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Abstract. To address limitations in traditional discretization methods for ocean numerical modeling, this study develops a

integral method with variable limit (IMVL) to enhance the simulation accuracy of thermohaline dynamics in ocean models.

Under the Arakawa-C grid framework, we propose novel discretization schemes applying variable-limit integration to hori-

zontal advection, horizontal diffusion, and vertical diffusion terms in temperature-salinity equations. For the vertical diffusion

term, the variable limit integral scheme is also designed and combined with the time discretization of the difference method5

to form an implicit fully discrete scheme. Stability analysis based on convection equation principles confirms the numerical

robustness of the proposed method. Implementation within the Princeton Ocean Model (POM) demonstrates significant im-

provements: 1) Strait test cases reveal 40-60% error reduction in temperature-salinity simulations compared to standard POM;

2) Enhanced topographic sensitivity enables superior representation of overflow dynamics across steep sills; 3) The modified

scheme eliminates numerical instabilities in zero-Coriolis scenarios, maintaining physical validity beyond 720 simulation days10

by preventing artificial water stacking and gradient accumulation. The computational efficiency analysis demonstrates that the

introduction of the variable-bound integration method increases the total runtime by merely 25%. These findings establish the

variable-limit integration method as an effective approach for improving the dynamic framework of ocean models, particu-

larly demonstrating outstanding performance in enhancing model stability and resolving dynamic processes under complex

topographies. It is noteworthy that the variable-limit integral method designed herein for the thermohaline equations represents15

a novel and more stable solution approach, which, while implemented in POM within this study, is universally applicable to

other ocean numerical models.

Keywords: Ocean numerical model; Variable limit integral method; Thermohaline equation

1 Introduction

The ocean numerical model can quantitatively describe marine physical phenomena and their dynamic processes, serving as20

a critical tool for large-scale, comprehensive, and sustained oceanographic research (Feng et al., 1999). This model has been
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extensively utilized in simulating and predicting climate and environmental changes, while also providing technical support

for marine fisheries, shipping, marine engineering construction, and resource development (Zhao et al., 2014).

Ocean numerical models simulate seawater temperature and salinity fields, along with density distributions, by numerically

solving the governing equations of oceanic motion. These equations encompass highly complex physical processes involving25

dynamic and thermodynamic interactions within the marine environment. Due to their nonlinear and multiscale nature, closed-

form analytical solutions to these governing equations are generally intractable. Consequently, the accuracy of ocean numerical

simulations fundamentally relies on the development of robust numerical methods that ensure high precision, numerical stabil-

ity, and computational efficiency in solving the governing equation system.

Current marine numerical models predominantly employ finite difference and finite volume methods for discretization.30

Widely adopted finite difference-based models include the Princeton Ocean Model (POM) (Mellor et al., 1994; Ezer et al.,

2002), the Hybrid Coordinate Ocean Model (HYCOM) (Bleck, 2002; Halliwell, 2004), the Regional Ocean Modeling System

(ROMS) (Shchepetkin and McWilliams, 2005; Song and Haidvogel, 1994; Shchepetkin and McWilliams, 2009), and the MAS-

NUM three-dimensional ocean model (Han, 2014; Han and Yuan, 2014). These schemes typically utilize central difference or

upwind formulations for spatial discretization, coupled with Euler or leapfrog schemes for temporal integration.Theoretically,35

most mainstream finite difference-based marine models achieve first-order accuracy on non-uniform grids and second-order

accuracy on uniform grids. However, such approaches frequently require empirical adjustments to maintain numerical stabil-

ity, particularly when handling sharp gradients or complex bathymetric features. This inherent trade-off between accuracy and

stability underscores the need for advanced numerical frameworks in modern ocean modeling.

Several ocean numerical models utilizing the finite volume method have been developed, including the MIT General Cir-40

culation Model (MITgcm) (Adcroft and Campin, 2004; Marotzke et al., 1999), widely applied in coupled atmosphere-ocean

circulation studies; the Finite Volume Community Ocean Model (FVCOM) (Chen et al., 2006), integrating hydrodynamic

and ecological modules; and the unstructured grid-based three-dimensional framework (Casulli and Walters, 2000). These

models typically employ triangular or unstructured meshes to resolve complex coastal geometries, with some incorporating

conservative numerical schemes to ensure mass-energy conservation. However, higher-order finite volume implementations45

often necessitate specialized techniques to mitigate numerical dispersion (Li et al., 2008) and incur substantial computational

costs, particularly in multiscale simulations, highlighting the persistent challenge of balancing accuracy with computational

feasibility in modern ocean modeling.

Recent advancements in numerical methodologies have substantially advanced the simulation of ocean dynamics. A pivotal

development emerged in 2020 when Subich et al. successfully adapted the semi-Lagrangian advection scheme, previously uti-50

lized in atmospheric modeling, to the NEMO ocean model. This adaptation overcame the time-step limitations imposed by the

Courant-Friedrichs-Lewy (CFL) condition in high-resolution configurations (Subich et al., 2020). Building on this progress,

Lan et al. (2022) introduced a dual-rate explicit time integration framework within the Runge-Kutta method, specifically de-

signed to resolve the multiscale interactions between baroclinic and barotropic modes. These innovations collectively enhance

the numerical precision and computational efficiency of ocean models, addressing the inherent stiffness of primitive equation55

systems while maintaining stability across diverse spatiotemporal scales. In 2022, Patching studied the coarse-graining process
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that maintains divergence and gradient in a finite volume primitive equation ocean model (Patching, 2022). In 2023, Boittin et

al. developed a low Mach type approximation for a compressible Navier-Stokes system with free-surface flow and temperature

and salinity (Boittin et al., 2023). In 2024, Andreas et al. proposed a new semi-Lagrange splitting (SLS) scheme for solving

Euler systems with free surfaces and vertical non-static flows (Alexandris-Galanopoulos et al., 2024).60

Recent advances in numerical methods for partial differential equations have seen the emergence of the variable limit inte-

gral method, which demonstrates distinct advantages in constructing conservation-preserving, high-order numerical schemes

(Luo et al., 2017). Evolved from the finite volume framework and initially applied to wood moisture content calculations (Guo,

2014), this method uniquely performs variable-limit integration near grid nodes. Its defining feature lies in employing undeter-

mined, adaptive integration limits while allowing flexible selection of high-precision approximation functions within localized65

integration domains. Unlike conventional finite difference approaches that rely on fixed stencil information, the variable limit

integral method incorporates weighted contributions from all neighboring points through parametric integration limits. No-

tably, through strategic parameterization of integration boundaries and approximation functions, the method achieves formal

equivalence to finite difference schemes, thereby unifying flexibility in function space discretization with structured grid-based

computational efficiency.70

The integral method with variable limit (IMVL) has emerged as a versatile numerical framework for conservative partial

differential equations, with demonstrated success across multiple physical systems including the Klein-Gordon equation (Luo

et al., 2017), Regularized Long Wave (RLW) equation (Luo et al., 2021), and Rosenau-RLW equation (Guo et al., 2019).

Rigorous theoretical analyses establish that these adaptive integral formulations simultaneously achieve two critical objectives:

high-order convergence precision and strict preservation of intrinsic conservation laws. Numerical validations reveal their supe-75

rior performance characteristics, particularly in long-term simulations where IMVL demonstrates both enhanced accuracy and

mitigated error propagation. A representative case study of the Klein-Gordon equation highlights the method’s advantages. The

fourth-order IMVL implementation achieves 15% greater error reduction compared to conventional fourth-order finite differ-

ence schemes at equivalent computational cost. More significantly, longitudinal simulations demonstrate asymptotically slower

error accumulation, with relative accuracy improvements exceeding 20% over 100 characteristic time units. This dual capac-80

ity for precision enhancement and computational economy establishes IMVL as a promising candidate for energy-preserving

system simulations requiring extended temporal integration.

Comprehensively restructuring the numerical computational framework of ocean models presents a significant challenge.

Fortunately, the modular architecture of mainstream systems allows for targeted improvements to the temperature-salinity

equation solver. This study designs new high-precision numerical solution schemes for the temperature and salinity equations85

using the variable-limit integration method. Based on the Arakawa-C grid configuration, we establish variable-limiting integral

formulations for advection terms, horizontal diffusion terms, and vertical diffusion terms respectively. Stability analysis of

the convection equation confirms the robustness of the variable-limiting integral advection scheme. Finally, the variable-limit

integral scheme for solving the thermohaline equations is implemented in the Princeton Ocean Model (POM) to demonstrate

its superiority. The stationary isothermal strait simulation demonstrates that compared to the original POM solver, the new90

variable-limiting integral scheme exhibits smaller temperature-salinity simulation errors. Topographic sensitivity test experi-
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ments reveal that as sill steepness increases, the simulation discrepancies between the original POM model (O-POM) and the

variable-limiting integral modified POM model (I-POM) progressively widen. Notably, the variable-limiting integral method

successfully captures the overflow phenomenon of seawater spilling over sills. In steady-flow experiments of sills with ne-

glected Coriolis force, the implementation of the variable-limiting integral method significantly enhances computational sta-95

bility in the original POM model and effectively simulates steady-state flows that better align with physical principles. These

findings collectively highlight the potential of the variable-limiting integral method in advancing numerical ocean modeling.

As a novel stabilized scheme for thermohaline equation solving, the variable-limit integration method developed in this study,

while validated in the POM framework, features a universal architecture that is extensible in principle to other ocean numerical

modeling systems.100

The remainder of this work is structured as follows. Section 2 outlines the numerical framework for thermohaline transport

within the Princeton Ocean Model (O-POM) and provides foundational principles of the variable-limit integral method. Section

3 subsequently details the derivation of characteristic-preserving variable-limit integration schemes for coupled temperature-

salinity dynamics, complemented by rigorous von Neumann stability analysis. Section 4 presents the algorithmic implemen-

tation within POM’s architecture, including benchmark validation through strategically designed bathymetric test cases and105

comparative analysis of simulation fidelity. The article concludes with Section 5, which synthesizes key findings, discusses

broader implications for ocean model development, and identifies promising directions for future methodological extensions.

2 Basic knowledge

In this section, the form of thermohaline equation in ocean motion control equations, the numerical solution of thermohaline

equation in O-POM ocean model and the variable limit integral are introduced.110

2.1 Thermohaline equation

The potential temperature equation in Reynolds mean conservation form in σ coordinates is as follows

∂DT

∂T
+ Adv(T )−Dif(T ) =

1
D

∂

∂σ

(
KH

∂T

∂T

)
− ∂R

∂σ
(1)

where advection term Adv(T ) and horizontal diffusion term Dif(T ) represent

Adv(T ) =
∂(DUT )

∂x
+

∂(DV T )
∂y

+
∂(ωT )

∂σ
(2)115

Dif(T ) =
∂

∂x

(
HAH

∂T

∂x

)
+

∂

∂y

(
HAH

∂T

∂y

)
(3)

T stands for temperature, D stands for stands water height, H stands for water depth, U,V,ω respectively represent the flow rate

in three directions, AH , KH respectively represent the thermal diffusivity in horizontal and vertical directions. Similarly,the
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salinity equation in Reynolds mean conservation form in σ coordinates is120

∂DS

∂S
+ Adv(S)−Dif(S) =

1
D

∂

∂σ

(
KH

∂S

∂S

)
(4)

Advection terms Adv(S) and horizontal diffusion terms Dif(S) are consistent with those in the potential temperature equation.

The structural isomorphism between the potential temperature and salinity equations within the thermohaline system per-

mits unified analytical treatment. This study consequently focuses on the temperature equation’s semi-implicit discretization

framework in O-POM, with detailed exposition of the variable-limit integral method’s high-order discretization methodology.125

The salinity equation’s numerical implementation inherits identical operator structure and weighting strategies, achieving full

methodological parity through direct substitution of tracer variables. Such symmetry ensures all derived stability criteria and

conservation properties extend equivalently to salinity dynamics without loss of generality.

2.2 Solution of temperature and salt equation in POM model

The vertical coordinates of POM ocean model are Arakawa-C grid (C grid for short), which adopts σ coordinates along with130

the terrain and sets the horizontal grid to an interleaving form. The node positions of each variable in POM ocean model C

Figure 1. POM Ocean Mode 3D Mesh,Q stands for KM ,KH ,T stands for T,S,ρ (Figure from POM brochure)

grid are given in figure 1. The potential temperature equation (1) in the Princeton Ocean Model (POM) is numerically solved

through a two-stage operator splitting procedure. The first stage implements an explicit finite difference formulation for the

horizontal advection and diffusion terms, expressed as:

Dn+1T̃ −Dn−1Tn−1

2∆t
=−Adv(Tn) +Dif(Tn−1) (5)135
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The intermediate variable T̃ can be calculated directly using the scheme (5), where Adv(Tn) and Dif(Tn−1) use central

difference. In POM mode, the process of calculating the intermediate variable T̃ using format (5) is written as a subroutine

advt. The second step is the implicit difference scheme of the vertical diffusion term, as follows

Dn+1Tn+1−Dn+1T̃

2∆t
=

1
Dn+1

∂

∂σ

(
KH

∂Tn+1

∂T

)
− ∂R

∂σ
(6)

The format (21) requires an implicit solution for temperature Tn+1, where the first term on the right uses the central difference140

scheme. The format (21) for implicitly solving temperature Tn+1 in the POM ocean model is written as a subroutine proft.

The POM ocean model uses a weak filter (Asselin, 1972) to filter out the computational modes brought by the time-splitting

algorithm, and the solution of the thermohaline equation is filtered as follows at each time step

Ts = T +
α

2
(Tn+1− 2Tn + Tn−1) (7)

Where Ts is the filter solution, α = 0.05 is usually selected. After the filtering operation (7), Ts will be passed to Tn−1 and145

Tn+1 will be passed to Tn.

2.3 Variable limit integral method

The variable-limit integral method represents a novel numerical methodology for partial differential equation solutions, re-

cently emerging in computational mathematics. Its defining mechanism employs adaptive integration with variable bounds

(dynamically determined integration limits) within grid node vicinities to formally eliminate spatial derivatives. A canonical150

formulation of this approach can be expressed through the following operator framework:

∫

xx

f(x)
def

====

xi+ε2∫

xi

dxb

xi∫

xi−ε1

dxa

xb∫

xa

f(x)dx. (8)

Where xi is the grid node, variables xa and xb are the lower limit and upper limit of the integration respectively, they can

be changed, in general, the integration limit parameters ε1 and ε2 are required to be greater than zero and the same order as

the grid scale ∆x. For the convenience of the following, we first give the calculation results of some common polynomials’155

variable-limited integrals. By the definition of variable-limited integrals (8), ak and bk can be easily calculated as follows

ak
def

====
∫

xx

(x−xi)k

k!
=

ε1ε
k+2
2 + ε2(−ε1)

k+2

(k + 2)! (9)

and

bk
def

====
∫

xx

|x−xi|k
k!

=
ε1ε

k+2
2 + ε2ε1

k+2

(k + 2)!
, (10)

Note ãk = ak

a0
, b̃k = bk

a0
where the scriptkis a non-negative integer. Let’s give the lemma160
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Lemma 1. suppose f(x) ∈ CK+1[xl,xr], then

∫

xx

f(x) =
K∑

k=0

akf
(k)
i + R

and

|R| ≤ max
x∈[xl,xr]

∣∣f (K+1)(x)
∣∣bK+1

where f
(k)
i = dkf

dxk |x=xi
, k ∈ N.

The lemma gives a method to approximate the variable limit integral of
∫
xx

based on the Taylor expansion of the integrand.

3 Design of variable limit integral scheme for thermohaline equation

This subsection systematically develops variable-limit integral numerical schemes for the temperature equation’s horizontal

advection, horizontal diffusion, and vertical diffusion terms within the Arakawa-C grid framework, complemented by rigorous165

von Neumann stability analyses.

3.1 Variable limit integral scheme design for advection term Adv(T )

Taking ∂(DUT )
∂x as an example, the discretization process of advection term Adv(T ) by variable limit integral method is

introduced. Since D and T are on the same grid and differ by half a step from U , we can substitute e for DT and u for U , and

consider the following equation170

p =
∂(ue)
∂x

(11)

The grid of p and e is the same, and the grid corresponding to u and e is shown in Figure 2.

Figure 2. C grid diagram of variables u,e

Use the auxiliary function e(x) at node xi−1,xi,xi+1; where the function values are ei−1,ei,ei+1, a three-point Lagrange

interpolation function can be constructed near node xi to approximate the auxiliary function e(x).

e(x) =
k=i+1∑

k=i−1

ekLk(x) +∆x3

7

https://doi.org/10.5194/egusphere-2025-2636
Preprint. Discussion started: 19 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Where Lk(x) is the Lagrange interpolation basis function at node xk. Similarly, since p and e mesh are the same, a similar

three-point Lagrange interpolation function can be constructed to approximate the auxiliary function p(x).

p(x) =
k=i+1∑

k=i−1

pkLk(x) +∆x3

For function u, it can be based on node xi− 1
2

, Function value ui,ui+1 constructs a two-point Lagrange interpolation function

near node xi to approximate

u(x) =−ui
1

∆x
(x−xi−∆x) +ui+1

1
∆x

(x−xi + ∆x) +∆x2.

Next, the variable limit integral of
∫
xx

(as defined by equation (8)) on both sides of equation (11), p,u,e is replaced by the

interpolation function, the integral is calculated and sorted, and the final variable limit integral format is as follows

(
ã2

∆x2
− ã1

2∆x
)pi−1 + (1− 2ã2

∆x2
)pi + (

ã2

∆x2
+

ã1

2∆x
)pi+1 = δ(ui,ei) +∆x2 (12)175

where

δ(ui,ei) =
1

4∆x
(ui + ui+1)(ei+1− ei−1) +

1
∆x

ei(ui+1−ui)

+
ã1

2∆x2
(ui+1−ui)(ei+1− ei−1) +

ã1

∆x2
((ei+1− ei)ui+1− (ei− ei−1)ui)

+
3ã2

∆x3
(ui+1−ui)(ei+1− 2ei + ei−1)

The following uses 1 to give a fourth-order variable-limit integral scheme for equation (11). The variable limit integral is

applied to both sides of equation (11), 1 is applied and ε1 = ε2 = ε is obtained

pi +
ε2

12
p
(2)
i = (ue)(1)i +

ε2

12
(ue)(3)i + O(ε4) (13)180

Easy to know by Taylor’s formula

p
(2)
i =

pi+1− 2pi + pi−1

∆x2
+ O(∆x2)

(ue)(1)i +
∆x2

6
(ue)(3)i = δ∗(ui,ei) +O(∆x4)

where

δ∗(ui,ei) =
(ui−1− 5ui + 15ui+1 + 5ui+2)ei+1− (5ui−1 + 15ui− 5ui+1 + ui+2)ei−1

32∆x

Let ε =
√

2∆x, As can be seen from the above two formulas,equation(13)can be reduced to

1
6
(pi+1 + 4pi + pi−1) = δ∗(ui,ei) +O(∆x4) (14)

Remark 1. Format (12) and format (14) need to be combined with boundary conditions to solve and calculate the correspond-

ing pi.
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3.2 Variable limit integral scheme design for horizontal diffusion term Dif(T )185

The diffusion term ∂
∂x

(
HAH

∂T
∂x

)
in the x direction is taken as an example to introduce the discretization process of the

variable limit integral method of the horizontal diffusion term Dif(T ). The diffusion term in the y direction is similar and will

not be repeated here. Easy to know

∂

∂x

(
HAH

∂T

∂x

)
=

∂ (HAH)
∂x

∂T

∂x
+ (HAH)

∂2T

∂x

Since H AHand T are on the same grid, the key to discretization of diffusion term Dif(T ) by variable-limited integral method

is how to discretize the first and second derivatives by variable-limited integral method. So let’s start with the first derivative,

for the equation below

p =
∂(e)
∂x

(15)

Take both sides of the variable limit integral and apply 1 and take ε1 = ε2 = ε to obtain190

pi +
ε2

12
p
(2)
i = (e)(1)i +

ε2

12
(e)(3)i + O(ε4) (16)

Easy to know by Taylor’s formula

p
(2)
i =

pi+1− 2pi + pi−1

∆x2
+ O(∆x2)

(e)(1)i +
∆x2

6
(e)(3)i = δ1(ei) +O(∆x4)

where

δ1(ei) =
ei+1− ei−1

2∆x

Letε =
√

2∆x, and from the above two formulas, formula (16) can be reduced to

1
6
(pi+1 + 4pi + pi−1) = δ1(ei) +O(∆x4) (17)

Similarly, for the second derivative, consider the following equation

q =
∂2(e)
∂x2

(18)195

The variable limit integral is applied to both sides of equation (18), and 1 is applied and ε1 = ε2 = ε is obtained

pi +
ε2

12
p
(2)
i = (e)(2)i +

ε2

12
(e)(4)i + O(ε4) (19)

Easy to know by Taylor’s formula

p
(2)
i =

pi+1− 2pi + pi−1

∆x2
+ O(∆x2)

(e)(2)i +
∆x2

12
(e)(4)i = δ2(ei) +O(∆x4)
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where

δ2(ei) =
ei+1 + 2ei + ei−1

∆x2

Let ε = ∆x, and from the above two formulas, formula (19) can be reduced to

1
12

(pi+1 + 10pi + pi−1) = δ2(ei) +O(∆x4) (20)

Remark 2. The first and second order discrete derivatives Pi and qi can be calculated from equations (17) and (20) and the200

corresponding boundary conditions.

3.3 Variable limit integral scheme design and implicit discretization of vertical diffusion term

The vertical diffusion term ∂
∂σ

(
KH

∂T n+1

∂T

)
in POM ocean model adopts central difference scheme. The variable limit integral

scheme design of vertical diffusion term is introduced below. Consider the following time-implicit difference scheme for the

vertical diffusion term in the POM model205

Dn+1Tn+1−Dn+1T̃

2∆t
=

1
Dn+1

∂

∂σ

(
KH

∂Tn+1

∂σ

)
− ∂R

∂σ
(21)

Notice that KH and T are not on the same grid in the direction σ and are half a step apart. To facilitate derivation, the above

formula can be rewritten as

Q =
1

Dn+1

∂

∂σ

(
KH

∂Tn+1

∂σ

)
(22)

For auxiliary function Q and temperature T at node zk−1,zk,zk+1 Construct a three-point interpolation function, for KH ,210

two-point interpolation function is constructed at node zk− 1
2
,zk+ 1

2
, and the variable limiting integral of

∫
σσ

(defined as equa-

tion (8), where the integral variable is σ) is used on both sides of equation (22). Q,T,KH is replaced by the corresponding

interpolation function, the integral is calculated and sorted, and the following final variable limit integral format is obtained

R(Qk) =
1

Dn+1

(
α0T

n+1
k+1 + α1T

n+1
k + α2T

n+1
k−1

)
(23)

where the operator R on the left is215

R(Qk) =(
ã2

∆x2
− ã1

2∆x
)Qk+1 + (1− 2ã2

∆x2
)Qk + (

ã2

∆x2
+

ã1

2∆x
)Qk−1

.=β0Qk+1 + β1Qk + β2Qk−1 (24)

The coefficient of the right end of equation (23) α0,α1,α2 in turn is

α0 =
1
d2

z

KH(k− 1
2
)− 2ã1

d3
z

(
KH(k− 1

2
)−KH(k +

1
2
)
)

α1 =− 1
d2

z

(
KH(k− 1

2
) +KH(k +

1
2
)
)
− 4ã1

d3
z

(
KH(k− 1

2
)−KH(k +

1
2
)
)

α2 =
1
d2

z

KH(k +
1
2
)− 2ã1

d3
z

(
KH(k− 1

2
)−KH(k +

1
2
)
)

10
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let Dn+1T n+1−Dn+1T̃
2∆t + ∂R

∂σ replace Q, and then the terms containing Tn+1 are grouped together, the formula (23) This can be

converted to the following final variable-limit integral implicit fully discrete scheme220

γk+1T
n+1
k+1 + γkTn+1

k + γk−1T
n+1
k−1 = Pk (25)

where

γk+1 =
Dn+1

2∆t
β0−

α0

Dn+1

γk =
Dn+1

2∆t
β1−

α1

Dn+1

γk−1 =
Dn+1

2∆t
β2−

α2

Dn+1

Pk =
Dn+1

2∆t
R(T̃ )−R(

∂R

∂σ
)

Remark 3. The temperature Tn+1 at all discrete points can be obtained by combining the two boundary conditions of tem-

perature at the sea surface and bottom of equation 25. The setting and use of boundary conditions are the same as POM ocean225

model.

3.4 Stability analysis of variable limit integral scheme

To directly compare the performance of variable-limit integration schemes, this study adopts the same temporal discretization

as the POM ocean model, employing a three-time-level leap-frog scheme. For spatial discretization, variable-limit integration

schemes are designed for horizontal advection terms, horizontal diffusion terms, and vertical diffusion terms. Specifically, the230

vertical diffusion term combines a variable-limit integration scheme with a finite difference method to form an implicit com-

putational scheme. While implicit schemes generally exhibit superior stability, horizontal advection terms often significantly

influence the stability of the numerical scheme for the temperature and salinity equations. Therefore, this section focuses on an-

alyzing the stability of the variable-limit integration scheme for horizontal advection terms under the three-time-level leap-frog

temporal discretization.235

Consider the one-dimensional constant-coefficient convection equation

∂e

∂t
= u

∂e

∂x
(26)

where u is constant.

Building upon the three-time-level temporal discretization scheme of the Princeton Ocean Model (5) and the variable-limit

integral formulation for horizontal transport terms (12), we derive the fully discrete scheme for Equation (26)240

Aen+1
i − en−1

i

2∆t
= δ(u,ei) (27)

where the discrete operators are defined as

Api =
(

ã2

∆x2
− ã1

2∆x

)
pi−1 +

(
1− 2ã2

∆x2

)
pi +

(
ã2

∆x2
+

ã1

2∆x

)
pi+1

δ(a,ei) =
u

2∆x
(ei+1− ei−1) +

ã1u

∆x2
(ei+1− 2ei− ei−1)
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Notably, the fourth-order variable-limit integral scheme (14) is inherently contained within the discrete formulation (27) for

constant-coefficient convection problems. Consequently, the subsequent stability analysis encompasses both second-order (12)245

and fourth-order (14) variable-limit integral schemes for horizontal transport terms.

Following conventional practice in variable-limit integral formulations (9), we normalize the integral limit parameter ε to

match the grid scale ∆x order, establishing

ρ1 =
ã1

∆x
, ρ2 =

ã2

∆x2

Introducing the auxiliary variable wn
i = en−1

i and applying Fourier analysis with the ansatz en
i = en exp(iαxi), wn

i =

wn exp(iαxi), substitution into Equation (27) yields after common factor elimination

en+1 = 2ur
B

A
en + wn

wn+1 = en (28)

where r ≡∆t/∆x denotes the grid ratio, and coefficients A, B are given by250

A = (ρ2−
1
2
ρ1)exp(−iα∆x) + (1− 2ρ2) + (ρ2 +

1
2
ρ1)exp(iα∆x)

B = (ρ1−
1
2
)exp(−iα∆x)− 2ρ1 + (ρ1 +

1
2
)exp(iα∆x)

The corresponding amplification matrix becomes

G =


2ur B

A 1

1 0




Letting d≡ ur B
A , the characteristic equation of matrix G is

λ2− 2dλ− 1 = 0

yielding eigenvalues

λ = d±
√

d2 + 1

Notably, d is generally complex-valued. Through Euler’s formula with θ ≡ α∆x, we simplify B
A as

B

A
=

2ρ1(cosθ− 1) + isinθ

2ρ2(cosθ− 1) + ρ1isinθ + 1

Direct verification confirms that |λ| ≤ 1 holds when ρ1 = 0, ρ2 = 1
6 , and r ≤ 1

u
√

3
, thereby establishing numerical stability.

4 Numerical Experiments

This section presents the computational implementation strategy for integrating the variable-limit integral scheme into the host

ocean model’s codebase, accompanied by verification procedures. Validation employs two benchmark test cases: an idealized255
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straight-channel configuration and a zero-Coriolis scenario, designed to rigorously assess the scheme’s numerical reliability

and long-term stability. The analysis concludes with a systematic evaluation of simulation accuracy, comparing the proposed

scheme against conventional model formulations under diverse steep bathymetric conditions (slope steepness ratios exceeding

0.15), thereby demonstrating the method’s enhanced topographic adaptability.

Leveraging the distinct mathematical characteristics of the thermohaline equation’s horizontal advection, horizontal dif-260

fusion, and vertical diffusion operators, this study develops specialized variable-limit integral formulations under the C-grid

discretization framework. The implementation modifies the host ocean model’s Fortran architecture through three critical en-

hancements.

The calculation result of I-POM mentioned in the following numerical experiment refers to replacing the calculation part of

the temperature and salt equation of the original POM model (that is, the subroutine advt1 or advt2 and the subroutine proft)265

with the designed variable limit integral (subroutine advtle and proftle), and the other parts continue to follow the POM model.

In the following numerical experiments, we use O-POM to represent the results of the original POM model and I-POM to

represent the results of the POM model improved by the variable limit integration method.

4.1 The Setting of Numerical Experiment

4.1.1 Terrain Settings270

In the following numerical example, only two types of topography, the strait and the sea sill, are used, as shown in figure

3. The experimental domain is designed as an idealized strait geometry with zonal (east-west) and meridional (north-south)

extents of 520 km and 400 km, respectively; bathymetric characterization reveals a maximum water depth of 4,500 m in the

central basin. Boundary conditions are prescribed with dynamically constrained no-flux walls along latitudinal boundaries

(north-south orientation) and free-slip open boundaries permitting cross-strait exchange in longitudinal directions (east-west275

orientation).

Sill topography is based on the setting of the channel, the flat seafloor is replaced with a gradually raised sill. The east-west

length is still 520km, the north-south width is 400km, and the depth is a gradually changing sill of 4500m. The topography

(depth) function h(x; y) as follows,

h(x,y) = 4500(1−A/cosh(α(x−xm))) (29)280

Where α = 40
512000 , xm = 260000, A is the steepness of the terrain parameter value is 0≤A≤ 1, A, the larger the A indicates

the steeper the terrain. Similarly, the northern and southern boundaries of the area are closed and impenetrable, and the eastern

and western boundaries are open to allow water to flow in and out freely.
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Figure 3. Shematic diagram of the channel and sea sill

4.1.2 Temperature and salt flow rate and grid setting

The temperature and salinity of the initial seawater in the region and the seawater flowing in from the western boundary are set285

in two ways: 1. The temperature is set to a constant value of 20°C, and the salinity is set to a constant value of 35psu (channel

zero start-up example); 2. Temperature and salinity change with depth (other examples). Specifically, sea water temperature is

only related to depth z and decreases with increasing depth, and the temperature distribution function t0(z) is as follows

t0(z) = 5 + 25exp(z/1000) (30)

Seawater salinity is also only related to seawater depth z, set to increase with depth, and the salinity distribution function s0(z)290

is as follows

s0(z) = 35− exp(z/1000) (31)

With regard to the flow rate, in the example, it is either set to no seawater inflow (channel zero start-up example), or set to

a constant flow at the western boundary (other examples), flowing from west to east into the channel (sill) area at a speed of

0.2m/s. As for the grid Settings, unless otherwise specified, the horizontal grid resolution in the numerical example in this295

paper is 8km, that is, dx = dy = 8000(m); The vertical coordinates are σ with the terrain, and the vertical directions are divided

into 20 parts.
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4.2 numerical experiment

4.2.1 Channel zero start-up example

This part of the calculation uses the channel topography, the temperature is set at a constant 20◦C, the salinity is set at a300

constant 35 psu, no seawater flows in or out of the boundary, and the water in the entire channel remains static. From this, the

mode is activated and, in theory, the temperature and salinity are always constant at any moment, and the flow rate is always

zero.
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Figure 4. Temperature, salinity and velocity timelines of I-POM and O-POM at locations (10,5,17) and (33,25,10) under channel test

Figure 4 compares the simulated temperature, salinity, and velocity fields generated by the Princeton Ocean Model (O-POM)

and the variable-limit integral method (I-POM) in an open-channel configuration. The left panels present temporal evolution305

patterns at coordinate position (10, 5, 17), while the right panels display corresponding temporal variations at coordinate (33,

25, 10). Here, the indices (i, j, k) denote the spatial position (x = i∆x,y = j∆y,σ = k) within the sigma-coordinate system,

where σ represents the dimensionless vertical coordinate.

Figure 5 quantifies model discrepancies through error norm analysis, with left panels illustrating L2-error norms and right

panels depicting L∞-error norms for temperature, salinity, and velocity components. These error metrics systematically com-310

pare the numerical differences between O-POM and I-POM simulations.

According to the model configuration, constant temperature (20◦C) and salinity (35 psu) conditions were maintained, with

zero velocity prescribed in all three spatial directions. As illustrated in Figure 4 and Figure 5, both the Princeton Ocean Model

(O-POM) and the variable-limit integral IMVL method (I-POM) successfully reproduced the temperature, salinity, and flow

fields under this static water scenario.315
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Figure 5. The time history graph of temperature salinity velocity L2-error (left) and L∞-error (right) calculated by I-POM and O-POM

under channel test

A detailed comparison reveals that the I-POM approach achieved higher precision in simulating temperature and salinity

distributions compared to the O-POM (Figure 4). Error analysis in Figure 5 further demonstrates that the I-POM’s global error

accumulated at a slower rate over time. By day 60, the I-POM’s error magnitude was reduced by approximately 50% relative

to the O-POM baseline. These results indicate that the introduction of variable-limit integration significantly enhances the ac-

curacy of thermohaline simulations. For hydrodynamic components, however, both models exhibited comparable performance320

in reproducing horizontal velocities (u, v) and vertical velocity (w), with minimal discrepancies observed between the two

methodologies.

4.2.2 Runtime Comparison

The computational performance of the Integral Method with I-POM and the O-POM was systematically compared under differ-

ent spatial resolutions. Table 1 presents the computational time distribution for three progressively refined grid configurations(Im×325

Jm×Km): (33×25×11),(65×49×21),and(129×99×41), where Im (zonal), Jm (meridional), and Km(vertical) denote

the grid node counts in respective coordinate directions. The timing analysis distinguishes between total computation duration

(All), temperature-salinity component (STp), and the IMVL module, with all times reported in seconds (s).
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Table 1. Total calculation time of I-POM and O-POM under zero Coriolis force test with different spatial resolutions (im,jm,kb) All and

temperature and salinity calculation time STp (unit: second)

(33×25×11) (65×49×21) (129×99×41)

All STp All STp All STp

POM 23.050 2.882 145.958 21.408 1157.556 186.579

I-POM 27.979 8.478 187.322 63.772 1470.236 531.552

Rate of increase 21.38% 194.17% 28.34% 197.89% 27.01% 184.89%

Key findings reveal that the I-POM implementation requires approximately three times longer computation duration than

conventional O-POM approaches when solving the temperature-salinity equations. Notably, substituting the O-POM’s native330

temperature-salinity solver with the IMVL scheme increases the model’s overall computational overhead by approximately

25%. This performance differential remains consistent across all tested grid resolutions, demonstrating the method’s scalability

characteristics.

4.3 The results of I-POM and O-POM numerical models are different in different steep sill topography

This section presents a numerical experiment configured with a sill topography. The temperature and salinity fields are pre-335

scribed according to Equations (30) and (31), respectively. A steady westward inflow of 0.2 m/s is imposed along the west-

ern boundary to drive the circulation through the sill region. The Coriolis parameter is specified as cor = 1.0× 10−4 s−1.

To investigate the discrepancies between variable limit integration (I-POM) and the original Princeton Ocean Model (O-

POM) in temperature-salinity simulations under different topographic gradients, the topographic steepness parameter A in

the bathymetry function is systematically varied with three distinct values: 0.4, 0.6, and 0.8. This parametric study enables340

comparative analysis of model performance across gradually intensified topographic slopes.

Figure 6 and Figure 7, The temperature and salinity cross sections of the I-POM (left) and POM (right) at the central axial

plane y=196km under the sea sill test are shown, respectively. The operating days from top to bottom are 5 days, 30 days, and

60 days, respectively, where the steepness parameter A = 0.6. As can be seen from the figure, there is little difference between

the results of I-POM and O-POM on the whole, regardless of temperature or salinity. However, with the increase of simulation345

time, the difference between the two begins to appear: in the 30-day and 60-day sections, the bottom of the sill, especially the

downstream part (x≥ 300), is significantly different. In addition, in the figure7, The salinity cross section (left 3 and left 4) is

simulated by the I-POM on the 30th and 60th days of the presentation in the above paper. It can be seen that there are multiple

isosalinity curves that intersect at the downstream profile along the top of the sill, and the isosalinity curve at the top of the left

4 fluctuates dissimilarly, indicating that the variable limit integral I-POM can simulate the overflow mixing of seawater here.350

More in line with the actual seawater movement; In the salinity cross section of I-POM 60 days, overflow mixing even affects

the surface seawater, while O-POM does not simulate similar results.
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Figure 6. Temperature cross sections at y=196km for I-POM (left), POM (middle) and the difference between them (right) under sea sills
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Figure 7. Salinity cross sections at y=196km of I-POM (left), POM (middle) and the difference between them (right) under sea sills
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Figure 8. Temperature cross sections at y=196km of I-POM (left) and O-POM (right) on day 18 under sea sills with different steepness

parameters A = 0.4(top),0.6(middle),0.8(bottom)

Figures 8 and 9 respectively present the simulated temperature and salinity cross-sections obtained using the variable-limit

integral method (I-POM, left panels) and the Princeton Ocean Model (O-POM, right panels) under varying sill steepness

conditions. The steepness coefficient A progressively increases from 0.4 (top row) to 0.6 (middle row) and 0.8 (bottom row).355

All cross-sections were extracted from the central axial plane (y = 196 km) of the computational domain at identical simulation

times. Figure 10 illustrates vertical velocity profiles along three orthogonal directions: longitudinal (u, left), lateral (v, center),

and vertical (w, right). These profiles compare the I-POM and POM model outputs under different sill steepness conditions (A

= 0.4, 0.6, 0.8 from top to bottom) at day 18 of the simulation. Consistent with Figures 8-9, all velocity profiles were sampled

at the central cross-section (y = 196 km).360
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Figure 9. Salinity cross sections at y=196km of I-POM (left) and O-POM (right) on day 18 under sea sills with different steepness parameters

A = 0.4(top),0.6(middle) and 0.8(bottom)
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Figure 10. Velocity u,v,w difference between I-POM and O-POM on day 18 under sea sills with different steepness parameters A =

0.4(top),0.6(middle) and 0.8(bottom)

The figure 8,9 and10 demonstrates that both temperature and salinity fields simulated by the I-POM and O-POM exhibit

general consistency under varying steepness coefficients. However, as the steepness coefficient A increases from 0.2 to 0.8,

discrepancies between the two methods become progressively more pronounced, particularly in the sill’s basal regions (x≥
300) of the downstream section. Notably, when A=0.8, the variable limit integral method successfully captures critical hydraulic

overflow processes induced by abrupt topographic uplift, along with the intense turbulent mixing phenomena occurring post-sill365

crossing. In contrast, the O-POM fails to reproduce these dynamic features under equivalent parameter conditions.
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4.3.1 Zero Coriolis force sill test

In this set of experiments, we configure the Coriolis parameter (denoted as two-dimensional variable cor in the O-POM model

codes) to zero, effectively eliminating Coriolis force effects. The strait topography is maintained with initial temperature and

salinity distributions prescribed by Equations (30) and (31), respectively. A steady westward inflow of 0.2 m/s is imposed at370

the western boundary. Under this Coriolis-free configuration, symmetry considerations dictate that all thermohaline-current

physical quantities should remain uniform along the north-south direction at any horizontal level.
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Figure 11. Temperature (left) and salinity (right) time graphs of I-POM and O-POM with different steep terrain parameters A under zero

Coriolis force sill test

Figure 11 illustrates temporal variations of temperature (left panel) and salinity (right panel) at the strait center point sim-

ulated by both O-POM and I-POM approaches, with topographic steepness parameter A decreasing from 0.2 (top) to 0.8

(bottom).375

Our initial objective was to evaluate I-POM’s performance in thermohaline simulations by verifying preservation of north-

south uniformity. However, we uncovered a noteworthy phenomenon: The implementation of variable-limit integration (IMVL)

significantly enhances numerical stability compared to the O-POM model under these configurations.

As evidenced in Figure 11, the standard O-POM model exhibits numerical instability across all tested A values when Coriolis

effects are disabled. Temperature and salinity simulations develop pronounced oscillations around days 6-8, followed by rapid380

divergence that ultimately forces code termination due to excessive horizontal velocity v. In contrast, IMVL demonstrates

remarkable stability with only minor oscillations (potentially related to velocity solution mechanisms), maintaining robust

computation throughout the simulation period.
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To investigate whether the numerical instability observed in the O-POM is terrain-induced, we conducted stability tests by

removing the bottom topography (i.e., reverting to a flat-bottom channel configuration) under zero Coriolis effects and identical385

temperature-salinity-current settings. The simulations compared the O-POM and the I-POM.

Figure 12. Temperature, salinity and velocity time history at locations (33,25,10) (left) and mean absolute errors (right) graph of I-POM and

O-POM under zero Coriolis force sill test when A = 0.

Figure 12 presents the temporal variations of mean absolute errors (MAEs) in temperature, salinity, and velocity between

the two methods over the same period. The MAE for temperature, denoted as Et(n), is computed as

Et(n) =

∑
i,j,k |ti,j,k − texact

i,j,k|
Im · Jm ·Km

,

where ti,j,k and texact
i,j,k represent simulated and exact solutions, respectively. Analogous formulas apply to salinity and three-

dimensional velocity errors.

The results reveal that while the O-POM simulation remains operational, it exhibits severe numerical oscillations in temper-

ature, salinity, and velocity around day 25. In contrast, the I-POM maintains stable solutions close to the ground truth, with390

only minor oscillations occurring near day 50. Error analysis confirms that O-POM-derived results become unreliable after

approximately 25 days, whereas I-POM maintains consistently low MAEs throughout the 720-day simulation. Figures 11 and

12 collectively demonstrate that the IMVL formulation significantly enhances numerical stability in the temperature-salinity

equations compared to the O-POM framework.

4.3.2 Stability Test under Sill Terrain395

Table 2 presents the stability comparison between POM and IMVL under different Coriolis force parameters (presence/ab-

sence) and topographic conditions (sill topography vs. strait topography). Initial analysis indicates that the POM scheme
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exhibits significant numerical instability under Coriolis-free conditions, while topographic effects can partially mitigate such

instabilities.

Table 2. Stability comparison between O-POM and I-POM under different Coriolis force parameters and topographic conditions

Condition Type O-POM I-POM

No Coriolis Force & sill Crash Normal

No Coriolis Force & channel
Deviation in calculation around 25 days,

results not reliable
Normal

With Coriolis Force & sill Normal Normal

With Coriolis Force & channel Normal Normal

Figure 13. O-POM vertical temperature sections at y = 196 km under Coriolis-free(upper row) and Coriolis parameter cor = 1.0×
10−4(lower row) at day 4 (left), day 6 (middle), and day 6.5 (right)

To investigate the destabilization mechanisms of O-POM scheme under zero Coriolis force, we conducted a case study400

with steep topographic parameter A = 0.6. Figure 13 displays vertical temperature sections at y = 196km under Coriolis-

free conditions (upper row) and Coriolis parameter cor = 1.0× 10−4(lower row), showing model outputs at day 4 (left), day
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Figure 14. O-POM horizontal current fields at 2000 m depth under Coriolis-free(upper row) and Coriolis parameter cor = 1.0×10−4(lower

row) at day 4 (left), day 6 (middle), and day 6.5 (right)

6 (middle), and day 6.5 (right). Correspondingly, Figure 14 presents horizontal current fields at 2000m depth for the same

timestamps.

The experimental results demonstrate that under Coriolis-free conditions (upper row of Figure 13), the vertical temperature405

gradient intensifies progressively due to the absence of Coriolis-induced lateral deflection during sill overflow. This leads

to persistent water accumulation at the sill crest, ultimately triggering numerical collapse. In contrast, under the Coriolis

force condition (lower row of Figure 13), lateral deflection effectively reduces water accumulation intensity, enabling stable

simulation of sill overflow processes.

Current field analysis (Figure 14) further reveals that without Coriolis force, significant flow reversal emerges by day 6,410

with dramatic increases in reversal velocity and spatial velocity gradient by day 6.5, directly causing model instability. With

Coriolis force present, the current maintains an acute angle relative to the sill isobaths, accompanied by gradual velocity

gradient variations that ensure computational stability.

Figure 15 presents simulation results under non-Coriolis conditions using the IMVL enhanced POM model, showing tem-

perature cross-sections (upper row) at y=196 km and horizontal velocity fields (upper row) at 2000 m depth for Day 4 (left),415

Day 6 (middle), and Day 6.5 (right). The IMVL scheme successfully captures stable seawater overflow dynamics across the

topographic sill, as evidenced by diminishing temporal variations in thermal structure post-Day 6 and symmetric north-south

distribution patterns in steady-state horizontal flow fields.
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Figure 15. I-POM vertical temperature sections at y = 196 km (upper row) and horizontal current fields at 2000 m depth(upper row) under

Coriolis-free at day 4 (left), day 6 (middle), and day 6.5 (right)

Theoretical analysis reveals that Coriolis force modifies flow trajectories to reduce effective topographic slope resistance.

Specifically, Coriolis-induced flow deflection alleviates numerical instability caused by σ-coordinate transformation over sig-420

nificant bathymetric features. Crucially, the IMVL approach substantially enhances model stability in topographically complex

regions, regardless of Coriolis force inclusion.

5 Conclusions

In this paper, the variable limit integral scheme is designed and constructed for the temperature and salt equation in the

ocean motion governing equation under the Arakawa-C grid setting. According to the different characteristics of horizontal425

advection term, horizontal diffusion term and vertical diffusion term of the thermohaline equation, the corresponding variable

limit integral scheme under C grid is designed and embedded in the POM ocean model. In addition, based on the convection

equation, the stability of the variable limit integral scheme is analyzed separately.

Numerical experiments demonstrate that the implementation of the variable-limit integral scheme in the temperature-salinity

equations significantly enhances the O-POM model’s performance in terms of accuracy and stability. The core conclusions are430

as follows:
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1. The Strait Zero-Startup numerical experiments demonstrate that, compared with the original Princeton Ocean Model (O-

POM), the modified numerical model incorporating a variable limit integral scheme for solving temperature and salinity

equations significantly reduces 40-60% simulation errors in seawater temperature and salinity.

2. The modified scheme exhibits heightened sensitivity to topographic variations, particularly in simulating overflow phe-435

nomena across steep sills, with computational discrepancies amplifying nonlinearly with both topographic steepness and

simulation duration.

3. Computational efficiency analysis reveals that while the temperature-salinity module’s calculation time triples, the over-

all computational overhead increases by merely 25%, remaining within acceptable thresholds.

4. Notably, in sill topography tests under zero Coriolis conditions, the modified formulation successfully resolves numer-440

ical instabilities that plague the original model after 6-8 simulation days. Physical mechanism analysis elucidates that

traditional POM formulations generate unphysical water stacking in the absence of Coriolis forcing, leading to anoma-

lous accumulation of vertical density gradients and horizontal velocity gradients. The variable-limit integral scheme

effectively mitigates these numerical artifacts through improved discretization, achieving stationary flow simulations

that better align with physical principles.445

The findings demonstrate that it should be emphasized that the variable-limit integral method developed for thermohaline

equations represents an innovative and robust numerical scheme, which, while implemented in POM for validation, is directly

transferable to other ocean modeling frameworks. Incorporating this method into ocean numerical models exhibits notable

advantages in enhancing model stability and resolving dynamic processes over complex topography, providing an effective

approach for optimizing the dynamical framework of ocean models.450
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