Supplement of

5

20

Measurement Report: Hygroscopicity and mixing state of submicron aerosols in the lower free troposphere over central China: local, regional and long-range transport influences

Jingnan Shi^{1,★}, Zhisheng Zhang^{2,★}, Li Li³, Li Liu^{4,#}, Yaqing Zhou^{5,6}, Shuang Han⁷, Shaobin Zhang^{5,6}, Minghua Liang^{5,6}, Linhong Xie^{5,6}, Weikang Ran³, Shaowen Zhu^{5,6}, Hanbing Xu⁸, Jiangchuan Tao^{5,6}, Alfred Wiedensohler⁹, Qiaoqiao Wang^{5,6}, Qiyuan Wang³, Nan Ma^{5,6}, Juan Hong^{5,6,#}

- ¹Institute of Facility Agriculture of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
 - ²Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou, 510655, China ³State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and
- Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China

 4Guangzhou Institute of Transcal and Marina Mateoralogy of China Mateoralogical Administration
 - ⁴Guangzhou Institute of Tropical and Marine Meteorology of China Meteorological Administration, GBA Academy of Meteorological Research, Guangzhou, 510640, China
 - ⁵Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China ⁶Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental
 - Quality, Guangzhou, 511443, China

 ⁷Department of Geography, College of Science, Qiqihar University, Qiqihar 161006, China

 ⁸School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China

 ⁹Institute for Tropospheric Research, Permoserstr. 15, Leipzig, 04318, Germany
 - *These authors contributed equally to this work.
- 25 Correspondence to: Juan Hong (juanhong0108@jnu.edu.cn) and Li Liu (liul@gd121.cn)

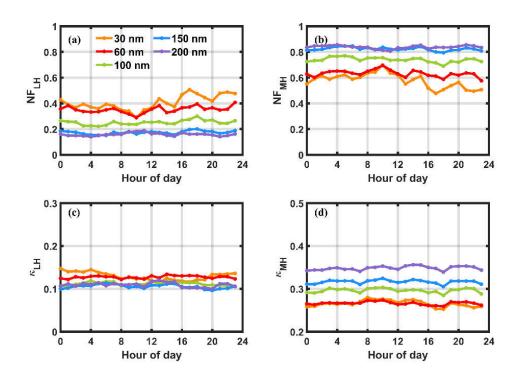


Figure S1. Diurnal variation of the number fractions and individual κ of LH and MH mode particles under the entire campaign.

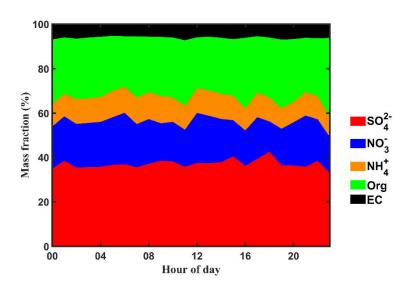


Figure S2. Diurnal variation of average proportions of different chemical components.

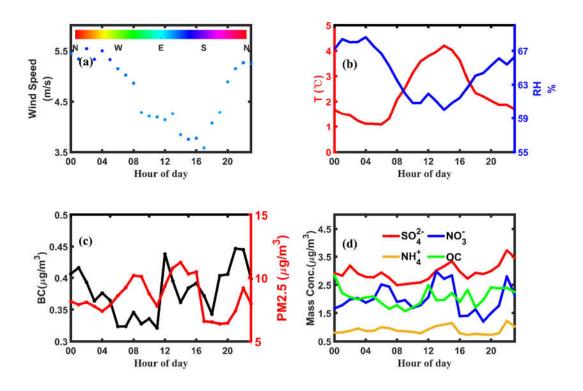


Figure S3. Diurnal variation of (a) wind speed and direction, (b) relative humidity and ambient temperature, (c) BC and PM_{2.5} mass concentrations, (d) and the mass concentrations of chemical components (URG measurement) during this study.

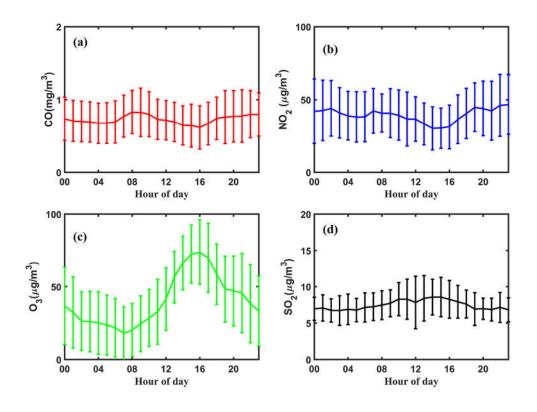


Figure S4. Diurnal variations in the concentrations of atmospheric trace gases: (a) CO, (b) NO₂, (c) O₃, and (d) SO₂.