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Abstract. Metrics such as the mean annual ground temperature (MAGT) and active layer thickness (ALT) are used to monitor

and quantify permafrost change. However, these have limitations including those arising from the effects of latent heat, which

reduce their sensitivity. We investigated the behaviour of existing and novel metrics derived from temperature observations

(TSP metrics) using an ensemble of more than seventy 120-year simulations. We evaluated which TSP metrics provide new

insight into permafrost change and evaluated how reliably each one indicates changes in sensible, latent, and total heat contents5

for different levels of sensor quality. We also quantified the effect of sensor placement on the magnitude of observed MAGT

trends.

Based on this, we recommend a parsimonious set of five TSP metrics that provide a better picture of permafrost thaw than

MAGT alone. These are: height of the permafrost table (TOP), depth of zero annual amplitude (dza), thermal integral (τ̄ ), mean

annual ground temperature (MAGT), and mean annual surface temperature (MAGST).10

We observed depth-related differences in MAGT warming rates of more than 0.23 ◦C dec−1 in 50% of 10-year observation

periods for observation depths between 10 m and 20 m. The magnitude of these differences roughly corresponds to the mean

warming rate reported for discontinuous permafrost. The effect of sensor depth on warming trends is found to be greatest in

ice-poor soils. These results illustrate the challenge of interpreting the magnitude of observed ground temperature trends.

Our results can be used to inform permafrost monitoring strategies and help contextualize observed trends. Consistent metrics15

can be produced from observed and simulated thermal data via the "tspmetrics" library available on the Python Package Index

(PyPi).

1 Introduction

Permafrost is an important component of the global climate system (IPCC, 2022) and its changes affect ecosystems, infrastruc-

ture, and ways of life in high-latitude (Meredith et al., 2019) and mountainous (Hock et al., 2019) regions. Ground temperature20

is the most common variable in permafrost monitoring and one of three products used to characterize the permafrost Essential

Climate Variable by the World Meteorological Organization (Sessa and Dolman, 2008; Smith and Brown, 2009). Temperatures

are usually recorded at discrete depths in boreholes with thermistor chains and data loggers. The way in which the resulting

T(z, t) data, i.e., temperature at different depths (z) and times (t), are processed into summary metrics determines what conclu-
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sions can be drawn during interpretation and what value can be derived from the investment in thermal monitoring. We argue25

that current practices for processing and reporting permafrost thermal monitoring data overlook important information and can

be improved by including additional metrics.

To conceptualize the utility of differing metrics, common uses of ground temperature monitoring data can be grouped by

the relevance of changes in three key quantities: (1) sensible heat content (Hs), which directly reflects temperature changes.

Temperature also reveals whether the definition of permafrost—soil or rock below 0 °C for more than two consecutive years—is30

met; (2) latent heat content (Hl), which reflects the melting or formation of ground ice; (3) total heat content (Ht), which is the

sum of sensible and latent heat content and is relevant for subsurface heat storage (Cuesta-Valero et al., 2022; Von Schuckmann

et al., 2023). The latent heat content is the most important quantity from the perspective of hazards and adaptation because

changes in the ice content are closely related to landscape change, slope instability, hydrology, contaminant mobility, and

ecosystem changes.35

Most often, long-term changes in permafrost are described using the mean annual ground temperature (MAGT) measured

near the depth of zero annual amplitude (dza) where the annual temperature amplitude is dampened to less than 0.1 ◦C (e.g.,

Romanovsky et al., 2010). These observations typically use temperature measurements from a single sensor 10–25 m deep,

where some of the temporal and spatial variability present at shallower depths is smoothed out. Inferring permafrost change

using MAGT trends at single depths of 10–25 m alone, however, entails five major shortcomings:40

(1) Latent heat changes are hidden (’latent’) in temperature observations. We can see this where MAGT series flatlining

just below 0 °C are shown and figure captions suggest a counterintuitive and ambiguous interpretation: that such periods with

barely visible change in fact indicate fast ice loss in the ground (cf. Smith et al., 2010; Groenke et al., 2022).

(2) MAGT changes are inconsistent temporally and spatially as a result of differences in the partitioning of latent and sensible

heat. Temporally, the same temperature change at the ground surface can cause a strong MAGT response in cold permafrost45

but after years of warming only cause minute MAGT change when the borehole is close to 0 °C. Spatially, a borehole in

ground with little ice may be warming fast while a nearby borehole in ice-rich ground may warm only slowly. This inherent

inconsistency of the MAGT confounds spatial and temporal comparison, even though such comparisons are common (e.g.

Smith et al., 2022; Biskaborn et al., 2019). Moreover, the sampling of locations for making boreholes in a region is known to

often be biased towards sites that are accessible, likely to contain permafrost, of scientific or practical interest, or in ground50

materials amenable to drilling (e.g. Noetzli et al., 2021; Biskaborn et al., 2019; Subedi et al., 2020). Such bias will affect

average warming rates in a region, further obscuring any meaning that can be derived from averages.

(3) Differences in observed depth can further affect the relative timing and magnitude of the MAGT trends from different

locations. There is no standardized measurement depth near dza in the current practice of reporting MAGT and the potential

magnitude of depth-related effects is unknown.55

(4) Relying on MAGT alone forgoes valuable information that is usually recorded at other depths. Although MAGT provides

direct insight into the thermal state of the ground at a specific depth, it masks changes occurring elsewhere in the soil profile

and offers limited information about the physical processes and hazards associated with permafrost thaw, which often occurs

closer to the ground surface.
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(5) Deep boreholes are rare. Observation at or near dza is useful as a single statistic, however, restricting ourselves to60

boreholes of 10 m or more neglects a great deal of data. Metrics suitable also for shallower boreholes are therefore desirable,

especially when considering the paucity of published ground temperature data (Brown et al., 2024). Data loggers easily produce

annual average temperatures, overcoming the historic requirement of observation near dza to avoid aliasing in episodic manual

observation.

In summary, these five shortcomings mean that using MAGT as the sole indicator of permafrost change presents an interpre-65

tation challenge, as its magnitude is not consistently proportional to any single property of interest. Furthermore, using only

MAGT (a common practice with some notable exceptions, e.g., PERMOS, 2021) ignores most of the available T(z, t) data that

is collected at great expense.

With the goal of informing decision-making and permafrost research (cf. Gruber et al., 2023), we aim to better use T(z, t)

observations for revealing permafrost change by complementing MAGT. We denote TSP metrics as summary numbers repre-70

senting the annual thermal state of permafrost that are derived from T(z, t) data.

The objectives of this study are to: (1) Review and develop TSP metrics, formalizing their calculation where necessary. (2)

Quantify the effect of MAGT sensor depth on observed warming rates. (3) Evaluate how well TSP metrics reflect sensible,

latent, and total heat gains in permafrost using simulated observations. (4) Recommend a parsimonious set of TSP metrics for

future use. (5) Demonstrate the utility of the metrics recommended with example data from the GTN-P database.75

We proceed by reviewing published metrics and proposing new ones. Then, the behaviour of metrics is empirically tested

with an ensemble of 120-year time series of simulated transient ground temperatures. In these simulations, not only the temper-

atures, but also the sensible, latent, and total heat contents in the soil column are known. Metrics can thus be evaluated in their

ability to represent their changes. While this methodology cannot support firm conclusions about all possible configurations of

ground and climate, it does provide an opportunity for knowledge generation beyond what current field data alone cannot offer.80

2 TSP metrics

Many techniques exist to interpret permafrost change from ground temperature records. Some are formalized and quantitative

(e.g., MAGT) while others involve a qualitative interpretation (e.g., the development of isothermal conditions). Although

temperature is our sole input variable, we aim to gain additional insight into the effects of latent heat.

The metrics presented here (Table 1) produce annual summary values. They are derived from ground temperature observa-85

tions reported for constant depths relative to the ground surface. In practice, ground subsidence may result in sensor depths

that change over time. Most metrics are calculated from multiple sensors to represent an entire soil column and location. Only

MAGT is based on a single sensor that must be selected. Where available, we also discuss observed rates of change for these

metrics from existing monitoring efforts or other studies.
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2.1 Mean Annual Ground Temperature (MAGT)90

Measuring trends in MAGT is one of the most common ways to quantify permafrost change. The measurement of ground

temperatures at or near dza is established practice and effective at smoothing out inter-annual and fine-scale spatial variability.

Typically, permafrost warming trends are calculated from sensors 10–25 m deep using linear regression of temperature time

series (Isaksen et al., 2007; Smith et al., 2022) or Bayesian methods (Groenke et al., 2022).

We distinguish between MAGT measured at a specific fixed depth (denoted Td at depth d) and mean annual ground tem-95

perature measured at the true dza, the position of which is dynamic over time. We denote this latter metric Tza and discuss it

below.

Observed rates of MAGT change are typically lower than 0.3 ◦C dec−1 for warm permafrost (>-2 ◦C) and lower than

1 ◦C dec−1 for cold permafrost (<-2 ◦C) (Smith et al., 2022). Biskaborn et al. (2019) estimated average warming rates as 0.39
◦C dec−1 in continuous permafrost, 0.20 ◦C dec−1 in discontinuous permafrost, and 0.29 ◦C dec−1 globally.100

2.2 Mean Annual Ground Surface Temperature (MAGST)

MAGSTs provide information on changes to the upper boundary of a soil column, which propagate downwards to affect

permafrost. Because they do not require costly drilling, MAGST measurements can be collected more economically than

thermistor strings in boreholes, and enable denser data collection (e.g. Brown et al., 2022; Gruber et al., 2003). We calculate

MAGST using model output at 0.1 m.105

Systematic reporting of MAGST is less common than for MAGT or active layer thickness at permafrost research sites (Wang

et al., 2024). In Switzerland, MAGST warming rates over permafrost have been estimated as 0.4–0.6 ◦C dec−1 (1998–2022,

Swiss Permafrost Monitoring Network, 2024). On the Tibetan Plateau, MAGST warming rates were estimated as 0.16–0.60
◦C dec−1 (1980–2015, Hu et al., 2019) and 0.60 ◦C dec−1 on average (1980–2007, Wu et al., 2012). Average trends across

China (including non-permafrost regions) were reported as 0.20 ± 0.02 ◦C dec−1 (1956–2022, Wang et al., 2024).110

2.3 Active layer thickness (ALT)

ALT is one of three products used to monitor the permafrost Essential Climate Variable (Hu et al., 2025; Sessa and Dolman,

2008). Strictly speaking, its vertical extent is defined by the the greatest thaw penetration depth in a year, the maximum extent

of the zero-degree isotherm is sometimes used as a thermal approximation of the active layer (Bonnaventure and Lamoureux,

2013). The thermally defined ALT has the advantage that it can be estimated using ground temperature records. This is often115

done by interpolating the two observations above and below the active layer (Streletskiy et al., 2017; Nelson and Hinkel, 2003).

However, Riseborough (2008) found that the lowest error (equal to about 20% of node spacing) was obtained by extrapolating

from above using the two lowest sensors in the active layer, and by using instantaneous profiles rather than annual envelopes.

The worst results were obtained when extrapolating from measurements below the active layer. Alternatively, some authors

suggest fitting exponential curves to the ground temperature envelope (Nelson and Hinkel, 2003).120
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To estimate active layer thickness using the ’extrapolation from above’ method described by (Riseborough, 2008), we first

calculate annual maximum temperatures at each sensor depth and identify the index (n) of the deepest sensor above permafrost

where temperatures exceed 0 ◦C during the year.

Next, for each time step we determine the extrapolated thermal gradient using the deepest (zn) and second-deepest (zn−1)

sensors above the isotherm125

dT

dz
(t) =

T (zn, t)−T (zn−1, t)
zn− zn−1

. (1)

The depth intercept of the zero-degree isotherm is then calculated as follows:

zT=0(t) = zn +
0−T (zn, t)

dT
dz (t)

. (2)

Next, the process is repeated, but using the deepest sensor above permafrost with minimum temperature below 0 ◦C. This is

repeated for all time steps in the year, and the active layer thickness is chosen as the greatest depth intercept130

ALT ↓ = max{zT=0(t1)...zT=0(ti)}. (3)

To estimate ALT by interpolation (ALT ↕), we use a similar approach, but calculate the thermal gradient using the nth and (n+

1)st sensors. Additionally, the position of the permafrost table can also be estimated by using only the maximum temperature

in Equations 1 and 2. Finally, we average the two estimates of ALT

ALT =
1
2
(ALT ↕+ ALT ↓). (4)135

Long-term trends in ALT provide a minimum estimate for how much permafrost is lost due to thaw, but are insensitive to any

additional ground lost due to thaw subsidence (O’Neill et al., 2023).

Observed ALT trends are typically low. Data from 109 active layer monitoring sites shows rates of increase generally between

-0.2 to +0.4 m dec−1 depending on the region, but up to +3.9 m dec−1 in the Swiss Alps (Smith et al., 2022).

2.4 Height of the permafrost table (TOP)140

In cold permafrost, our estimate of the ALT coincides with the depth to the permafrost table, or top of permafrost (TOP).

However, the potential development of a supra-permafrost talik causes these two metrics to differ by an amount roughly equal

to the talik thickness (neglecting any differences between the thermal and physical boundaries of taliks and active layer).

It is possible for TOP to change independently of ALT, so we consider TOP as an additional metric. To calculate TOP we

use Equations 1 and 2 to estimate the position of the zero-degree isotherm.145

2.5 Annual thaw-depth duration (D̄)

While change to ALT is commonly used as an indicator of thaw (Brown et al., 2000), it does not include any information about

the duration of thaw. Both factors have implications for biological activity, terrain hazards, and carbon cycling. Harp et al.
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(2016) define (D̄), a time- and depth-integrated value as

D̄ =
1

365

∫∫
H(T (z, t))dzdt, (5)150

where T(z,t) describes the mean soil temperature at an arbitrary depth (m) and time (d). For each year, we select integration

bounds from the ground surface to the top of permafrost, and from 0 to 365 days (simulations do not consider leap years).

Here, H is the Heaviside step function:

H(T ) =





0, T ≤ 0

1, T > 0

Practically, for daily observational data, we use a discretized form of this equation155

D̄ =
1

365

365∑

j=1

N∑

i=1

H(τ(zi, tj))∆z. (6)

Here τ is a linearly interpolated function of temperature with depth, discretized into N elements, and ∆z is an arbitrary

thickness increment, for which we use 0.01 m. Note that the use of interpolation rather than extrapolation across the zero-

degree isotherm at the thaw depth may introduce a slight bias here (Hinkel, 1997).

2.6 Depth of Zero Annual Amplitude (dza)160

The depth at which the annual temperature amplitude is completely attenuated is denoted (dza). A cutoff value of 0.1 ◦C in

amplitude is typically used as a practical threshold.

Intuitively, we expect that dza will be shallower for boreholes in which greater amounts of thaw take place, and in ice-rich

boreholes where seasonal freezing and thawing decrease the apparent thermal diffusivity. This latter case indicates a greater

potential for thaw. Over longer periods of time, increasing dza should be expected to indicate a change to an increasingly latent165

heat-dominated system.

To estimate dza we use the method described by Bonnaventure et al. (2015). Additional considerations for this calculation

are described in Appendix E. First, the annual amplitude Az at each observation depth, z, is calculated as:

Az =
1
2
(Tmax

z −Tmin
z ). (7)

Next, we fit coefficients x0 and x1 using least squares,170

ln(
−→
A

A0
) = x0−x1

−→
Z

Z0
. (8)

Where, A0 and Z0 are units of 1 ◦C and 1 m. For this step, we restrict the data by only using depth and amplitude pairs where

A > 0.5 ◦C so that temperature trends at depth do not add noise by inflating the amplitude. Finally, we calculate dza using the

fitted coefficients for each year of data

dza

Z0
=

x0− ln(0.1)
x1

. (9)175

We are not aware of any long-term observations tracking dza change over time. For the most part, dza is treated as a static

property to characterize or compare sites.
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2.7 Dynamic Mean Annual Ground Temperature at the Depth of Zero Annual Amplitude (Tza)

Although MAGT is defined as the temperature at the depth of zero annual amplitude, it is typically recorded at a fixed depth

below dza in the range of 10 to 25 m.180

We calculate a dynamic mean annual temperature at the depth of zero annual amplitude (Tza) whose position corresponds

to the best estimate of dza calculated above. After determining dza, we interpolate the MAGT linearly to that depth to obtain

Tza. Although this measurement technically describes a single depth, we consider it a borehole-aggregated metric because it is

uniquely defined for any location, there are no choices to be made about its position, and it derives from more than one sensor.

As will be shown, Tza is the first ground temperature metric to become isothermal, and therefore can be used as a way to185

further classify borehole behaviour.

For clarity, we will use the acronym MAGT to refer to mean annual ground temperatures at a fixed-depth, and refer explicitly

to Tza as necessary.

2.8 Annual Thermal Integral (τ̄ )

One drawback of monitoring temperature at a single depth is that this neglects a great deal of data, and that warming rates190

may differ at other locations in the profile. To investigate an alternative, we define the thermal integral as the depth-integrated

temperature evaluated between a near-surface sensor (a) and an arbitrary depth (b) of the mean annual temperature profile

τ̄a
b =

1
(b− a)

a∫

b

T (z)dz. (10)

Because we sample temperatures at discrete depths, we estimate thermal integrals from the uppermost to lowermost sensor

depths using the trapezoidal rule195

τ̄z1
zn
≈ 1

2(zn− z1)

n−1∑

i=1

(T (zi) +T (zi+1))(zi+1− zi). (11)

Where zi is the depth of the ith sensor. This value is normalized by the integration depth, yielding effectively a mean column

temperature. Trends in the thermal integral correspond to mean column warning rates. Our hypothesis is that the trends are

more comparable between boreholes provided that the total integrated depths are the same. This is because the measurement

depth will not differ between boreholes and because results are affected less strongly by the number and spacing of sensors.200

3 Methods

3.1 Data pre-processing and conventions

Our processing uses daily T (z, t) data; sub-daily values are aggregated to daily averages first. For each annual period evaluated

with TSP metrics, the number of daily values is reported and we exclude years with less than 95% data completeness. We

consider T (z, t) data to be reported for constant depths relative to the ground surface. In practice, ground subsidence may result205
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Table 1. Summary of TSP metrics used in this study. Data requirements also include sensitivities to missing, biased, or inaccurate data.

Metric Description Data requirements

Mean annual ground

temperature (MAGT)

Annual mean temperature at a specific obser-

vation depth, typically at or below dza (Smith

et al., 2022).

Requires sufficiently deep observations. Long-term records

affected by sensor drift and changes to sensor depth.

Active layer thickness

(ALT)

Thickness of ground above permafrost that

freezes and thaws seasonally (Smith et al.,

2022; Burn, 1998).

Precision limited by sensor spacing (Riseborough et al.,

2008) and by large data gaps.

Height of permafrost

table (TOP)

Height of the permafrost table relative to a fixed

datum.

Limited by same data requirements as ALT.

Thaw-depth duration

(D̄)

Annual time- and depth- integrated duration of

temperatures above 0 ◦C (Harp et al., 2016).

Sensitive to missing data in thawed active layer or talik, but

insensitive to missing data at other times and depths.

Depth of zero annual

amplitude (dza)

Depth where seasonal temperature variation is

attenuated to an amplitude of less than 0.1 ◦C.

Sensitive to sensor noise and to missing data at annual tem-

perature extrema. Interpolation methods require sufficiently

deep observations (Bonnaventure et al., 2015).

Mean annual tempera-

ture at the dynamic dza

(Tza)

Annual mean temperature at dza. Requires observations below dza. Requirements of MAGT

also apply.

Thermal integral (τ̄ ) Depth-integrated mean annual temperature, ap-

proximates mean annual borehole temperature.

Requires sensors above and below (or equal to) integration

bounds. Sensor spacing affects precision. Sensitive to miss-

ing data but impact is diminished by collecting data from

multiple sensors.

Mean annual ground

surface temperature

(MAGST)

Mean annual temperature just beneath the

ground surface (< 10cm).

Requirements and sensitivities similar to MAGT but wider

annual temperature range increases sensitivity to missing

data. Greater interannual variability in MAGST requires

longer data to establish meaningful trend. (Hu et al., 2019;

Staub et al., 2017; Swiss Permafrost Monitoring Network,

2024)
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in sensor depths changing over time. Multi-year trends in TSP metrics are calculated using ordinary least squares regression.

For the model experiments, we calculate rolling trend windows of 5-, 10- and 20-year duration, representing data durations

commonly available from permafrost monitoring today.

3.2 Quantifying the effect of depth on warming rates

We evaluate the effect of observation depth on MAGT trends and compare it to the effect of total integration depth on trends210

in τ̄ . For each trend window, the maximum difference in change rates of all depths between 10 m and 20 m is calculated. For

MAGT, this is done in two ways: first, by including all data, and again excluding any depths at which permafrost has degraded

completely. Finally, empirical cumulative distribution functions are generated to quantify the effect of observation depth.

3.3 Ground temperature simulation

We use the model FreeThawXice1D (Tubini and Gruber, 2025; Tubini et al., 2021) to simulate transient ground temperatures215

in a one-dimensional configuration. This model represents the effects of subsidence caused by ground-ice loss and accurately

tracks 0 ◦C isotherms via local mesh refinement. We use GlobSim (Cao et al., 2019) to generate meteorological forcing data

from the ERA5 reanalysis to drive the model at the upper boundary. This tool streamlines the download of reanalysis data,

interpolates grid cells to point-scale to make data suitable for 1D simulation, standardizes units and timesteps, and performs

heuristic downscaling to account for terrain and other local effects. Future conditions are simulated by repeating several years220

of data with an added linear warming trend. More details on the simulation and the evaluation of resulting temperatures are

presented in Appendix B.

3.4 Emulating imperfect observation data

Simulation results are near-perfect data, with limitations related to model assumptions and numerical imprecision. To assess

the sensitivity of TSP metrics to the quality limitations of real measurement systems, we degrade simulation results accounting225

for the accuracy (bias), drift, and precision (noise) of typical sensing systems (Appendix C). Based on typical performance

characteristics, we create two additional data sets (Table 2) that emulate an excellent (Q1) and a good (Q2) commercial

measurement system. The original model output is denoted (Q0).

Table 2. The three levels of data quality: (Q0) original simulation output, (Q1) emulating an excellent monitoring system, and (Q2) emulating

a good monitoring system.

Noise (σ) [mK] Bias [mK] Drift [mK yr−1]

Q0 0 0 0

Q1 10 ±50 ±1

Q2 50 ±150 ±10
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3.5 Evaluating TSP metrics as indicators of change

For each time window, TSP metrics are regressed against the change in heat content (sensible, latent, total). The strength of the230

relation—represented by the regression slope—is normalized by the standard error. The resulting values for the t-statistic, here

analogous to a signal-to-noise ratio, are summarized in a histogram. Histograms are displayed to distinguish regression results

by the statistical significance (p < 0.05) and sign of the resulting trend.

The distribution of t-statistics across all trend windows is used as a measure of the reliability of a TSP metric as a way to

detect heat-content changes in the ground. Positive slopes indicate true positives (sensitivity when expressed as a rate) and235

negative slopes indicate false positives (specificity when expressed as a rate). Spuriously significant regression can occur given

the non-stationarity of our time series. Because all simulations are subject to similar levels of non-stationarity, the effects on

relative efficacy of metrics is likely small.

3.6 Distinguishing stages of permafrost thaw

As will be shown below, Tza is the first mean temperature metric to reach isothermal behaviour near 0 ◦C. We investigate240

whether this metric can be used to partition the simulations into two distinct phases of thaw. For this particular experiment, we

exclude bedrock simulations which have no appreciable ice content. For each simulation, we identify the breakpoint in slope

(e.g., Figure 1 i) visually. Once the date is established, the mean trend in Hs and Hl are computed for the period before and

after. Finally, the relative change in slope is computed as:

Mean Trend Ratio =
mafter

mbefore
, (12)245

where m is the corresponding mean trend. We also aim to develop a way to automatically determine the date of the break-

point. For this, we use a quantitative threshold of four consecutive years of less than 0.1 ◦C of change in Tza. Finally, for com-

parison, we perform the same analysis using the commonly-used criterion to distinguish warm permafrost based on MAGT.

That is, when MAGT of permafrost is between -2 and 0. We define the boundary as when T20 reaches -2 ◦C for the first time;

in our simulations this transition happens before the Tza breakpoint.250

4 Testing TSP metrics with simulated data

We simulate 120 years of subsurface change and use the resulting output to evaluate the TSP metrics in a physically-consistent

setting with access to all variables needed. Reanalysis data from 1980–2022 is used and future scenarios add linear trends on

repeated data to extend the dataset to 2100. In this section, we describe the configuration of experiments, present their results,

and guide the reader through their interpretation. We first interpret all simulations visually, in particular the behaviour in warm255

permafrost and redundancy between metrics. Then, we quantitatively compare how well the metrics represent changes in latent,

sensible, and total heat content using regression.
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In the experiment presented here, meteorological conditions are simulated for three different sets of spatial coordinates.

These conditions are varied and extended using fixed offsets and warming trends, respectively (Appendix B). Simulations

reflect a variety of surface and subsurface conditions: five different soil profiles are used, spanning conditions from water-free260

bedrock to fine-grained sediments with excess ice (Table B1). Combined with the different meteorological conditions, this

resulted in 75 distinct simulations.

The output is produced with temperature and ice content up to a depth of 25 m (at 0.2, 0.4, 0.8, 1.2, 1.6, 2, 2.5, 3, 3.5, 4, 5,

7, 9, 10, 11, 13, 15, 20 and 25 m, cf, Harris et al., 2009) as well as for the elevation of the ground surface, total ice content,

heat content (total, sensible, latent) of the soil column, and the positions of zero-degree isotherms.265

4.1 Visual interpretation of example simulations

We present the results of two simulations as exemplars of the simulation ensemble and the behaviour of TSP metrics. The

first simulation (Figure 1 a–f) is for a cold soil column containing no excess ice with an initial MAGT near -6 ◦C. Heat

gain throughout the simulation is predominantly through sensible heat and approximately linear in time. All metrics exhibit a

similarly linear response.270

The second illustrative simulation (Figure 1 g–l) is for a column containing excess ice with an initial MAGT of around

-3 ◦C. The loss of excess ice causes a decreasing ground surface height accompanied by an approximately linear increase

in heat content. Unsurprisingly, the warming rate of MAGT is strongly dampened late in the simulation, demonstrating the

challenge associated with interpreting this metric in the presence of latent heat transfer.

Each TSP metric will be discussed in further detail below. Given the relative simplicity of metrics in cold permafrost,275

discussion will focus on behaviour in warm and icy permafrost. When available, rates of change from field observations are

provided to contextualize simulated data.

4.2 Permafrost thickness: ALT, TOP, and D̄

The ALT trend can be positive or negative in warm permafrost. When a talik develops, this causes a discontinuity in ALT

followed by a reverse in the direction of the trend (Figure 1 i). This generally occurs in three stages: (1) An initial decoupling280

of ALT from the permafrost table when the ground no longer refreezes completely and a residual thaw layer persists. (2) A

period when ground temperatures near 0 ◦C and multi-year temperature variability cause ALT to vary strongly, with occasional

large jumps. (3) A more stable period (not shown in Figure 1 g–l) during which ALT decreases once the talik is well developed.

ALT thinning has also been observed in the field (Connon et al., 2018).

In contrast to ALT, TOP declines monotonically during the warming period, indicating the loss of permafrost volume with285

less ambiguity as it is not reversing with the formation of a talik. Similarly, D̄ is monotonic in its reaction to sustained warming.

For the remaining analysis, we use TOP as the metric of choice, intuitively summarizing changes to the upper boundary of

permafrost. Before the formation of a talik, changes in TOP, ALT, and D̄ are very similar. This is not surprising given the

considerable overlap between the definitions of these three metrics.
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Figure 1. Warm and icy permafrost (g–l) exhibits much more nonlinear trends than cold permafrost (a–f) in metrics, surface height and heat

content. Simulations allow us to visually compare different metrics. Here, we present 120 years of warming and the corresponding evolution

of permafrost metrics for a cold simulation containing no excess ice (a–f) and for a warm simulation containing excess ice (g–l). Periodic

variation from 2022 onward is due to the repetition of reanalysis data used to drive the simulation. In subplot (i), the purple star indicates the

breakpoint in Tza when it becomes isothermal. 12
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In warm simulations, we see that ALT, D̄, and TOP change gradually for some time and then the rate of change begins to290

increase dramatically. This regime change between cold and warm permafrost has been previously described (Changwei et al.,

2015; Wu and Zhang, 2010).

4.3 MAGT and Tza

Visually, MAGT behaves most similarly to borehole sensible heat content until it nears 0 °C, when warming rates decline in

simulations with ground ice. Trends in Tza are similar to those of MAGT. However, in warming simulations with ice, Tza is the295

first depth to become near-isothermal because dza becomes shallower as phase change takes place and temperature fluctuations

are damped by latent heat transfer. The magnitudes of simulated trends in Tza and MAGT are similar.

In cold or moisture-poor permafrost, MAGT and Tza both generally follow a similar pattern as Hs. It is the effect of latent

heat near 0 ◦C that dampens the warming trend in other cases. Because Tza is the first metric to reach isothermal behaviour,

it is a good candidate for an additional metric. Tza also does not involve an arbitrary choice of depth but is derived from the300

behaviour of all observations. Otherwise, observations at a fixed depth, as commonly used for MAGT, are preferable to Tza

becasue they are simpler to produce and understand.

4.3.1 Distinguishing stages of thaw

When simulations are partitioned into warm (MAGT ≥−2◦C) and cold (MAGT <−2◦C) permafrost, the mean Hl trend is

significantly greater in warm permafrost than in cold permafrost (Figure 2). This is not true of the Hs trend, for which the 95%305

confidence interval of the mean trend ratio includes 1. On the other hand, when using a visually picked breakpoint in Tza (e.g.,

Figure 1 i) to distinguish two stages of thaw, we see that Hl trends are significantly greater in the later stages of thaw and Hs

are significantly reduced. This is also true when the Tza breakpoint is estimated quantitatively rather than visually.

Another advantage of the Tza classification is that, because no specific depth must be chosen, the classification is valid for

the entire borehole. Since dza moves towards the surface, it also more likely that when the transition from one stage to another310

takes place, the sensors will be placed deep enough to measure this.

While we generally expect Hs trends to decrease and Hl trends to increase as icy permafrost warms, the choice of where to

split up different stages of thaw can result in differences when comparing trends in the two stages. Soil freezing characteristic

curves generally start increasing around -2, so it is intuitive that the warm-cold permafrost distinction captures the increase in

Hl trends. However, while the distinction between warm and cold permafrost may be effective at identifying when ground ice315

begins to melt, the breakpoint in Tza signals more of a regime shift at which point the warming trends and concomitant Hs

trends become significantly diminished, while the changes in Hl also continue to increase.
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Figure 2. The distinction between warm and cold permafrost (MAGT ≥−2◦C) distinguishes two distinct stages of Hl trends, but not Hs.

However, the breakpoint in Tza distinguishes changes in both Hs and Hl trends whether it is identified manually (visual) or quantitatively

(∆Tza ≥ 0.1◦C). Points and bars represent the mean trend ratio (after/before) and the 95% confidence interval, respectively.

4.4 MAGST

In all simulations, trends in MAGST resemble those of total sensible heat. MAGST shows strong interannual variability. In

our simulations, MAGST trends are not visibly affected by phase change near 0 ◦C even when warming at depth decreases320

significantly. MAGST trends were roughly 0.40 ◦C dec−1.

At low temperatures, the difference between MAGST and MAGT or Tza remains stationary slightly above 0 ◦C. When the

ground warms to near 0 ◦C, MAGT trends within permafrost with some ice reduce in magnitude, while MAGST trends are

unaffected. This period is also accompanied by inflection points in the borehole latent heat trends. Therefore, MAGST −
Tza can become an additional TSP metric where an increasing trend indicating increased latent heat uptake, while deeper325

observations remain isothermal at 0 ◦C.
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Conceptually, treating MAGST change as a proxy for permafrost change is not entirely appropriate because MAGST is

observed in the active layer and changes in permafrost respond with some delay to surface change. However, MAGST may

still be useful as an indicator of subsurface heat gain for several reasons: (1) Averaged over longer periods, the impact of lag

time is reduced. (2) MAGST is minimally affected by latent heat; in our simulations, even during periods of significant phase330

change, we do not observe a reduction in MAGST trends. (3) Many thaw phenomena occur closer to the ground surface than to

a depth of 10 m and MAGST can give more direct insight into the lateral variation of temperature and temperature trends that

may drive those changes than deeper, and much more costly, MAGT. The strong lateral variation of MAGST can be addressed

with dedicated sampling (e.g., Gubler et al., 2011; Gruber et al., 2018a; Stewart-Jones et al., 2023).

4.5 Depth of zero annual amplitude dza335

The dza is determined by the surface temperature and the attenuation of the annual temperature wave with depth. The latter

property is governed by the thermal diffusivity of the soil column and phase change affecting the apparent thermal diffusivity.

We therefore expected that dza would tell us something about increased Hl.

Our simulations show that large increases in dza can occur even when there is relatively little change in Hl and large

increases in Hl occur with small changes in dza (Figure 1). However, without change in Hl, we do not observe changes to dza:340

in all simulations, bedrock profiles—which contain no moisture—exhibit no long term trend in dza regardless of temperature.

In these cases, the dza is stationary about some mean value, with fluctuations due to interannual changes in surface amplitude.

In icy soil, we found dza to decrease to as little as 3.1 m before deepening in the late-stage warming phase.

We find a temperature-dependent relationship between dza and column heat gain. The exact point at which the sign of dza

changes during warming depends on the configuration of climate and ground simulated, but it should be expected when Tza345

is close to 0 ◦C and when dza is close to ALT. In cold permafrost, dza decreases as permafrost warms because more time is

spent at temperatures with phase transition that attenuates the annual temperature wave. At a certain point, a borehole becomes

completely isothermal and dza stays relatively constant. Following this, as TOP lowers and ALT increases, the dza becomes

shallower, approximating TOP.

The relationship between dza and Hl is nonlinear. Instead, the interpretation of dza is more nuanced, and it can provide350

information about increased liquid water content. Changes to dza reflect changes in the annual range of liquid water content,

vertically integrated from the surface downward. In warming permafrost, if we assume that the increase in temperature range

is the result of a greater maximum annual water content (and not a decrease in the annual minimum), then the annual mean

water content will also increase by some amount. Therefore, a trend to a shallower dza does correspond to an increase in Hl

even if it does not correspond linearly to total column Hl. Another consideration is that the metric only responds to changes355

above dza; the large increases in latent heat seen in Figure 1h may be due to melting taking place deeper in the profile.

The shallow limit reached by dza in Figure 1i reflects the choice of cutoff used to define zero amplitude (0.1 ◦C in this case)

and a smaller cutoff value would result in greater sensitivity to change for shallow dza values because it would take longer to

reach the limit. Overall, the relationship of dza to warming is temperature dependent, consistent with Changwei et al. (2015).
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Despite the additional complexity, dza trends can be used to infer changes in Hl and freeze-thaw behaviour. Its behaviour is360

qualitatively distinct from ground temperature, providing unique insights.

4.6 Annual thermal integral (τ̄ )

The mean annual borehole temperature τ̄ over a chosen integration depth exhibits behaviour that is often intermediate between

the rapidly fluctuating MAGST and the much steadier MAGT. Qualitatively, τ̄ time series correlate with changes in Hs.

During near-isothermal periods, τ̄ often resembles Hs more than MAGT. Although no published τ̄ trends exist, the magnitude365

of modeled trends can be reasonably compared to MAGT or MAGST trends because τ̄ is normalized to represent an average

borehole warming.

The balanced influence of temperature trends over a range of depths makes τ̄ less susceptible than MAGT to producing

undetectable trends when boreholes become near-isothermal. This comes at the cost of greater interannual variability because

of the incorporation of near-surface temperatures.370

4.7 Accelerating thaw rates

In simulations with appreciable ice content, we observe a transition from moderate to accelerated permafrost degradation as

the permafrost becomes very warm (e.g., ca. 2060 in Figure 1 g–l). This occurs after the permafrost becomes sufficiently warm,

coinciding with the reversal of the dza trend.

We interpret the accelerated degradation to be caused primarily by the development of isothermal conditions which limits the375

re-establishment of a temperature gradient in winter to draw heat out of the ground (Connon et al., 2018). This phenomenon

has been discussed in the context of talik formation as a driver of tipping-point behaviour in peatlands and discontinuous

permafrost (Connon et al., 2018; Devoie et al., 2019). Because our simulations do not consider water transport out of—and

the subsequent drying of—the active layer, any melted ice persists as water; we expect this would accentuate the inhibition of

freezing due to latent heat.380

4.8 The effect of monitoring depth on warming rates

The differences in 10-year MAGT warming rates between 10 m and 20 m are positively skewed (Figure 3a) with modal values

of less than 0.1 ◦C dec−1. Nevertheless, across all soil types, 50% of observation windows have more than 0.23 ◦C dec−1,

10% have more than 0.60 ◦C dec−1, and 5% have more than 0.72 ◦C dec−1. Very low trend differences are attributed to low

warming rates associated with warm, near-isothermal conditions in icy materials.385

When trend differences are normalized their distribution becomes less skewed (Figure 3 b) and the effect of ground materials

is reduced. 50% of windows have MAGT trend differences greater than 73%, 10% have differences greater than 291% and 5%

have differences greater than 555% .
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Figure 3. The effect on 10-year trend magnitude is greater for MAGT observation depth than for τ̄ total integration depth. This is true for

both absolute and normalized differences. Grey histograms show the distribution of differences in 10-year trends for MAGT (a, b) and τ̄ (c,

d) between observation or integration depths of 10 and 20 m across all terrain types (left axis). Coloured lines represent differences broken

out by terrain type and plotted as cumulative distribution functions (right axis). Subplots (a) and (c) represent absolute differences. Subplots

(b) and (d) represent normalized differences.

In τ̄ trends, the impact of different integration depths and the effect of terrain type is weaker than in MAGT trends (Figure

3 c). However, icier locations still exibit reduced differences. Compared to MAGT, the distribution of values is less positively390

skewed. The variabilities at 50, 90 and 95% probability are 0.17, 0.45, and 0.53 respectively.

When τ̄ trend differences are normalized, there is virtually no difference between different ground types (Figure 3 d). The

differences at 50, 90 and 95% probability are 44, 156, and 319%, respectively.

In summary, a difference in observation depth can introduce meaningful differences in the revealed decadal warming trends

(Figure 3). It is greater than 0.23 ◦C dec−1 in 50% of our simulated trend windows across all ground types. To contextual-395
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ize this, Biskaborn et al. (2019) report global average warming rates of 0.39±0.15 ◦C dec−1 in continuous permafrost and

0.20±0.10 ◦C dec−1 in discontinuous permafrost, based on sensors that are between 5 m and 24.5 m deep. The magnitude and

uncertainty of warming rates presented there are commensurate with the uncertainties due to sensor position we show.

The differences of τ̄ trends caused by integration depth are lower than for MAGT observation depths (Figure 3c,d). Ad-

ditionally, sites can be more meaningfully compared even when the sensors may not be at the same depth because τ̄ can be400

interpolated to a common depth where sensors at the same depths are not available.

4.9 Predictiveness statistics for all TSP metrics

For each TSP metric and heat content (Hs, Hl, and Ht), the percentage of significantly positive and significantly negative

correlations are recorded across all moving windows in the simulation results. A detailed example for a single metric and heat

variable is shown in Figure 4 where most correlations are positive and increases in Tza correspond to increasing Hs. However,405

in as many as 2% of 5-year windows and 4% of 20-year windows, this correlation is negative. Results for all simulations are

summarized in Table 3 and the remaining figures are included in the Supplementary Material (S1).

The impact of sensor quality on predictiveness is within a few percentage points for most TSP metrics with a few exceptions.

The predictiveness of TOP is decreased with decreased sensor quality (most notably for Q2) for all heat variables and for all

window sizes. The predictiveness of MAGT (T10, T15, and T20) for Hl is also appreciably decreased with decreasing quality410

for 5-year windows, but not for longer window sizes. Additionally, the impact of sensor quality is greatest for larger observation

depths (T20).

Predictiveness for dza is low overall, but when observation windows are split into warm and cold scenarios according

whether tza is above or below -0.5 ◦C, the percentage of significant windows increases. For cold permafrost, dza achieves

predictiveness values up to 75% for Hl in 20-year windows. In warm periods, dza achieves predictiveness values up to 75%415

for Hl in 20-year windows. When averaged over all time windows and levels of sensor quality, metrics describing annual

temperature averages (MAGT and τ̄ ) rank among the highest for both Hl and Hs.

Without exception, the predictiveness of the metrics decreases for shorter temporal windows. Most metrics have scores of

less than 30% for 5-year windows. However, TOP-Hl is the exception, with a score as high of 57%. For short windows, τ̄ is a

more consistent proxy for Hs and Hl than single-depth temperature measurements, these also score more than 50% in 5-year420

windows.

The predictiveness of most metrics is larger for Hs than for Hl. However, TOP-Hl is the exception, predicting Hl better.

Values for Ht are not simply weighted averages of Hl and Hs: the predictiveness of Ht is consistently greater than either Hl or

Hs for T10, T15, Tza; smaller for MAGST; and intermediate between the two for τ̄0
10, τ̄0

15, and τ̄0
20. For dza, Ht is intermediate

for 10- and 20-year windows, and greater for 5-year windows.425

We interpret a larger number of significant values to indicate that an increase in a given metric more reliably indicates

an increase in the heat variable of interest over a randomly selected observation window. However, the time- and location-

dependent relation between the metric and heat content means that we do not interpret these results in terms of the strength of

the relation. Also, because we only simulate a warming trend, we generally interpret reversed correlations as a consequence of
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Figure 4. Effect of sensor quality and data length on the significance of metric (Tza) - heat (Hs) relationship. Larger t-values indicate a more

reliable relationship between changes in metric and changes in heat content. More consistently positive or negative t-values demonstrate a

less ambiguous interpretation from the metric. In this example, Left panel shows correlation over each complete simulation; data points

represent annual metrics. Regression lines are coloured according to ground material: bedrock (black), sandy till (green), icy sediments (red),

excess ice (blue). Each histogram shows the distribution of test statistics for different averaging windows (5, 10, and 20 years) and noise

levels (0, 50, and 100 mK). Each distribution is colour coded according to whether the regression within the window is significantly negative

(orange), significantly positive (blue) or not significant (grey). Significance is assessed at p < 0.05. These percentages are included as text at

the upper right corner of each panel.

one of three factors: interannual variability, temporal window mismatches due to time lags, and errors due to decreased sensor430

quality. For example, the negative correlations in Figure 4 would not be caused by an increase in the metric when Hs decreases

within the window, but rather by a decrease in the metric (for one of the three reasons stated above) as the Hs increases.

In general, we see that our sensor imperfection model results in only a small effect on the effectiveness of metrics as

predictors, except for short observation periods. For MAGT, we expect the effect of normally distributed noise is likely erased

in individual sensor records because they are averaged over the year. We expect the bias and trend inQ2 also contributed to the435

lower performance.

Averaging multiple sensors in the calculation of τ̄ would also reduce the impact on the metric of sensor drift and bias in any

individual sensor. On the other hand, the calculation of annual maxima required to estimate TOP relies on single data points

and involves no averaging—this would be directly affected by sensor bias and noise. This would therefore more strongly

affect metric performance by amplifying, rather than dampening, the effect of deviations from the perfect model data. dza440

19

https://doi.org/10.5194/egusphere-2025-2658
Preprint. Discussion started: 6 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Table 3. Test statistics measuring how reliably each metric corresponds to the sensible, latent, or total ground heat content for a given

averaging window and data quality. Numeric values represent the percentage of significantly positive (left) or negative (right) relationships

across all observation windows (corresponding to the blue and orange percentages in e.g., Figure 4). A colourized version is available in the

supplementary material.

Window 20 years 10 years 5 years 20 years 10 years 5 years
Dataset Q0 Q1 Q2 Q0 Q1 Q2 Q0 Q1 Q2 Q0 Q1 Q2 Q0 Q1 Q2 Q0 Q1 Q2

Hl MAGST 72 71 71 49 49 49 22 22 22 0 0 0 0 0 0 0 0 0
T10 93 92 90 64 62 57 28 26 18 0 0 0 0 0 0 0 0 0
T15 85 85 83 52 52 48 32 32 24 0 0 0 0 0 0 0 0 0
T20 73 75 48 47 47 23 32 32 9 0 0 22 0 0 19 1 2 8
τ̄0
10 88 88 88 57 57 56 27 27 27 0 0 0 0 0 0 0 0 0

τ̄0
15 90 90 90 57 57 57 26 26 26 0 0 0 0 0 0 0 0 0

τ̄0
20 90 90 90 57 57 56 26 26 25 0 0 0 0 0 0 0 0 0

dza(warm) 10 10 10 5 5 6 2 2 3 48 48 47 20 21 19 10 10 9
dza 44 44 44 32 32 32 14 14 14 22 22 24 9 9 10 4 4 4
dza(cold) 74 75 71 57 57 54 26 25 23 0 0 0 0 0 1 0 0 0
Tza 59 59 55 32 34 26 14 14 11 0 0 4 1 0 2 1 1 1
TOP 96 97 86 90 91 68 57 55 38 0 0 0 0 0 0 0 0 0

Hs MAGST 75 75 75 54 54 54 22 22 22 0 0 0 0 0 0 0 0 0
T10 91 91 92 72 75 78 48 50 54 0 0 0 0 0 0 0 0 0
T15 92 93 92 64 64 67 28 27 28 0 0 0 0 0 0 0 0 0
T20 90 92 70 54 55 44 17 17 13 0 0 16 0 0 4 0 0 1
τ̄0
10 96 96 95 81 81 80 66 66 65 0 0 0 0 0 0 0 0 0

τ̄0
15 98 98 98 85 85 85 71 71 71 0 0 0 0 0 0 0 0 0

τ̄0
20 99 99 99 89 89 88 74 74 74 0 0 0 0 0 0 0 0 0

dza(warm) 2 2 2 3 3 4 2 2 2 62 62 55 25 24 19 7 7 5
dza 29 29 30 24 24 25 16 15 16 26 26 24 10 10 8 2 2 2
dza(cold) 48 48 48 41 41 39 26 26 25 0 0 0 0 0 0 0 0 0
Tza 68 70 68 47 47 42 20 20 18 2 1 4 2 1 1 1 0 0
TOP 78 78 64 39 38 34 18 17 16 0 0 0 0 0 0 0 0 0

Ht MAGST 65 65 65 41 41 40 17 17 17 0 0 0 0 0 0 0 0 0
T10 97 98 96 86 86 86 51 51 50 0 0 0 0 0 0 0 0 0
T15 98 98 96 78 78 77 34 34 29 0 0 0 0 0 0 0 0 0
T20 93 95 71 67 68 43 27 27 11 0 0 18 0 0 16 0 0 4
τ̄0
10 94 94 93 69 69 68 50 50 50 0 0 0 0 0 0 0 0 0

τ̄0
15 97 97 97 75 75 75 55 55 55 0 0 0 0 0 0 0 0 0

τ̄0
20 98 98 98 79 79 78 58 58 58 0 0 0 0 0 0 0 0 0

dza(warm) 2 2 3 4 4 4 2 2 3 50 50 47 21 21 20 10 10 9
dza 34 34 34 29 29 29 18 18 18 20 20 21 9 9 9 4 4 3
dza(cold) 56 56 54 47 48 47 29 29 28 0 0 0 0 0 0 0 0 0
Tza 77 77 71 51 52 45 22 22 18 0 0 3 0 0 1 0 0 1
TOP 87 88 71 61 62 45 33 32 20 0 0 0 0 0 0 0 0 0
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also requires additional calculations, but the performance of this metric is not similarly affected; the method by which it is

calculated also averages amplitude data from multiple sensors.

The large impact of decreased sensor quality on T20 which shifts the results towards a negative correlation may illustrate a

weakness of the methodology which is that we only perform a single realization of the randomized sensor quality model. In

this case, it may be that the realization produced significantly more negative trends at that depth. Alternatively, it is possible445

that the sensor bias and drift have a larger effect because the signal magnitude is much smaller at that depth.

dza shows a different signal in warming boreholes than other metrics (Figure 1 c,i). However, the predictiveness is low, and

possibly unuseably so for short observation windows (Table 3). We attribute this to both the noisy nature of the metric and the

period of stagnation prior to the reversal of the trend. We interpret the lower predictiveness of dza as a consequence of both

the noisier signal and the temperature-dependence of the metric. The higher interannual variability means that longer temporal450

windows are needed to obtain clear trends. More importantly, the results highlight the importance of defining a precise cutoff

at which the behaviour of dza reverses.

τ̄ is a more reliable indicator of Hs and Ht change over shorter observation periods than MAGT (e.g T20,T15, . . .). This

is in spite of the greater interannual variability of τ̄ caused by the inclusion of near-surface measurements. Intuitively, we

expected this variability to make trends harder to predict. We believe that this effect is outweighed by the diminished impact455

of latent heat in warm conditions, which causes MAGT trends to become greatly diminished. It is also interesting to note that

although qualitatively τ̄ behaves similarly to a superimposition of MAGST and MAGT, both of those metrics are more strongly

affected by shorter observation windows. We interpret this to mean τ̄ benefits from being depth-integrated, which more closely

resembles how Hs would be calculated if heat capacities were known.

4.10 Summary of insights from testing TSP metrics with simulation experiments460

MAGT is traditionally the most widely used metric to report permafrost change. It is a direct measurement of the permafrost

and it reveals how quickly the permafrost thermal state is changing at a specific depth. Trends correlate well with column heat

contents, but the relationship is time-, depth-, and location-dependent. As a consequence, comparing (between locations or

times) and aggregating MAGT trends usually involves blending dissimilar physical processes, producing a number with no

meaningful connection to either heat gain or ice loss. Therefore, MAGT trends are most useful for detecting the presence and465

sign of a trend. The metric is also prone to periods of imperceptible change, making quantification difficult.

τ̄ is a good indicator of changes in borehole sensible heat (Hs), already over shorter time periods, outperforming MAGT in

this regard. It is less prone to stagnant behaviour, making trend detection more reliable. It also takes advantage of all available

sensors. Practically, it allows for compensation of unequal monitoring depths through standardized integration, improving

comparability between boreholes. While being subject to the same limitations as MAGT in principle, the confounding effects470

of latent heat on the ability to compare or aggregate trends are reduced for τ̄ .

Despite the common definition of MAGT as the temperature at dza, we find little support for using Tza as a TSP metric

to monitor permafrost change. In addition to the greater complexity of calculating this metric, it is the first one to become

isothermal in the simulations as the ground warms. It is also less predictive of column heat content compared to MAGT or
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τ̄ (Figure 3). However, it may be useful for (1) indicating near-isothermal behaviour in a borehole because it will be the first475

metric to achieve this, and (2) as a classifier for late-stage permafrost thaw; in our simulations, the point at which Tza reached

approximately 0 ◦C coincided with the transition in sign of the dza-warming relation.

TOP is a straightforward metric for temperature-based monitoring with a clear physical meaning, describing changes in

permafrost thickness. It behaves similarly to ALT or D̄ but with some clear advantages. The definition of TOP is purely thermal

and less ambiguous than that of ALT, which is alternatively defined based on temperature or phase state (van Everdingen,480

1998; Burn, 1998). Additionally, the direction of ALT trends reverses after the formation of a supra-permafrost talik while

TOP remains monotonic. Although D̄ may have inherent meaning, it is qualitatively similar enough to TOP that there is little

to gain by including both in a parsimonious set of metrics. Adopting TOP as a primary metric also does not diminish the utility

of existing ALT records and monitoring programs; in the absence of a talik, TOP can be considered equivalent to the purely

thermally defined ALT.485

Overall, TOP is a good proxy for Hl even in short time windows, even though the exact correspondence is unknown without

quantification of ice content. In our simulations, it increases slowly in the early stages of warming and then accelerates in

later stages of warming. TOP has an easily understood physical meaning, describing a change directly affecting permafrost

thickness. However, the accuracy with which it can be estimated is more strongly affected by sensor spacing (e.g., Riseborough,

2008) and quality than other metrics. Some confounding may originate from subsidence caused by a rising permafrost base.490

dza can be used to infer changes to Hl, but it provides an incomplete picture: phase change below dza is invisible, the upper

limit of dza is affected by the choice of cutoff for ’zero amplitude’, and the sign of the correlation between dza and Hl is

temperature-dependent. However, the behaviour of the metric is qualitatively distinct from ground temperature, which can be

helpful in interpreting permafrost changes.

Given the above results, we recommend TOP, dza, and τ̄ in addition to MAGT as a parsimonious set of metrics for quanti-495

fying permafrost change. MAGST can be considered as an additional metric that, while not observed in permafrost, provides

the clearest measure of how climate or disturbance drive changes at depth.

5 Case study with observations from GTN-P

As a demonstrator with field observations, we calculated TSP metrics for selected ground temperature records from the GTN-P

database. Data were downloaded for all boreholes with available temperature time series. 38 sites met our initial criteria: (1)500

at least 5 years of data; (2) at least daily measurement frequency; (3) a maximum observation depth of at least 5 m; and (4) at

least 5 depths of observation. After manual removal of datasets with excessive noise or data gaps, 14 boreholes from 10 areas

were retained; 9 areas were located within the European Alps, and one within Russia. Three boreholes—Samoylov, Ritgraben

(RIT_0102) and Schilthorn (SCH_5198)—have been selected for this demonstration and GTN-P data was supplemented with

more recent observations from PERMOS (Swiss Permafrost Monitoring Network, 2024) for the two Swiss sites.505

The three sites illustrate the utility of using multiple TSP metrics for revealing change (Figure 5), especially in warm

permafrost. Samoylov, located in Russia, is in the Lena River Delta within the continuous permafrost zone. The observed
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Figure 5. Selected TSP metrics calculated for three GTN-P monitoring boreholes. Solid trend lines are significant at p<0.05, dashed trend

lines are significant at p<0.1, and dotted trend lines have p≥0.1. Where appropriate, depth information is included in each figure legend.

warming rates of 2.9 ◦C dec−1 at 9.75 m and 1.6 ◦C dec−1 at 20.75 m are high, consistent with cold permafrost. The difference

in warming rates between the two observation depths is also high at 1.1 ◦C dec−1 (a 54% difference). In contrast, the other two

sites are located in Switzerland, in warmer permafrost. Warming rates at these locations are much lower. At RIT there is no510

detectable warming trend at 10 m and at SCH the warming rate is 0.3 ◦C dec−1 at 13.0 m: typically low for warm permafrost.

The MAGST trend at Samoylov is consistent with warming at depth and has a similar magnitude. In contrast, MAGST

warming rates at the warmer sites are markedly higher than the MAGT rates. The greater difference between warming at the

surface and warming at depth is another indication that latent heat at depth reduces the observed MAGT change. Surface
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warming rates at all sites are high relative to published values of (e.g., ca. 0.2–0.6 ◦C dec−1 Hu et al., 2019; Wu et al., 2012;515

Swiss Permafrost Monitoring Network, 2024)

While there are no published τ̄ observations with which to compare these trends, they can be meaningfully compared to either

MAGST or MAGT trends. τ̄ increases at Samoylov at a rate between 2.9 ◦C dec−1 (20 m integration depth) to 3.6 ◦C dec−1

(10 m integration depth). At two warmer sites, τ̄0
10 increases relatively slowly: by 0.3 ◦C dec−1 at RIT and by 0.5 ◦C dec−1 at

SCH.520

At RIT, estimated TOP change rates (0 cm yr−1) do not provide any indication of change. At Samoylov, a change rate of

-1 cm yr−1 is modest relative to observations elsewhere (e.g., Smith et al., 2022) and low when compared to the degree of

thermal change taking place. However, at SCH we observe rates of -40 cm yr−1 which is among the highest observed rates

globally. This also is in contrast to the modest warming signals seen at the site.

At each site, we observed changes to dza during the observation period. At Samoylov and RIT, dza is becoming shallower,525

consistent with the first phase of warming and indicative of greater freeze-thaw activity and increased transfer of latent heat in

the soil column. dza change is slightly greater at Samoylov (+3.9 m dec−1) compared to the warmer RIT (+1.1 m dec−1). At

SCH, the magnitude of dza change is greatest (-2.1 m dec−1) and its direction has changed, consistent with late-stage warming

found in our simulations.

The use of multiple TSP metrics allows us to quantify and qualify permafrost change. We can group the metrics into 3 cate-530

gories: temperature (MAGT, MAGST, τ̄ ), vertical extent (ALT, TOP), and phase change (dza). With a multi-metric approach,

different aspects of change can be revealed.

At Samoylov, three out of three temperature-based metrics indicate rapid warming, and dza indicates increased involvement

of latent heat in the ground thermal regime but there is no TOP change. Change is occurring in 2 categories.

At RIT, one temperature-based metric (MAGT) indicates no change and two show some change is taking place. In addition,535

there is no TOP trend over the observation period. Taken in isolation, these data suggest little change is taking place. With some

interpretation, such as the near-zero MAGT and borehole location, we are able to add an additional qualitative interpretation

that change rates are suppressed due to latent heat. Finally, with calculated dza change rates, we can quantify one dimension

of change that can be compared to other locations.

At SCH, two out of three temperature-based metrics indicate slight warming and one indicates moderate warming. TOP is540

changing rapidly. The deepening dza shows that the site is in a late stage of warming and permafrost degradation.

6 Discussion

6.1 Testing TSP metrics with simulated data

Simulations represent an ideal scenario with which to evaluate the metrics but they can only provide some of the complexity

of the real environmental system. In practice, heterogeneous subsurface characteristics will mean observations at an individual545

depth are less well representative of permafrost above and below. Spatially variable ice content will amplify or dampen the

response of these metrics to thaw, and this will affect rates of change. Instrumentation density has a major impact on the
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accuracy and precision of many metrics (e.g., Hinkel, 1997) and will affect the resolution with which some of the metrics can

be calculated.

Another consideration is the consequence of moisture transport. In our simulations, there is no water flow within or out of550

the simulation with the exception of melted excess ice. This means that during late-stage thaw in warm, icy simulations with

a supra-permafrost talik, the dza becomes shallower than the top of permafrost, and is kept shallow by the buffering effect

caused by freeze-thaw cycles of supra-permafrost water. It is plausible that an overall loss of moisture above the permafrost

table during this period could prevent the dza from ever reaching the top of permafrost, or alternatively accelerate the late-stage

shallowing of dza.555

In addition to using these metrics for interpretation of borehole change, they can also be used to provide further information

for models that do not output variables such as column heat contents or isotherm locations.

Representing change as a single per-borehole statistic is challenging because of differences in data completeness and mea-

surement density in boreholes. Observational records in boreholes differ in their vertical extent and duration. Averages can

therefore mask locations with strong change when boreholes are very deep or have many sensors or exaggerate measures of560

change in boreholes with few sensors.

6.2 Interpretability of MAGT trends

Our results show that increasing MAGT is consistently indicative of increases in column Hl and Hs even in the presence of

distortion from sensor noise, bias, and trends. However, the exact quantitative relationship is location- and time-dependent. In

this regard, it may be the direction of the trend from which meaning can be most unambiguously derived. However, given that565

the vast majority of permafrost boreholes are warming (Biskaborn et al., 2019), this may be an almost trivial conclusion.

Our results suggest that MAGT can contribute to a descriptive picture of permafrost change, but only when used in com-

bination with other temperature-derived metrics. In isolation, the magnitude of MAGT trends can be attributable to both the

effect of latent heat and the intensity of surface warming. With a more complete suite of indicators, the effect of latent heat can

be made more explicit and permafrost change can be quantified more reliably.570

Our results highlight the challenges of comparing trends between boreholes or regions. In our simulations, the behaviour of

each metric generally follows a similar trajectory. For MAGT, this is: rapid warming, reduced warming, no warming, and finally

rapid warming if thaw progresses to the observation depth. Most importantly, we do not change the magnitude of the warming

trend at the surface, yet the trends measuring permafrost response show a great deal of variability across simulations and at

different points in time. Therefore, in our experiments, MAGT tells us more about the configuration of the system and the stage575

of thaw than about the intensity of the warming trend. In this regard, the resolution of MAGT as a climate indicator may indeed

be limited to the trend direction discussed above. In reality, locations will be subject to different trends in air temperature,

snowpack and vegetation; all of which will affect warming rates at depth. However, this signal will be superimposed on the

purely permafrost-dependent variability which, as we have shown, is on the same order of magnitude as observed trends.

Our results also provide some guidance on how to make MAGT trends more interpretable. If we are interested in understand-580

ing where permafrost change is happening faster or more slowly, groupings should account for both the ground conditions and

25

https://doi.org/10.5194/egusphere-2025-2658
Preprint. Discussion started: 6 August 2025
c© Author(s) 2025. CC BY 4.0 License.



some other indicator of the stage of warming. We show that Tza is a good candidate for this. The breakpoint in the Tza trend is

able to separate warming into two stages with statistically distinct trends in Hs and Hl. The performance of the Tza breakpoint

is superior to the traditional classification of warm permafrost (MAGT > -2 ◦C) which does not discriminate Hs trends in the

two stages. This is significant because Hs trends are strongly linked to temperature. This approach also has the advantage that585

Tza often requires only relatively shallow observations because dza becomes shallower as the borehole warms.

Current comparisons and aggregations of MAGT trends are most commonly grouped by region or permafrost zone. This

partially accounts for temperature and warming stage, but this is hampered by uneven and biased spatial sampling, particularly

in the discontinuous permafrost zone where permafrost temperature may still be strongly affected by surface conditions. In

these cases, more meaningful comparisons could be made by further subdividing datasets according to the ground conditions590

on a spectrum of ice content. However, such fine-scale subdivision may be limited by general lack of ground temperature data

and result in too few boreholes in each category to meaningfully compare.

6.3 Permafrost metrics as a climate indicator

Despite its application as a climate indicator, permafrost temperature change is complicated by the effects of latent heat and we

should expect permafrost warming rates to diminish as boreholes approach 0 ◦C. One possible solution is to consider using only595

boreholes with very little ice content, as would be expected in certain kinds of bedrock. Such an approach has been suggested

by Smith and Riseborough (1996), who recommend monitoring in exposed bedrock to obtain the most direct climate signal

from ground temperatures. Notably, bedrock sites are underrepresented in much of the permafrost monitoring data because of

difficult drilling conditions, and because permafrost impacts are often caused by thaw of ice-rich ground.

6.4 Temperature-dependence of dza trends600

Changwei et al. (2015) also show observations of reversing dza behaviour and explain this behaviour with an equilibrium model

(i.e., analytic heat conduction equation with a sinusoidal surface temperature variation). However, a limitation of this approach

is that the transition in correlation sign cannot be examined—their warm, deep-dza simulation only exists as a fully thawed

profile rather than one with dynamic behaviour. Our transient simulations show that this reversal can take place over several

years during which the dza changes very little and the sign of the correlation between dza and air temperature is undefined.605

This distinction is important because other studies report unidirectional (and conflicting) relationships between warming

trends and dza (e.g. Bonnaventure et al., 2015; Wang et al., 2022). An important next step in this approach to monitoring will

be developing additional criteria to more clearly delineate when a positive- or negative- correlation should be assumed.

6.5 Accelerated permafrost degradation and implications for monitoring

We observe accelerated degradation (lowering of TOP) in warm permafrost as it becomes isothermal and develops a supra-610

permafrost talik. Similar discrepancies have been described elsewhere. On the Tibetan Plateau, ALT deepening rates have been

shown to be greater in warm permafrost than in cold permafrost (Changwei et al., 2015). In discontinuous permafrost and
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peatlands, taliks have been described as giving rise to tipping-point behaviour and kicking off rapid degradation (e.g., Connon

et al., 2018; Devoie et al., 2019). We observe this phenomena across different stratigraphic types (Table B1) and climates,

representing a wide range of permafrost conditions. This pattern suggests a greater abundance of this tipping point behaviour615

than may have previously been considered.

Such rapid change could affect permafrost monitoring efforts by causing TOP to descend rapidly out of the measurement

range of existing thaw tube installations (O’Neill et al., 2023). This is also another example of how the magnitude of trend

rates for TSP metrics are more indicative of local conditions than of climatic forcing.

Certain TSP metrics may offer insight as to when this accelerated degradation may occur. In our simulations, it is preceded620

by the breakpoint in Tza and the halting of the dza shallowing trend. These can act as quantifiable indicators that permafrost is

in late-stage thaw and that subsequent talik formation and rapid degradation are imminent.

7 Conclusions and recommendations

We investigated the long-term behaviour of a suite of temperature-derived metrics as indicators of permafrost thaw.

Our results suggest that calculating multiple temperature-derived TSP metrics provides rich information for characterizing625

and understanding permafrost change, particularly in warm permafrost. In addition to MAGT, we recommend TOP, dza, τ̄ , and

MAGST as a parsimonious set of five metrics. The suitability of individual metrics as indicators of change varies through time

in the simulations. While most experience periods of time with no change—even as borehole latent and sensible heat contents

increase—the exact timing of these periods differs between metrics.

We find that a multi-metric approach to change monitoring makes it possible to identify and quantify change in isothermal630

boreholes during periods where MAGT and even ALT trends may be negligible. For example, in a sample of observational

data from the GTN-P database we observe strong dza trends in boreholes. These trends can exhibit a distinctly different signal

than either MAGT or ALT.

The impact of monitoring depth on MAGT trends is commensurate with both the magnitude and uncertainty of warming rates

reported elsewhere (e.g., Biskaborn et al., 2019; Smith et al., 2022). This effect exceeds 73% of trend values and is strongest635

in soil with little moisture content. This demonstrates the difficulty of interpreting permafrost warming trends in general and

should be taken into consideration when calculating uncertainty bounds for averages for zonal permafrost warming. Borehole-

averaged warming rates (thermal integrals) alleviate the challenge of comparability somewhat by averaging to a common

column depth. However, differences in the total integration depth still produce commensurate differences in observed rates of

change.640

Caution is advised when interpreting change in permafrost as a climate indicator because of the time- and material-dependent

response of many of the metrics to warming; wide variability in observed trends is possible even in the absence of differing

climate signals. Most metrics can be used as an indicator of warming vs. cooling but even the sign of the climate-metric rela-

tionship can change over time, as we show with dza and ALT. For MAGT, τ̄ , and dza, quantitative comparison and aggregation
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of trends from multiple locations or multiple times (acceleration and deceleration of change) likely produces results with no645

meaningful connection to heat gain or ice loss.

The relative lack of availability of ground temperature observations with sufficient duration, quality, and measurement fre-

quency to calculate these metrics points to a continued need to support the publication of permafrost data. Furthermore, the

long-term view afforded by our simulations can support considerations of improved instrumentation for permafrost monitoring.

For example, separate and movable thermistor chains with dense spacing near the permafrost table may help capture changes650

in TOP, and records of subsidence (Gruber, 2020) may inform estimates of excess ice loss. Similarly, methods of observing

and reporting ALT may benefit from adjustments to remain relevant even with talik formation.

28

Code availability. Newly developed code for calculating metrics is available as a Python package on PyPi (tspmetrics) and at gitlab.com/permafrostnet/tspmetrics.

We also use the TSP package which is available at gitlab.com/permafrostnet/teaspoon (Brown, 2022)
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Appendix A: Symbolic notation655

T temperature ◦C

t time days

z depth m

dza depth of zero annual amplitude m

Tza temperature at dza
◦C

TDD thawing degree days ◦C day

FDD freezing degree days ◦C day

τ̄ thermal integral ◦C

D̄ annual thaw-depth duration m3m−2

λs thermal conductivity of Wm−1 ◦K−1

soil particles

cs specific heat capacity of Jm−3

soil particles

H heat transfer coefficient Wm−2K−1

θsat Van Genuchten saturated m3m−3

water content

θres Van Genuchten residual m3m−3

water content

α Van Genuchten parameter m−1

n Van Genuchten parameter -

ϵ Excess ice content m3m−3

Appendix B: Model setup and validation

We use the model FreeThawXice1D (Tubini and Gruber, 2025; Tubini et al., 2021) to simulate ground conditions. This model

version represents the effects of ground subsidence caused by ice loss within the ground and accurately tracks zero-degree

isotherms via local mesh refinement.660

B1 Model input and initial conditions

The model is driven by meteorological forcing data obtained using GlobSim (Cao et al., 2019). This tool streamlines the

download of reanalysis data, interpolates grid cells to point-scale to make data suitable for 1D simulation, standardizes units

and timesteps, and performs heuristic downscaling to account for terrain and other local effects.
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Table B1. Stratigraphy definition for four simulation locations.

Stratigraphy depth cs λs θs θr n α ϵ

[m] [ J
m3 ] [ W

mK
] [ m3

m3 ] [ m3

m3 ] [-] [ 1
m

] [ m3

m3 ]

Rock 0–150 890 3.8 - - - - 0

Sandy till 0–1 1920 0.25 0.15 0.05 1 1.7 0

1–40 1011 1.6 0.35 0.05 0.65 1.67 0.2

40–150 890 3.8 0.015 0.005 4.06 2.03 0

Icy sediments
0–20 890 3.8 0.015 0.005 4.06 2.03 0

20–150 890 3.8 0.015 0.005 4.06 2.03 0

Excess ice
0–1 1920 0.25 0.15 0.05 1 1.7 0

1–60 1011 1.6 0.35 0.05 0.65 1.67 0.2

60–150 1011 1.6 0.35 0.05 0.65 1.67 0

Heterogeneous

excess ice

0–1 1920 0.25 0.15 0.05 1 1.7 0

1–1.75 1011 1.6 0.35 0.05 0.65 1.67 0.05

1.75–2 1011 1.6 0.35 0.05 0.65 1.67 0.8

2–60 1011 1.6 0.35 0.05 0.65 1.67 ...∗

60–150 1011 1.6 0.35 0.05 0.65 1.67 0

Values chosen based on (Dall’Amico et al., 2011; Tubini et al., 2021)

*: Alternating values of 0.05 and 0.8 are repeated using the same distribution as the second and third layers

We use data from the ERA5 reanalysis to create three sets of meteorological forcing data (1980–2022). One is for Yel-665

lowknife, Canada (62.45◦N, 114.4◦W), one is for a area near Lac de Gras, Canada (64.7◦N, 110.4◦W), and the last one is for

Tombstone Territorial Park in Yukon, Canada (64.56◦N, 138.43◦W).

For model spin-up, we repeat the first three years of input data. First, the model is run for 300 years with a 40 m total depth.

Next, the deep temperature is extrapolated to 150 m using the geothermal heat flux. The remaining model runs use the 150 m

total depth.670

Future conditions are simulated by repeating the last 5 years of input data and changing values using climate projections

from Climatedata.ca (Cannon et al., 2015) based on the SSP5-8.5 scenario. We calculate the change in projected annual mean

temperature for an arbitrary year relative to the final year of reanalysis data and add this difference to the corresponding year

of input data. To simulate different ground conditions, we create five distinct stratigraphies (Table B1).

B2 Atmosphere-ground coupling675

The effects of surface conditions and surface cover such as vegetation and snow are represented with the heat-transfer coeffi-

cientH [Wm−2K−1]; for a medium of finite thickness such as a snow pack,H would be derived as a thermal transmittance. In
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Figure B1. R-value of a snow layer with 1 mm water equivalent, computed with a relationship of snow density and effective conductivity

(Fourteau et al., 2021, Eq. 18 for 263K).

equilibrium, it is the inverse of thermal resistance and with oscillating temperature conditions, it may be reduced due to tem-

porary storage and release of heat by the medium characterised (Tubini and Gruber, 2025). During summer, we use a constant

value, Hs and during winter, it is parameterized as a function of the daily snow water equivalent Hw.680

Snow-water equivalent (SWE [m]) is computed from daily accumulation and ablation. Snow is accumulated at the rate of

daily precipitation for days with a mean air temperature below a threshold of 2.8 ◦C (e.g., Kienzle, 2008). Snow melts based

on a degree-day model (e.g., Rango and Martinec, 1995) whereby SWE is lost at a rate of 3 mm K−1day−1 when mean daily

air temperature is above 0 ◦C.

Snow thermal transmittance is computed from SWE, a proportionality coefficient γ [Wm−3K−1] translating SWE into an685

R-value, and an aging function β [days] reflecting densification over time t [days]. To ensure Hw does not become large

without bound as the snowpack thins, we also impose a maximum value (Hmax) which is also used for snow-free conditions:

Hw(SWE) = max(
1

(SWE) γ (1− t
β )

,Hmax). (B1)

The coefficient γ has a physical basis for individual snow layers (Fig. B1) and is extended here as a parameter characterizing

an entire snow pack. In representing for example, taiga and tundra snow packs, γ will parameterize typical conditions such as690

density and the effect of layering.
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B3 Model calibration

To calibrate the simplified snowpack model, we compare model results to ground temperature observations and adjust pa-

rameters to ensure that the results are plausible. We use observational data from borehole NGO-DD-2015, a study site in the

Northwest Territories located at (64.703 ◦N, 110.440 ◦W) (Gruber et al., 2018b, c).695

B4 Simulation

Using the input data described above, the model is spun-up from an initial temperature of -3 ◦C using repeated data (1980–

1982), then run until 2100. For the purpose of evaluation, we use output for the period 2016–2021 at which time observations

are available. For testing the thaw metrics, we use output for the period 1980–2100.

A set of simulated temperatures are recorded at depths corresponding to the recommended sensor spacing from the PACE700

Project (Harris et al., 2009) up to a depth of 15 m (i.e., at 0.2, 0.4, 0.8, 1.2, 1.6, 2, 2.5, 3, 3.5, 4, 5, 7, 9, 10, 11, 13, 15, 20, and

25 m). In practice, few monitoring locations will have this level of instrumentation.

B5 Model Evaluation

Using our simplified snowpack model, we are able to replicate the ground temperature observations reasonably well (Figure

B2), corresponding with our intent of generating plausible transient ground-thermal regimes. There is some deviation from705

observations, notably in 2021, although we primarily attribute this to the ERA5 data overestimating winter precipitation or air

temperature. Our calibrated snow parameters are (β = 365 days, γ = 20 Wm−3K−1, Hmax= 15 Wm−2K−1).

B6 Plausibility of simulated trends

We compare our simulation results with observed warming rates. These results are not intended to be interpreted as predictions

of future permafrost warming. Rather, we perform this evaluation to ensure simulations are plausible in comparison with710

observed behaviour. First, we estimate yearly warming rates for MAGT at 13 m (Figure B3).

Warming rates in our simulations are distributed with a peak near 0 ◦C dec−1 and the majority of values between 0 and

0.6 ◦C dec−1. These values include the means and confidence intervals for average warming rates reported by Biskaborn et al.

(2019). Smith et al. (2022) reports maximum observed warming rates of between 0.7 and 0.9 ◦C dec−1 in various high-latitude

regions of continuous permafrost. These values are also consistent with our simulations, although some of our simulations715

exhibit periods with greater warming rates; we attribute these to both the nature of the bedrock simulations, which have little

water to buffer temperature changes, and to the fact that we are simulating a much longer period which extends well into the

future with a moderately strong warming trend. We also observe some negative warming rates which we also attribute to our

bedrock simulations which are both more susceptible to short-term temperature changes and under-represented in permafrost

monitoring. The peak of the histogram corresponds to warming rates near 0 ◦C. Low warming rates (<0.1–0.3 ◦C dec−1) are720

commonly observed in zones of warm permafrost (Smith et al., 2022). The relatively higher proportion of periods with such
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Figure B2. (a) Comparison of simulation results (dashed lines) with observations (solid lines) at selected depths (b) Comparison of simulated

ground surface temperature (red) with observed mean ground temperature (black line) for 4 sensors in a 15m x 15m study plot. Grey shaded

polygon shows total range. (c-h) Comparison of simulated (dashed line) and observed (solid line) temperature profiles for 2016–2021.

low rates in our simulations is also attributed to the long simulation duration and the eventual development of near-isothermal

conditions in the ground for simulations with high ice contents.

Appendix C: Emulating typical sensing systems

In generating degraded data sets for emulating typical sensing systems (Table C1), we account for accuracy, drift, and pre-725

cision for each sensor (simulation output depth). Accuracy limitations are modeled as a constant bias drawn from a uniform

distribution (± 0, 50, 150 mK). Drift is modeled as a linear trend with a slope drawn from a uniform distribution (± 0, 1, 10

mK yr−1). Precision is modeled as temporally uncorrelated normally distributed random noise (σ=0, 10, 50 mK).

Sensor accuracy of commercial systems is commonly self-reported between ±0.005 and ±0.4 ◦C. Hasler et al. (2011)

estimate relative sensor accuracy to be within ± 0.3 ◦C.730

Sensor drift is reported by manufacturers between 0.002 and 0.1 ◦C yr−1, whereas studies under laboratory conditions give

much lower rates (Lawton and Patterson, 2002). However, drift is thought to also be caused by water ingress and corrosion un-

der field conditions or by the aging of reference resistors in logging systems. Nonlinear drift has been reported in observations;
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Figure B3. Histogram of warming rates at 20 m as a percentage of all possible 10-year observation windows all years across all simulations.

Red intervals correspond to the mean (midpoint) and confidence interval of warming rates reported by Biskaborn et al. (2019) for different

permafrost zones. Blue intervals correspond to ranges of warming rates reported in Smith et al. (2022) for different permafrost zones.

Boike et al. (2018) observe a jump of 0.5 ◦C over the course of a year following two years of stability and Luethi and Phillips

(2016) report that drifts increase exponentially with time.735

Sensor resolution (precision) reported by manufacturers ranges from 0.05 mK to 63 mK. This value determines the smallest

detectable change using the sensor. Widmer et al. (2023) estimated an average noise standard deviation for sensors around 5

mK (digital band-gap) and 0.03 mK (analog resistance thermistor). Batir et al. (2017) measured standard deviations around 14

mK for deep, thermally-stable sensors.

Appendix D: Determination of exact active-layer thickness from model output740

The definition of the active layer can be based on phase (frozen or thawed) or temperature (cryotic or non-cryotic). As the

determination of the former is more complicated and ambiguous we rely on thermal criteria to delineate the active layer.

The model FreeThawXice1D tracks and records the position of the zero-degree isotherms in the soil column. However,

some post-processing is necessary to estimate the location of the active layer from this data (see example results in Fig. D1).

Difficulties arise due to possible existence of a supra-permafrost talik, the occurrence of additional zero-degree isotherms745

within the active layer, and the discontinuity of the isotherms. Our procedure for estimating ALT from the model results is as

follows and uses height above a fixed datum rather than depth below the surface in its calculations.

34

https://doi.org/10.5194/egusphere-2025-2658
Preprint. Discussion started: 6 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Table C1. Sensor accuracy, resolution, and drift from manufacturer websites.

Accuracy Resolution Drift

[mK] [mK] [mK yr−1]

CS2251 200 (400∗) 7.8

TNode2 100 10 20

TNodeHD2 50 0.1 10

U23-001A3 250 40 10

U23-0033 210 20 100

Concerto3Tx4 5 0.05 2

1. https://campbellsci.ca/cs225

2. https://thermistor-string.com/index.php/string-features#specs

3. https://onsetcomp.com/products/data-loggers/u23-004

4. https://rbr-global.com/products/standard-loggers/thermistor-strings/

All web links last accessed October 1, 2024
∗ Worst-case scenario including lifetime drift

Each year is treated individually. First, we determine the vertical extent of the permafrost using the model output data. If

there are no depths at which the temperature is consistently below 0 ◦C, the ALT is undefined. Otherwise, we move on to the

next step: determining whether there is an instant at which there are no isotherms above the permafrost. If this is the case, then750

the existence of a supra-permafrost talik is ruled out and the isotherm immediately above the permafrost is used to determine

the thaw depth. If a talik cannot be ruled out, a final test is used. The maximum height of the first isotherm directly above

the permafrost is compared with the minimum height of the isotherm above it. The region in between these two isotherms

will be non-cryotic (and thawed). If this region has a finite thickness for the entirety of the year, that is taken as evidence of

a supra-permafrost talik, and the second isotherm above permafrost is used to determine ALT. Otherwise, the first isotherm755

above permafrost is used.

A running 365-day minimum of the appropriate isotherm is calculated, and its value on the last day of each year is used as

the exact ALT. In our analyses, it is used for comparing differing ways of interpolating ALT from T (z, t) data.

Appendix E: Estimating dza

The estimation of dza can be done in several ways, but each has its own challenges. The most straightforward is to first calculate760

the annual amplitude at each sensor using the annual maximum and minimum temperatures, then identify the two sensors on

either side of the 0.1 ◦C cutoff, and finally estimate dza by linear or nearest-neighbour interpolation.

Unfortunately, this approach is not possible when observations are not sufficiently deep. Instead, the estimation of dza by

regression as described by (Bonnaventure et al., 2015) is a useful alternative. However, variation in apparent thermal diffusivity

with depth will reduce the accuracy of the regression. Furthermore, the higher density of thermistors near the surface creates a765

bias towards near-surface values.
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Figure D1. Example of the estimation of ALT from simulated zero-degree isotherms (blue lines) and from T (z, t) model output alone (red

and orange lines). This method is able to discriminate the development of supra-permafrost taliks, as shown in the years 2036–2038. However,

results occasionally differ from what is expected using a purely visual inspection. For example in 2019 and 2021, the penetration depth of

that year’s thawing isotherm is much shallower, but because our method uses a 365-day rolling window (consistent with the definition of the

active layer), the ALT for that year is relatively unchanged due to the presence of frozen ground at a greater depth in during freezeback of

the previous year.

One possible solution is to modify the method of Bonnaventure et al. (2015) to use weighted regression. In this method,

each (depth, amplitude) observation would be given a weighting inversely proportional to the difference between the observed

amplitude and the "zero-amplitude" value of 0.1 ◦C. For example, weights could be calculated as

wz =
1

k + |Az − 0.1| (E1)770

Where Az is the amplitude at depth z, k is a constant controlling how strongly the weights diminish away from dza. A

strongly attenuating weighting function (small k) would more closely approximate the straightforward interpolation approach

but would also work when data were missing below dza.

However, we identify three additional challenges associated with the initial calculation of amplitudes at greater depths: (1)

warming trends obscure small amplitude estimates, (2) phase offsets are not consistent and, (3) inter annual variability. More775

specifically, for small amplitudes at greater depths, warming trends impact the amplitude estimates. For example, a warming

rate of 1 ◦C dec−1 can result in an increase of up to 25% in the estimated amplitude near dza. Similarly, amplitudes are not

always well-defined for air and ground temperature because the rising and falling limbs of the seasonal oscillation are unequal
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due to the inter-annual variation in the mean and amplitude of surface air temperature. Finally, for a given yearly averaging

window, amplitudes at depth have larger phase offsets than at the surface and therefore correspond to different periods. The780

timing of the annual extrema may differ between these periods, and it is difficult to ensure that a yearly amplitude estimates

corresponds to the same surface signal at all depths.

Evaluating the various methods of calculation for dza is beyond the scope of this article. However, developing an optimal

strategy to reduce noise and increase dza accuracy should be considered as a logical next step for the development of this

metric as an indicator of permafrost change.785
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