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Highlights: 29 

● Long-term high frequency CO₂ flux measurements using automated static 30 

chambers in a Sahelian F. albida parkland.  31 

● Empirical gap-filling and flux partitioning methods validated against Eddy 32 

Covariance GPP. 33 

● Fluxes peaked during the rainy season in both FS and Sh, driven mainly by soil 34 

moisture and leaf area. 35 

● F. albida trees enhance CO₂ fluxes under canopies ("fertile island" effect) and 36 

account for ~50% of annual ecosystem GPP. 37 
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ABSTRACT: 38 

Agroforestry systems — combining trees with crops and/or livestock — are increasingly 39 

promoted as sustainable and climate-resilient land-use strategies. Despite their widespread 40 

presence in the Sahel, experimental data on their potential as carbon sinks are scarce. This study 41 

presents a full-year, high-frequency dataset of CO₂ fluxes in a Sahelian agro-silvo-pastoral 42 

parkland dominated by F. albida, located in Senegal’s groundnut basin. CO₂ fluxes were 43 

continuously measured using automated static chambers, allowing the quantification of soil and 44 

crop respiration (Rch), gross primary production (GPPch), and net carbon exchange (FCO2ch) 45 

under both full sun and shaded (under tree canopies) environments. 46 

Seasonal patterns of CO₂ fluxes were similar in both environments, with peaks during the rainy 47 

season. Rch and GPPch were significantly higher under tree canopies, indicating a ‘fertile island’ 48 

effect. CO₂ flux variability was primarily driven by soil moisture and leaf area index. Chamber-49 

based GPP estimates closely matched those from Eddy Covariance measurements. On an annual 50 

scale, F. albida trees contributed approximately 50% of total ecosystem GPP, with a carbon use 51 

efficiency of 0.48. Net annual CO₂ exchange was estimated at −1.4 ± 0.02 and −1.8 ± 0.01 Mg C-52 

CO₂ ha⁻¹ using chamber and Eddy Covariance methods, respectively. These findings underscore 53 

the role of F. albida-based agroforestry systems as effective carbon sinks in Sahelian landscapes, 54 

supporting their potential contribution to climate change mitigation. 55 

Keywords: Sahelian agro-silvo-pastoral systems, CO₂ fluxes, automated static chambers, Eddy 56 

Covariance, ‘fertile island effect’ of trees, carbon budgets. 57 
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1. Introduction 58 

Plant photosynthesis and respiration —both autotrophic (plant) and heterotrophic (microbial)— 59 

are fundamental processes driving carbon dioxide (CO₂) fluxes in terrestrial ecosystems 60 

(Lambers et al., 2008; Raich et al., 2014; Reichle, 2020). Accurate quantification of these processes 61 

is critical for assessing ecosystem carbon (C) sink potential (Baldocchi, 2020), particularly for 62 

informing climate-smart land management strategies. 63 

To capture these processes at the ecosystem scale, the Eddy Covariance (EC) technique has 64 

emerged as a transformative method, enabling continuous and high-frequency CO₂ flux 65 

measurements (Baldocchi, 2003, 2008). Extensive EC networks in Europe (Stojanović et al., 66 

2024), Asia (Yu et al., 2011), and the Americas (Chu et al., 2021) have significantly advanced our 67 

understanding of the global C cycle. In contrast, sub-Saharan Africa remains critically 68 

underrepresented (Bombelli et al., 2009; Houghton & Hackler, 2006; Williams et al., 2007). 69 

Although some studies have used EC (Ardö et al., 2008; Brümmer et al., 2008; Merbold et al., 2009; 70 

Tagesson et al., 2016), static chambers (Assouma et al., 2017; Owusu et al., 2024; Rosenstock et 71 

al., 2016; Wachiye et al., 2020), or modeling approaches (Agbohessou et al., 2023, 2024; Delon et 72 

al., 2019; Rahimi et al., 2021), they remain sparse and methodologically heterogeneous, limiting 73 

comparability and regional C budget integration.   74 

Among these underrepresented landscapes, agroforestry systems in the Sahel— particularly 75 

agro-silvo-pastoral systems (ASPS) that combine trees, crops, and livestock— are increasingly 76 

promoted for sustainable land management and climate resilience (Cardinael et al., 2021; Gupta 77 

et al., 2023; Mbow et al., 2014; Stetter & Sauer, 2024). However, the structural and functional 78 

heterogeneity of these systems poses significant challenges for accurately quantifying and 79 

upscaling C fluxes. Faidherbia albida, a keystone agroforestry tree species in these ASPS (Leroux 80 

et al., 2022; Lu et al., 2022), is of particular interest due to its reverse phenology, capacity to 81 

enhance soil fertility and crop yields (Bayala et al., 2020; Roupsard et al., 2020; Sileshi et al., 2016; 82 

2020). Yet, its functional role in modulating both the magnitude and seasonal dynamics of CO₂ 83 

fluxes remains poorly understood. 84 

Addressing this knowledge gap requires integrated approaches capable of capturing both 85 

aggregate and component-specific CO₂ fluxes. While EC remains the gold standard method for CO₂ 86 

flux measurements at the landscape scale (Baldocchi, 2003), it captures net ecosystem exchange 87 

(NEE) as an aggregate signal, without separating the contributions from individual compartments 88 

such as soil, crops, and trees. This limits its utility for disentangling processes and attributing 89 

sources in heterogeneous systems like ASPS. Automatic static chambers provide a valuable 90 

complement to EC, as they enable continuous, high-frequency measurements at finer scales and 91 

at the level of specific ecosystem components. This approach facilitates component-specific 92 

quantification of CO₂ fluxes, particularly from soil and crop compartments (Luo & Zhou, 2006; 93 
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Denmead, 2008; Zaman et al., 2021). When combined with EC, this dual-method approach 94 

strengthens source attribution and improves the upscaling of fluxes across complex agroforestry 95 

landscapes.  96 

This study presents one of the first integrated quantification of CO₂ fluxes in a Sahelian ASPS 97 

dominated by F. albida, combining EC and automatic static chambers.  98 

Specifically, we aim to (1) conduct year-round, high-frequency in situ CO₂ flux measurements 99 

from soil and crops using automated static chambers; (2) partition the net CO2 fluxes (FCO2ch) 100 

into respiration (Rch) and photosynthesis (GPPch); (3) investigate the environmental drivers of 101 

fluxes and the spatial variability linked to tree presence; and (4) compare chamber-based flux 102 

estimates with ecosystem-scale measurements derived from the EC method. 103 
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2. Materials and methods 104 

2.1. Site description  105 

The study was conducted in the agroforestry parkland of Sob village (Niakhar municipality, Fatick 106 

region), located in the groundnut basin of Senegal, within the Sahelo-Sudanian climatic zone of 107 

West Africa (Fig. 1). The climate is characterized by a long dry season (8–9 months) with high 108 

temperatures and strong diurnal variations, and a short rainy season from late June to mid-109 

October (Delaunay et al., 2018).  110 

Soils are locally known as “Dior” and classified as Arenosols (IUSS Working Group WRB, 2022). 111 

The topsoil has low organic matter (<1%) and phosphorus (<3 mg kg⁻¹), a sandy texture (>85% 112 

sand), and an acidic pH (Malou et al., 2021; Siegwart et al., 2022). Rainfed agriculture 113 

predominates. The main cropping system includes pearl millet (Pennisetum glaucum L.) and 114 

groundnut (Arachis hypogaea L.) in biennial rotation, with occasional intercropping of cowpea 115 

(Vigna unguiculata L.). 116 

The site hosts the 'Faidherbia Flux' station (14°29′44.916″N; 16°27′12.851″W; FLUXNET ID: SN-117 

Nkr), a long-term research platform for monitoring ecosystem services in agroforestry systems. 118 

It is dominated by F. albida, a nitrogen-fixing, reverse-phenology tree with deep roots accessing 119 

groundwater (Roupsard et al., 1999). The tree density is ~13 trees ha⁻¹, with canopies covering 120 

~10% of the soil surface (Roupsard et al., 2020). The EC tower is installed at 20 m height, 121 

approximately 12.5 m above the canopy. The study field is a typical 'bush field', characterized by 122 

low soil fertility, no mineral fertilization, and off-site export of crop residues and manure (Malou 123 

et al., 2021). 124 
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Fig. 1: Study area. 125 

(a) geographical location of Sob, Groundnut basin, Senegal (Map data © Google Earth, 2025), (b) overview 126 
(image from the Eddy Covariance tower located in the same bush-field) of the Faidherbia albida parkland 127 
during the rainy season, depicting groundnut crops with bare soil in the inter-row, F. albida  trees 128 
(defoliated during the rainy season, average height = 13m)  and location of the chambers under the Shade 129 
of trees (horizontal  black arrows; N=4) and in Full sun (vertical white arrows; N=4); The shelter (red 130 
arrow) with solar panels is to fit the analyser, automation and batteries (c) automatic chamber enclosing a 131 
groundnut plant (during the rainy season) or bare soil (during the dry season), (d) Eddy Covariance (EC)  132 
tower (measurement height = 20 m) during the dry season.  133 
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2.2. Experimental setup 134 

2.2.1. CO2 flux measurements in automatic chambers 135 

Continuous net CO₂ fluxes (FCO₂ch) from soil and groundnut plants were measured over a full 136 

phenological year (June 17, 2021 – June 17, 2022) using eight automated static chambers 137 

(50×50×50 cm), each enclosing one groundnut plant. Four chambers were installed in full sun 138 

(FS), at least 20 m from trees, and four under F. albida canopy shade (Sh). The chambers were 139 

transparent, custom-built (Duthoit et al., 2020), and installed on metal bases embedded 10 cm 140 

into the soil one month prior to measurements. 141 

During the rainy season (June–November), groundnut coexisted briefly with spontaneous weeds 142 

until weeding (mid-July), after which chambers contained only groundnut. Post-harvest (early 143 

November), chambers remained bare while surrounding plots experienced weed regrowth.  144 

CO₂ concentrations were measured at 1 Hz using a Picarro G2508 gas analyser (Picarro Inc., Santa 145 

Clara, CA, USA) (Fleck et al., 2013; Reum et al., 2019; Valujeva et al., 2022). A fully automated 146 

system was built for sequential half-hour flux measurements (alternating FS and Sh). 147 

Measurement duration was 15 min per chamber in the dry season, reduced to 5 min during the 148 

rainy season to limit condensation effects. 149 

2.2.2. CO₂ flux measurements by Eddy Covariance   150 

The EC system (Li-COR SMARTFLUX®, including a Gill MasterPro 3D sonic anemometer and a LI-151 

7500 RS open path CO2 and H2O gas analyser) was mounted at a height of 20 m on a 30m mast, 152 

above F. albida. It continuously monitored net CO₂ exchange from the ecosystem. Raw data were 153 

collected at 20 Hz frequency and post-processed from binary files using the advanced mode of the 154 

EddyPro® v7.0, with standard corrections and procedures: sonic tilt correction (double rotation), 155 

block averaging, covariance maximisation for time lag, and WPL correction (Webb et al., 1980). 156 

Quality control followed Foken et al. (2004) and Vickers & Mahrt (1997); random uncertainty was 157 

estimated per Finkelstein & Sims (2001). Spectral corrections were applied according to 158 

Moncrieff et al. (1997, 2004). Footprints were computed according to Kormann and Meixner 159 

(2001), using the FREddyPro R package (Xenakis, 2016), indicated a ~1 ha source area covering 160 

the entire field. Gap-filling and flux partitioning were conducted using ReddyProc (Wutzler et al., 161 

2018), applying the daytime partitioning approach of Lasslop et al. (2010). 162 

2.2.3. Ancillary measurements 163 

Environmental and vegetation variables were monitored continuously throughout the study. 164 

Global radiation (Rg) was estimated from photosynthetically active radiation (PAR) using a Skye 165 

sensor (averaged over 30-min intervals). NDVI of crops under full sun was recorded semi-hourly 166 
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by a calibrated downward-facing sensor installed at 20 m height (Pontailler et al., 2003), 167 

processed following Soudani et al. (2012), and used to estimate LAI time series for groundnut, 168 

weeds, and cowpea based on end-of-season field LAI measurements in six 15 m² plots (as in 169 

Roupsard et al., 2020). 170 

Rainfall was recorded by an automatic weather station (CR1000 with TE525MM rain gauge, 171 

Campbell Scientific), and soil volumetric water content (VWC) and temperature (Tsoil, at 6 cm 172 

depth) were monitored using TOMST® TMS-4 sensors, benchmarked prior to field deployment 173 

inside and outside the chambers (Wild et al., 2019). Air temperature (Tair) was recorded inside 174 

each chamber at 15 cm above ground, all at 5-min intervals. These measurements contribute to 175 

the SoilTemp global database (Lembrechts et al., 2020, 2022). 176 

Groundnut development was tracked weekly by counting leaves in each chamber. Total 177 

groundnut LAI (LAIch) was then derived from average single-leaf area and chamber surface.  178 

A detailed description of the data used in this study is provided in Supplement S1 (Table S1.1).  179 

2.3. Data processing 180 

2.3.1. Flux calculation 181 

Net CO2 fluxes (FCO2ch, in µmol CO₂ m⁻² s⁻¹) from the chambers were calculated from the linear 182 

change in CO2 concentration over time (ΔC/Δt) using the Eq.1. 183 

𝐅𝐂𝐎𝟐𝐜𝐡 =  (
𝐏

𝐑𝐓𝐤
) (

𝐕

𝐀
) (

𝚫𝐂

𝚫𝐭
)  (Eq. 1) 184 

where P is atmospheric pressure (101 325 N m-2), R is the ideal gas constant (8.31 N m mol⁻¹ K⁻¹), 185 

Tₖ is air temperature inside the chamber in Kelvin, V (0.125 m³) is the total system volume 186 

(chamber, tubing, analyser cavity, pump, and water trap), and A (0.25 m²) is the chamber 187 

footprint. The slope ∆C/∆t was obtained via linear regression (Duthoit et al., 2020). 188 

Mean FCO₂ch values were computed separately for the four replicate chambers in full sun (FS) 189 

and under F. albida shade (Sh). By convention, negative values indicate net CO₂ uptake 190 

(photosynthesis), and positive values indicate net CO₂ release (respiration). 191 

2.3.2. Quality control of chamber-based CO2 flux measurements 192 

The quality of chamber-based CO₂ flux measurements was assessed using the coefficient of 193 

determination (R² ≥ 0.8) of the linear increase in CO₂ concentration during chamber closure. The 194 

minimum detectable flux (MDF) was then calculated following Nickerson (2016) (Eq.2). The MDF 195 

defines the flux detection threshold, below which data are considered unreliable due to 196 

instrument sensitivity and sampling constraints (Zaman et al., 2021). In this study, the MDF was 197 

±0.0004 µmol CO₂ m⁻² s⁻¹. 198 

 199 
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𝐌𝐃𝐅 =  (
𝐀𝐚

𝐭𝐜(√𝐭𝐜/𝐩𝐬)
) (

𝐕𝐏

𝐀𝐑𝐓
)    (Eq. 2)  200 

where Aₐ is the analytical precision of the Picarro analyser (0.6 ppm; Picarro Inc., 2015), tc the 201 

closure time (s), pₛ the sampling frequency (1 Hz), V the chamber volume, P the atmospheric 202 

pressure (101 325 N m-2), A the chamber footprint, R the gas constant (8.3 N m mol⁻¹·K⁻¹), and T 203 

the air temperature in Kelvin. 204 

Following this quality control, fluxes were partitioned (Section 2.3.3) and gap-filled (Section 205 

2.3.4). 206 

2.3.3. Partitioning of chamber-based CO2 fluxes  207 

The net CO2 fluxes (FCO₂ch), averaged from four chambers per environment (FS and Sh), were 208 

partitioned into two components according to Eq. 3 (Reichstein et al., 2005). 209 

𝐅𝐂𝐎𝟐𝐜𝐡 =  𝐑𝐜𝐡 + 𝐆𝐏𝐏𝐜𝐡        (Eq. 3) 210 

Rch includes heterotrophic respiration (Rh) from soil and other autotrophic respiration (Ra) from 211 

groundnut plants and roots of F. albida (Ra Groundnut + Ra tree below-ground). Rch is always 212 

positive (Rch > 0). GPPch (Gross Primary Productivity) represents the photosynthetic CO₂ uptake 213 

by the groundnut plants and is negative during the day (GPPch < 0), and zero at night, when 214 

FCO₂ch = Rch. 215 

Half-hourly FCO₂ch fluxes were partitioned as follows: (1) an Arrhenius-type function (Lloyd & 216 

Taylor, 1994) was fitted between nocturnal Rch and Tsoil during nighttime periods, for each 5-days 217 

throughout the time series (Eq. 4). This empirical formulation is based on several key 218 

assumptions. First, the relationship between nocturnal respiration and soil temperature is 219 

assumed to follow an exponential response, reflecting the temperature sensitivity of respiration 220 

processes. Second, the model assumes temporal stability of the respiration–temperature 221 

relationship between night and day, allowing diurnal respiration to be extrapolated from fitted 222 

parameters in Eq.4 and daytime Tsoil. Third, we assumed that no abrupt changes in substrate 223 

availability or soil moisture occur between day and night — conditions that could otherwise 224 

disrupt the temperature–respiration relationship. Third, it is assumed that no abrupt changes in 225 

substrate availability or soil moisture occur between night and day — conditions that could 226 

otherwise decouple respiration rates from temperature. These assumptions are widely applied in 227 

CO₂ flux partitioning approaches (Reichstein et al., 2005; Lasslop et al., 2010). (2) Diurnal Rch 228 

was estimated by applying the Lloyd & Taylor function, previously calibrated on nocturnal data, 229 

to the corresponding daytime Tsoil measurements for each 5-day interval. (3) GPPch was 230 

subsequently derived as the residual component of the net CO₂ flux during the day, according to: 231 

 232 

 233 
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𝐧𝐨𝐜𝐭𝐮𝐫𝐧𝐚𝐥 𝐑𝐜𝐡 = 𝐑𝐫𝐞𝐟 . 𝐞𝐱𝐩 [𝐄𝟎  (
𝟏

𝐓𝐫𝐞𝐟−𝐓𝟎
−  

𝟏

𝐓𝐬𝐨𝐢𝐥−𝐓𝟎
)]       (Eq. 4) 234 

where Rref (µmol CO₂ m⁻² s⁻¹) is a fitted parameter representing the base respiration at the 235 

reference temperature [Tref (K), (set at 288.15 K)]. E₀ (K) is the temperature sensitivity (set at 236 

250 K), Tsoil (K) the soil temperature (K), and T₀ (K) is kept constant at 231.13 K, according to 237 

Lloyd & Taylor (1994). 238 

𝐆𝐏𝐏𝐜𝐡 =  𝐝𝐢𝐮𝐫𝐧𝐚𝐥 𝐅𝐂𝐎𝟐𝐜𝐡 − 𝐝𝐢𝐮𝐫𝐧𝐚𝐥 𝐑𝐜𝐡           (Eq. 5)  239 

where diurnal FCO₂ch and diurnal Rch represent the daytime net CO₂ fluxes and respiration in 240 

µmol CO₂ m⁻² s⁻¹, respectively. 241 

2.3.4. Gap-filling procedure 242 

Missing Rch data were gap-filled using the model derived from Eq. 4 (Lloyd & Taylor, 1994). Prior 243 

to gap-filling GPPch, raw data were standardised by LAI to reduce variability between chambers 244 

due to differences in leaf surface area (Eq. 6). A light-response model was then fitted to the 245 

standardised GPPch data, every 5-day period, to gap-fill missing values. The model is based on a 246 

rectangular hyperbolic function that describes the relationship between photosynthetic CO₂ 247 

uptake and incoming global radiation (Rg) (Eq. 7). It corresponds to a Michaelis–Menten-type 248 

light-response curve, commonly used in ecosystem carbon exchange studies (Falge et al., 2001; 249 

Lasslop et al., 2010). 250 

𝐆𝐏𝐏𝐜𝐡. 𝐬𝐭𝐚𝐧𝐝 =  
𝐆𝐏𝐏𝐜𝐡

𝐋𝐀𝐈𝐜𝐡
∗  𝐋𝐀𝐈. 𝐟𝐢𝐞𝐥𝐝   (Eq. 6) 251 

where GPPch.stand (µmol CO₂ m⁻² s⁻¹) is the standardised GPPch. LAIch and LAI.field (m² leaves 252 

m⁻² soil) represent the groundnut LAI inside the chambers and the groundnut + weeds +cowpea 253 

LAI for the whole field, respectively.   254 

𝐆𝐏𝐏 =   
𝛂𝛃𝐑𝐠

𝛂𝐑𝐠+ 𝛃
              (Eq. 7) 255 

where α (µmol CO₂ J⁻¹) represents the light use efficiency of the groundnut plants inside the 256 

chambers, and refers to the initial slope of the light-response curve, β (µmol CO₂ m⁻² s⁻¹) is the 257 

maximum CO₂ uptake rate by the groundnut plants at light saturation, and Rg the global radiation 258 

(W m⁻²). 259 

2.3.5. Comparing chamber-based (Ch) and Eddy Covariance (EC) methods 260 

Chamber measurements were upscaled to field-level CO₂ fluxes and compared with EC-derived 261 

fluxes. Before comparison, a correction was applied (Eq. 6) to account for differences in LAI 262 

between chambers (LAIch) and the field (LAI.field), due to the presence of cowpea and weeds in 263 

the field but not in the weeded chambers.  264 

Upscaling considered tree cover, with FS and Sh chamber fluxes weighted at 90% and 10%, 265 

respectively. Rch.stand and GPPch.stand, representing chamber-based respiration and 266 
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photosynthesis at field scale. These fluxes were compared, on a half-hourly basis, to EC-derived 267 

Reco.EC and GPP.EC (S3, Table S3.1). The November–December transition period was excluded 268 

due to weed-driven uncertainties after groundnut harvest. 269 

During the rainy season (F. albida leafless), GPP.EC represented ground vegetation (groundnut, 270 

cowpea, weeds), while Reco.EC included autotrophic respiration from all vegetation (including 271 

trees), and heterotrophic respiration (Reco.EC = Ra tree below-ground + Ra tree above-ground 272 

+ Ra groundnut + Ra cowpea + Ra weeds + Rh). Rch.stand could not be fully upscaled to the field 273 

due to uncertainty in its partitioning between Ra and Rh. Rch.stand accounted only for Ra tree 274 

below-ground, Ra groundnut, and Rh. 275 

In the dry season (leafy trees, bare soil), GPP.EC reflected tree photosynthesis only (GPP tree), 276 

while GPPch.stand was nil. Reco.EC included Ra tree (above- and below-ground) and Rh. 277 

Rch.stand, measured on bare soil represented only Ra tree below-ground + Rh. 278 

2.3.6. Contribution of trees to full ecosystem respiration and photosynthesis  279 

During the dry season, when the trees (F. albida) maintained their foliage, a comparison between 280 

chamber and EC measurements allowed for the estimation of the contribution of the above-281 

ground tree compartments to total ecosystem respiration (S3, Table S3.1). Based on this estimate, 282 

total tree respiration (Ra tree) was then calculated under the assumption that the tree root 283 

systems (Ra tree below-ground) represent ⅓ of the above-ground biomass (Jackson et al. 1996).  284 

Given the GPP measured during the dry season was equivalent to GPP of trees (GPP trees) from 285 

EC measurements, the carbon use efficiency of the trees (CUE tree) was then calculated (S3, Table 286 

S3.1). The resulting CUE value was assessed to determine whether it approximated the typical 287 

value of 0.5, which is often used as a default in ecosystem models (Zhou et al., 2019; 2020). 288 

2.3.7. Net annual C budget at the ASPS scale 289 

The annual C budget of CO2 fluxes was estimated for chambers and EC measurements in Mg C-CO₂ 290 

ha⁻¹.  The chambers CO2 fluxes budgets were obtained by calculating the annual sum of the net 291 

CO₂ flux measurements and then weighting with the tree cover rate (10% for the Sh, 90% for the 292 

FS). These annual budgets for the field are considered apparent, as they do not account for the 293 

biomass exported from the field after the harvest, the decomposition of which therefore escaped 294 

both the chambers and the EC. Additionally, the inputs and the outputs of fecal matter resulting 295 

from livestock wandering during the dry season were not quantified and are therefore neglected. 296 

The objective here is to compare two approaches at different scales using apparent net C budgets, 297 

rather than to provide an absolute C budget. 298 
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2.4. Statistical analyses 299 

Statistical analyses were performed using the R software (R. Core Team, 2023). To compare the 300 

mean values of climatic parameters between the FS and Sh situations, a non-parametric Mann-301 

Whitney test was used when both the normality (shapiro.test) and the homogeneity of the 302 

variance (Levene Test, R package ‘Car’; Fox et al., 2023) were not confirmed. This approach was 303 

similarly applied to compare the seasonal dynamics of CO2 fluxes between FS and Sh, as well as 304 

between the chamber-based and Eddy Covariance (EC) methods. Means and standard deviations 305 

were computed using the ‘skim’ function from the R package ‘skimr’ (Waring et al., 2022). 306 

Respiration (Rch) (Eq. 4) and GPP (GPPch) models (Eq. 7) were fitted using non-linear least 307 

squares regression, implemented in the library in R ‘nls.multstart’ (Padfield et al., 2025). For the 308 

GPPch model, parameters α and β with non-significant p-values were removed, and then the 309 

remaining values were interpolated and smoothed using a ‘spline’ function from the ‘zoo’ library 310 

in R (Zeileis et al., 2024). Ordinary least-square linear regressions were fitted between the 311 

measured and the modeled values derived from. Model performance of Eq. 4 and Eq. 7 was 312 

evaluated by fitting ordinary least-square linear regressions between the measured and the 313 

modeled values using R², root mean square error (RMSE), and the bias metrics. Given that the 314 

primary objective of these equations was to accurately reproduce the seasonal dynamics of the 315 

CO₂ fluxes to fill gaps in data, particular emphasis was placed on R², with a higher value reflecting 316 

a better fit of the model to the measurements. 317 

Correlation analysis was conducted between chamber CO₂ fluxes (FCO₂ch, Rch, GPPch) and soil 318 

temperature (Tsoil, °C), air temperature (Tair, °C), VWC, the leaf area index of groundnut plants in 319 

the chambers (LAIch), and the fitted parameters for respiration — Rref — and photosynthesis — 320 

α and β. This analysis was performed using the ‘cor.test’ function from the ‘stats’ package in R 321 

(Lüdecke et al., 2021), applying the Spearman method.  322 

The threshold of the daily mean soil temperature (Tsoil, °C) at which the cumulative daily 323 

respiration (Rch, g C-CO₂ m⁻² d⁻¹) began to decline was determined using segmented regression 324 

from the R package ‘segmented’ (Muggeo, 2003). The associated uncertainty (standard error) of 325 

this estimate was evaluated through a bootstrap procedure. 326 
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3. Results 327 

3.1. Microclimatic conditions 328 

During the experiment, the cumulative rainfall was 550 mm, which was representative of the 329 

interannual average. Precipitations were lowest in July and highest between August and 330 

September, a period that typically corresponds to the peak of the rainy season (Fig. 2a). Global 331 

radiation ranged between 5.8 and 32.4 MJ m⁻² d⁻¹ (data not shown). The daily mean VWC in the 332 

chambers showed significant variation, ranging from 1% at the end of the dry season to a 333 

maximum of 30% during the rainy season (Fig. 2a). While VWC was similar during the rainy 334 

season, it remained consistently higher in FS than in Sh throughout the dry season (p < 0.05), 335 

which was unexpected. However, it should be noted that the last rain of October 2021 recharged 336 

the FS chambers more effectively, likely due to foliage rainfall interception by F. albida which had 337 

just put on leaves at that time, potentially explaining this discrepancy in VWC.  338 

Within the chamber, the daily mean Tsoil ranged from 26°C in April to 37.5°C at the end of the dry 339 

season (Fig. 2b), while Tair varied between 23.7°C and 35.5°C (Fig. 2c). However, during 340 

instantaneous daily peaks, Tsoil could exceed 45°C in May (data not shown). As expected, both daily 341 

mean Tsoil and Tair were significantly higher in FS compared to Sh situations (p < 0.05), with Tsoil 342 

and Tair averaging respectively 1°C and 0.5°C lower under the tree canopy.  343 
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Fig. 2: One-year time series of daily average microclimatic parameters measured inside chambers. 344 

(a)  volumetric soil water content (VWC) at a depth of 6 cm (%).  (b) soil temperature (Tsoil) at a depth of 6 345 
cm (°C), (C) air temperature (Tair) at a height of 15 cm (°C). The blue line depicts the daily rainfall (mm d-1) 346 
throughout the year. FS: Full sun chambers; Sh: Shaded chambers. Mean and SD represent respectively the 347 
mean value and the standard deviation. The p-value indicates the probability associated with the statistical 348 
test, assessing the differences in means between FS and Sh with the significance level α set to 0.05.  349 
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3.2. Modeling the chamber-based total respiration (Rch) and photosynthesis (GPPch)  350 

3.2.1. Dynamics of references respiration, light use efficiency, and maximum CO₂ uptake rate at 351 

light saturation (Rref. α., and β) 352 

The reference respiration (Rref) showed comparable seasonal dynamics both at a distance from 353 

the trees (FS) and under the tree canopies (Sh) (S2, Fig. S2.2). In both situations, Rref showed 354 

strong variability during the rainy season, peaking in September 2021 at 2.4 µmol CO₂ m⁻² s⁻¹ for 355 

FS and 2.9 µmol CO₂ m⁻² s⁻¹ for Sh (S2, Table S2.1). In contrast, during the dry season — from 356 

November 3, 2021 (after harvest) until the onset of the following rainy season (June 2022) — Rref 357 

values dropped both for FS and Sh, averaging 0.3 ± 0.5 µmol CO₂ m⁻² s⁻¹ for FS and 0.5 ± 0.6 µmol 358 

CO₂ m⁻² s⁻¹ for Sh. This represents a reduction by a factor of 8 for FS and 6 for Sh compared to the 359 

rainy season. The mean annual Rref values were significantly higher under Sh than in FS, with value 360 

approximately 1.5 times greater (S2, Table S2.1). 361 

Regarding GPP in chambers, the light use efficiency (α) and the maximum CO₂ uptake by 362 

groundnut plants in the chambers (β), also reached their maximum during the peak of the rainy 363 

season (S2, Fig. S2.3, a and b). The maximum value of α reached 0.2 µmol CO₂ J⁻¹ in FS and 0.3 364 

µmol CO₂ J⁻¹ in Sh (S2, Table S2.1). Similarly, the maximum values of optimum CO₂ uptake rate at 365 

light saturation (β) were 40.2 µmol CO₂ m⁻² s⁻¹ for FS and 42.8 µmol CO₂ m⁻² s⁻¹ for Sh (S2, Table 366 

S2.1). In the dry season, when photosynthetic activity ceased in the chambers, both α and β were 367 

assumed to be nil (S2, Fig. S2.3, a and b). On average, α and β were significantly higher in Sh than 368 

in FS, by a factor of 1.7 and 1.2, respectively (S2, Table S2.1). We noted that the decline in 369 

photosynthetic activity of the groundnut crop occurred earlier and rapidly at a distance from the 370 

trees (FS), as reflected by the sharply observed recession of α and β in FS. 371 

3.2.2. Dynamics of nocturnal respiration in chambers 372 

The averaged nocturnal respiration (nocturnal Rch) calculated from the measurements across 373 

each treatment (FS and Sh), showed similar seasonal patterns (Fig. 3, a and c). Following the first 374 

rains, Rch values increased dramatically, with a nocturnal 'Birch effect' — a sudden pulse of CO₂ 375 

release following soil rewetting — observed to be more pronounced under Sh compared to FS, 376 

approximately by a factor of 2. At the peak of the rainy season (September), the maximum 377 

nocturnal Rch values reached approximately 6.0 μmol CO₂ m⁻² s⁻¹ in FS and 9.0 μmol CO₂ m⁻² s⁻¹ 378 

in Sh (Fig. 3, a and c). Thereafter, nocturnal Rch declined well before the groundnut harvest along 379 

with the rainfall spacing and the groundnut crop senescence (data not shown). During the dry 380 

season nocturnal Rch continued to decrease, with maximum values around 1.0 μmol CO₂ m⁻² s⁻¹ 381 

in FS and 2.0 μmol CO₂ m⁻² s⁻¹ in Sh (Fig. 3, a and c). 382 
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The modeled nocturnal Rch values closely matched the measured nocturnal Rch values (mean 383 

across four chambers per treatment), as indicated by the model performance metrics (R² = 0.9, 384 

with bias and RMSE values of 0.3 and 0.5 μmol CO₂ m⁻² s⁻¹, respectively, for FS; R² = 0.7, with bias 385 

and RMSE values of 0.4 and 0.6 μmol CO₂ m⁻² s⁻¹, respectively, for Sh) (Fig. 3, b and d). Similarly, 386 

the daily mean modeled values also fitted well with the measured values, with FS showing 0.9 ± 387 

0.9 μmol CO₂ m⁻² s⁻¹ (modeled) and 1.2 ± 1.2 μmol CO₂ m⁻² s⁻¹ (measured), while Sh recorded 388 

1.4 ± 0.9 μmol CO₂ m⁻² s⁻¹ (modeled) and 1.5 ± 1.2 μmol CO₂ m⁻² s⁻¹ (measured). Given the close 389 

match between the measured and modeled values, the fitted model parameters were used 390 

subsequently to fill data gaps and estimate diurnal Rch values, as presented in Fig. 4, a and c.391 
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Fig. 3: Dynamics of instantaneous nocturnal CO2 fluxes in chambers in Full sun (FS; a and b) and 392 

Shaded (Sh; c and d) environments (data filtered based on R² of the CO2 variation over the time 393 

of chamber closure and Minimum Detectable Flux, Eq.2).  394 

(a) and (c): measured nocturnal respiration in chambers (Rch: black dots; average of measurements in 4 395 
chambers per location) vs. modeled (coloured line). The vertical black line indicates the harvest date of 396 
groundnuts inside the chambers. The red arrows indicate the ‘Birch’ effect and the blue line represents the 397 
rainfall (mm 30mn-1). Roman numerals (above the black arrows) refer to vegetation conditions prevailing 398 
inside the chambers, i.e. (I) bare soil, (II) weeds, (III) weeds + groundnuts, and (IV) groundnuts only.  399 
(b) and (d): scatter plot between measured and modeled nocturnal Rch. The solid blue line indicates the 400 
regression line and the dashed black one the (1:1) line RMSE and bias are expressed as fluxes (in µmol CO2 401 
m-2 s-1). Each point represents the mean value from 4 chambers within the FS or Sh environments.       402 
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3.2.3. Dynamics of daytime fluxes in chambers 403 

The measured GPPch.stand, as well as GPP modeled with Eq. 6, showed similar seasonal dynamics 404 

inFS and Sh (Fig. 4, a and c). The fluxes peaked during the rainy season (Fig. 4a and c), coinciding 405 

with periods of vigorous vegetative growth characterised by a high leaf area index (LAIch) of 406 

groundnut plants within the chambers (S2, Fig. S2.1). The maximum calculated and standardised 407 

GPPch values reached -50 μmol CO₂ m⁻² s⁻¹ for FS and -37 μmol CO₂ m⁻² s⁻¹ for Sh. As expected, 408 

these fluxes were nil during the dry season when the soil was bare (Fig. 4, a and c). 409 

The modeled GPPch values closely followed the same trends as the calculated values, although 410 

model performance was slightly better for FS (R² = 0.7 with bias and RMSE values of 4.2 and 6.1 411 

μmol CO₂ m⁻² s⁻¹, respectively) compared to Sh (R² = 0.6 with bias and RMSE values of 6.1 and 412 

5.6 μmol CO₂ m⁻² s⁻¹, respectively) (Fig. 4, b and d). 413 

The calculated diurnal respiration values (diurnal Rch calculated) for FS and Sh revealed a ‘Birch 414 

effect’ similar to that observed during the night, though slightly more pronounced under Sh by a 415 

factor of 1.2. Diurnal Rch values increased significantly during the rainy season, reaching a 416 

maximum of 6.0 μmol CO₂ m⁻² s⁻¹ for both FS and Sh (Fig. 4, a and c). In the dry season, on bare 417 

soil, these values declined, with maximum respiration reaching only 0.5 μmol CO₂ m⁻² s⁻¹ for both 418 

situations (FS and Sh) (Fig. 4, a and c).  419 
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Fig. 4: Dynamics of instantaneous diurnal CO2 fluxes in chambers in Full sun (FS; a and b) and 420 

Shaded (Sh; b and d) environments (filtered based on R² of the CO2 variation over the time closure 421 

in FS and Sh and Minimum Detectable Flux, Eq.2). 422 

(a) and (c): non-gap-filled diurnal Rch calculated (black line, positive values; average of measurements in 423 
4 chambers per location) and GPPch calculated from Eq.5 then standardised for LAI (black dots, negative 424 
values) and modeled (coloured line, negative values). The vertical black line indicates the harvest date of 425 
groundnuts inside the chambers and the blue line represents the rainfall (mm 30mn-1). Roman numerals 426 
(above the black arrows) refer to conditions prevailing inside the chambers, i.e., (I) bare soil, (II) weeds, 427 
(III) weeds + groundnuts, and (IV) groundnuts.     428 
(b) and (d): scatter plot between calculated and modeled GPPch. The solid blue line indicates the regression 429 
line and the dashed black one the (1:1) line. RMSE and bias are expressed as fluxes (in µmol CO2 m-2 s-1).  430 
Each point represents the mean value from 4 chambers within the FS or Sh environments.   431 

https://doi.org/10.5194/egusphere-2025-2660
Preprint. Discussion started: 16 July 2025
c© Author(s) 2025. CC BY 4.0 License.



21 
 

3.3. Dynamics of daily cumulative CO₂ fluxes in chambers 432 

The seasonality of daily cumulative of GPPch.stand showed similar dynamics between FS and Sh, 433 

with higher variability during the rainy season than during the dry season (Fig. 5). Daily total Rch 434 

peaked during the rainy season at 5.1 g C-CO₂ m⁻² d⁻¹ for FS and 5.4 g C-CO₂ m⁻² d⁻¹ for Sh, while 435 

the maximum GPPch.stand values were comparable at around -15.0 g C-CO₂ m⁻² d⁻¹ for both FS 436 

and Sh (Table 1; S2, Fig. S2.4, a, b, c, and d). In the dry season, Rch decreased (Fig. 5), averaging 437 

0.5 g C-CO₂ m⁻² d⁻¹ for FS and 1.0 g C-CO₂ m⁻² d⁻¹ for Sh. GPPch declined well before harvest 438 

(senescence) and remained nil during the dry season (Fig. 5). During the rainy season FCO₂ch 439 

peaked at around 11.0 g C-CO₂ m⁻² d⁻¹ for FS and Sh (Fig. 5) (Table 1; S2, Fig. S2.4, e and f), while 440 

FCO2ch values were the same as Rch during the dry season. In absolute terms, the mean Rch and 441 

GPPch were significantly higher under Sh as compared to FS, by factors of 1.3 and 1.2, respectively. 442 

Conversely, the mean FCO₂ch was significantly higher under FS (0.4 g C-CO₂ m⁻² d⁻¹) than under 443 

Sh (0.2 g C-CO₂ m⁻² d⁻¹) (Table 1). 444 

The annual cumulative Rch values were 392.8 g C-CO₂ m⁻² for FS and 574.5 g C-CO₂ m⁻² for Sh. 445 

The GPPch fluxes reached -539.5 g C-CO₂ m⁻² for FS and -632.6 g C-CO₂ m⁻² for Sh. Annual net 446 

cumulative C exchange (FCO₂ch) were -146.7 g C-CO₂ m⁻² in FS and -58.1 g C-CO₂ m⁻² in Sh. 447 
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Fig. 5: Seasonal dynamics of daily gap-filled cumulative fluxes (in gC-CO2 m-2 d-1) in chambers. 448 

(a) soil+crop respiration (Rch), (b) photosynthesis (GPPch, standardised for LAI) and (c) net CO2 exchange 449 
(FCO2ch). The yellow and green solid lines compare the FS and Sh environments, respectively. The vertical 450 
black line indicates the harvest date of groundnuts inside the chambers. The blue line depicts the daily 451 
cumulative rainfall (mm d-1) throughout the rainy season, and the red arrow indicates the ‘Birch’ 452 
effect.  Roman numerals (above the black arrows) in (a) and (c) refer to the prevailing conditions inside the 453 
chambers: (I) bare soil, (II) weeds, (III) weeds + groundnuts, (IV) groundnuts.                                                                                                                                                                           454 
 455 
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Table 1: Comparison of daily cumulative and gap-filled chamber CO2 fluxes (Rch, GPPch 456 

standardised for LAI, and FCO2ch in g C-CO2  m-2) in the FS and Sh condition. 457 

 458 

  Annual sum Daily Mean ±SD Min Max Mann-Whitney test 

(g C-CO2 m-2) .yr-1 .d-1 .d-1 .d-1 

 

Rch 

FS 392.8 1.1 ± 0.9 0.4 5.1 
* 

Sh 574.5 1.6 ± 1.1 0.6 5.4 

GPPch  

FS -539.5 -4.1 ± 4.3 < -0.1 -14.9 
* 

Sh -632.6 -4.8 ± 4.6 < -0.1 -14.8 

FCO2ch  

FS -146.7 -0.4 ± 2.4 -11.0 1.8 

* 

Sh -58.1 -0.2 ± 2.7 -10.9 2.8 

Annual sum corresponds to the annual cumulative fluxes (g C-CO2 m-2 yr-1). Mean, SD, Min, and Max 459 
represent respectively the mean, standard deviation, minimum, and maximum values at the daily scale (g 460 
C-CO2 m-2 d-1). Asterisks (*) indicate the p-values from the Mann-Whitney test, used to assess differences in 461 
mean between FS and Sh (p < 0.05). Positive values indicate CO2 emissions, while negative values represent 462 
CO2 uptake.    463 
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3.4. Drivers of daily respiration and photosynthesis in chambers 464 

The chamber-based daily cumulative respiration (Rch) and GPPch showed significant and positive 465 

correlations with the leaf area index (LAIch), both at a distance from the trees (FS) and under the 466 

trees (Sh) (Table 2). The influence of LAIch on GPPch was stronger (r = 0.86 for FS and Sh) than 467 

its influence on Rch (r = 0.60 for FS; r = 0.69 for Sh). Soil VWC was also positively correlated with 468 

Rch and GPPch, both in FS and Sh. However, the influence of soil VWC on Rch was stronger under 469 

Sh compared to FS, while its influence on GPPch was similar in both situations (FS and Sh). Soil 470 

temperature showed weak negative correlations with Rch (in FS and Sh) and with GPPch (only in 471 

Sh). Finally, no significant correlations were found between Tair, and any of the CO2 fluxes (Table 472 

2).  473 
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Table 2: Spearman correlation matrix based on daily cumulative and gap-filled CO2 fluxes from full 474 

year chamber measurements (g C-CO2 m-² d-1) with microclimatic parameters. 475 

Parameters           Condition Rch GPPch 

Tsoil 

FS -0.25 *** ns 

Sh -0.28 *** -0.38 *** 

 
Tair 

 
 

FS 

 
ns 

 
ns 

Sh ns ns 

 
VWC 

 
FS 

 
0.51 *** 

 
0.75 *** 

Sh 0.78 *** 0.75*** 

 
LAIch 

 
 

FS 

 
0.60 *** 

 
0.86 *** 

Sh 0.69 *** 0.86 *** 

Spearman correlation coefficients between daily cumulative and gap-filled CO2 flux components (Rch and 476 
GPPch, with GPPch in absolute terms) and daily mean microclimatic parameters in full sun (FS) and shaded 477 
chambers (Sh). Tsoil (°C) is the daily mean soil temperature at 6 cm depth, Tair (°C) the daily mean air 478 
temperature at 15 cm height, VWC (%) the daily mean volumetric water content (VWC, %), and LAIch (m⁻² 479 
leaf m⁻² soil) the chamber leaf area index value for a given day. Significance levels are indicated by (***) for 480 
p < 0.001; ns denotes a non-significant correlation (p > 0.05)481 
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3.5. Comparison of respiration and GPP measurements between chambers (Ch) and Eddy 482 

Covariance (EC) methods 483 

The chamber-based daily total CO₂ fluxes, gap-filled and weighted according tree cover were 484 

compared with the fluxes obtained using the EC method (Fig. 6). 485 

During the rainy season, both total respiration and GPPshowed comparable dynamics between 486 

the two methods, with synchronised peaks and higher variability compared to the dry season (Fig. 487 

6). The maximum value of Reco.EC, peaked at 13.5 g C-CO₂ m⁻² d⁻¹ (Table 3). The initial value of 488 

Rch.stand was comparable to Reco.EC but peaked only at 5.1 g C-CO₂ m⁻² d⁻¹ (Table 3), meaning  489 

a third of the peak of Reco.EC. The maximum GPP, was -14.3 g C-CO₂ m⁻² d⁻¹ and -14.6 g C-CO₂ 490 

m⁻² d⁻¹ for GPP.EC and GPPch.stand, respectively (Table 3). This indicates that the LAI-based 491 

standardisation and upscaling approach were realistic, at least up to the peak of groundnut 492 

growth.  493 

On average, Reco.EC was significantly higher than Rch.stand, by a factor of 2.3. GPP.EC was also 494 

significantly higher than GPPch.stand, but only by a factor of 1.2 (Table 3). 495 

During the dry season, Reco.EC and Rch.stand gradually decreased. The values for Reco.EC 496 

remained higher than for Rch.stand, which was fairly consistent with the contribution of the Ra 497 

tree above-ground compartment, even if this difference seemed to disappear at the end of the dry 498 

season (Fig. 6). The measured ‘Birch effect’ was highest for Rch.stand in 2021, but was the 499 

opposite in 2022 due to a system failure at the beginning of the rainy season. The maximum value 500 

of GPP.EC reached -2.4 g C-CO₂ m⁻² d⁻¹ when the trees were at their maximum of foliage, after 501 

harvest and while weeds were still present in the field. However, after the harvest, chamber 502 

photosynthesis (GPPch.stand) was nil (Table 3).  503 
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Fig 6: Comparing the seasonal dynamics of CO2 fluxes between Eddy Covariance (EC) 504 

measurements and upscaled chamber measurements (ch.stand). 505 

(a) represent the seasonal dynamics of soil + crop respiration (Rch.stand) and ecosystem respiration 506 
(Reco.EC) and (b) photosynthesis (GPP.stand and GPP.EC). The black and dashed grey lines show Ch and 507 
EC seasonal dynamics, respectively. The vertical black line indicates the harvest date of groundnuts inside 508 
the chambers. The blue line depicts the daily cumulative rainfall (mm d-1), and the red arrow indicates the 509 
‘Birch’ effect.   Roman numerals (above the black arrows) refer to conditions prevailing inside the 510 
chambers: (I) bare soil, (II) weeds, (III) weeds + groundnuts, (IV) groundnuts.    511 
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3.6. The contribution of F. albida to Reco and GPP 516 

During the dry season, the cumulative contribution of F. albida to ecosystem respiration (Ra tree) 517 

was 139.6 g C-CO₂ m⁻². This represent 12% of the total annual cumulative Reco, which was 518 

estimated at 1180.0 g C-CO₂ m⁻². The contribution of trees (GPP tree) to total annual GPP was -519 

270.2 g C-CO₂ m⁻², equivalent to ~50% of the total annual cumulative GPP of the ecosystem (550 520 

g C-CO₂ m⁻²).  521 

The ratio between these two components (Ra tree / GPP tree) in absolute terms was 0.52, 522 

reflecting a carbon use efficiency (CUE) of 0.48 (S3, Table S3.1).  523 

3.7. Carbon budgets at the field-scale  524 

The upscaled chamber-based annual cumulative total respiration flux (Rch.stand) was estimated 525 

to be 4.1 ± 0.01 Mg C-CO₂ ha⁻¹ (Table 4). In comparison, the annual budget of Reco.EC was 10.0 526 

± 0.03 Mg C-CO₂ ha⁻¹ (Table 4), more than two times larger than Rch.stand.  527 

The upscaled GPPch.stand reached an annual cumulative value of -5.5 ± 0.03 Mg C-CO₂ ha⁻¹, 528 

whereas the annual cumulative GPP.EC was -11.8 ± 0.03 Mg C-CO₂ ha⁻¹ (Table 4).  529 

The annual net C budget, based on both methods, was estimated at -1.4 ± 0.02 Mg C-CO₂ ha⁻¹ for 530 

chambers (FCO₂ch.stand) and -1.8 ± 0.01 Mg C-CO₂ ha⁻¹ for Eddy Covariance (NEE.EC) (Table 4). 531 
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Table 4:  Annual budget of CO2 fluxes based on Eddy Covariance (EC) and upscaled chamber 532 

methods (Ch.stand). 533 

 
Annual sum Std error 

  (Mg C-CO2 ha-1) (Mg C-CO2 ha-1) 

Reco.EC or Rch.stand  
  

EC 10.0 0.03 

Ch.stand 4.1 0.01 

 
GPP.EC or GPPch.stand     

EC -11.8 0.03 

Ch.stand -5.5 0.03 

NEE.EC or FCO2ch.stand    

EC -1.8 0.01 

Ch.stand -1.4 0.02 

Annual sum corresponds to the annual cumulative fluxes for full year measurements (Mg C-CO2 ha⁻¹). EC 534 
refers to fluxes measured by the Eddy Covariance method, and Ch refers to the fluxes measured by 535 
chambers, which are then upscaled to the whole field. Rch.stand represents the chamber respiration, while 536 
Reco.EC denotes the ecosystem respiration according to the EC method. GPP.EC and GPPch.stand are the 537 
gross primary production or photosynthesis flux, measured by EC and Ch methods, respectively. NEE.EC 538 
and FCO2ch.stand represent the net ecosystem exchange for EC and Ch, respectively. The associated 539 
standard error is denoted as Std error (Mg C-CO2 ha⁻¹). Positive values indicate CO2 emissions, while 540 
negative values represent CO2 uptake. 541 
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4. Discussion 542 

4.1. Seasonality and drivers of chamber-based CO₂ fluxes 543 

In our agroforestry context, seasonal variability in CO₂ fluxes closely followed rainfall dynamics, 544 

peaking during the wet season and declining sharply in the dry season, consistent with soil 545 

moisture depletion and crop senescence. This pattern is typical of semi-arid ecosystems (Ago et 546 

al., 2016a; Brümmer et al., 2008; Guillen-Cruz et al., 2023; Macharia et al., 2020; Mosongo et al., 547 

2022; Wieckowski et al., 2024). 548 

Respiration and photosynthesis were primarily driven by soil moisture and LAI, reflecting the 549 

system’s sensitivity to water availability and crop dynamics. Soil moisture enhanced both 550 

processes by stimulating microbial activity and supporting plant growth (Borken et al., 2002; 551 

Conant et al., 2004; Merbold et al., 2009; Yu et al., 2020; Zhao et al., 2016). The stronger correlation 552 

between soil moisture and respiration under F. albida canopy (Sh: r = 0.78) compared to full sun 553 

(FS: r = 0.51) suggests greater microbial sensitivity to moisture beneath trees. This likely reflects 554 

enhanced substrate availability, resulting in stronger post-rainfall respiration pulses (Meisner et 555 

al., 2015) and supporting the 'fertile island' effect, where trees improve local soil conditions 556 

(Eldridge et al., 2024). Photosynthetic capacity also responded to soil moisture, as shown by 557 

positive correlations with LAI and key physiological traits such as light use efficiency (α) and 558 

maximum CO₂ uptake rate (β) (Gonsamo et al., 2019; Qiu et al., 2023; Zhang et al., 2024).  559 

In contrast, the influence of soil temperature (Tsoil) on respiration was weakly negative in both FS 560 

and Sh, indicating a thermal threshold beyond which respiration is suppressed—estimated at 32 561 

± 1.5 °C in FS and 29.5 ± 1.9 °C in Sh (S2, Fig. S2.6, a and b), similar to findings in Eastern Ghana 562 

(Owusu et al., 2024). This inhibition likely results from decreased enzymatic and microbial 563 

activity under combined heat and water stress (Liu et al., 2018; Richardson et al., 2012). In semi-564 

arid regions, soil respiration often becomes decoupled from temperature due to seasonal 565 

moisture constraints (Jia et al., 2020; Tucker & Reed, 2016; Warren, 2014), with microbial activity 566 

limited during dry periods despite favourable temperatures. This decoupling helps explain the 567 

weak or absent correlation between Tsoil and soil moisture (S2, Fig. S2.5, b), particularly under Sh 568 

(r = –0.28). Management practices such as organic inputs can also modulate these dynamics, 569 

adding further variability to soil respiration responses (Meena et al., 2020; Oyonarte et al., 2012; 570 

Rong et al., 2015; Xue & Tang, 2018). 571 

4.2. Magnitude of chamber-based total CO2 respiration fluxes  572 

Mean total soil respiration values were consistent with those reported in other low-input 573 

agricultural systems across sub-Saharan Africa (Mapanda et al., 2010; Pelster et al., 2017; 574 

Rosenstock et al., 2016). In full sun (FS), the mean respiration (1.0 ± 0.9 g C-CO₂ m⁻² d⁻¹) closely 575 
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matched values measured by Wachiye et al. (2020) in a semi-arid Kenyan field at 1158 m altitude 576 

(1.1 ± 0.1 g C-CO₂ m⁻² d⁻¹). This similarity likely reflects comparable environmental conditions, 577 

including moderate rainfall (~550 mm yr⁻¹) and low soil organic carbon and nitrogen contents 578 

(<1%) in the 0–20 cm layer of sandy soil. In contrast, respiration under F. albida canopy (Sh: 1.6 579 

± 1.1 g C-CO₂ m⁻² d⁻¹) was higher, likely due to additional autotrophic respiration from tree roots 580 

and greater organic inputs beneath the canopy. Nonetheless, this flux remains close to values 581 

observed in low-input sorghum fields on sandy loam soils in eastern Ghana (1.7 ± 1.1 g C-CO₂ m⁻² 582 

d⁻¹), despite higher rainfall (950–1000 mm yr⁻¹) in that region (Owusu et al., 2024). 583 

Cumulative annual respiration fluxes fell within the range reported for Sahelian croplands (250–584 

450 g C-CO₂ m⁻²) (Brümmer et al., 2009) and other sub-Saharan African agricultural systems (Kim 585 

et al., 2016). The cumulative flux under tree cover is similar to that measured in cassava fields in 586 

eastern Tanzania (440 g C-CO₂ m⁻² yr⁻¹), despite the latter receiving higher rainfall (~1115 mm 587 

yr⁻¹) (Rosenstock et al., 2016). This convergence may stem from comparable soil fertility 588 

constraints, with low soil organic carbon (1–1.7%) and nitrogen contents (<0.5%). In contrast, 589 

the slightly lower cumulative flux in FS may reflect less favourable microclimatic conditions—590 

such as elevated soil temperatures and increased aridity away from tree cover—limiting 591 

microbial activity (see Section 4.1). 592 

Across sub-Saharan Africa, soil respiration fluxes based on static chamber measurements show 593 

high spatial variability, largely shaped by climate and land use. For example, Owusu et al. (2024) 594 

found higher respiration in woodlands (3.8 ± 0.8 g C-CO₂ m⁻² d⁻¹) and grazed areas (2.7 ± 1.7) 595 

than in croplands (1.7 ± 1.1) in humid eastern Ghana. This gradient was linked to differences in 596 

soil moisture and organic matter. Similarly, Rosenstock et al. (2016) reported much higher fluxes 597 

in highland pastures in Kenya (3.8–4.4 g C-CO₂ m⁻² d⁻¹) compared to cultivated fields in eastern 598 

Tanzania (1.2 ± 0.2), highlighting the role of vegetation cover and soil fertility. 599 

4.3. Effect of trees on chamber-based soil respiration and photosynthesis  600 

A notable increase in respiration and photosynthesis fluxes was observed under F. albida trees 601 

(Sh) compared at a distance from trees (FS). This increase may indicate the potential role of F. 602 

albida in modulating CO2 exchange dynamics (Rch and GPPch) within this agro-silvo-pastoral 603 

system. These results are consistent with preliminary findings from similar environments 604 

(Duthoit et al., 2020). 605 

Numerous studies have investigated the effect of tree species on greenhouse gas fluxes, 606 

particularly CO2, revealing significant variations across different ecological contexts (Bréchet et 607 

al., 2021, 2025; Klaus et al., 2024; Mazza et al., 2021; Ramesh et al., 2013; Rheault et al., 2024). 608 

However, the underlying mechanisms by which trees influence these dynamics are not yet fully 609 

understood. 610 
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In general, agroforestry systems have been well-documented for their ability to provide a range 611 

of ecosystem services (e.g., Assefa et al., 2024; Bado et al., 2021; Kuyah et al., 2019; Rolo et al., 612 

2023). Specifically, Faidherbia-based agroforestry systems may play a crucial role in regulating 613 

CO2 exchanges between the soil and atmosphere. F. albida-based agroforestry systems are 614 

recognized for enhancing both soil organic and mineral fertility (Bayala et al., 2020; Dilla et al., 615 

2019; Sileshi, 2016; Sileshi et al., 2020; Stephen et al., 2020), mainly through litter accumulation 616 

and direct inputs from livestock excreta under their canopies. Additionally, the extensive roots 617 

system of F. albida trees helps concentrate mineral nutrients, contributing to the formation of a 618 

‘fertile island’ effect under the trees (Siegwart et al., 2022; Eldridge et al., 2024). Moreover, F. 619 

albida improve water infiltration (Diongue et al., 2023; Faye et al., 2020; Sarr et al., 2023), enhance 620 

soil moisture retention (Clermont-Dauphin et al., 2023) and contribute to reduced soil 621 

temperatures (de Carvalho et al., 2021; Lopes et al., 2024; Sida et al., 2018). These changes foster 622 

a more favourable environment for soil microbial activity and crop development (Diack et al., 623 

2024; Diene et al., 2024; Leroux et al., 2020; Roupsard et al., 2020) under the trees compared to 624 

open areas. Consequently, this likely explains the stronger effect of soil moisture and the leaf area 625 

index of groundnuts on Rch under the trees, resulting in higher total respiration (Table 2). For 626 

photosynthesis, the effect of these parameters was similar in both FS and Sh (Table 2). However, 627 

the significantly higher intensity of GPPch under Sh can be explained by greater light use efficiency 628 

(α) and a higher maximum CO2 uptake rate at light saturation (β) in this shaded environment. In 629 

agroforestry systems, light use efficiency can at least partially mitigate the reduction in 630 

photosynthetically active radiation under tree canopies (Charbonnier et al., 2017). 631 

Similar results have been observed in different climatic conditions and ecosystems. Gomes et al. 632 

(2016) investigated soil respiration using mobile chambers (LI-8100-102 model) under trees in 633 

coffee-based agroforestry (AF) systems and in open areas (FS) in Minas Gerais, Brazil. These 634 

studies were conducted with agroecological management practices, such as weeding, 635 

intercropping maize between coffee rows, and mulching. The AF systems exhibited lower air and 636 

soil temperatures (at 5 and 10 cm depth) and higher air and soil humidity compared to FS (Gomes 637 

et al., 2016). These authors observed greater spatial variability in soil respiration in AF (34.1%) 638 

compared to FS (24.2%). This variability was mainly linked with fluctuations in labile carbon and 639 

total nitrogen, reflecting more favourable soil microclimate for microbial activity in AF. In 640 

contrast, soil temperature (10 cm depth) accounted for most of the variability observed in FS, 641 

where the absence of tree canopy resulted in high soil temperatures and low soil moisture (Gomes 642 

et al., 2016). Likewise, Haren et al. (2010) reported 38% higher soil respiration near large trees 643 

(DBH > 35 cm) in clay-rich Amazonian forests compared to open sites. Interestingly, the 644 

magnitude of CO₂ fluxes was independent of tree species, indicating that canopy effects may 645 

outweigh species-specific traits in some contexts. In our study, F. albida’s influence on CO₂ fluxes 646 
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aligns with this general pattern observed in tropical agroforestry. However, the mechanisms 647 

linking individual tree species to microbial and physicochemical drivers of CO₂ dynamics remain 648 

insufficiently understood and warrant further investigation (Jevon et al., 2023). 649 

4.4. Birch Effect 650 

A rapid increase in soil respiration was observed following the first rainfall events, particularly 651 

under F. albida. This phenomenon can be attributed to the lower bulk density of the soil under the 652 

trees (Clermont-Dauphin et al., 2023; Siegwart et al., 2023), which potentially lead to CO2 653 

accumulation during the dry season due to higher soil organic matter (SOM) (Siegwart et al., 654 

2023). Additionally, the sensitivity of microbial communities to subtle variations in soil moisture, 655 

compounded by the tree effect, may further explain this phenomenon, as outlined in Sections 4.1 656 

and 4.3. This phenomenon, known as the ‘Birch effect’ (Birch, 1958), has been reported across 657 

various semi-arid ecosystems in sub-Saharan Africa (Ago et al., 2016b; Fan et al., 2015; 658 

Wieckowski et al., 2024), as well as other semi-arid ecosystems globally (Roby et al., 2022; Yan et 659 

al., 2014; Yu et al., 2020). In these contexts, the ‘Birch effect’ may result from the displacement of 660 

soil gas phases by the piston effect generated during water infiltration (Singh et al., 2023). 661 

Furthermore, microbial communities in semi-arid environments adopt osmoregulatory 662 

mechanisms to withstand water deficit (Warren, 2014), which is particularly pronounced during 663 

the dry season. This phenomenon reduces soil microbial metabolism (Schimel et al., 2007). Upon 664 

rapid soil rewetting, especially after prolonged dry periods, soil microbial metabolism process is 665 

swiftly reactivated, leading to a transient pulse in respiration and a CO2 release (Barnard et al., 666 

2020; Kim et al., 2012; Manzoni et al., 2020; Vargas et al., 2018). Isotopic signatures of soil 667 

respiration provide evidence supporting the hypothesis that these pulses result from the rapid 668 

mineralisation of necromass or osmolytes excreted by microorganisms under drought stress 669 

(Schimel et al., 2007; Unger et al., 2010). Additional factors may amplify the ‘Birch effect’. For 670 

instance, drying-rewetting cycles can induce physical disruption of soil aggregates, enhance 671 

oxygen penetration and thereby expose previously protected organic matter to microbial 672 

decomposition (Rabbi et al., 2024). This increases substrate availability and subsequently boosts 673 

soil respiration fluxes.  674 

The magnitude of the ‘Birch effect’ is modulated by the severity and duration of drought. Thus, at 675 

our study site, given the 8- to 9-month-long dry season, the ‘Birch effect’ is particularly intense. 676 

Indeed, extended drought periods promote greater accumulation of microbial necromass and 677 

intensify hypo-osmotic stress responses upon rewetting (Singh et al., 2023). 678 
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4.5. Comparing EC and chamber-based methods 679 

Results revealed high seasonal variability, with higher values during the rainy season compared 680 

to the dry season. This seasonal pattern aligns with findings from studies in the Sahel using the 681 

EC method for CO₂ flux measurements (Brümmer et al., 2008; Tagesson et al., 2015; Agbohessou 682 

et al., 2023, Wieckowski et al., 2024). Comparable patterns have been also documented at the 683 

ecosystem scale in other semi-arid environments (Ago et al., 2014; Archibald et al., 2009; Ardö et 684 

al., 2008; Jia et al., 2020; Quansah et al., 2015; Williams et al., 2009; Zhang, Bi, et al., 2024). 685 

Several comparative studies between chamber and EC methods have reported both congruent 686 

and divergent CO2 flux estimates (Bastviken et al., 2022; Poyda et al., 2017; Riederer et al., 2014; 687 

J. Tang et al., 2008; Wang et al., 2010). In the present study, ecosystem respiration fluxes during 688 

the rainy season exhibited notable discrepancies measurements between EC (Reco.EC) and 689 

upscaled chamber-based (Rch.stand). This is attributable to differences in the flux components 690 

captured by each method. Specifically, Reco.EC included respiration from below- and above-691 

ground tree parts, crops (groundnuts and cowpeas), weeds, and soil, whereas Rch.stand 692 

accounted only respiration from below-ground tree, groundnut crop, and soil. Therefore, as 693 

expected, Reco.EC (4.6 ± 3.2 g C-CO2 m-2 d-1) were significantly higher than Rch.stand (2.0 ± 1.1 g 694 

C-CO2 m-2 d-1). 695 

For chamber-based GPP measurements, values were standardised (GPP-stand) by the field's leaf 696 

area index (LAI.field). This allowed it to improve comparability with GPP.EC when trees were 697 

leafless in the rainy season. In both cases, GPP accounted only for crops (groundnut and cowpea) 698 

and weeds, as trees were non-photosynthetic in the rainy season. Despite this standardisation, 699 

GPP.EC values (-5.1 ± 3.6 g C-CO2 m-2 d-1) were significantly higher than GPPch.stand values (-4.2 700 

± 4.3 g C-CO2 m-2 d-1). However, the divergence did not occur on the peak of GPP (which was very 701 

similar in both methods), but from the onset of groundnut senescence, when weeds became the 702 

dominant photosynthetic contributors. Thus, during the groundnut growth season, with leafless 703 

F. albida trees and almost no weeds, GPP measurements from EC and chambers generate closely 704 

comparable results. Therefore, this provides an initial form of cross-validation between the two 705 

methods. It is important to note that the EC method integrates CO2 fluxes over a larger spatial 706 

scale, encompassing all ecosystem components (Baldocchi, 2003), while the chamber method 707 

captures fluxes on a smaller scale (i.e., at the 0.25 m² scale). This scale disparity can introduce 708 

uncertainties when upscaling chamber-based fluxes to the field, as vegetation composition within 709 

chambers does not represent the EC footprint's average vegetation. This makes upscaling 710 

chamber-based measurements challenging. Nevertheless, the standardisation we applied on 711 

chamber photosynthesis by LAI has been relatively successful. 712 

During the dry season, Reco.EC included respiration from below- and above-ground tree parts 713 

(with leaves) and bare soil, while Rch.stand measured only below-ground tree and bare soil 714 
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respiration. Consequently, the difference between Reco.EC and Rch.stand was solely attributable 715 

to above-ground tree respiration (Ra tree above-ground). In terms of GPP, chamber 716 

measurements were nil, whereas GPP.EC reflected only GPP trees. 717 

The transition period, characterised by groundnut senescence, tree leaf regrowth, and weed 718 

proliferation, introduced further complexity, amplifying method-specific discrepancies. Rch.stand 719 

measurements facilitated the estimation of tree contribution to Reco.EC (Ra tree) and the 720 

verification of the consistency for EC results in terms of carbon use efficiency (CUE), estimated 721 

here at 0.48. This value indicates that nearly 50% of the carbon captured by trees is allocated to 722 

biomass. The CUE estimate here is well comparable to the global average across diverse 723 

ecosystems, climates, and management practices (0.49 ± 0.14) (Tang et al., 2019). Similar CUE 724 

values have been reported for semi-arid grasslands (0.46 ± 0.10), but our value is notably lower 725 

than those documented for wetlands (0.61 ± 0.13) (Tang et al., 2019). Overall, these findings 726 

reinforce the plausibility of our assumptions regarding the compartment’s contributions to 727 

Reco.EC and Rch.stand, thereby providing a second cross-validation of the EC-Ch comparison. 728 

However, despite a frequently assumed CUE of 0.5 in models, global estimates span a broad range 729 

(0.20 to 0.82), depending on ecosystem type and management practices (DeLucia et al., 2007; 730 

Tang et al., 2019). This underscores the importance of refining carbon flux models to better 731 

represent the biophysical processes governing CO2 exchange in semi-arid agroforestry systems. 732 

The combined use of EC and chamber methodologies offers a comprehensive perspective on 733 

ecosystem-scale CO2 flux dynamics, advancing understanding of carbon cycling in these 734 

environments. 735 

4.6. Net carbon exchange budget 736 

The annual net carbon (C) exchange budget was quantified at -1.4 ± 0.02 Mg C-CO₂ ha⁻¹ with the 737 

chamber method and -1.8 ± 0.01 Mg C-CO₂ ha⁻¹ by the Eddy Covariance (EC), indicating that the 738 

studied agro-silvo-pastoral system functions as a net carbon sink. These findings corroborate the 739 

system’s potential role in mitigating greenhouse gas emissions, consistent with previous 740 

observations in semi-arid ecosystems (Rahimi et al., 2021; Tagesson et al., 2015; Agbohessou et 741 

al., 2023, Wieckowski et al., 2024). 742 

The estimated net C exchange budget is close to the reported mean for Sahelian ecosystems (-1.6 743 

± 0.5 Mg C-CO₂ ha⁻¹; Tagesson et al., 2016). The EC-based net C exchange budget (-1.8 ± 0.01 Mg 744 

C-CO₂ ha⁻¹) is also similar to the value of -1.9 ± 0.4 Mg C-CO₂ ha⁻¹ reported for semi-arid savannas 745 

of northeastern Benin, despite higher annual rainfall (1495 mm; Ago et al., 2016b). Furthermore, 746 

our EC estimate is close to the average net C exchange reported for West African terrestrial 747 

ecosystems (-2.0 ± 1.5 Mg C-CO₂ ha⁻¹; Ago et al., 2016a).  748 
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However, estimates from Tagesson et al. (2015) (-2.7 ± 0.07 Mg C-CO₂ ha⁻¹) for a semi-arid 749 

savannah in Dahra, Senegal, located between the 300 mm and 400 mm isohyets, were 750 

comparatively higher. This is potentially attributable to specific characteristics of that specific 751 

savannah site, such as herbaceous vegetation cover during the rainy season, the presence of 752 

evergreen trees, and land management practices linked to pastoral livestock activities (Tagesson 753 

et al., 2016). 754 

The net C exchange estimates presented in this study are, in fact, apparent fluxes, given that they 755 

exclude organic matter (OM) imports and, more critically, exports, introducing uncertainties. 756 

Notably, the export of crop residues and direct inputs from animal excreta —particularly 757 

significant in ‘bush fields’ during the dry season — were not accounted for. In our case of ‘bush 758 

field’, crop residues are exported to feed livestock, while livestock faeces are collected for use as 759 

fuel or manure in ‘home fields’. Such practices may lead to a significant soil organic carbon stocks 760 

depletion (Malou et al, 2021), potentially diminishing the net C budget (-1.4 ± 0.02 Mg C-CO₂ ha⁻¹) 761 

over time and shifting the system closer to carbon neutrality (Assouma et al., 2019). 762 

These results should be contextualized within the broader framework of climate change and semi-763 

arid ecosystem management. Although agro-silvo-pastoral systems can function as annual carbon 764 

sinks, they remain highly sensitive to interannual rainfall variability and escalating anthropogenic 765 

pressures. Sustainable management practices, particularly regarding crop residue exports, are 766 

essential for maintaining soil mineral fertility and preserving the system’s capacity to act as a 767 

carbon sink, thereby contributing to climate change mitigation. 768 

4.7. Limitations of the study 769 

This study benefited from the inverse phenology of F. albida, allowing for direct comparison 770 

between chamber-based GPP (GPPch.stand) and ecosystem-level GPP (GPP.EC) during the 771 

leafless period of the trees. However, the system’s spatial heterogeneity —common in 772 

agroforestry— posed challenges for accurately partitioning CO₂ fluxes among trees, crops, and 773 

soil. A key limitation was the development of weeds during the late rainy season, which 774 

complicated the attribution of fluxes, particularly during the transitional period. Additionally, 775 

while GPPch was successfully standardised by LAI for upscaling, this was not feasible for 776 

respiration. Respiration integrates both autotrophic and heterotrophic components, which 777 

respond to different drivers and are not directly linked to LAI, limiting the precision of upscaled 778 

Rch. 779 

Future improvements should aim to separately quantify respiration sources —tree roots, crops, 780 

and microbial (heterotrophic) respiration— and account explicitly for the weed layer, to refine 781 

flux partitioning in such complex agroforestry systems. 782 
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Conclusion 783 

This study demonstrates the successful application of automated static chambers to quantify CO₂ 784 

fluxes in a Sahelian agroforestry system dominated by F. albida. The continuous, high-frequency 785 

measurements captured key seasonal dynamics and short-lived events (e.g., Birch effect), 786 

providing a more accurate assessment of carbon exchange than traditional intermittent sampling. 787 

By integrating crop and soil components and applying dynamic partitioning models, the study 788 

quantified both respiration and photosynthesis fluxes at fine temporal resolution. The results 789 

revealed a clear 'fertile island' effect under tree canopies, with higher respiration and 790 

photosynthetic activity, and highlighted the significant contribution of F. albida trees to annual 791 

carbon uptake. 792 

The consistency between chamber- and eddy covariance-based estimates reinforces the 793 

robustness of the methodology. Overall, this work underscores the role of F. albida-based 794 

agroforestry systems as effective carbon sinks in semi-arid environments, offering valuable 795 

insights for carbon accounting and sustainable land management in the Sahel. 796 
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