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Abstract

This study investigates the predictability of rainfall  over Equatorial  Africa (EA)
and evaluates the forecasting performance of the European Centre for Medium-Range
Weather Forecasts fifth-generation seasonal forecast version 5.1 (ECMWF-SEAS5.1) for
the September–November (SON) periode during 1981–2023 (43 years).  The analysis
considers  two  lead-times,  focusing  on  initial  conditions  (ICs)  from  September  and
August. Regression, spatiotemporal and composite analyses are applied to highlight
the  relationship  between  extreme  precipitation  events  over  EA  and  the  various
associated atmospheric circulation drivers. The analysis reveals that ECMWF-SEAS5.1
successfully reproduces the observed annual precipitation cycle and seasonal spatial
pattern of rainfall over the region for both ICs, with notably better skills for September.
In addition, the model effectively captures the teleconnections between EA rainfall and
tropical  sea  surface  temperature,  including  the  Indian  Ocean  dipole  and  El  Niño-
Southern Oscillation, for both ICs. Regions with highest potential predictability skills
coincide with regions where the model accurately represents strong (weak) composite
rainfall  anomalies,  associated  with  strong  (weak)  moisture  flux  convergence
(divergence) values, although the magnitude tends to be underestimated. However,
other important observed features, such as the components of the African easterly jet,
are well  represented by the model for the September IC, but not for August. While
many atmospheric mechanisms driving precipitation in the region are well simulated,
their underestimation likely explains the model’s general tendency to underestimate
the magnitude of extreme rainfall events. The results of this study support efforts to
improve forecast outputs in the national national weather services across the region by
integrating ECMWF model outputs into operational weather bulletins.
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1. Introduction

As  Equatorial  Africa  (EA)  experiences  several  extreme  precipitation  events
during the September to November (SON) period (Moihamette et al., 2022; Gudoshava
et al., 2022a; Kenfack et al., 2025; Nana et al., 2025), long-term seasonal precipitation
forecasting is essential for effective anticipation and adaptation measures (Tanessong
et  al.,  2017).  Forecasting precipitation over  the entire  EA remains a  persistent  and
complex  challenge  (Tanessong  et  al.,  2013),  which  is  far  from  being  adequately
addressed,  despite  advances  in  numerical  weather  and climate  prediction systems.
General circulation models are commonly employed by international meteorological
centers for seasonal forecasts (Saha et al., 2014), and regional studies have assessed
their  quality  at  different  time  scales  (e.g.  Feudjio  et  al.,  2022;  Nana  et  al.,  2024;
Tanessong et al., 2024, 2025). However, the ability to forecast precipitation over the EA
needs  to  be  significantly  enhanced  to  meet  the  growing  needs  of  the  region's
populations.  The inherent  physical  limitations of  these models,  which contribute to
major uncertainties, often restrict their seasonal forecasting capabilities. These model-
specific errors are particularly pronounced in equatorial Africa due to the sparse data
density and limited understanding of the region’s climate (Tanessong et al., 2017).

A  number  of  recent  investigations  have  provided  detailed  analyses  of  the
meteorological conditions responsible for extreme flooding or drought events in EA
regions and their predictability (e.g. Mwangi et al., 2014; Ehsan et al., 2022; Nana et al.,
2024; Gudoshava et al., 2022b). These studies found that EA rainfall variability is mainly
associated  with  several  factors,  including  easterly  and  westerly  waves,  tropical
cyclones, the Madden-Julian Oscillation (MJO) and sea surface temperature (SST) in the
Atlantic, Indian and Pacific oceans. For example, Nana et al. (2024) demonstrated that
the ability  of  seasonal  forecast  models  to  predict  rainfall  anomalies  occurring over
western EA during extreme South Atlantic Ocean Dipole (SAOD) events depends on
their skill in forecasting the relationship between rainfall and SAOD, which decreases
with  increasing  lead time.  Their  results  showed that  the ECMWF seasonal  forecast
system 5  (SEAS5)  model  best  captures  this  relationship  and  the  associated  rainfall
anomalies, a finding also supported by Tanessong et al. (2025). Similarly, Mwangi et al.
(2014) evaluated SEAS5 products against data from ten East African stations and found
significant forecasting skill for both rainy seasons, with better performance in October–
December (OND) compared to March–May (MAM). The ability of the SEAS5 model to
simulate the drivers of extreme rainfall during MAM 2018–2020 over eastern EA has
been analyzed by Gudoshava et al.  (2024). The findings of this study indicate that the
heavy  rainfall  events  of  March–May  2018  and  2020  coincided  with  an  active  MJO
(Phases 1–4)  or a tropical  cyclone east  of  Madagascar.  In  contrast,  the low rainfall
observed  during  the  same  period  in  2019  was  linked  to  tropical  cyclones  west  of
Madagascar. Their study also concluded that underestimation of these extreme rainfall
intensities  was  linked  to  inaccurate  MJO  forecasts  and  errors  in  tropical  cyclone
location and intensity. Likewise, Tefera et al. (2025) have shown that the SEAS5 model is
able  (during  the  first  two  lead  times)  to  capture  the  link  between  hydroclimatic
extremes in East Africa and the co-occurrence of IOD and ENSO modes. For the June–
September (JJAS) season, the findings of  Ehsan et al.  (2022) establish that  the spatial
and temporal patterns of observed EA rainfall variability,  as well as the key climatic

3

5

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

6

https://doi.org/10.5194/egusphere-2025-2656
Preprint. Discussion started: 25 August 2025
c© Author(s) 2025. CC BY 4.0 License.



features that drive EA precipitation excesses and deficits, are successfully captured by
the SEAS5 model, when initialized in May and April.

During the September–November period, the equatorial Africa’s rainfall system
is influenced by local (Pokam et al., 2013), regional (Kuete et al., 2019; Longandjo and
Rouault 2020) and large scale (Pokam et al., 2014; Nicholson 2015) factors. Among the
large-scale drivers, SST variability in Pacific, Indian and Atlantic oceans plays a crucial
role  in  interannual  rainfall  variability  (Nicholson  2015).  Motivated  by  this,  several
studies  have  investigated  the  influence  of  major  climate  modes,  including  ENSO
(Preethi et  al.,  2015;  Roy et  al.,  2024),  the IOD (Palmer et  al.,  2023),  and the South
Atlantic  Ocean  (SAO;  Nana  et  al.,  2023).  Behera  et  al.  (2005) identify  a  positive
relationship  between  rainfall  anomalies  over  western  EA  and  both  IOD  and  ENSO
phases. Accordingly, years  marked by the simultaneous occurrence of a positive IOD
and strong El Niño, such as 1997 and 2023, experienced significant heavy precipitation
across East African regions (Okoola et al., 2008; Nana et al., 2025). Furthermore, Ingeri
et al. (2024) found that excess rainfall over eastern EA countries (mainly Kenya, Uganda
and Tanzania) is associated with positive SST anomalies over the eastern equatorial
Atlantic. Over western EA, the October–November climate system is further influenced
by the Indian Ocean through its  teleconnection with the eastern equatorial  Atlantic
(Moihamette et al.,  2022). Therefore, the occurrence of extreme SON rainfall events
over EA likely results from the convergence of several key factors: SST anomalies in the
Atlantic,  Pacific  and  Indian  oceans,  the  state  of  zonal  and  Walker  atmospheric
circulations, African Jets and the patterns of moisture transport and convergence.

This study aims to evaluate the ability of the SEAS5 version 5.1 (SEAS5.1, Johnson
et al., 2019) to simulate extreme rainfall events over EA during the SON season, based
on  forecasts  initialised  in  September  and August.  The ECMWF-SEAS5.1  model  was
selected  in  this  study  due  to  its  proven  ability  to  simulate  key  global  climate
teleconnections,  including  ENSO and  the  IOD (Nana et  al.,  2024;  Tanessong et  al.,
2025), which strongly influence rainfall  over Equatorial  Africa (Nana et al.,  2025). Its
superior ability compared to other models, to reproduce regional atmospheric features
(Tanessong et  al.,  2025)  makes  it  a  suitable  choice  for  evaluating seasonal  rainfall
predictability in this region. The article is organised as follows:  Section 2 details the
SEAS5.1 model, the observational and reanalysis datasets, and the methodology used
in this study.  Section 3 presents the model skills assessment. Section 4 examines the
extreme rainfall and associated SST pattern through rainfall composites, while section
5 focuses on the atmospheric  circulation patterns. Finally,  section 6 summarizes and
concludes the paper.

2. Data and methods
       2.1. SEAS5.1 re-forecast and observational datasets
        

In this study, we use re-forecast data from version 5.1 of the ECMWF seasonal
prediction system (SEAS5.1), initiated on the 1st of September or the 1st of August for
the  period  1981–2016,  with  25  ensemble  members.  Our  analysis  focuses  on  the
September–November  (SON)  season,  considering  two  initial  conditions  (ICs):
September  1st  (Lead-0)  and  August  1st  (Lead-1).  Monthly  mean  data  are  used
throughout. To extend the study period, we include forecasts for 2017–2023, using the
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first  25  ensemble  members  with  the  same initialization  dates,  ensuring  each  sub-
period contributes equally  to the analysis.  This results in a total  of 43 years (1981–
2023),  with  25  ensemble  members  per  year.  A  comprehensive  explanation  of  the
ensemble generation strategy of SEAS5.1 can be found in Johnson et al. (2019). These
data  are  available  from  the  Copernicus  Climate  Data  Store  portal
(https://climate.copernicus.eu/datasets)  at  a  spatial  resolution  of  1°  ×  1°.  The  data
include  monthly  means  of  total  precipitation  (mm  day-1),  SST  (K),  Mean-Sea-Level
Pressure  (MSLP;  hPa),  zonal  and  meridional  wind  components  (m s-1),  and  specific
humidity (Kg Kg-1) at seven pressure levels (1000, 925, 850, 700, 500, 400, and 300 hPa).

As precipitation reference in  this  study,  observed monthly  precipitation data
from the Climate Hazards Group Infrared Precipitation with Station data (CHIRPS; Funk
et al., 2015) at 0.25° × 0.25° horizontal grid spacing are adapted. Following Dinku et al.
(2018), CHIRPS has been shown to feature a good relationship with station data over
eastern EA at  the monthly time-scale,  outperforming other satellite-based products
such  as  Tropical  Applications  of  Meteorology  using  SATellite  and  ground-based
observations  (TAMSAT)  and African Rainfall  Climatology version 2 (ARC2).  Observed
SSTs are obtained from  version 5 of Extended Reconstructed SST (ERSSTv5; Huang et
al., 2017) at a 2° × 2° resolution. For additional validation, we evaluate the seasonal
climatologies of atmospheric circulation from SEAS5.1 against the fifth generation of
European Re-Analysis (ERA5;  Hersbach et al.,  2020) dataset, at a horizontal (vertical)
grid spacing of 0.25° × 0.25° (37 pressure levels from 1000 to 1 hPa). ERA5 was chosen
based  on  its  demonstrated  ability  to  represent  SON  extreme  events  and  their
associated dynamics and thermodynamics over East Africa (Gleixner et al., 2020; Cook
and Vizy, 2021). For consistency in comparison,  both observed and reanalysis datasets
are regridded to a 1° × 1° horizontal resolution and to seven pressure levels (1000, 925,
850, 700, 500, 400, and 300 hPa).

        2.2. Methods

The  model’s  Potential  Predictability  (PP)  is  estimated  as  the  ratio  between
external (σ Ext) and internal variance (σ∫¿¿), following the methodology of  Rowell et al.
(1995) and Kang and Shukla (2006). The external variance (also referred to as the signal
variance)  represents  the  variance  of  the  ensemble  mean anomalies,  while  internal
variance (or noise variance) corresponds to the average variance of the deviations of
individual ensemble members from the ensemble mean. These quantities are obtained
through the following calculations:

σ Ext=
1

N −1∑i=1
N

(Pi−P̄ )2 (1)

σ Inte=
1

N (N −1 ) ∑i=1
N

∑
j=1

n

(P ij−Pi )
2 (2)
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Pi=
1
n∑j=1

n

P ij (3)

P̄= 1
Nn∑i=1

N

∑
j=1

n

Pij (4)

PP=
σ Ext
σ Inte

(5)

where  Pij is the model rainfall,Pi is the ensemble mean for the  ith year and  P̄ the
climatology mean of all data, with i = 1, 2, …., N (N= 43,  the number of years) and j = 1,
2, …., n (n= 25, the ensemble size).

This analysis uses two SST indices: the Niño 3.4 index (N34) and the Dipole Mode
Index (DMI).  The N34 index, used as a proxy for the ENSO, is defined as the area-
averaged SST anomaly over the region 5° S–5° N, 170°–120° W (Trenberth, 1997). The
DMI  (Saji  et  al.,  1999),  which  represents  the  IOD,  is  calculated  as  the  difference
between the area-averaged SST anomalies in the western Indian Ocean (WIO; 10° S–
10° N, 50°–70° E) and the eastern Indian Ocean (EIO; 10°S-0° N, 90°–110° E).

To compute the composite anomalies, we subtract the 1981–2023 climatological
mean from the composites of strong or weak events, for both the model forecasts and
the  observational  data.  To  capture  the  variability  of  monthly  rainfall  over  EA,  the
probability  density  function  (PDF)  based  on  the  Gamma  distribution,  identified  by
Husak et al.  (2006) as particularly  appropriate for representing the asymmetric and
limited nature of precipitation data, is employed. In this study, it is used to illustrate
how  the  model,  as  well  as  the  observations  and  reanalysis,  represents  the
characteristics  of  both extreme and mean SON season rainfall  over  EA  during  the
1981–2023 period. This distribution can be expressed as follows:

f (Pi )=
1

βα Γ (α )
Pi
α −1 e−Pi /β for Pi>0 (6)

where  > 0 is the shape parameter, β > 0 is the scale parameter, ⍺ Pi denotes the rainfall
amount, and Γ(α) is the Gamma function.

Using  the  specific  humidity  (q)  and  horizontal  wind  vector  (V)  over  the
atmospheric  column  (1000-300  hPa),  environmental  conditions  for  extreme  rainfall
events are also analysed through an assessment of moisture flux convergence ·(qV).∇
This  quantity  can  be  further  decomposed  into  moisture  convergence  (q ·V)  and∇
moisture advection (V· q),  respectively, following the formulation presented by ∇ Cook
and Vizy (2021) and Kolstad et al. (2024), as described by the following equation:

⟨ ∇ ⋅ (qV ) ⟩= ⟨q∇ ⋅V ⟩+ ⟨V ⋅∇q ⟩ (7)
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where V denotes the horizontal wind and q represents the specific humidity. The angle
brackets “⟨ ⟩” signify the vertical integral from the surface (1000 hPa) to the top (300
hPa) of the atmosphere column.

Based on the CHIRPS dataset, extreme SON season rainfall over EA (8°-50° E; 10°
S-10°  N)  were  identified.  The  EA  rainfall  Index  (EAI)  is  defined  by  averaging  the
observed SON rainfall anomalies over EA and normalizing by their standard deviation.
Strong (weak) years are defined as those in which the EAI is greater (less) than +1 (-1)
standard deviation. Positive and negative composites analyses were then performed
based on the years identified as strong and weak, respectively. Note that the same set
of years was used for all observational, reanalysis, and model variables. For Pearson
correlation/linear  regression  and  composite  anomaly  analyses  of  rainfall  and  SST,
statistical significance was determined using a standard two-tailed Student's t-test to
estimate  p-values.  A  5%  significance  level  was  applied  throughout,  with  results
considered statistically significant if p < 0.05.

3. Model skills assessment
      3.1.   SEAS5.1 prediction of EA rainfall mean and variability

In  this  section,  the  model's  ability  to  predict  both  monthly  and  SON
season  precipitation  climatology  is  investigated.  Figure  1 illustrates  the  annual
precipitation cycle (Fig. 1a) and the precipitation fraction (Fig. 1b-d) from the CHIRPS
dataset and the two lead-times of SEAS5.1. Overall,  the model captures the CHIRPS
annual  rainfall  cycle  reasonably  well,  with  a  slight  wet  bias  (0.2  to  0.6  mm  day-1)
throughout the year for September IC or 0-month lead-time (L0 hereafter), except in
July, similar to findings by  Attada et al.  (2022) over India. For August IC or 1-month
lead-time (L1 hereafter), the model shows a wet bias (0.5 to 1.5 mm day -1) from January
to March and July to September, and a dry bias (0.3 to 1 mm day-1) during April to May
and November to December. At L1, the model fails to reproduce the observed rainfall
peaks during March–May (MAM) and September–December (SOND) periods, unlike L0,
which simulates them well. Notably, CHIRPS as well as the model at L0 both indicate
rainfall peaks in April and October, while at L1, the model incorrectly shifts these peaks
to March and September, respectively. During SON, the highest observed precipitation
fraction (Fig. 1b) occur over the eastern part of EA (45–60 %), mainly over southern
Ethiopia, eastern Kenya and Somalia, as well as over Gabon and southern Cameroon
(40–45 %). Conversely, values drop below 20 % over Tanzania and northwest of Kenya.
This is consistent with findings by Gudoshava et al. (2022a,b), who also showed strong
(weak)  rainfall  contributions  over  southern  Ethiopia,  eastern  Kenya  and  Somalia
(Tanzania and northwestern Kenya). The precipitation fractions forecasted at L0 and L1
(Fig. 1c,d) align with the observed maximum percentages of total annual precipitation
occurring over eastern EA,  though the model  underestimates (overestimates)  at  L0
(L1).  Over  western  EA,  SEAS5.1  slightly  overestimates  (underestimates)  the
precipitation percentage over the CB (Gabon and Equatorial Guinea) at L0, while at L1,
it  significantly  overestimates  (underestimates)  rainfall  contribution  over  southern
(northern) parts of EA.
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These results are consistent with the SON rainfall bias shown in Fig. S1a,b. At L0,
the model shows a positive rainfall bias of around 3 mm day -1 and negative rainfall bias
of around -1 mm day-1 over the CB (Gabon and Equatorial Guinea). In contrast, a larger
positive bias (4 mm day⁻¹) in the southern region and a substantial negative bias (–4
mm  day⁻¹)  in  the  north  are  observed  at  L1.  These  findings  indicate  that  SEAS5.1
performs better in simulating SON rainfall  climatology over eastern EA, where both
simulated error and absolute bias are less than 1 mm day⁻¹ at both lead-times (Fig. S1)
compared to western EA. Furthermore, performance is generally better at L0 (bias and
error around 1 mm day⁻¹) than at L1 (around 4 mm day⁻¹).

Fig 1: a) EA rainfall annual cycle comparing CHIRPS observation (red bar) and SEAS5.1 over the
period 1981-2023. The gold bar (black line) indicates the Lead-0 (Lead-1) of the 25 ensemble
members. Precipitation fraction [EA (SON/Annual, in %] for b) observation, c) Zero-month lead
(Lead-0) model, and d) One-month lead (Lead-1) model. The red boxes in b), c) and d) indicate
the EA boundaries.

In  addition  to  the  predicted  skill  assessment,  the  spatial  distribution  of  the
linear  correlation  coefficient  (CC)  between  observed  and  simulated  precipitation  is
shown in  Figure 2a,b to determine the strength of SEAS5.1 to simulated SON rainfall
over EA (Nana et al., 2024). The CC value varies between - 1 and 1, where values near 0
means no predictive skill, and  values approaching 1 indicate good skill. At both lead-
times, a large portion of EA features strong significant and positive correlations, except
over the CB, Central African Republic (CAR) and southern Cameroon. These areas with
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positive and significant (low and non-significant) correlation values coincide with areas
where the model bias and RMSE values are low and even null  (strong). Overall,  the
model skills are better at L0 compared to L1 across the region, in accord with Tefera et
al.  (2025) conclusion.  To further  investigate the relationship between observed and
predicted  EA  precipitation,  Fig.  2c,d shows  the  scatter  plot  between  CHIRPS  and
SEAS5.1 EA rainfall at L0 (Fig. 2c) and L1 (Fig. 2d). The red lines indicate the prediction
interval  (PI),  while  green lines  indicate the confidence interval  (CI).  At  L0,  the data
points, as well as the PI and CI are closer to the regression line, reflecting the strong
relationship shown in  Fig.  2a and the low simulated errors.  Notably,  the CI  clearly
widens as precipitation values deviate from the CHIRPS mean, indicating increasing
uncertainty in the true mean as we move away from the CHIRPS mean. The PI also
widens, but much more than the CI for any CHIRPS value. In contrast, at L1 (Fig. 2d),
the data points are more dispersed, and both the PI and CI are further away from the
regression line, which is also somewhat flatter than in at L0. This finding is consistent
with the low CC values observed in Fig. 2b. Similar results were reported by Ehsan et al.
(2021), who also shows that the CI (linear regression line) between June-to-September
Ethiopian and SEAS5 precipitation moves away from the linear regression line (bit flat)
as lead-time increases.

Fig 2: Spatial  distribution of  correlation coefficient  (CC)  between observation and ensemble
mean precipitation data initialized in a) September, and b) August respectively. The stippling
occurs  where  the  correlation  coefficient  is  statistically  significant  at  95%  confidence  level
through the Student's t test. Joint plot (scatter plot) between observed (CHIRPS) and predicted
(SEAS5.1) EA rainfall for c) September and d) August starts for 1981-2023. Blue line is the linear

9

17

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

351

352

353
354
355
356
357

18

https://doi.org/10.5194/egusphere-2025-2656
Preprint. Discussion started: 25 August 2025
c© Author(s) 2025. CC BY 4.0 License.



regression line, red (green) lines indicate the 95% prediction (confidence) interval of the model.
The red boxes in a) and b) indicate the EA boundaries.

The spatial distribution of both external (first row) and internal (second  row)
variances  along with  the  ratio  (third  row)  of  these two quantities,  at  L0  and L1  is
represented in  Fig. 3.  The maximum external  variance values (Fig. 3a,b) occur over
western and eastern parts of EA at L0, with values around 1.5 mm2 day-2 over eastern
Kenya  and  Somalia.  However,  at  L1,  we  observe  a  decrease  in   external  variance,
mainly over western EA, where many areas (Cameroon and Gabon) exhibit values less
than 0.2 mm2 day-2. For the internal variance (Fig. 3c,d), the highest values occur at L1,
and focus over Gabon, northern Angola, western Kenya and southern Tanzania. Then,
the PP,  as the ratio between external  and internal  variances is  strong over coastal
regions, higher at L0 (Fig. 3e) compared to L1 (Fig. 3f). These maximum values (around
3.8 at L0 and 1.3 at L1) occur where internal variance is dominated by the external
variance. It is noteworthy that these high values are obtained over the tropical oceanic
region (Eastern and south-western EA) where precipitation is strongly modulated by
the tropical SST, in line with the findings of  Kang and Shukla  (2006). These analyses
show that the model performs well in simulating precipitation over the region, mainly
over East Africa, Gabon and the western Republic of Congo. This performance is better
at L0 than at L1 (Tefera et al., 2025). However, although the model performs well in
forecasting precipitation over the region during the first two lead-times, it is important
to assess its ability to predict the relationship between this precipitation and its main
drivers, the SSTs over the Indian and Pacific Oceans (Moihamette et al., 2022; Roy and
Troccoli 2024). The following section concerns the ability of SEAS5.1 to represent the
observed teleconnection.
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Fig 3: (a-b) External, (c-d) internal variances, and (e-f) PP for SON EA rainfall, for (first column) L0,
and (second column) L1 respectively. The red boxes indicate the EA boundaries.

3.2.   Physical mechanism and teleconnection patterns
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 Figure 4 shows the observed and simulated relationship through the regression
analysis,  between  EA  rainfall  and  the  DMI.  The  results  highlight  a  predominantly
strong,  positive  and  statistically  significant  regression  between  DMI  and  observed
rainfall over the eastern part of EA (east of 30° E; Fig. 4a). Over western EA, some areas
such  as  southern  and  northern  DRC,  and  northern  Angola  also  feature  significant
positive  regression values.  However,  other  regions  exhibit  weak (both positive  and
negative) and even zero regression values. These findings suggest that anomalously
strong rainfall over EA is generally associated with positive IOD events, characterised
by  warming  (cooling)  of  SST  features  over  the  western  (eastern)  pole  of  IOD,  as
mentioned by Nana et al. (2025) and Roy and Troccoli (2024). Conversely, an opposing
rainfall  pattern  is  observed  during  negative  IOD  episodes.  The  regression  pattern
between the predicted DMI and EA precipitation at L0 (Fig. 4b) and L1 (Fig. 4c) is quite
similar  to  that  observed.  However,  it  is  noteworthy that  at  L0,  the model  tends to
underestimate  (overestimated)  the  IOD  teleconnection  over  eastern  (western)  EA
regions, mainly Ethiopian (DRC and southern Cameroon) regression values. At L1, the
positive  relationship  over  eastern  EA  shifted  southwards,  with  highest  values  over
Tanzania  and  southern  Kenya,  where  observed  regression  values  were  lower.  This
analysis suggests that the IOD-EA rainfall relationship is well captured in the model,
which aligns with the findings of Nana et al. (2024), who point out that ECMWF is the
best  forecast  model  (among  eleven  predicting  models)  that  captures  SST-rainfall
relationship over equatorial Africa.
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Fig 4: a) Regression of the DMI with the Precipitation during SON; (b) and (c) same as of (a) but
for the SEAS5.1 dataset at L0 and L1, respectively. Stippling denotes statistical significance at
95% confidence level. The red boxes indicate the EA boundaries.

Furthermore,  this  regression  pattern  between  DMI  and  EA  rainfall  remains
consistent when an ENSO-type signal is present over the N34 region (Fig. 5). The results
support the presence of IOD-like patterns over the IO and ENSO-like patterns over the
equatorial Pacific, both in observation (Fig. 4a) and model (Fig. 4b,c). Both observed
and model exhibit significant positive (negative) regression values over WIO (EIO). The
equatorial  Pacific  highlighted here  by  the N3.4  index shows strong and significant
positive  regression,  suggesting  that  ENSO  and  IOD  may  exert  over  the  region  a
concurrent influence on rainfall distribution. This suggests that ENSO can modulate or
amplify  the  IOD  signal  when  both  phenomena  occur  simultaneously.  Another
noteworthy  pattern  emerges  over  the  eastern  equatorial  Atlantic,  where  strong
positive  and  significant  regression  values  are  observed  (Fig.  4a).  Recent  study  by
Moihamette et al. (2022) shows that rainfall variability over the areas along the Atlantic
coast  during  IOD  events  can  be  influenced  by  Atlantic  SST  anomalies  through
atmospheric bridge mechanisms. The model at both L0 and L1 successfully captures
this Atlantic teleconnection.
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Fig 5: Same as Fig. 4, but for regression of the EA precipitation with the global SST. The black
and green boxes indicate the IOD and N34 oceanic regions, respectively.

To further analyse the relationship between EA rainfall and both ENSO and IOD,
Figure 6a outlines the scatterplots of the observed EA rainfall with the IOD and N34
indices during the SON season. The relationship between the EA rainfall index and the
DMI (black triangles) as well as N34 index (red circles) is clearly positive and statistically
significant (at 95% confidence level)  with correlations of 0.74 and 0.40, respectively.
This confirms that IOD could have an impact on the EA rainfall independently of ENSO.
Moreover, these outcomes suggest that ENSO has an indirect through IOD conditions,
but also a direct impact on EA precipitation through an atmospheric bridge (Ibebuchi
2021; Roy and Troccoli 2024). The SEAS5.1 captures these relationships reasonably well
at  both  L0  and  L1,  but  overestimated  the  correlations,  mainly  the  ENSO-EA
precipitation relationship (Fig. 6b,c). 
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Fig 6: a) Observed Scatter plots for the EA precipitation with the DMI (black triangles) and N34
(red  open  circles)  and  SST  based  indices  for  the  SON  season.  The  grey  shaded  region
corresponds to ±0.5  SST anomalies. Correlation Coefficient (CC) of EA precipitation index and𝜎
DMI (N34) SST index is indicated at the top left of the map. (b) and (c) same as of panel (a) but
for SEAS5.1 at L0 and L1, respectively.

3. Extreme EA rainfall: composites analysis

Firstly,  we  performed  the  time  series  of  indices  of  standardised  EA  rainfall
anomalies over the periode 1981-2023 during SON season, for CHIRPS (red bar), and
SEAS5.1 at L0 (gold bar) and L1 (green bar). The CC between CHIRPS and SEAS5.1 EA
rainfall index at L0 and L1 is 0.84 and 0.82, respectively (statistically significant at the
99% confidence level). The criteria used to detect extreme rainfall as described in Sect.
2.2, strong and weak EA rainfall years are defined. Thirteen extreme rainfall years have
been highlighted (Fig. 7), including seven Strong Years (SY) and six Weak Years (WY).
Table  1 resumes the different  extreme rainfall  years  based on CHIRPS rainfall.  Fift
(three) of observed SY (WY) are captured by the model at L0, whereas four (two) are
captured at L1.
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Fig 7: Indices of standardised EA rainfall anomalies over the periode 1981-2023 during SON, for
observation (red), and model at L0 (gold) and L1 (green). Dashed black line denotes ± 1 standard
deviation of seasonal anomalies. The CC value between observed and predicted EA rainfall is
shown in the legend below the map.

Table 1: Strong and weak EA rainfall years used in this study

Category Years

SY 1982*, 1994**, 1997**, 2006, 2011, 2019**, 2023**

WY 1983, 1991, 1993, 1996**, 2005*, 2016**

The asterisk (*) indicates the years capture by the model only at L0, and the double asterisk (**)
those captured by the model at L0 and L1
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Fig 8: Composite of precipitation anomalies (in mm day-1) during (first column) strong years and
(weak column) weak years from (a-b) CHIRPS, (c-d) ERA5 and SEAS5.1 [L0 (e-f) and L1 (g-h)]. The
red  boxes  indicate  the  EA  region.  The  stippling  occurs  where  the  difference  between  the
composite  and  the  mean  climatology  is  statistically  significant  at  the  95%  confidence  level
through the Student’s t test

Figure 8 shows the composites of EA rainfall anomalies for SY (first column) and
WY (second column). It  appears that during the observed SY composites (Fig.  8a,c),
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eastern EA experienced significant positive rainfall  anomalies,  mainly  over southern
Ethiopia and Somalia, as well as northern Kenya and Tanzania, where the IOD-rainfall
relationship  was  strongest  (Fig.  4a).  Over  the  western  EA,  the  positive  rainfall
anomalies  are  lower  than  over  eastern  EA,  but  are  significant  over  certain  areas
(southwest of DRC and eastern CAR), where the IOD-rainfall relationship was strongest
also. An opposite pattern is observed during the observed WY composites (Fig. 8b,d),
but with a weaker (stronger) anomalies magnitude over the eastern (western) part of
the EA, especially over Ethiopia, Kenya and Somalia (Cameroon, Gabon and DRC). These
observed characteristics of the rainfall composites are well simulated by the model at
L0  (Fig.  8e,f)  as  well  as  at  L1  (Fig.  8g,f),  but  with  a  lower  magnitude compared to
observations (mainly during WY composites;  Fig. 8f,h). During the SY composite at L1
(Fig. 8g), the northern (southern) rainfall anomalies of eastern EA are underestimated
(overestimated),  a  similar  pattern  with  the  positive  IOD-rainfall  relationship  over
eastern EA which shifted southwards at this Lead-time (Fig. 4c). 

Fig 9: Probability Density Functions (PDFs) of SON EA precipitation from a) CHIRPS, b) ERA5, and
model at c) L0 and d) L1, during the mean climatology (black line), strong years (blue line) and
weak years (red line), during the period 1981-2023.
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The monthly precipitation PDFs over EA during climatology mean (black line) SY
(blue line) and WY (red line) are further investigated using gamma distribution (Fig. 9).
The results confirm that more (less) observed/reanalysis rainfall are occurring over EA
region during SY (WY) composites, compared to the SON mean climatology (Fig. 9a,b).
These PDFs patterns were predicted successfully by SEAS5.1 at L0 (Fig. 9c) as well as at
L1 (Fig. 9d). 

To get an insight into the way SST responds to extreme rainfall events over EA,
the composites of global SST anomalies for SY and WY events are presented in Fig. 10.
As seen in Fig. 5, favourable conditions for the occurrence of EA rainfall is associated
with warming (cooling) of the SST over WIO (EIO) areas (black boxes in  Fig. 5), and
warming of the SST over the ENSO region (green boxes in Fig. 5). It appears that during
observed SY composites (Fig. 10a,c), the IO shows significant warming (cooling) of the
SST located over WIO (EIO) while the area of interaction of Niño-3.4 simultaneously
exhibits strong and positive SST anomalies, characterising El Niño events. An opposite
pattern is observed during the WY years (Fig. 10b,d). It should be noted that the EIO
exhibits  stronger  SST  anomalies  than  those  over  the  WIO,  suggesting  that  IOD
intensity is strongly modulated by the SST changes over the EIO, as suggested by Cai et
al., (2011). Over the eastern equatorial Atlantic ocean, warming (cooling) SST anomalies
feature during SY (WY) composites (Dezfuli and Nicholson 2013;  Dezfuli 2017). These
outcomes confirm that the anomalous extreme rainfall which occurs over EA during
the SON season are strongly associated with SST anomalies over these three oceanic
regions. The above results and conclusion are in agreement with recent findings by
Nana et al. (2025). The model predicted these observed composite patterns well at L0
(Fig. 10e,f) and L1 (Fig. 10g,h). The observed SST anomalies, stronger during SY than
during WY, are well simulated by the model at these two Lead-time.
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Fig 10: Same as in Fig. 8, but for SST (in K). The red and blue boxes indicate the IOD and N34
oceanic regions, respectively.

4. Atmospheric circulation: composites analysis

Previously,  observed  and  reanalysis,  as  well  as  predicted  composite  SST
anomalies over the Atlantic Indian, and Pacific oceans shows strong opposite pattern
during both strong and weak years, which shows that EA rainfall has diverse dynamical
linkages from these oceanic regions. We are now interested in the large-scale control
of EA precipitation, as, following  Nana et al.  (2023, 2025) and  Dezfuli and Nicholson
(2013), interannual variations in EA precipitation are strongly influenced by large-scale
climatic factors such as east Atlantic SST, IOD and ENSO.  Figure 11 investigated the
model’s  ability  to predict large-scale circulation patterns through horizontal wind at
850 hPa and MSLP. During SY (WY) composites, the eastern and western equatorial IO
experience strong easterly (westerly) wind anomalies, while eastern equatorial Atlantic
exhibits  weak westerly  wind anomalies  (Fig.  11a,b).  According to  Moihamette et  al,
(2022) and Nana et al. (2025), strong (weak) circulation patterns over the EA region are
predominant during excess (deficit) rainfall years as a result of large-scale circulations
from both equatorial Indian and eastern Atlantic oceans. These circulation patterns are
associated with dipole mode over IO, more pronounced during SY (Fig. 11a) than WY
(Fig. 11b), characterised by strong positive (negative) and significant values over EIO
(WIO).  Also,  the  southeast  Atlantic  coastal  region  exhibits  negative  composite
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anomalies (Fig. 11a). This is consistent with the work of Dezfuli and Nicholson (2013),
who found that SY (WY) events over eastern EA are associated with negative (positive)
MSLP  anomalies  over  WIO (EIO),  whereas  negative  (positive)  MSLP  anomalies  over
southeast Atlantic coast occur during SY (WY) events over western EA. These observed
composite features are well predicted with the September IC (Fig. 11c,d) and August
initial condition predictions (Fig. 11e,f). The MSLP anomalies are underestimated by the
model during SY (WY) at L0 (L1), mainly over WIO (whole of the EA as well as oceanic
areas). These changes in SST (Fig. 10), wind and MSLP (Fig. 11) during the two rainfall
events  appear  to  be  contrasted  over  both  equatorial  Atlantic  and  Indian  oceans
(strongly over the equatorial IO), and according to Pokam et al. (2012), Moihamete et
al. (2022) and Nana et al. (2025), are responsible for the moisture supply over the EA
during SON season. 

Fig 11: Same as in Fig. 8, but for MSLP (shading, in hPa) and 850 hPa wind (vector, m s -1). The
value higher (lower)  than 0.02 (-0.02) hPa is statistically significant at 95% confidence level
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To  highlight  the  atmospheric  layer  responsible  for  the  moisture  surplus  or
deficit over the region during the two extreme EA rainfall, we have examined in Figure
12 the  vertical  profile  of  the  longitude-height  cross-section  of  the  observed  and
predicted zonal moisture flux between 1000-300 hPa, overlaid by the zonal wind and
averaged between 10° S-10° N. The first column shows the SON mean climatology, the
second  and  third  column  show  the  positive  and  negative  composite  anomalies,
respectively. It emerges that the model successfully predicted the observed westerly
climatology moisture transport (first column) as well  as westerly  wind from Atlantic
Ocean to  western  EA  in  the lower  troposphere  (1000-850 hPa).  This  observed and
forecast configuration in the lower troposphere over the eastern Atlantic Ocean and
western  EA  is  the  same  as  that  observed  1000-550  hPa  over  the  Indian  Ocean.
However, we note an underestimate of both moisture flux and wind at L1 (Fig. 12g).
During SY (second column), anomalous easterly moisture transport occurs from IO (in
total troposphere) to equatorial Africa (strong over middle troposphere in the eastern
part), whereas the eastern part of EA exhibited strong westerly moisture transport in
the middle troposphere (850-600 hPa) from the equatorial Atlantic ocean (Fig. 12b). In
the lower troposphere (1000-850 hPa), easterly moisture flows dominated over the EA
region. The easterly moisture transport anomalies over IO are well  captured by the
model (Fig. 12e,h). However, the model overestimated (underestimated) the easterly
(westerly)  moisture transport over the middle troposphere (850-600 hPa) at L0 (Fig.
12e),  whereas  an  overestimate  (underestimate)  of  westerly  (easterly)  moisture
transport featured over western (eastern) EA between 1000-500 hPa at L1 (Fig. 12h).
During WY (third column), observation (Fig. 12c) as well as model at L0 (Fig. 12f) and L1
(Fig. 12i) shows westerly (easterly) moisture transport over the Indian (Atlantic) ocean.
Over  western  EA  domain,  the  model  at  L0  and  L1  shows  easterly  moisture  flux
anomalies  while  observation  shows  westerly  anomalies,  but  underestimated  the
observed Atlantic eastern moisture transport. In addition, anomalous westerly winds
are  weakened  and  easterly  winds  develop  in  the  mid-troposphere  (at  700  hPa),
favoring equatorial easterly moisture transport. We can conclude that the two lead-
time of the forecast model agree with two distinct mechanisms controlling moisture
transport, over the ocean and the continent.
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Fig 12: Longitude-height cross-sections for (first column) mean climatology of SON 1981-2023,
(second column) strong years composite anomalies and (third column) weak years composite
anomalies of zonal moisture flux (shading, kg m-1 s-1) and zonal wind (contour, m s-1) for (a-c)
ERA5, (d-f) L0 and (g-i) L1, averaged between 10° S-10° N. The dashed black lines denote the
limits of EA.

The Figure 13 evaluated the column stratification of atmospheric convergence
through the  latitude/height  cross-sections  of  the net  zonal  moisture  flux  (shading)
calculated  from  West  boundary  (10°  E)  minus  East  boundary  (30°  E)  boundary  of
western EA over which is overlaid the AEJ components (black dashed contours) at 15° E,
and  specific  humidity  (red  contours)  calculated  between  10°E  and  30°E.  The  first
column shows the SON mean climatology of three tools, the second column shows the
zonal  moisture  flux,  AEJ  and  specific  humidity  composite  anomaly  for  the  SY
composites, as well as the third column, but for the WY composites. The findings by
Kuete  et  al.  (2019) and  Nicholson  and  Grist  (2003) show  that  wet  conditions  over
western EA are associated with decrease of the both AEJ components through increase
in the middle tropospheric moisture convergence. Overall, the zonal net moisture flux
balance  over  the  EA  shows  a  different  structure  for  climatology  and  composites
characterized by  convergence in  the middle  troposphere  (Fig.  13a-c)  modulated by
both southern and northern AEJ components, AEJ-S and AEJ-N respectively. During SY
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(Fig.  13b)  composites,  the  AEJ-S  and  AEJ-N  core  speed  decreases  compared  to  the
climatology  (Fig.  13a),  leading  to  increases  (decreases)  moisture  convergence
(divergence) over western EA (at 10° S and 10° N boundaries of EA) favoring wet (dry)
conditions, following  Kuete et al. (2019) and  Nicholson and Grist (2003). This middle
tropospheric  moisture  convergence  is  accompanied  by  positive  specific  humidity
anomalies. During WY (Fig. 13c) events, the two AEJ components are slightly stronger
compared to the climatology,  resulting in  a  strong divergence at  10°  S  and 10°  N
boundaries, and a weak mid-tropospheric convergence that contributes to intensified
middle tropospheric divergence and followed by negative values of specific humidity
anomalies. A similar pattern is observed at L0 (Fig. 13d-f), but slightly underestimated.
Regarding the model at L1 (Fig. 13g-i), AEJ-N moves to the south, with a core speed
close to 5° N versus 10° N in observation as well as L0, accompanied by a strong mid-
tropospheric divergence leading to reduced mid-tropospheric convergence. Another
finding is the missing of the AEJ-S in climatology and both composites. 

Fig  13: Latitude/height  cross-sections  of  net  zonal  moisture  flux  (shading,  101 kg  m-1 s-1)
calculated  from  West  boundary  (10°  E)  minus  East  boundary  (30°  E)  for  (first  column)
climatology of  SON 1981-2023 and (second column) strong years  composite anomalies  and
(third column) weak years composite anomalies. Black dashed lines represent AEJ components
(U<-6 m s-1) with the contour interval 2 m s-1, calculated at 15° E for the respective periods. Red
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solid (dashed) lines represent SON mean climatology (composite anomalies) of specific humidity
with the contour interval (first column) 2 Kg Kg -1 and (second and third column) 0.1 Kg Kg -1,
averaged  over  10°-30°  E  for  the  respective  periods.  Positive  values  indicate  moisture  flux
convergence, and negative values moisture flux divergence. The dashed black lines denote the
limits of EA.

The  vertically  integrated  moisture  flux  divergence  (VIMFD)  and  vertically
integrated moisture flux (VIMF) are important indicators of regions expected to receive
rainfall. To provide a further exploration of the ability of ECMWF-SEAS5.1 forecasts to
predict periods of heavy precipitation over the EA, we investigated the spatial patterns
of both observed (Fig. 14a,b) and predicted (Fig. 14c,f) VIMFD anomalies over 1000-300
hPa  during  SY  and WY composites.  SY  (Fig.  14a)  composite  is  characterised by  an
anomalous  VIMF  associated  with  easterly  and  westerly  flux  over  WIO and  eastern
equatorial Atlantic, respectively.  This moisture advection extends across the EA with
anomalous strong moisture convergence leading to wetter conditions over the region,
with highest moisture convergence anomaly values occurring over the eastern EA. An
opposite pattern feature during WY composite (Fig. 14b). Although underestimated,
the observed pattern is well predicted by the model at L0 (Fig. 14c-d) and L1 (Fig. 14e-f).
Furthermore, examination of Figures S2 and S3 confirms that moisture convergence is
the  main  component  of  moisture  flux  convergence,  since,  the  spatial  pattern  of
moisture  convergence  (q ·V)  is  similar  (and  with  the  same  strengths)  to  that  of∇
moisture flux convergence ( ·(qV)),  in contrast to that of moisture advection (V· q).∇ ∇
This finding is  in  line with previous research by  Longandjo and Rouault  (2023) and
Kolstad et al. (2024), who show that moisture convergence prevails in moisture flux
convergence over western EA and eastern EA, respectively. The model captures this
moisture convergence very well as the main component of moisture flux convergence
(Kolstad et al. 2024) at L0 (Figs. S2c,d and Figs. S3c,d) and L1 (Figs. S2e,f and Figs. S3e,f).
We therefore conclude that the physical mechanisms that generate precipitation in the
prediction data for  the IC  of  September and August  are  reasonable,  and that  it  is
appropriate to use the SEAS5.1 prediction outputs for precipitation over the EA.
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Fig 14: Same as Fig. 8, but for vertically integrated (1000-300 hPa) moisture flux (vectors, 10 -9 kg
m-1 s-1)  and  vertically  integrated  moisture  flux  convergence  (positive  values)  or  divergence
(negative values) anomalies (shading, 10-6 kg m-2 s-1). Only significant vectors and shading above
the 90 % level are shown. The red box indicates the EA region.

5. Summary and conclusions

By  analysing  hindcast  and  forecast  from  the  latest  operational  seasonal
forecasting  system  based  on  dynamical  climate  models,  the  European  Centre  for
Medium-Range Weather Forecasts seasonal prediction system 5, version 5.1 (ECMWF-
SEAS5.1),  this  study  highlights  the  influence  of  atmospheric  drivers  in  forecasting
extreme  precipitation  events  over  equatorial  Africa  (EA)  during  the  September-
October-November  (SON)  season for  the period 1981–2023  (43  years).  While  some
anomalous rainfall patterns over eastern and western EA have been linked to moisture
transport  from the  Indian  and  Atlantic  oceans  respectively,  further  investigation is
needed to evaluate the model’s ability to simulate the Madden–Julian Oscillation (MJO)

26

51

683

684
685
686
687

688

689

690
691
692
693
694
695
696
697
698

52

https://doi.org/10.5194/egusphere-2025-2656
Preprint. Discussion started: 25 August 2025
c© Author(s) 2025. CC BY 4.0 License.



activity during these extreme events. The key findings of this study are summarized as
follows:

- The spatiotemporal and interannual variability of EA rainfall is well represented
by ECMWF-SEAS5.1 in both lead times during the SON season.

- The  ECMWF-SEAS5.1  model  exhibits  low  skill  in  predicting  rainfall  over  the
Congo Basin in both hindcasts. At L0, the data points are more dispersed than
at  L1,  and both the prediction and confidence intervals  lie  farther  from the
regression line, which is slightly flatter compared to L1.

- Potential  Predictability  skill  is  generally  higher  for  the  short  lead-time
(September IC) when considering the entire equatorial Africa domain. However,
for  the  longer  lead-time  (August  IC),  a  larger  number  of  grid  points  in  the
eastern EA exhibit high correlation values, reaching up to 0.7.

- ECMWF-SEAS5.1  successfully  captures the large-scale  teleconnection between
tropical SST over the Atlantic, Indian and Pacific oceans and precipitation over
EA,  with  forecasts  initialized  in  September  (Lead-0)  showing  higher
teleconnection skill compared to those initialized in August (Lead-1).

- For the September IC, the model captures 71.4  of the observed strong years﹪
and 50.0 % of weak years, while for the August IC, it captured 57.1 % of strong
years and 33.3 % of weak years.

- The  ECMWF-SEAS5.1  model  successfully  captures  the  maximum  composite
rainfall anomalies over eastern EA, mainly over the whole of Kenya, southern
Ethiopia  and  Somalia,  although  it  tends  to  underestimate  the  magnitude.
Performance is better for September initial conditions compared to August.

- Similarly,  both the IOD and ENSO modes are well  simulated during extreme
events, as well as for both lead times, along with the atmospheric circulation
associated with these oceanic modes.

- The ECMWF-SEAS5.1  model  successfully  simulates moisture flux convergence
and its two components (moisture convergence and moisture advection) with
relatively better skill for September IC compared to August.

This  study  demonstrates  that  the  novel  ECMWF-SEAS5  version  5.1  (SEAS5.1)
outperforms  its  predecessors  (ECMWF-SEAS5  version  5;  Nana  et  al.,  2024 and
Tanessong et al., 2025), and exhibits strong and statistically significant skill in capturing
the atmospheric characteristics associated with extreme rainfall events over EA. Given
that skillful seasonal forecasting of equatorial rainfall has critical social and economic
impacts,  notably  the ability  to restock reservoirs  and recharge groundwater,  which
have  greatly  improved  irrigation  planning,  and  enhanced  agricultural  productivity,
these findings offer valuable insights for policy-makers in the region to make informed
decisions on adaptation strategies and risk mitigation.
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