assumption of
time-invariant local relationship between global mean temperature/TRF and local climate
variables breaks down under overshoot scenarios and over locations with strong changes in local
forcing (e.g. aerosol) and energy balance (e.g. albedo feedback, land use and land cover change)
(Giani et al., 2024). While the influence of pollutant emissions on PM> 5 under these scenarios
can still be properly represented by our statistical model, the result from our emulator should be
interpreted more cautiously under these types of climate scenarios. More advanced methods to
parameterize climate effects (e.g. using cumulative GHG emissions, combining information from
climate emulators) could be further explored in future work.

2. In the Gas Ratio subsection of 3.3.1 it is unclear how Gas Ratio indicates level of
linearity vs non-linearity until the end of the subsection. It could help clarify the point to
address this towards the beginning of the subsection.

Response: We thank the reviewer for this suggestion. We now introduce the concept of gas ratio
before fig. 13

L 741 —746: To further understand the utility of non-linear emulation, we analyse the shifts in

the chemical regime of secondary inorganic aerosol formation calculating the Gas Ratio (GR)

(Paulot and Jacob, 2014) over China at baseline year and under all 4 scenarios (Fig. 13):
[NH3]+[NHf]-2[s027 ]

GR = = anosemor) ~ )

GR < 0 indicates that secondary inorganic PM; s is weakly sensitive to NH3 emissions through

adding NH4" to existing SO4>...

3. Many of the figures (e.g., Fig. 1, 4, 5) do not have very descriptive captions, making them
rather difficult to understand. Consistent detail in the captions (e.g., Fig 6 can be easily
understood as a fully standalone figure and caption) would improve the manuscript.

Response: We thank the reviewer for this suggestion. We update the captions of our figures as
follows:

L 487 — 489: Fig. 3 Schematic of the 10-fold random subsampling cross-validation procedure. At
each “fold”, 80% of the samples (96 runs) are used to train the emulator to predict the result from



the other 20% of the samples (24 runs). The prediction is then evaluated against the GCHP-CAM
output APM> 5 for those 24 runs.

L 522 — 524: Fig. 6 Total and regional air pollutant emissions for the four IGSM-GAINS-TAPS
scenarios. Each row represents a climate scenario (Current Trend, CT; and Accelerated Actions,
AA), and the emissions at 2014, and 2050 under Current LEgislation (CLE) and Maximum
Feasible Reduction (MFR) air pollution control scenarios are shown for each species.

L 640 — 641: Fig. 9 Spatial patterns of Sobol Total Sensitivity Indices (0-1) for each predictor for
APM: 5. The indices indicate the fraction of output variance attributable to each input variables at
each grid cell.

L 718 — 719: Fig. 12 GPR and MLR emulator errors relative to GCHP-CAM simulated APM; 5
over the 4 IGSM-GAINS-TAPS scenarios at 2050 (relative to 2014). Both emulators use the same
geographic weighting scheme for pollutant emissions.

L 790 — 792: Fig. 15 Changes in absolute error (relative to GCHP-CAM output APM: 5) when no
disperstonkernel{geographic weighting of pollutant emissions} is implemented. Red (positive)
indicates that turning off dispersion worsens the performance (increasing error), blue (negative)
indicates the opposite.

L 801 — 803: Fig. 16 Changes in absolute error (relative to GCHP-CAM output APM> 5) when the
dispersion length scales (L; in Eq. 7) for all pollutants in the geographic weighing scheme are s
halved. Red (positive) indicates that turning off dispersion worsens the performance (increasing
error), blue (negative) indicates the opposite.

L 827 —829: Fig. 17 Changes in absolute error (relative to GCHP-CAM output APM> 5) when the
dispersion length scales (L; in Eq. 7) for all pollutants in the geographic weighing scheme are s
doubled. Red (positive) indicates that turning off dispersion worsens the performance (increasing
error), blue (negative) indicates the opposite.

Minor comments:

1. Use colorblind friendly colors for figures 3, 4, 8, 10.
2. Use consistent regional colors between figures 3 & 4.

Response: We thank the reviewer for these suggestions. We tried to reducing the number of
colors and create distinctions by hatching, but the resulting figure is confusing. While it is
challenging to provide a completely colorblind-friendly palette that has 18 (number of IGSM
regions) distinct colors, we believe using a consistent and more colorblind-friendly palette
(“tab20”) between figures 3 and 4 would still improve the readability. We also switch to more
colorblind-friendly palettes for figures 8 (viridis) and 10 (Okabe-Ito):



IGSM Regions Map

e AFR
ANZ
o ASI
BRA
e CAN
CHN
EUR
e IDZ
e IND
o JPN
L]
°

L S
°x i

¥ .—-«i—s 2

LAM
MES
MEX
~ o REA
ROE

P S

Revised figure 3

EEN AFR  mmm AS|  mEE CAN EUR IND mww KOR mmm MES mwm REA  mmm RUS
ANZ BRA CHN mmm IDZ mmm PN  Wem LAM MEX ROE USA
SO, (Tg) NOy (Tg) NHs (Tg) OC (Tg) BC (Tg) CO (Tq) NMVOC (Tg)
120/ €01 17.5 | B 600 — 200 ]
801 = sol | B . " L =
_— 10040 15.0- ] 500- - 175 .
1 || = = =
[ | »m
60 . 80 40- 125
[
el 3
5 - - . 30— - 100 |
— 60 — =
40 - == . f—
= ol | —
40- 20- — | ]
| s.0] —
20- _ _— — — ||
| ] 10 | ]
EE =H= B ll - Il
N o . LN 0.0
60
= 120 — 1
w0 - 1 |
ol = “ES
_— 1004 [ | ]
. |
60 40 |
80 10-
_—
g oo - 304 Fr—— N
o [—
-
20

o
wes [

o n = o
2014.”
o
-

MFR I|
=
zo1e [

Revised figure 4

1.0

0.6
0.4

0.2

e > < : 0.0

Revised figure 8



AMortalities (106 persons yr—1)

—3.07 s Emulator
. GCHP-CAM
—35 T T T T
AA CLE AA_MFR CT_CLE CT_MFR
Scenario
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3. Line 134: Iman-Conover Transform is not described well enough for a reader to
understand what it is.

Response: We thank the reviewer for pointing out this ambiguity. We rewrite that section to
provide clearer explanation of how we apply the I-C transform procedure:

L 316 —322: ...control policies. We then use the Iman-Conover Transform (Conover and Iman,
1982) to impose the correlation matrix for the independent and uncorrelated pairs of LHS scaling
factors. The Iman-Conover Transform first transforms the sample pairs to an approximately
multivariate normal distribution. Then Cholesky decompositions are used to impose the
correlation matrix to the distribution, resulting in a matrix that can be applied to rearrange the
sample pairs by ranking. This results in correlated pairs of scaling factors that allow us to focus
on sampling the more probable parts of the input space (due to co-emissions), while preserving
the marginal distributions of individual variables (i.e. uniform distribution over their respective
ranges).

4. Figure 11: Remove uncoupled right parentheses “)” from colorbar label.

Response: We thank the reviewer for spotting this error. We replot fig. 11 accordingly:
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Replotted ﬁgure 11

5. Line 198: Change “points” to “point”.
6. Line 228: Change “mode” to “made.

7. Line 231: Remove “to” at the end of the line
Response: We thank for reviewer for point out these errors. Revised as suggested

8. Line 333: Range of results within 2 standard deviations are presented in confusing way
(potential fix “(82.9%)-(96%)”

Response: We thank for reviewer for point out this ambiguity. We revised the sentence as:
L 683 — 685: ...Generally, the emulator performs comparably to that in the random subsampling
evaluation (R? = 0.94 — 0.99, MAE = 0.20 — 0.42 pug m™). 58:7—84-8% and-82.9%(96%) 58.7%
(82.9%) — 84.8% (96%) of the grid cells have...

9. Line 345: Change “agrees” to “agree”

10. Line 360: Change “expect” to “except”

11. Line 428: Remove “of”

Response: We thank for reviewer for point out these errors. Revised as suggested
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