

1 **Investigating the Mechanism of Typhoon Tracks on Ozone Pollution**

2 **Episodes in Guangdong, China**

3

4 **Xi Chen¹, Xiaoyang Chen^{2*}, Long Wang¹, Shucheng Chang¹, Minhui Li¹, Chong**

5 **Shen³, Chenghao Liao¹, Yongbo Zhang¹, Mei Li⁴, Xuemei Wang^{5*}**

6

7

8 1. Institute of Atmospheric Environment, Guangdong Provincial Academy of

9 Environmental Science, Guangzhou 510045, China

10 2. Guangzhou Institute of Tropical and Marine Meteorology of China Meteorological

11 Administration, GBA Academy of Meteorological Research, Guangzhou, 510640,

12 China

13 3. Guangzhou Ecological and Agricultural Meteorological Center, Guangzhou,

14 511430, China

15 4. Institute of Mass Spectrometry and Atmospheric Environment, Guangdong

16 Provincial Engineering Research Center for On-line Source Apportionment System

17 of Air Pollution, Jinan University, Guangzhou 511486, PR China

18 5. Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for

19 Environmental Quality, College of Environment and Climate Jinan University,

20 Guangzhou 511486, PR China

21

22

23 Corresponding author: Xuemei Wang (eciwxm@jnu.edu.cn), Xiaoyang Chen

24 (chenxiaoyang@gd121.cn)

25

26

27 **Key Points:**

28 • Proximal northward-recurving typhoons are the most likely to induce ozone
29 pollution.

30 • The northward typhoon will cause ozone to increase by $0.3\text{--}1\text{4.5}$ ppbv in
31 vertical height.

32 • The contribution rate of transboundary layer transport under the influence of
33 typhoon to the ozone in the boundary layer can reach 16%.

34

35

36

37

38

39 **Abstract**

40 Ozone (O_3) pollution has emerged as one of the core challenges in atmospheric
41 environmental governance in China, particularly in Guangdong Province. As a crucial
42 weather system during East Asian summers, typhoons exert profound influences on
43 O_3 formation, accumulation, and transboundary transport through variations in their
44 tracks and intensities. This study examined 237 historical typhoons occurring in
45 China's coastal waters between 2013-2023, classifying them into three distinct
46 trajectory types using k-means clustering: westward-moving typhoons (Type 1),
47 Distant northward-recurving typhoons (Type2) and Proximal northward-recurving
48 typhoons (Type3). By integrating ground-based observations, reanalysis data, and
49 WRF-CMAQ model simulations to investigate the mechanisms through which
50 typhoon tracks affect ozone pollution in Guangdong Province. The results
51 demonstrate that for Guangdong Province, proximal northward-recurving typhoons
52 induce more extreme meteorological conditions compared to westward-moving and
53 distant northward-moving typhoons.

The analysis of consecutive northward-moving typhoons' impact on ozone pollution in Guangdong Province reveals that surface photochemical reactions served as the dominant factor, while vertical downward transport of upper-level ozone acted as a secondary contributor. Nevertheless, the long-range vertical transport induced by typhoons cannot be neglected. During this event, vertical transport contributed up to 39.9 ppbv to near-surface (100 m) ozone concentrations, with cross-boundary-layer transport accounting for up to 16% of boundary layer ozone concentrations, demonstrating that typhoon-induced vertical transport significantly enhances boundary layer ozone levels and consequently worsens surface pollution. Additionally, analysis of the backward trajectories and 3-dimensional ozone concentration fields of 237 typhoons indicates that northward-moving typhoons significantly enhance the downward transport of ozone,

65 consequently increasing the ozone concentration at the central point of Guangdong
66 Province by 2.5 – 14.0 ppbv (Type 2) and 0.3 – 14.5 ppbv (Type 3) within the 250 –
67 900 hPa layer.

68

69 **Plain Language Summary**

70 It is well established that typhoon tracks exert significant impacts on ozone
71 pollution. However, current research predominantly focuses on individual typhoon
72 case studies or isolated meteorological factors, leaving a gap in comparative analyses
73 of the mechanisms associated with different typhoon pathways. This study
74 categorizes the trajectories of 237 typhoons that occurred over the western Pacific
75 Ocean, specifically investigating the influence mechanisms of westward-moving
76 typhoons (Type1), distant northward-moving typhoons (Type2), and Proximal
77 northward-recurving typhoons (Type3) on ozone pollution in Guangdong Province.
78 The results demonstrate that close-in northward-moving typhoons induce the most
79 favorable conditions for ozone formation and the least favorable atmospheric
80 dispersion conditions in Guangdong, thereby promoting ozone pollution.

81 Additionally, northward-moving typhoons facilitate the subsidence of high-
82 latitude, high-concentration ozone into the boundary layer, leading to elevated ozone
83 levels. Finally, consecutive northward-moving typhoons trigger widespread and
84 persistent ozone pollution across Guangdong. During this process, cross-boundary-
85 layer transport via vertical motion contributes up to 16% of the ozone concentration
86 within the boundary layer, underscoring the substantial impact of northward-moving
87 typhoons on boundary-layer ozone through vertical transport mechanisms.

88 **1 Introduction**

89 Ozone (O_3) pollution has become one of the core challenges in atmospheric
90 environmental governance in China, particularly in the Pearl River Delta region. As a
91 typical secondary pollutant, the formation of O_3 is dually regulated by precursor

92 emissions (NO_x and VOCs) and meteorological conditions. (Dou et al., 2024; Gong et
93 al., 2025; Qiu et al., 2025; Yang et al., 2019). In recent years, despite continuous
94 strengthening of anthropogenic emission control measures, the increasing frequency
95 of extreme weather events has significantly amplified the complexity of O_3 pollution.
96 (Chen et al., 2022a; Lu et al., 2024; Wan et al., 2022; Wang et al., 2024a)。 Among
97 these factors, typhoons, as a crucial weather system during the East Asian summer,
98 exert profound impacts on O_3 formation, accumulation, and transboundary transport
99 through their track and intensity variations, which significantly modify regional
100 meteorological conditions (e.g., temperature, humidity, wind speed) and
101 atmospheric transport processes. (Chen et al., 2021; Qu et al., 2021; Shen et al., 2023;
102 Wang et al., 2022a)。

103 Typhoons affect ozone generation, accumulation, and vertical transport by
104 altering meteorological and circulation conditions. The peripheral subsidence flows of
105 typhoons frequently induce high temperatures, low humidity, and stagnant weather
106 conditions, which enhances photochemical reactions while suppressing pollutant
107 dispersion, consequently leads to localized O_3 accumulation. (Chen et al., 2022b).
108 Meanwhile, the heat-stagnation conditions stimulate biogenic emissions (e.g.,
109 doubling isoprene concentrations), providing additional precursors for ozone
110 formation (Xu et al., 2023). Observations and models indicate that typhoons can
111 increase biogenic emissions and cross-boundary ozone transport by 78.0% and 22.5%,
112 respectively, and more than double ozone formation efficiency (Wang et al., 2022a).
113 Additionally, typhoon systems may drive vertical transport, bringing ozone from
114 higher altitudes down to the surface, further exacerbating pollution (Chen et al.,
115 2021; Zhan et al., 2020; Chen et al., 2022c). However, the relative contribution of
116 vertical transport remains debated: some studies suggest that ozone increases are
117 primarily due to enhanced surface-level photochemical activity(Huang et al., 2021;
118 Jiang et al., 2024; Wang et al., 2025), with subsidence mainly acting to suppress
119 dispersion (Ding et al., 2023; Li et al., 2022; Ouyang et al., 2022), while others

120 confirm that processes such as typhoon-induced stratospheric intrusions can directly
121 elevate surface ozone concentrations by 10 – 15 ppbv (Chen et al., 2021).

122 Current research demonstrates that typhoon impacts on ozone pollution exhibit
123 significant path dependence. Westward-moving typhoons induce increased net
124 ozone production in the Pearl River Delta (PRD) core region prior to landfall, followed
125 by a rapid decline to near-zero levels on the landfall day(Ding et al., 2023). When a
126 typhoon approaches the land, the accompanying wind and rain effects can lead to
127 the removal of pollutants, leading to negative ozone anomalies over the Yangtze
128 River Delta region(Chen et al., 2021). When typhoons track northward across the
129 Taiwan Strait through the low-latitude western Pacific, they trigger sequential
130 regional ozone pollution episodes in both the Yangtze River Delta (YRD) and Pearl
131 River Delta (PRD) regions(Wang et al., 2022b). The northerly peripheral circulation of
132 the typhoons transports precursors from North China and the Yangtze River Delta
133 (YRD) southward, which, when superimposed with local emissions, triggers abrupt
134 ozone concentration increases(Shen et al., 2023). Successive northward-moving
135 typhoons can elevate O₃ concentrations by 30% across eastern China while
136 prolonging pollution duration(Wang et al., 2024b). Furthermore, the interaction
137 between typhoons and the subtropical high can form a compound weather system,
138 which exacerbates O₃ pollution intensity and prolongs its duration(Gao et al., 2020;
139 Han et al., 2020a; Qin et al., 2020).

140 However, current research predominantly focuses on individual typhoon cases
141 or isolated meteorological factors(Kumar et al., 2023; Li et al., 2023a; Zhan et al.,
142 2020), leaving significant gaps in comparative analyses of mechanisms associated
143 with different typhoon tracks. The key scientific questions include: How do different
144 movement paths of typhoons separately regulate meteorological conditions and
145 regional transport? How do large-scale circulation changes induced by varying
146 typhoon tracks influence the vertical distribution of ozone? The systematic
147 exploration of these issues will deepen our understanding of the interaction

148 [mechanism between typhoons and ozone.](#)

149 As a high-frequency typhoon landing region, Guangdong Province exhibits
150 particularly strong correlations between ozone pollution and typhoon activity
151 (Shuping et al., 2022; Yaoyao et al., 2022). Statistical analyses reveal that over 80% of
152 ozone exceedance days during Guangdong's summer-autumn seasons from 2015-
153 2021 were typhoon-associated (Shen et al., 2023). Under climate change scenarios,
154 observed trends of northward-shifting typhoon tracks and intensifying storm
155 strength may further alter regional ozone pollution patterns (Guo and Tan, 2022).
156 Consequently, elucidating the mechanistic links between typhoon paths and ozone
157 pollution holds dual significance: advancing regional atmospheric multipollutant
158 theory while providing scientific foundations for dynamic, precision-based ozone
159 control strategies.

160 This study systematically investigates all typhoons near Guangdong Province
161 from 2013 to 2023 by integrating multi-source observational data and numerical
162 simulations. Through comprehensive classification of typhoon tracks, we conduct in-
163 depth analyses of the relationships between meteorological factors, circulation
164 patterns, atmospheric transport, and three-dimensional ozone distribution under
165 different typhoon paths. Specifically, we examine the contribution of upper-level
166 transport to boundary layer ozone concentrations during typical typhoon events. The
167 research aims to elucidate the differential impacts of various typhoon tracks on O₃
168 pollution in Guangdong region, thereby providing scientific support for refined air
169 quality management strategies.

170 **2 Materials and Methods**

171 **2.1 K-means Clustering Analysis**

172 K-means represents one of the most prevalent partition-based clustering
173 methods. The algorithm categorizes n objects into K clusters based on a predefined
174 parameter K, aiming to minimize the within-cluster sum of squares (WCSS) while
175 maximizing the between-cluster sum of squares (BCSS). This ensures high intra-

176 cluster similarity and low inter-cluster similarity. The K-means algorithm has been
177 widely applied in atmospheric trajectory classification studies due to its effectiveness
178 in identifying characteristic transport patterns(Han et al., 2020b; Yufeng et al., 2024;
179 Zhu et al., 2023).

180 In this study, we performed two distinct clustering analyses using the K-means
181 method: typhoon track clustering and atmospheric transport pathway clustering. For
182 typhoon track clustering: 1. Targeted typhoon tracks over the western Pacific Ocean;
183 2. Employed Euclidean distance metric for data point allocation; 3. Determined the
184 optimal K value by identifying the elbow point where the rate of WCSS decrease
185 substantially diminished; 4. Selected K=3 as the optimal cluster number, yielding
186 three distinct typhoon track types (**Fig.S3**). For atmospheric transport pathway
187 clustering: 1. Analyzed 7-day three-dimensional backward trajectories; 2. Classified
188 atmospheric transport channels into four categories (**Fig.S4**); 3. Implemented similar
189 optimization procedures for cluster determination. The methodology ensures
190 statistically robust classification of both typhoon trajectories and associated air mass
191 transport patterns, providing a quantitative basis for subsequent ozone transport
192 analysis.

193
194 2.2 HYSPLIT Trajectory Model

195 HYSPLIT is a complete system for computing simple air parcel trajectories, as well
196 as complex transport, dispersion, chemical transformation, and deposition simulations.
197 A common application is a back trajectory analysis to determine the origin of air
198 masses and establish source-receptor relationships(Rolph et al., 2017; Stein et al., 20
199 15).

200 This study employs the NOAA HYSPLIT Trajectory Model (https://www.ready.noaa.gov/HYSPLIT_traj.php) to conduct backward trajectory simulations for 237 typhoon
201 s in the Western Pacific region between 2013 and 2023. The meteorological data use
202 d is GDAS (1-degree resolution). The source location is set at 113.5°E, 23.6°N

204 , with the backward trajectories initiated at 14:00 (local time) on the day
205 of peak ozone pollution during each typhoon event. The backward simulation runs fo
206 r 168 hours (7 days) , with trajectory heights set at 500 m, 1000 m, and
207 2000 m above ground level (AGL).

208

209 2.3 WRF-CMAQ

210 The WRF-CMAQ modeling system was employed to simulate meteorological
211 fields and ozone concentration variations during the typhoon process. The WRF
212 (Weather Research and Forecasting) model version 3.9 was configured with the
213 following parameterizations: Microphysics , WSM6 Scheme ; Cumulus
214 Parameterization : Grell-Freitas (GF) Scheme ; Radiation : RRTMG Scheme ;
215 Boundary Layer : YSU Scheme ; Surface Layer : MM5 Similarity Theory ; Land
216 Surface: Noah LSM. The large-scale meteorological fields and boundary conditions
217 were derived from NCEP's Global 6-hourly FNL forecast data. The CMAQ (Community
218 Multiscale Air Quality) model version 5.0.2 was implemented with the IPR (integrated
219 process rate) analysis module. The CB05 mechanism was selected for gas-phase
220 chemistry, while the AE6 mechanism was adopted for aerosol chemistry.

221 The modeling system utilized a triple-nested grid configuration (see **Fig.S1**) with
222 Lambert conformal projection centered at 114°E, 28.5°N and two standard parallels
223 at 15°N and 40°N. The outermost domain (D01) had a horizontal resolution of 27 km
224 × 27 km, covering China, Southeast Asia and the western Pacific region. The
225 intermediate domain (D02) featured a 9 km × 9 km resolution encompassing South
226 China, while the innermost domain (D03) employed a 3 km × 3 km resolution
227 focusing on Guangdong Province and surrounding cities. The vertical structure
228 consisted of 14 layers with the model top set at 200 hPa. For the first and second
229 nested domains, the air pollutant emission inventory adopted was the 0.25°×0.25°
230 MEIC (Multi-resolution Emission Inventory for China) developed by Tsinghua
231 University for the year 2020. For the third (innermost) domain, a higher-resolution 3

232 km×3 km emission inventory compiled by the research team (Li et al., 2023b) was
233 utilized. The simulation period spanned from 00:00 UTC on 24 August to 00:00 UTC
234 on 31 August 2020.

235 In the present study, O₃ was used as a model pollutant to analyze the effects of
236 atmospheric processes on the pollutants' value in deep convection events by using
237 Integrated Process Rate (IPR) analysis. The IPR analysis in CMAQ can be used to
238 calculate the influence of different atmospheric processes on the values of pollutants,
239 and to quantify the importance of each process in the evolution of the pollutant
240 value(Chen et al., 2018; Chen et al., 2022a). The processes include gas-phase
241 chemistry (CHEM),vertical advection (ZADV), horizontal advection (HADV), vertical
242 diffusion (VDIF), horizontal diffusion (HDIF), dry deposition(DDEP) and cloud
243 processes (CLDS).

244 **3 Data**

245 **3.1 Typhoon track data**

246 The typhoon track data were obtained from the CMA Best Track Dataset
247 (tcdata.typhoon.org.cn) maintained by the Tropical Cyclone Data Center of China
248 Meteorological Administration. This dataset provides 6-hourly positional and
249 intensity records of tropical cyclones in the Northwest Pacific (including the South
250 China Sea, north of the equator and west of 180°E) since 1949, covering all typhoons
251 approaching/making landfall in China, with a spatial resolution of 0.1°×0.1° (Lu et al.,
252 2021; Ying et al., 2014). For this study, we extracted all typhoon track data from
253 January 1, 2013, to December 31, 2023, including temporal, geographical coordinates
254 (longitude and latitude), and intensity information. After interpolating the data, we
255 performed typhoon track classification using the K-means clustering method.

256

257 **3.2 Ozone data**

258 The ground-level ozone monitoring data were obtained from the China National
259 Environmental Monitoring Center (CNEMC). This dataset contains hourly

260 concentrations of SO₂, NO₂, CO, O₃, PM₁₀, and PM_{2.5} from 1,657 monitoring stations
261 across China. For this study, we extracted hourly O₃ data from 105 stations within
262 Guangdong Province (station locations are shown in **Fig.S2**). Following the "Technical
263 Regulation on Ambient Air Quality Index (on trial)" (HJ 663-2013), we calculated the
264 daily maximum 8-hour average ozone concentration (MDA8 O₃). Days with MDA8 O₃
265 concentrations exceeding 160 $\mu\text{g}/\text{m}^3$ (approximately 75 ppbv) were identified as
266 ozone exceedance days.

267 The TROPESS Chemical Reanalysis O₃ Increment 6-Hourly 3-dimensional Product
268 V1 dataset from NASA was utilized to investigate the three-dimensional spatial
269 distribution of ozone under typhoon conditions
270 (https://disc.gsfc.nasa.gov/datasets/TRPSCRO3I6H3D_1/summary). The data are part
271 of the Tropospheric Chemical Reanalysis v2 (TCR-2) for the period 2005-2021. TCR-2
272 uses JPL's Multi-mOdel Multi-cOnstituent Chemical (MOMO-Chem) data assimilation
273 framework that simultaneously optimizes both concentrations and emissions of
274 multiple species from multiple satellite sensors. The data files contains a year of data
275 at 6-hourly resolution, and a spatial resolution of 1.125° \times 1.125° at 27 pressure
276 levels between 1000 and 60 hPa. This study extracted data from January 1, 2013 to
277 December 31, 2021 for spatial analysis of ozone distribution.

278

279 3.4 Meteorological data

280 Meteorological data from ERA5 (the fifth-generation European Mesoscale
281 Weather Forecasting Center reanalysis of global climate and weather for the past
282 four to seven decades) was also adopted in order to understand the pollution
283 characteristics. The temporal resolution of the data is hourly and the spatial
284 resolution is 0.25° \times 0.25°. The parameters extracted herein include 2-m temperature,
285 surface relative humidity, total cloud cover, downward UV radiation at the surface,
286 total precipitation, mean sea level pressure, the u-component and v-component of
287 wind at the 10m, 175hPa and 900hPa level, boundary layer height, vertical velocity at

288 the 850 hPa level, the Geopotential at the 175hPa and 900hPa level.
289 (<https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview>).
290

291

292 3.5 ground-level ozone reanalysis dataset

293 The ground-level MDA8 O₃ concentrations across China were obtained from the
294 China 1km High-Resolution Daily Ground-Level Ozone (O₃) Dataset (2000–2023), a
295 high-resolution (1 km) product developed by Wei et al. and hosted on the National
296 Earth System Science Data Sharing Platform (<http://geodata.nnu.edu.cn>) (Wei et al.,
297 2022). This dataset was generated through an ensemble learning approach
298 combining multi-source data, including hourly O₃ measurements from ~940 to 1,630
299 monitoring stations (2013–2020) under China's Ministry of Ecology and Environment
300 (MEE) network, OMI/Aura total-column O₃ and tropospheric NO₂ retrievals,
301 downward solar radiation (DSR) and surface air temperature (TEM) from ERA5
302 reanalysis (0.1° resolution), emissions of NO_x, VOCs, and CO from MEIC inventory,
303 land cover from MODIS, elevation from SRTM, and population density from LandScan.
304 The subset of data from January 1, 2013, to December 31, 2023, was temporally
305 aligned with recorded typhoon tracks to assess the spatio-temporal variability of O₃
306 during periods with distinct typhoon track types.

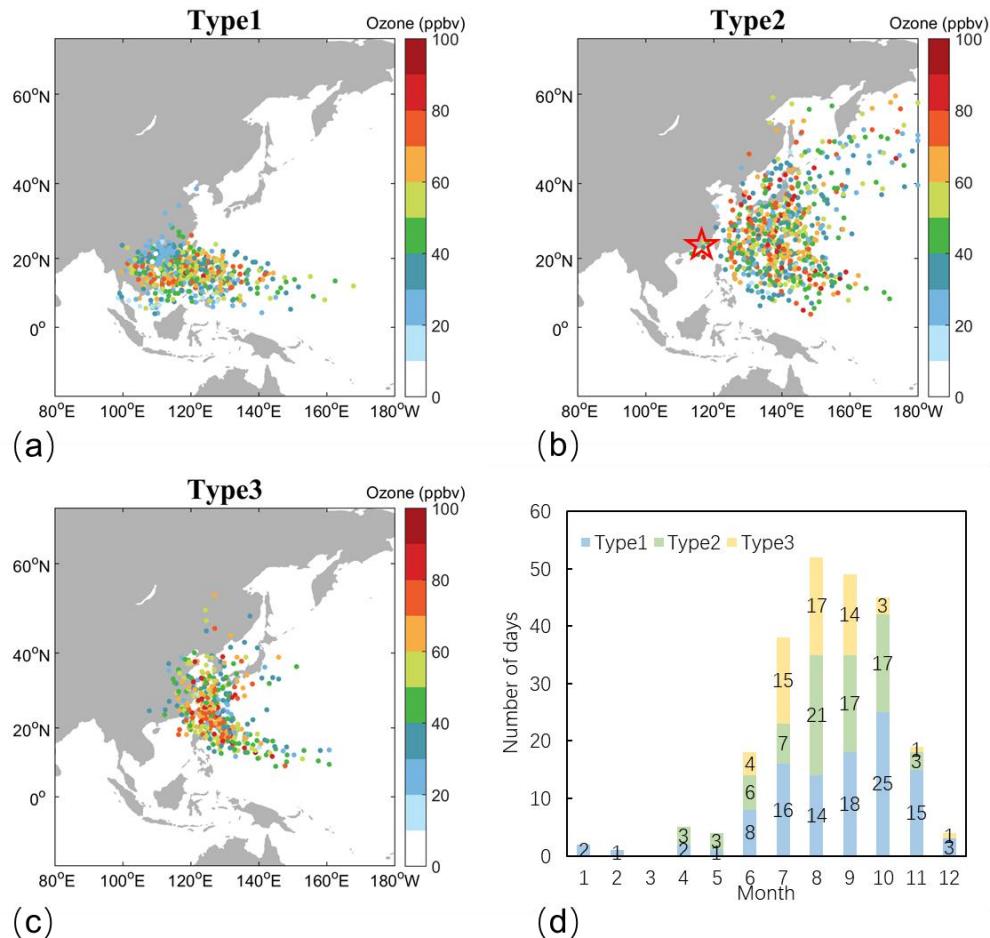
307 **4 Results**

308 4.1 Characteristics of ozone pollution under different typhoon paths

309 4.1.1 Typhoon track clustering

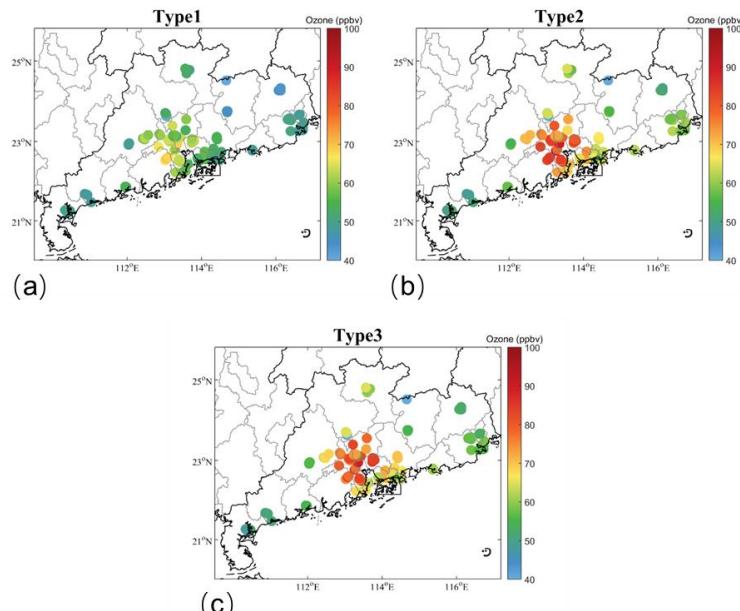
310 Through k-means clustering analysis, the 237 typhoon tracks over the western
311 Pacific from 2013 to 2023 were classified into three distinct types (**Fig1.a-c**). Type 1
312 comprises typhoons that form in the western Pacific, move into the South China Sea,
313 and subsequently make landfall in South China or pass through its southern maritime
314 areas (total: 105 cases). Type 2 consists of typhoons originating from low-latitude

315 regions of the western Pacific that approach China before recurring northward,
316 traversing Japan and Korea before returning to the western Pacific basin (total: 77
317 cases). Type 3 represents typhoons generated in low-latitude western Pacific regions
318 that approach China and recurve northward, ultimately making landfall in China or
319 dissipating near Japan/Korea (total: 55 cases).


320 For clarity, these three typhoon types are respectively designated as: Type 1:
321 Westward-moving typhoons; Type 2: Distant northward-recurving typhoons; Type 3:
322 Proximal northward-recurving typhoons. Temporal distribution analysis (**Fig1.d**)
323 reveals that both Type 1 and Type 2 primarily occur from July to November, with
324 peak frequency in autumn, while Type 3 is predominantly observed from July to
325 September, showing maximum occurrence during summer.

326 4.1.2 Characteristics of ozone pollution

327 Figures 1a-1c illustrate the temporal evolution of maximum daily 8-hour average
328 ozone (MDA8) concentrations in Guangdong Province in relation to typhoon track
329 movements. From the perspective of ozone pollution characteristics, during the
330 approach of Type 1 typhoons toward mainland China, ozone concentrations in
331 Guangdong Province exhibit a gradual increase. If the typhoon does not make
332 landfall, ozone concentrations remain elevated until the typhoon dissipates. However,
333 if the typhoon makes landfall, ozone concentrations decrease rapidly due to
334 precipitation and strong winds (**Fig. 1a**). Recent studies highlight the dual effects of
335 typhoons on ozone: initial stages often enhance ozone through photochemical
336 processes and stratospheric intrusions, whereas landfall phases suppress it via
337 convective activity and precipitation(Chen et al., 2021; Li et al., 2021). Typhoons of
338 Type2 **can affect the ozone concentration in Guangdong Province from a relatively**
339 **distant location from the mainland. The paths of typhoons causing ozone pollution**
340 **mainly fall within the range of 130-150°E and 15-40°N. (Fig.1b)**. This phenomenon
341 may be associated with large-scale transport of ozone and its precursors. Typhoons
342 of Type3 tend to induce ozone pollution in Guangdong when approaching eastern


343 China, with peak ozone concentrations occurring when the typhoon reaches
344 approximately 25°N latitude. Following typhoon landfall or eastward deflection,
345 ozone concentrations decrease (**Fig. 1c**).

346 We extracted the MDA8 O₃ concentrations during each typhoon event and
347 calculated Type-specific averages to examine ozone distribution patterns in
348 Guangdong under different typhoon types (**Fig. 2**). The results demonstrate that:
349 Type 1 corresponds to MDA8 O₃ concentrations ranging 9.2-70.9 ppbv, with an
350 average of 20 monitoring stations exceeding standards. Type 2 shows MDA8 O₃
351 concentrations of 12.2-90.3 ppbv, averaging 34 exceedance stations. Type 3 exhibits
352 MDA8 O₃ concentrations of 3.3-89.7 ppbv, with 35 stations exceeding limits on
353 average. The spatial analysis reveals that ozone hotspots for all types consistently
354 cluster in central Guangdong, indicating similar spatial distribution patterns despite
355 varying intensity. Type3 exhibited the highest number of non-compliant monitoring
356 sites, while Type1 showed the lowest count.

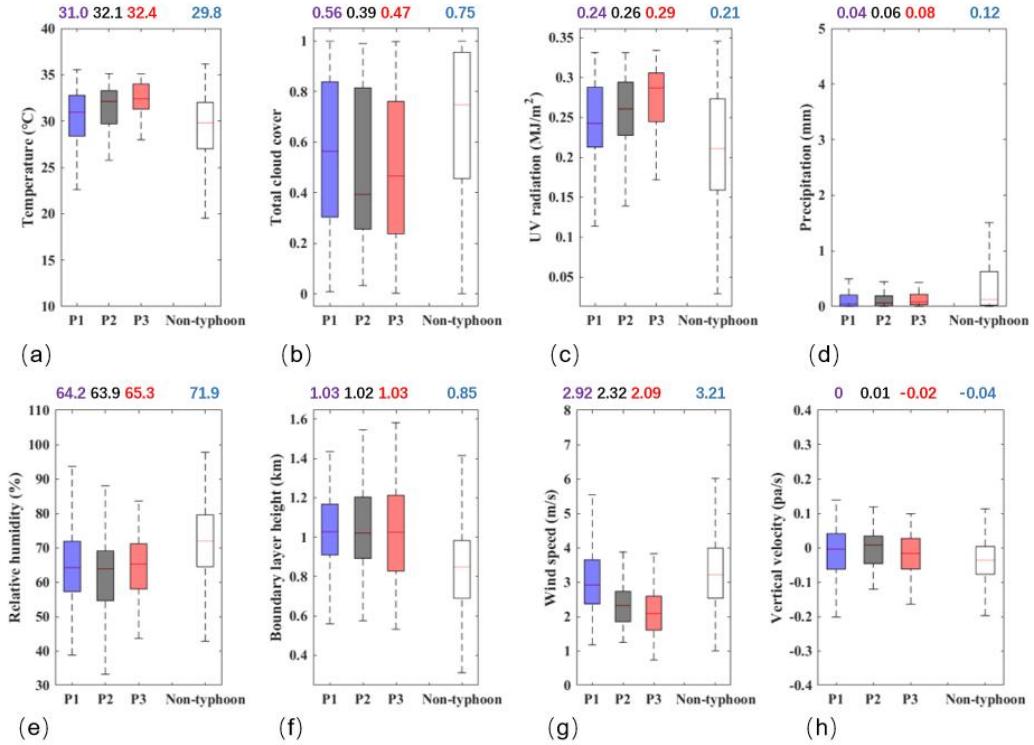
357

358 Figure 1. (a-c) Maximum daily 8-hour average (MDA8) ozone concentrations in Guangdong
 359 Province (marked by red pentagrams) under different typhoon tracks(Different colors of dots
 360 represent the average ozone concentration at all monitoring stations in Guangdong Province
 361 when the typhoon is at that location), and (d) the corresponding temporal distributions of
 362 typhoon occurrences for each track type.

363

Figure. 2 Distribution of ozone pollution under different typhoon paths

365 4.1.3 Meteorological characteristics


To investigate the influence of meteorological factors on ozone pollution in Guangdong Province under different typhoon tracks, we compared the differences in meteorological conditions between three types of typhoon weather and non-typhoon weather in Guangdong. Typhoon conditions refer to the day with the most severe pollution during the typhoon event, while non-typhoon conditions correspond to the remaining periods after excluding the entire typhoon process.

372 Select the period from June to November when typhoons are most frequent to
373 compare the meteorological differences between typhoon and non-typhoon weather
374 conditions. The meteorological factors analyzed included surface temperature, total
375 cloud cover, surface solar radiation, precipitation, surface relative humidity, boundary
376 layer height, 10m wind speed, and vertical velocity at 850 hPa. All meteorological
377 data were extracted from ERA5 at 14:00 local time for comparative analysis.

378 The results indicate that, compared to non-typhoon weather, typhoon weather
379 in Guangdong is characterized by higher temperatures, stronger solar radiation,
380 lower cloud cover, reduced precipitation, lower relative humidity, higher boundary
381 layer height, weaker surface winds, and suppressed vertical motion (**Fig.3**). The
382 peripheral circulation of typhoons modifies the thermodynamic and dynamic
383 structure of the boundary layer, creating an "ideal reactor" for ozone formation.
384 Near-surface conditions of high temperatures, low humidity, and weak winds foster a
385 stable boundary layer structure, significantly enhancing photochemical reaction rates
386 (Ding et al., 2023). Additionally, increased solar radiation and elevated boundary
387 layer height further expand the spatial domain for ozone production.

388 A comparison of meteorological characteristics across different typhoon track
389 types reveals that Type 3 corresponds to what may be termed "extreme"
390 meteorological conditions. It brings high temperature(32.4°C), high radiation
391 (0.29MJ/m^2), low cloud cover (0.47), low precipitation (0.08mm), low relative

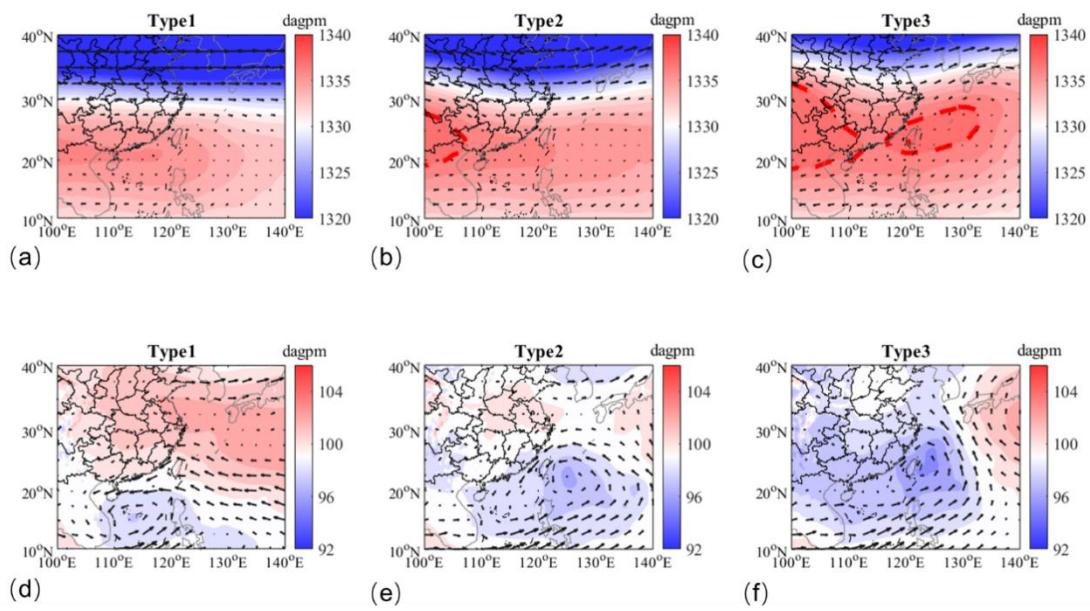
392 humidity (65.3%), high boundary layer height (1.03km), low wind speed(2.09m/s),
393 and less vertical movement (-0.02pa/s) meteorological conditions, which are more
394 likely to cause ozone pollution in Guangdong Province. Compared to non-typhoon
395 conditions, Type 3 exhibits a temperature increase of 2.6°C, a cloud cover reduction
396 of 0.28, a radiation intensity enhancement of 0.08 MJ/m², and a boundary layer
397 height elevation of 0.18 km. It demonstrates the poorest horizontal diffusion
398 conditions, with a near-surface wind speed of 1.12 m/s lower than non-typhoon
399 conditions. The severe ozone pollution observed in Guangdong Province results from
400 the combined effects of strong ozone production rates and poor diffusion conditions,
401 creating a synergistic amplification of pollution levels. The photochemical reaction
402 conditions in Type2 are slightly weaker than those in Type3; however, reduced
403 precipitation inhibits the wet scavenging of ozone and its precursors. Additionally,
404 strong subsidence at the 850 hPa level not only suppresses the vertical diffusion of
405 pollutants within the boundary layer but also transports ozone from higher altitudes
406 downward, further increasing surface ozone concentrations. Compared to the other
407 two typhoon types, Type1 exhibits weaker ozone formation conditions and better
408 dispersion, resulting in the least severe ozone pollution.

409

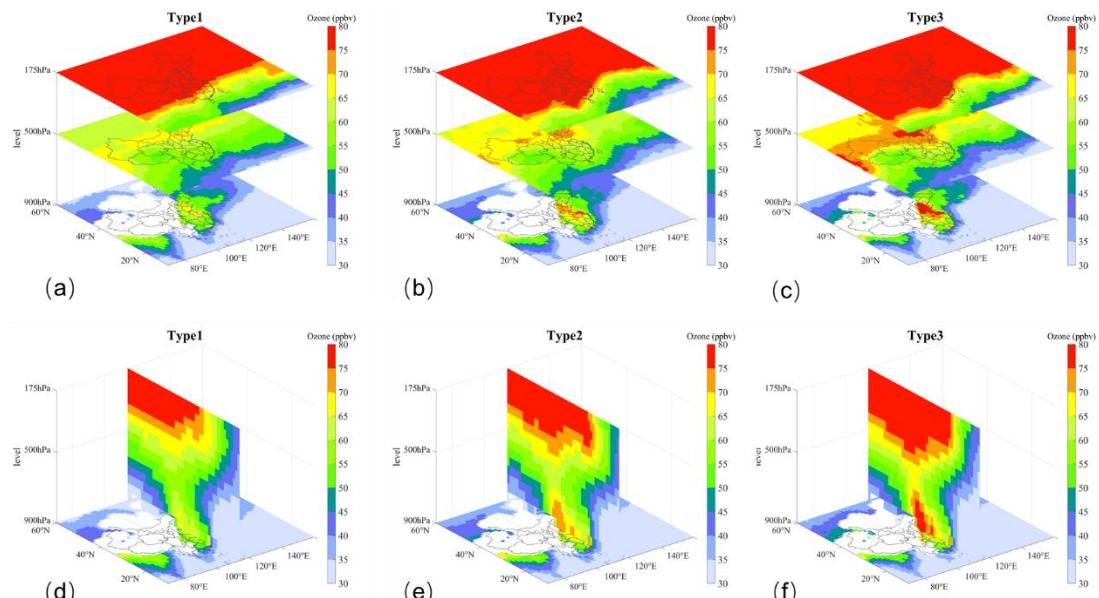
410

411 Figure 3. Comparison of meteorological conditions between typhoon and non-typhoon
 412 weather. (a-f) represent 2m temperature, total cloud cover, surface solar radiation, precipitation,
 413 relative humidity, boundary layer height, 10m wind speed, and vertical velocity at 850 hPa,
 414 respectively. P1, P2, and P3 denote three distinct typhoon tracks, while Non-typhoon refers to
 415 non-typhoon conditions. The numerical values above each boxplot indicate the median of the
 416 corresponding dataset.

417 4.2 Effect of regional transport on ozone distribution


418 4.2.1 Three-dimensional spatial distribution of ozone

419 The impact of typhoons on ozone extends beyond creating favorable
 420 photochemical conditions. The regional transport induced by large-scale circulation
 421 plays a pivotal role in determining ozone concentration distribution(Chen et al.,
 422 2022b; Wang et al., 2018). Typhoon tracks modify regional airflow patterns,
 423 facilitating cross-regional transport of ozone and its precursors(Chen et al., 2021).
 424 This study employs three-dimensional reanalysis O₃ data (2013-2021) coupled with
 425 wind fields and geopotential height to examine how typhoon-induced regional
 426 transport affects the three-dimensional spatial distribution of ozone concentrations


427 (Fig4-5). When the typhoon moves northward (type 2 and type3), a high-pressure
428 center emerges over western China at the 175 hPa level, causing a southward
429 displacement of the westerly jet. Under this circulation pattern, an ozone transport
430 pathway is established, extending from high to low latitudes and accompanied by
431 subsidence (Fig. 4b, c). Specifically, figure 4c shows a configuration featuring two
432 distinct, separated anticyclones (the South Asian High (SAH) over the Tibetan Plateau
433 and the western Pacific Subtropical High (WPSH) aloft) with a prominent saddle zone
434 and upper-level convergence between them at 175 hPa. Dynamically, such a setup
435 provides a classic pathway for significant stratospheric ozone intrusion. A tropopause
436 fold, often triggered on the northeastern flank of the SAH where it interacts with the
437 enhanced westerly jet stream, injects a substantial volume of ozone-rich, dry
438 stratospheric air into the upper troposphere. Subsequently, the pronounced
439 subsidence within the saddle zone—induced by the convergence between the SAH
440 and WPSH—effectively transports this intruded air mass downward and southward,
441 directing it toward eastern China and the adjacent oceanic regions. The periphery of
442 typhoon with type 3 tracks could enhance the southward and downward transport of
443 stratospheric ozone, which enhances stratosphere-to-boundary-layer transport of
444 ozone-rich air from the mid-high latitudes (Meng et al., 2022). Through this transport
445 channel, stratospheric ozone with high concentrations (>75 ppbv) is advected
446 southward to approximately 20°N and descends below the 500 hPa level (Fig. 5e, f).
447 In contrast, westward-propagating typhoons (Type 1) do not generate perturbations
448 in the westerly jet, and no pronounced southward transport or subsidence of upper-
449 level ozone is evident (Fig. 5a, d).

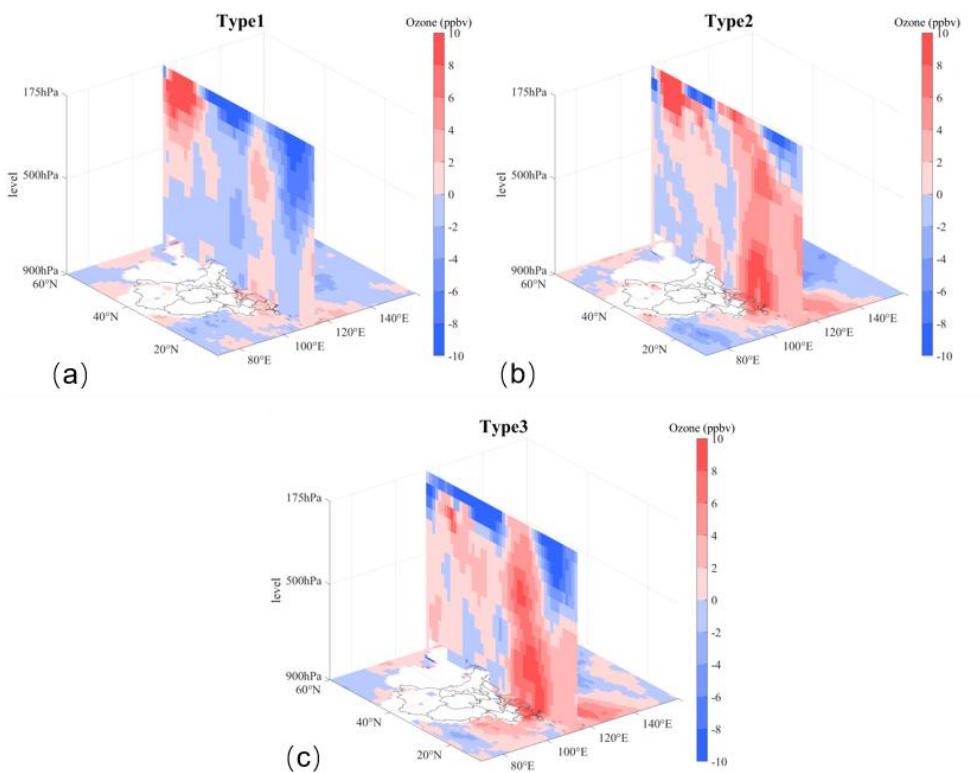
450 As demonstrated by recent studies (Wang et al., 2022b; Yufeng et al., 2024), the
451 peripheral circulation of western North Pacific typhoons can effectively transport
452 ozone and its precursors from source regions (including the Yangtze River Delta,
453 Fujian, and Anhui provinces) to Guangdong through well-organized atmospheric
454 transport pathways. Analysis of ozone distribution at the 900 hPa level reveals that

455 northward-moving typhoons not only induce ozone pollution in Guangdong, but also
 456 lead to elevated ozone concentrations in the Beijing-Tianjin-Hebei and Yangtze River
 457 Delta regions (**Fig. 5b,c**). During the typhoon's northward progression, the low-
 458 pressure center traverses China's eastern coastal areas, where cyclonic circulation
 459 facilitates southward transport of pollutants along the coast, ultimately impacting
 460 Guangdong Province (**Fig. 4e,f**).
 461

462
 463 Figure 4. Comparison of circulation patterns under different typhoon tracks. (a-c) show
 464 geopotential height and wind fields at 175 hPa (upper panels) and 900 hPa (lower panels),
 465 respectively. The red curves indicate the positions of high-pressure centers.

466

Figure 5. Three-dimensional spatial distribution of ozone under different typhoon tracks. (a-c) Horizontal ozone distributions at 900 hPa, 500 hPa, and 175 hPa for the three typhoon track types. (d-f) Horizontal ozone distributions at 900 hPa and corresponding vertical cross-sections along 114°E for each typhoon type.


Figure S5 presents the spatial distribution of ground-level MDA8 O₃ concentrations across China, as derived from the reanalysis 1 km high-resolution daily dataset, under three distinct typhoon track types (type 1, type 2, and type 3). The analysis focuses on typhoon events, characterized as the date with the highest number of ground monitoring sites exceeding the 160 µg/m³ (~75 ppbv) MDA8 O₃ threshold during the entire typhoon track.

Being consistent with spatial distribution of ground monitoring O_3 concentrations in section 4.1.2, here reveals significant spatial heterogeneity in O_3 concentrations across typhoon track types, particularly in Guangdong Province, where the mean MDA8 O_3 follows the order: Type 2 (56.9 ppbv) > Type 3 (54.6 ppbv) > Type 1 (51.25 ppbv). This variability is attributed to differences in regional transport pathways and precursor availability. Specifically, type 2 typhoons exhibit elevated O_3 levels in eastern China but reduced concentrations in northern and central regions compared to type 3. The enhanced O_3 under type 2 conditions is driven by two synergistic mechanisms: (1) intensified low-tropospheric transport along China's eastern coastal region, as evidenced by atmospheric circulation patterns (**Fig. 4e**), and (2) the advection of O_3 -rich air masses from northern and central China, which supply abundant precursors to Guangdong, particularly its eastern sector. Type 3 typhoons facilitate a more direct, meridional transport of O_3 from northern and central China, coupled with pronounced stratospheric intrusions that enhance upper-tropospheric O_3 contributions (**Fig. 5c and 5f**). While type 2 systems lack the robust northern transport pathway observed in type 3, they compensate via secondary O_3 delivery through coastal advection, which subsequently propagates inland. This dual transport mechanism culminates in the highest O_3 concentrations in Guangdong, especially the eastern and coastal part,

497 during type 2 events.

498 Collectively, integrating atmospheric dynamics (**Fig.4**), three dimensional
499 evolution of O₃ (**Fig.5**), and ground-level O₃ distributions (**Fig.S5**), underscores the
500 critical role of typhoon-track-dependent transport pathways in modulating regional
501 O₃ pollution. These highlight the necessity of considering multi-scale meteorological
502 processes in air quality forecasting and quantifying their contributions to O₃
503 concentrations across different vertical levels.

504 To further investigate typhoon-induced ozone variations, spatial ozone
505 concentration differences between typhoon conditions and non-typhoon conditions
506 were calculated (**Fig.6**). To eliminate seasonal influences, the anomaly in ozone
507 concentrations between typhoon days and non-typhoon days was first calculated on
508 a monthly basis, after which the different types of statistics were conducted. The
509 results indicate that northward-moving typhoons (Type 2 and Type 3) can
510 significantly increase the ozone concentration at altitudes ranging from 250 to
511 900hPa (Fig. 6b,c). Within this altitude range, the variation of ozone concentration at
512 the center point (113.23°E, 23.16°N) changes ranged between 2.5-14.0 ppbv (Type 2)
513 and 0.3-14.5 ppbv (Type 3). In contrast, Type 1 did not cause significant high-altitude
514 ozone increases, with central point ozone concentration changes ranging from -3.5 to
515 2.5 ppbv. Studies indicate that when gravity waves break in the upper troposphere
516 and lower stratosphere on the western side of typhoon centers, intense turbulence
517 occurs, leading to stratosphere-troposphere exchange (STE) (Huang et al., 2024).
518 Subsequently, typhoons approaching landfall significantly enhance cross-regional
519 ozone transport from North China to South China through STE (Wang et al., 2024c).
520 This suggests that after Types 2 and 3 typhoons move northward, their cyclonic
521 circulations transport high-concentration ozone from the tropopause to lower
522 latitudes and altitudes through STE, causing significant changes in ozone vertical
523 distribution and increased ozone concentrations within the boundary layer.

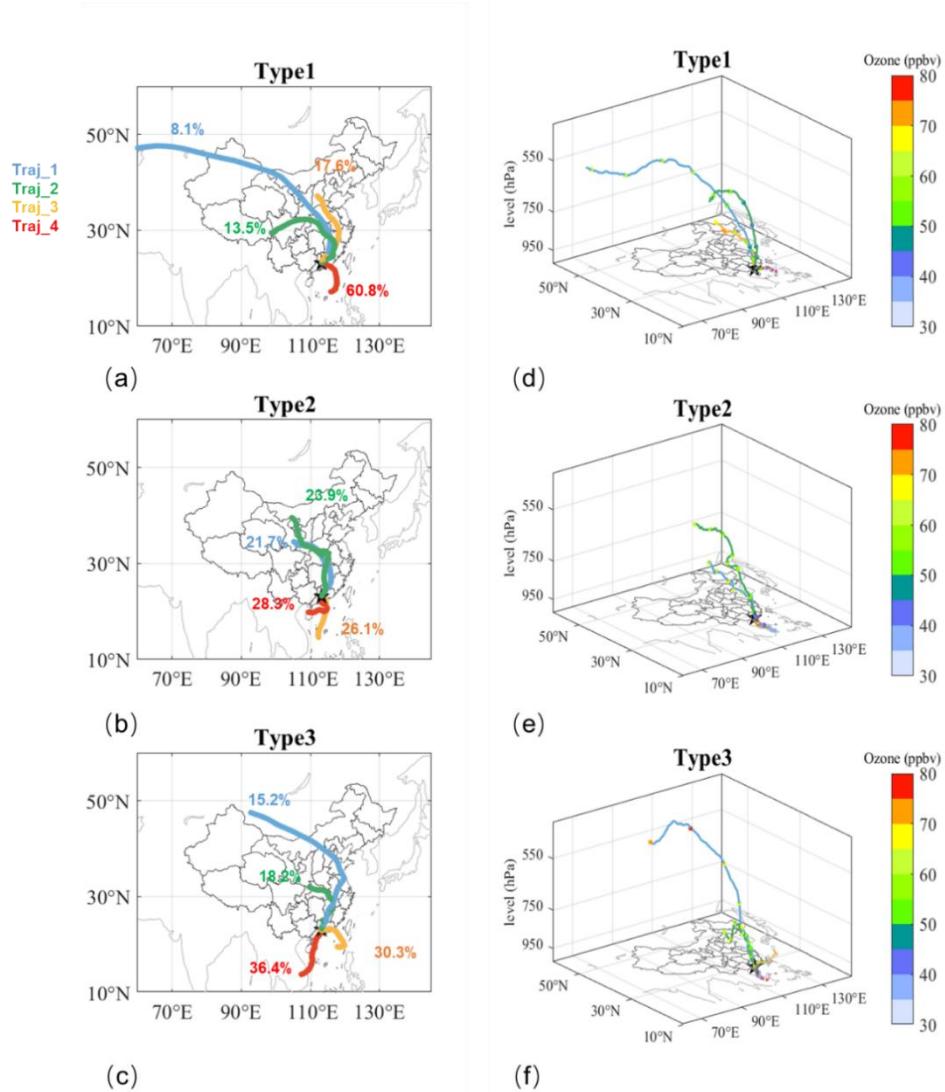
524

525 Figure 6. Ozone concentration changes induced by different typhoon types (a-c: horizontal
 526 distribution changes at 900 hPa and vertical cross-section changes along 114°E for each typhoon
 527 track type respectively).

528 4.2.2 Boundary layer ozone

529 To investigate the ozone transport pathways within the boundary layer over
 530 Guangdong Province under typhoon conditions, and to examine the differences in
 531 ozone sources associated with distinct typhoon tracks, this study conducted HYSPLIT
 532 backward trajectory analysis for 237 typhoon events. The analysis focused on 7-day
 533 air mass origins at 500m altitude over central Guangdong (**Fig.S6**). For each typhoon
 534 type, cluster analysis of air mass origins was performed. After K-value screening, the
 535 air mass origins were classified into four trajectory clusters (**Fig.7**). **Table S1** presents
 536 statistics for each trajectory type, including: (1) The percentage of different
 537 trajectories, (2) mean ozone concentrations along trajectories ([data from TROPESS](#)
 538 [Chemical Reanalysis O₃](#)), and (3) corresponding surface ozone concentrations.

539 Under Type 1 conditions, air masses in the target area mainly originated from
 540 within the boundary layer, accounting for 60.8%, with air transported from the South

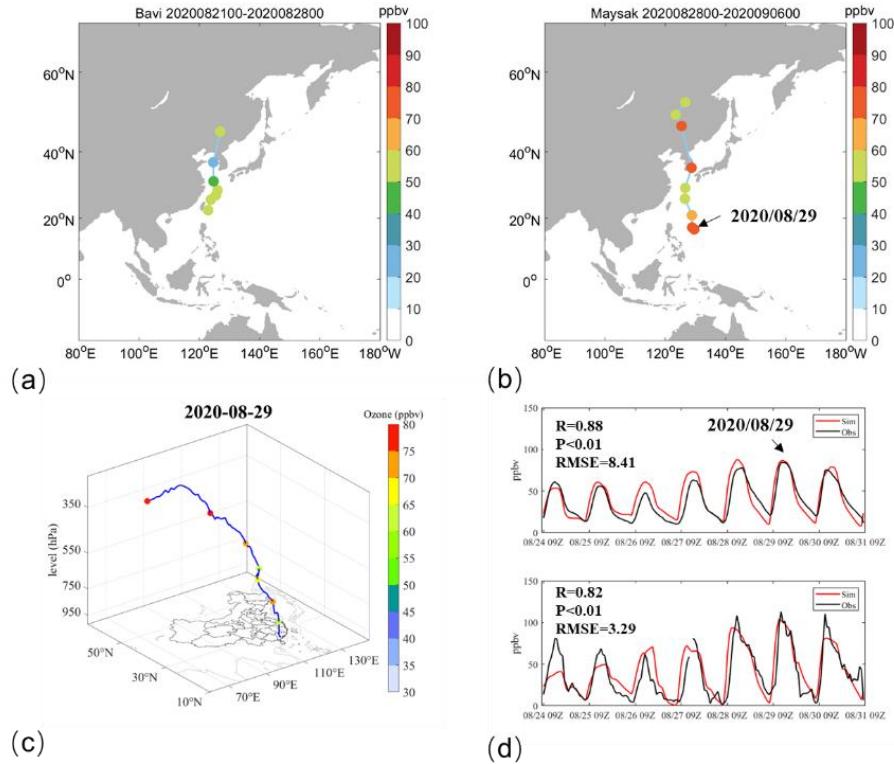

541 China Sea below 841 meters to Guangdong Province (Traj_4). Analysis of the
542 subtropical high's influence shows that under this typhoon type, Guangdong
543 experienced the highest surface pressure and was closest to the subtropical high
544 (**Fig.S7**). Research indicates that under the influence of the subtropical high, O3
545 pollution is primarily affected by local emissions (Chen et al., 2024). This aligns with
546 Traj_4's characteristics of short transport distance and low altitude. The other three
547 trajectories originated from northwest China (Traj_1, 8.1%), western China (Traj_2,
548 13.5%), and central China (Traj_3, 17.6%) respectively (**Fig.7a**). The trajectory with
549 the highest surface ozone concentration was Traj_2, which descended from 3794.1
550 meters with an average ozone concentration of 50.3 ppbv along the trajectory(**Fig.7d**,
551 **Table.S1**). Under Type 2 conditions, nearly half of the air masses in the target area
552 originated from northwest China (Traj_1, 21.7% and Traj_2, 23.9%), while the other
553 half came from the South China Sea region (Traj_3, 26.1% and Traj_4, 28.9%)(**Fig.7b**).
554 Among these, Traj_1 and Traj_2 air masses descended from above 2000m, whereas
555 Traj_3 and Traj_4 air masses were transported within the boundary layer(**Fig.7b**). The
556 trajectory with the highest surface concentration was Traj_1, which descended from
557 2646 meters with an average ozone concentration of 61.9 ppbv along the trajectory
558 (**Fig.7e, Table.S1**). Under Type 3 conditions, Traj_1 carried high-concentration ozone
559 (>75 ppbv) from high-altitude (6356m) over high-latitude areas through North China
560 to the target region, corresponding to the highest surface ozone concentration
561 (15.2% proportion) (**Fig.7f, Table.S1**). The other three trajectories originated from
562 central China (Traj_2, 18.2%) and the South China Sea region (Traj_3, 30.3% and
563 Traj_4, 36.4%)(**Fig.7c**).

564 A comparative analysis of air mass trajectories from different directions
565 demonstrates that marine air masses originating from the South China Sea are
566 characterized by lower altitudes and extended residence time over Guangdong
567 Province, thereby constituting local ozone pollution sources. Conversely, continental
568 air masses exhibit longer transport pathways and higher altitudes, representing

569 regional ozone transport sources. Quantitative analysis reveals that the proportional
570 contributions of local pollution sources under different typhoon tracks are 60.8%,
571 55.0%, and 66.4%, respectively. Analysis of long-range transport trajectories reveals
572 that different typhoon types can respectively deliver ozone from maximum altitudes
573 of 7,468 meters (~380 hPa), 8,927 meters (~320 hPa), and 9,980 meters (~250 hPa)
574 into the boundary layer. Type 2 and Type 3 exhibit significantly greater proportion
575 from upper-level air mass transport (23.9% and 15.2% respectively) compared to
576 Type 1. These typhoons can transport ozone from altitudes down into the boundary
577 layer. Combined with the high ozone concentrations along the atmospheric transport
578 pathways, this results in boundary-layer ozone increases of 10.7 ppbv and 12.3 ppbv
579 for these two types, respectively (**Fig6.b-c**).

580

581


582
 583 Figure 7. Comparison of boundary-layer air mass trajectory sources under different typhoon
 584 tracks: (a-c) two-dimensional views with trajectory percentages indicated numerically; (d-f)
 585 three-dimensional views showing ozone concentrations (ppbv) along trajectories (marked by
 586 colored points); target regions are denoted by black pentagrams on maps.

587 4.3 Contribution of typhoons to the vertical transport of ozone

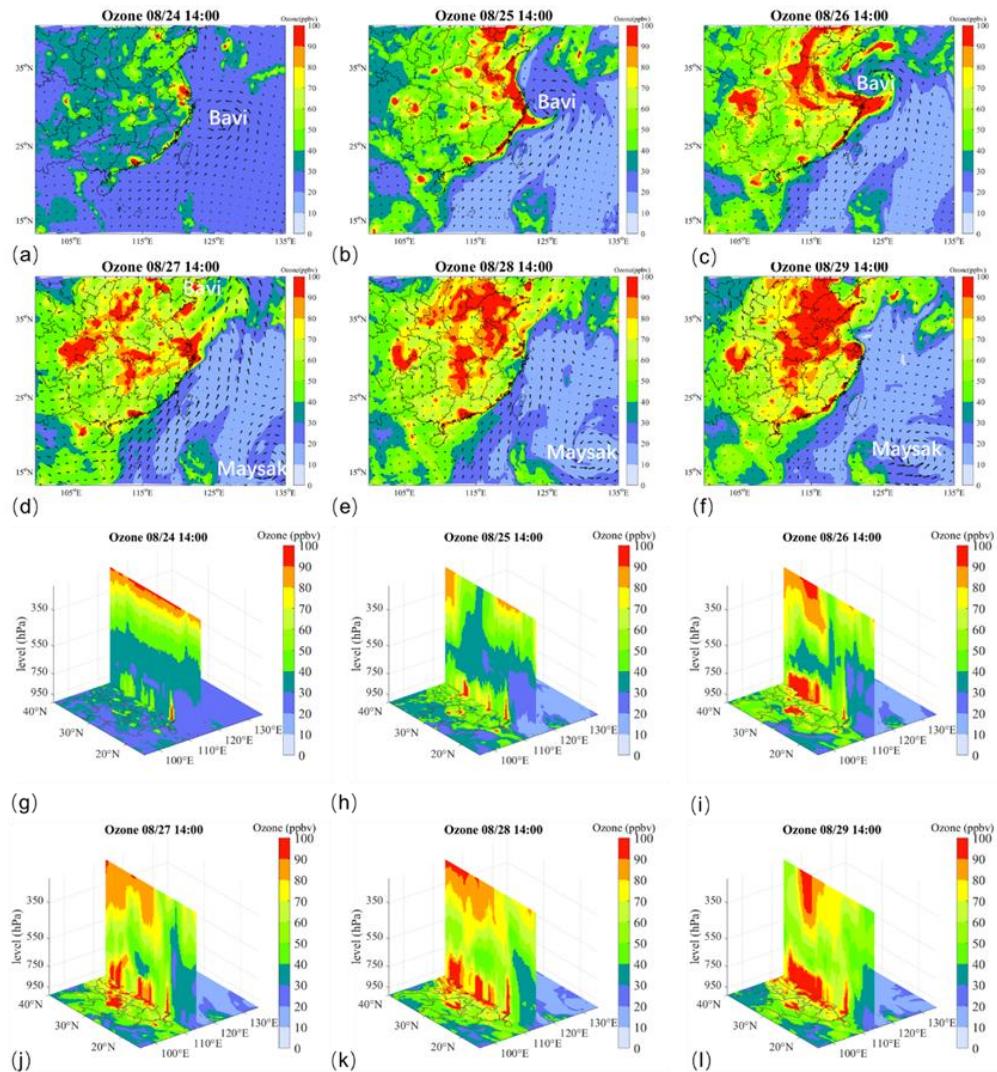
588 During the period from August 21 to September 6, 2020, the consecutive
 589 occurrence of two northward-moving typhoons (Bavi and Maysak) triggered
 590 prolonged ozone pollution episodes in the Beijing-Tianjin-Hebei and Yangtze River
 591 Delta regions, with over 50% of monitoring stations exceeding ozone standards(Cong
 592 et al., 2024; Hu et al., 2024). Our study reveals that Guangdong Province similarly
 593 experienced extended ozone pollution episodes, particularly between August 28-30

594 and September 1-3, when more than 40 out of 105 monitoring stations (38.1%)
595 recorded exceedances. The most severe pollution occurred on August 29, with 57
596 stations (54.3%) exceeding standards and an average MDA8 ozone concentration of
597 80.6 ppbv (**Fig.8a-b**). Backward trajectory analysis for August 29 identified a 7-day
598 vertical transport pathway from upper levels to the boundary layer, suggesting
599 potential downward mixing of high-ozone air masses (**Fig.8c**). This section examines
600 the period from August 24 to August 31, 2020, employing the WRF-CMAQ model to
601 simulate the spatial distribution of ozone. Integrated Process Rate (IPR) analysis is
602 applied to investigate the formation mechanisms of surface ozone pollution in
603 Guangdong Province under the influence of consecutive northward-moving typhoons,
604 with a quantitative assessment of the impact of vertical transport on ozone
605 concentrations within the planetary boundary layer.

606 The WRF-CMAQ model was used to simulate ozone variations in Guangdong
607 Province from August 24 to 31, 2020, with evaluation results showing excellent
608 performance (**Fig.8d**). For all 105 monitoring stations across the province, the
609 correlation coefficient between observed and simulated ozone concentrations
610 reached 0.88 ($p<0.01$), with a root mean square error (RMSE) of 8.41 ppbv. Focusing
611 on the Sanshui station (112.8°E, 23.15°N), which exhibited both high ozone levels
612 and a clear increasing trend, the correlation coefficient was 0.82 ($p<0.01$) with an
613 RMSE of 3.29 ppbv. These results demonstrate that the WRF-CMAQ model
614 successfully captured the spatial distribution and temporal evolution of this ozone
615 pollution event in Guangdong, with statistical metrics meeting operational air quality
616 modeling standards. The model's strong performance, particularly in reproducing
617 both regional patterns and local pollution trends, provides reliable support for
618 subsequent analysis of ozone formation mechanisms under typhoon conditions.

619

620 Figure 8. Consecutive northward-moving typhoon tracks, backward trajectories, and
 621 ozone variations. (a-b) Typhoon paths with corresponding MDA8 ozone concentrations in
 622 Guangdong province; (c) Backward trajectories at 1300 LST on August 29, 2020; (d) WRF-CMAQ
 623 simulated ozone variations (upper panel: average across 105 Guangdong monitoring stations;
 624 lower panel: Foshan Sanshui station (112.8°E, 23.15°N) observations, with red lines indicating
 625 simulated values and black lines representing monitored concentrations).


626

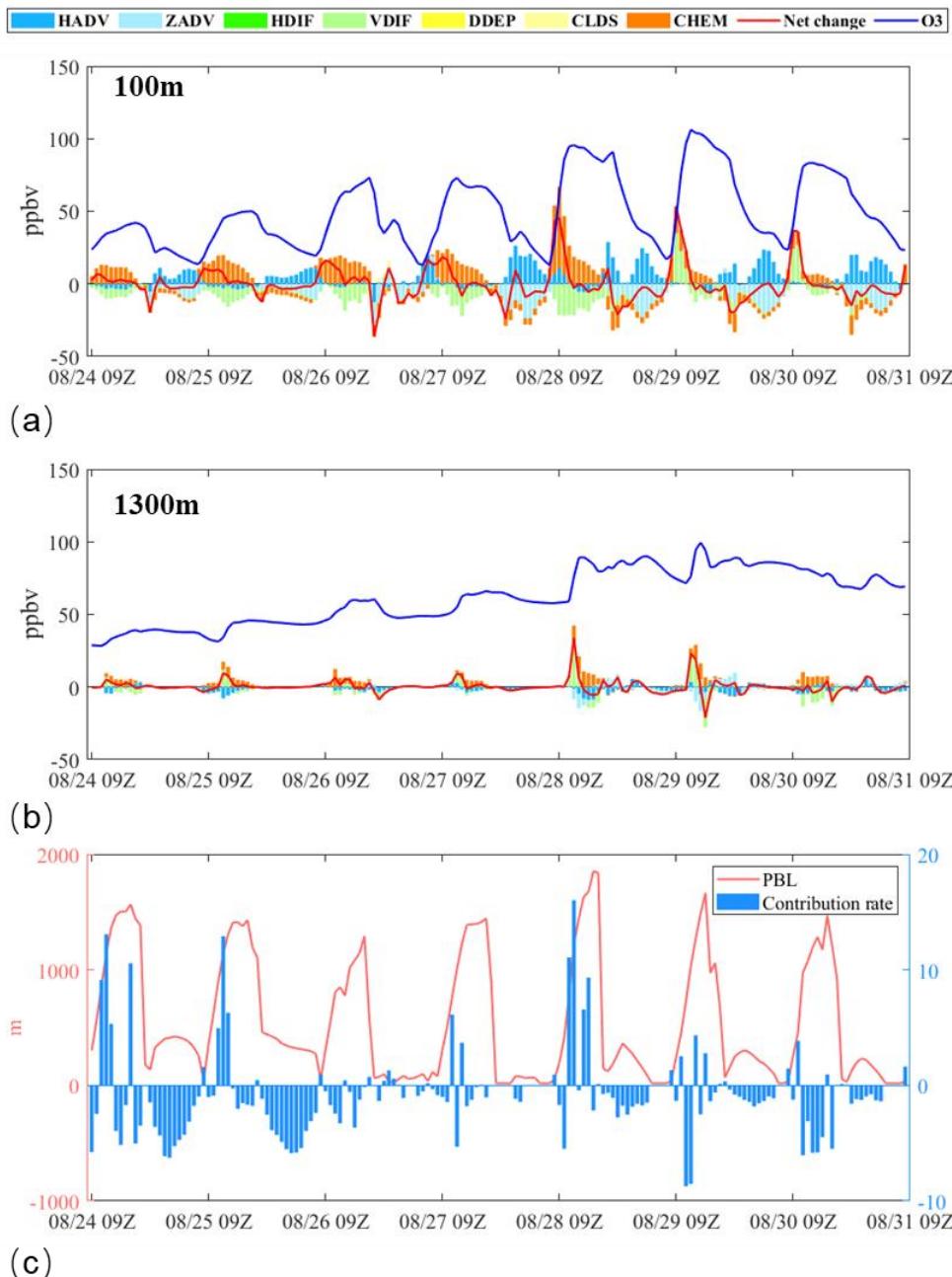
627 From August 24 to 27, Typhoon Bavi was located along the eastern coastal
 628 region of China, moving northward before gradually dissipating. From August 28 to
 629 31, Typhoon Maysak emerged in the South China Sea and progressively approached
 630 the Chinese mainland. During this period, we analyzed variations in surface ozone
 631 concentrations and their vertical distribution under the influence of these
 632 consecutive northward-moving typhoons, based on model simulation results (Fig.9).
 633 The results show that the variation in surface ozone distribution can be divided into
 634 two stages: The first stage occurred under the influence of Typhoon Bavi, when
 635 surface ozone concentrations rapidly increased in the Beijing-Tianjin-Hebei region,
 636 Yangtze River Delta, and Pearl River Delta, and was rapidly transported to
 637 southwestern China by circulation. The second stage occurred under the influence of

638 Typhoon Maysak, when ozone concentrations continued to rise across most regions
639 of China. Compared with the first stage, horizontal ozone transport was not
640 significant during the second stage (**Fig. 9a-f**). In the vertical dimension, the
641 consecutive northward-moving typhoons triggered a sustained downward transport
642 process of ozone. Beginning on August 25, downward ozone transport was observed
643 in the upper atmosphere between 35°N and 40°N. From August 26 to 29, the zone of
644 ozone subsidence gradually expanded southward, leading to a significant increase in
645 ozone concentrations over Guangdong Province (**Fig. 9g-l**).

646 The IPR process analysis results elucidate the impacts of photochemical
647 reactions and atmospheric transport on ozone concentration variations during this
648 event (**Figs. S8-S9**). The photochemical reactions correspond to the CHEM
649 contribution in the process analysis. The atmospheric transport represents the
650 combined contributions of horizontal diffusion (HDIF), horizontal advection (HADV),
651 vertical diffusion (VDIF), and vertical advection (ZADV) in the process analysis. The
652 results indicate that the increase in surface ozone was primarily driven by
653 photochemical reactions. During the period dominated by Typhoon Bavi (August 24-
654 27), photochemical reactions intensified rapidly over Guangdong Province,
655 contributing more than 30 ppbv to surface ozone concentrations in the central region
656 (**Figs. S8a-d**). Under the influence of Typhoon Maysak (August 28-29), the positive
657 contribution from photochemical reactions was slightly lower than in the previous
658 phase, but still exceeded 16 ppbv in the central Guangdong region (**Figs. S8e-f**). The
659 contribution of atmospheric transport varied significantly across different altitudes,
660 exhibiting predominantly negative effects below 850 hPa and positive effects above
661 850 hPa. Vertical cross-sections of daily mean atmospheric transport contributions
662 reveal a gradual southward transport of ozone from higher to lower latitudes.
663 However, its positive contribution to ozone concentrations was substantially lower
664 than that of photochemical reactions, with daily mean contributions remaining
665 below 4.5 ppbv (**Fig. S9**). The downward transport of upper-level ozone inhibited

666 vertical diffusion of surface ozone while simultaneously transporting high-
 667 concentration ozone downward into the boundary layer, further intensifying ozone
 668 pollution levels. In summary, during this ozone pollution event caused by consecutive
 669 northward-moving typhoons: Chemical processes were the main cause of surface
 670 ozone pollution in Guangdong Province, Atmospheric transport was a secondary
 671 contributing factor.

672
 673 Figure 9. Temporal evolution of (a-f) horizontal distributions of surface ozone and (g-l) vertical
 674 distributions (along 114°E cross-section) of ozone from 1400 LST 24 August to 1400 LST 29 August
 675 2020.


676 To quantitatively analyze the contribution of vertical transport to ozone
 677 concentrations within the boundary layer, we employed the IPR (Integrated Process
 678 Rate) analysis method to decompose ozone sources and sinks across the study area.

679 A detailed analysis was conducted using results from the Sanshui station at 100m and
680 1300m altitudes (**Fig.10a-b**). Subsequently, we calculated the contribution rate of
681 cross-boundary-layer vertical transport to ozone concentrations in the boundary
682 layer at each time point (**Fig.10c**) using the following formula (Chen et al., 2022a):

683
$$\text{Contribution rate} = (IPR_{v,pbl} \times Z_{pbl}) \div \left(\sum_{j=1}^{pbl} O_{3,j} \times Z_j \right) * 100\%$$

684 where $IPR_{v,pbl}$ indicates the IPR value corresponding to vertical transport
685 (VDIF+ZADV) on the Boundary layer height. that is, the change in the values of
686 pollutants caused by the vertical diffusion, Z_{pbl} represents the height of the layer in
687 the model that is close to the height of the boundary layer. $O_{3,j}$ indicates the ozone
688 concentration in layer j , Z_j represents the height of j layer.

689 Detailed analysis of process contributions at different heights within the
690 boundary layer shows that while near-surface atmospheric transport exhibited
691 negative contributions to daily mean ozone concentrations, the decomposition of
692 individual processes at 100m height revealed positive contributions from vertical
693 diffusion (VDIF) during 0900-1100 LST on 29 August, with magnitudes of 39.9 ppbv,
694 26.4 ppbv, and 12.3 ppbv respectively (**Fig. 10a**). Further analysis of process
695 contributions at 1300m height reveals distinct positive signals from vertical transport
696 during the morning hours of both 28 and 29 August (**Fig. 10b**). This confirms that
697 upper-level ozone can be transported into the boundary layer, thereby influencing
698 ozone concentrations within the boundary layer. Calculation of cross-boundary-layer
699 vertical transport contributions revealed six distinct ozone transport events during
700 this consecutive northward-moving typhoon episode, occurring on 24, 25, 27, 28, 29,
701 and 30 August. The maximum contribution rate to ozone concentrations within the
702 boundary layer reached 16%.

703

704 Figure 10. Process contributions to ozone concentrations at 100m and 1300m altitudes,
 705 and cross-boundary-layer vertical transport contribution rates. (a-b: Contributions from
 706 horizontal diffusion (HDIF), horizontal advection (HADV), vertical diffusion (VDIF), vertical
 707 advection (ZADV), chemical processes (CHEM), dry deposition (DDEP), and cloud processes
 708 (CLDS). c: Red lines indicate net ozone change, while blue lines show ozone concentration
 709 variations.)

710 **5 Conclusions**

711 This study systematically investigated the mechanisms by which different
 712 typhoon tracks influence ozone pollution in Guangdong Province through

713 meteorological factors, atmospheric circulation patterns, transport trajectories, and
714 vertical transport contributions, based on 237 typhoons in China's adjacent waters
715 from 2013-2023. The key findings are:

- 716 1. Historical typhoons were classified into three types using the K-MEANS
717 clustering method: westward-moving typhoons (Type 1), distant northward-
718 moving typhoons (Type 2), and proximal northward-recurving typhoons
719 (Type 3). Among these, near-track northward-moving typhoons are more
720 likely to induce ozone pollution in Guangdong Province due to their more
721 extreme meteorological conditions, including higher temperatures, stronger
722 solar radiation, lower cloud cover, reduced precipitation, decreased relative
723 humidity, elevated boundary layer height, weaker surface winds, and
724 suppressed vertical motion.
- 725 2. Under the influence of northward-moving typhoons (type2 and type3), an
726 upper-level anticyclonic center forms near the tropopause height in mid-
727 latitudes, causing the westerly jet stream to shift southward. This process
728 triggers the subsidence of high-concentration ozone from the upper
729 troposphere, accompanied by pole-to-equator transport. Comparative
730 analysis between typhoon and non-typhoon conditions reveals that both
731 types of northward-moving typhoons induce significant ozone enhancement
732 throughout the vertical column, with increases ranging from 2.5 to 11.6
733 ppbv (Type 2) and 0.3 to 12.3 ppbv (Type 3).
- 734 3. For Type 1 typhoons, the associated ozone pollution is primarily controlled
735 by the subtropical high system, with significant contributions from local
736 pollution sources. In contrast, Type 2 and Type 3 typhoons exhibit the
737 highest proportions of upper-level transport trajectories (23.9% and 15.2%,
738 respectively), capable of delivering air masses from as high as 9,980 m (~250
739 hPa) into the boundary layer. Coupled with the elevated ozone
740 concentrations along these transport pathways, these mechanisms result in

741 ozone enhancements of 10.7 ppbv and 12.3 ppbv at boundary layer
742 altitudes for Type 2 and Type 3, respectively.

743 4. Under the influence of two consecutive northward-moving typhoons from
744 August 21 to September 6, 2020, Guangdong Province experienced a
745 prolonged ozone pollution episode. On August 29, ozone exceedance was
746 observed at 54.3% of monitoring stations. The primary cause of this ozone
747 pollution event was enhanced photochemical production, with secondary
748 contributions from upper-level ozone transport. Process analysis revealed
749 that during 09:00-11:00 LST on August 29, the positive contributions of
750 near-surface vertical transport to ozone concentrations were 39.9 ppbv, 26.4
751 ppbv, and 12.3 ppbv, respectively. During this typhoon event, cross-
752 boundary-layer transport via vertical mixing contributed up to 16% of the
753 ozone concentration within the boundary layer.

754

755

756 **Acknowledgments**

757 The text ends with an acknowledgment section and statement that includes:

758 • National Natural Science Foundation of China (42121004, 42477273 and
759 42405194)

760 • Guangdong Basic and Applied Basic Research Foundation (2023A1515110103
761 and 2024A1515510025)

762 • Science and Technology Planning Project of Guangzhou (2025A04J4711)

763 • Guangdong Province: Special Support Plan for High-Level Talents (2023JC07L057)

764 • Guangdong Provincial General Colleges and Universities Innovation Team Project
765 (Natural Science, 2024KCXTD004)

766

767 **References**

768 Chen, X., Liu, Y., Lai, A., Han, S., Fan, Q., Wang, X., Ling, Z., Huang, F., and Fan, S.:
769 Factors dominating 3-dimensional ozone distribution during high tropospheric ozone
770 period, *Environ. Pollut.*, 232, 55–64, <https://doi.org/10.1016/j.envpol.2017.09.017>,
771 2018.

772 Chen, X., Wu, L., Chen, X., Zhang, Y., Guo, J., Safieddine, S., Huang, F., and Wang, X.:
773 Cross-Tropopause Transport of Surface Pollutants during the Beijing 21 July Deep
774 Convection Event, *J. Atmos. Sci.*, 79, 1349–1362, <https://doi.org/10.1175/JAS-D-21-0115.1>, 2022a.

775 Chen, X., Wang, N., Wang, G., Wang, Z., Chen, H., Cheng, C., Li, M., Zheng, L., Wu, L.,
776 Zhang, Q., Tang, M., Huang, B., Wang, X., and Zhou, Z.: The Influence of Synoptic
777 Weather Patterns on Spatiotemporal Characteristics of Ozone Pollution Across Pearl
778 River Delta of Southern China, *J. Geophys. Res. Atmos.*, 127, 1–17,
779 <https://doi.org/10.1029/2022jd037121>, 2022b.

780 Chen, Y., Lu, X., and Fung, J. C. H.: Spatiotemporal source apportionment of ozone
781 pollution over the Greater Bay Area, *Atmos. Chem. Phys.*, 24, 8847–8864,
782 <https://doi.org/10.5194/acp-24-8847-2024>, 2024.

783 Chen, Z., Liu, J., Cheng, X., Yang, M., and Wang, H.: Positive and negative influences
784 of typhoons on tropospheric ozone over southern China, *Atmos. Chem. Phys.*, 21,
785 16911–16923, <https://doi.org/10.5194/acp-21-16911-2021>, 2021.

786 Chen, Z., Liu, J., Qie, X., Cheng, X., Shen, Y., Yang, M., Jiang, R., and Liu, X.: Transport
787 of substantial stratospheric ozone to the surface by a dying typhoon and shallow
788 convection, *Atmos. Chem. Phys.*, 22, 8221–8240, <https://doi.org/10.5194/acp-22-8221-2022>, 2022c.

789 Cong, H., Yuan, Y., Qian, W., and Bi-hui, Z.: Analysis of O3 Pollution Affected by a
790 Succession of Three Landfall Typhoons in 2020 in Eastern China, *Huanjing Kexue*, 45,
791 71–80, <https://doi.org/10.13227/j.hjlx.202301049>, 2024.

792 Ding, H., Kong, L., You, Y., Mao, J., Chen, W., Chen, D., Chang, M., and Wang, X.:
793 Effects of tropical cyclones with different tracks on ozone pollution over the Pearl
794 River Delta region, *Atmos. Res.*, 286,
795 <https://doi.org/10.1016/j.atmosres.2023.106680>, 2023.

796 Dou, X., Li, M., Jiang, Y., Song, Z., Li, P., and Yu, S.: Different contributions of
797 meteorological conditions and emission reductions to the ozone pollution during
798 Shanghai's COVID-19 lockdowns in winter and spring, *Atmos. Pollut. Res.*, 15,
799 <https://doi.org/10.1016/j.apr.2024.102252>, 2024.

800 Gao, D., Xie, M., Chen, X., Wang, T., Liu, J., Xu, Q., Mu, X., Chen, F., Li, S., Zhuang, B.,
801 Li, M., Zhao, M., and Ren, J.: Systematic classification of circulation patterns and
802 integrated analysis of their effects on different ozone pollution levels in the Yangtze
803 River Delta Region, China, *Atmos. Environ.*, 242,
804 <https://doi.org/10.1016/j.atmosenv.2020.117760>, 2020.

805 Gong, D., Du, N., Wang, L., Deng, X., Zhang, X., and Yang, L.: Impacts of
806 <https://doi.org/10.1016/j.atmosenv.2020.117760>, 2020.

807 Gong, D., Du, N., Wang, L., Deng, X., Zhang, X., and Yang, L.: Impacts of

808 meteorological and precursor emission factors on PM2.5 and O3 from 2019 to 2022:
809 Insights from multiple perspectives, *Atmos. Res.*, 315,
810 <https://doi.org/10.1016/j.atmosres.2025.107933>, 2025.

811 Guo, Y. P. and Tan, Z. M.: Influence of Track Change on the Inconsistent Poleward
812 Migration of Typhoon Activity, *J. Geophys. Res. Atmos.*, 127, 1–16,
813 <https://doi.org/10.1029/2022JD036640>, 2022.

814 Han, H., Liu, J., Shu, L., Wang, T., and Yuan, H.: Local and synoptic meteorological
815 influences on daily variability in summertime surface ozone in eastern China, *Atmos.*
816 *Chem. Phys.*, 20, 203–222, <https://doi.org/10.5194/acp-20-203-2020>, 2020a.

817 Han, H., Liu, J., Shu, L., Wang, T., and Yuan, H.: Local and synoptic meteorological
818 influences on daily variability in summertime surface ozone in eastern China, *Atmos.*
819 *Chem. Phys.*, 20, 203–222, <https://doi.org/10.5194/acp-20-203-2020>, 2020b.

820 Hu, F., Xie, P., Zhu, Y., Zhang, F., Xu, J., Lv, Y., Zhang, Z., Zheng, J., Zhang, Q., Li, Y.,
821 and Tian, X.: The impact of evolving synoptic weather patterns on multi-scale
822 transport and sources of persistent high-concentration ozone pollution event in the
823 Yangtze River Delta, China, *Sci. Total Environ.*, 949,
824 <https://doi.org/10.1016/j.scitotenv.2024.175048>, 2024.

825 Huang, D., Wan, L., Wan, Y., Chang, S., Ma, X., and Zhao, K.: Gravity Wave Activity
826 and Stratosphere-Troposphere Exchange During Typhoon Molave (2020), *J. Trop.*
827 *Meteorol.*, 30, 306–326, <https://doi.org/10.3724/j.1006-8775.2024.026>, 2024.

828 Huang, T., Yang, Y., O'Connor, E. J., Lolli, S., Haywood, J., Osborne, M., Cheng, J. C.-H.,
829 Guo, J., and Yim, S. H.-L.: Influence of a weak typhoon on the vertical distribution of
830 air pollution in Hong Kong: A perspective from a Doppler LiDAR network, *Environ.*
831 *Pollut.*, 276, <https://doi.org/10.1016/j.envpol.2021.116534>, 2021.

832 Jiang, Y., Zhao, T., Meng, K., Cheng, X., and Lv, Q.: 3-D Changes of Tropospheric O3 in
833 Central and Eastern China Induced by Tropical Cyclones over the Northwest Pacific:
834 Recent-Year Characterization with Multi-Source Observations, *Remote Sens.*, 16,
835 <https://doi.org/10.3390/rs16071178>, 2024.

836 Kumar, S., Chen, W., and Louis, O.-P.: Ionospheric and Atmospheric Response to
837 Extremely Severe Cyclonic Storm Nida of 29 July-02 August 2016, *J. Geophys. Res.*
838 *Phys.*, 128, <https://doi.org/10.1029/2023JA031422>, 2023.

839 Li, D., Vogel, B., Mueller, R., Bian, J., Guenther, G., and Riese, M.: Tropical Cyclones
840 Reduce Ozone in the Tropopause Region Over the Western Pacific: An Analysis of 18
841 Years Ozonesonde Profiles, *EARTHS Futur.*, 9,
842 <https://doi.org/10.1029/2020EF001635>, 2021.

843 Li, D., Bian, J., Zhang, X., Vogel, B., Muller, R., and Gunther, G.: Impact of typhoon
844 Soudelor on ozone and water vapor in the Asian monsoon anticyclone western
845 Pacific mode, *Atmos. Sci. Lett.*, 24, <https://doi.org/10.1002/asl.1147>, 2023a.

846 Li, M., Zeng, W., Yang, Z., Luo, Y., Zhu, Q., Wang, L., Yang, L., and Liao, C.: Multiple
847 sources emission inventory closely integrated with atmospheric environment
848 management: A case study of Guangdong, China, *Atmos. Pollut. Res.*, 14, 101825,
849 <https://doi.org/10.1016/j.apr.2023.101825>, 2023b.

850 Li, Y., Zhao, X., Deng, X., and Gao, J.: The impact of peripheral circulation
851 characteristics of typhoon on sustained ozone episodes over the Pearl River Delta
852 region, China, *Atmos. Chem. Phys.*, 22, 3861–3873, [https://doi.org/10.5194/acp-22-
853 3861-2022](https://doi.org/10.5194/acp-22-3861-2022), 2022.

854 Lu, P., Liu, R., Luo, Z., Li, S., Wu, Y., Hu, W., and Xue, X.: Impacts of compound
855 extreme weather events on summer ozone in the Beijing-Tianjin-Hebei region,
856 *Atmos. Pollut. Res.*, 15, <https://doi.org/10.1016/j.apr.2023.102030>, 2024.

857 Lu, X., Yu, H., Ying, M., Zhao, B., Zhang, S., Lin, L., Bai, L., and Wan, R.: Western North
858 Pacific Tropical Cyclone Database Created by the China Meteorological
859 Administration, *Adv. Atmos. Sci.*, 38, 690–699, [https://doi.org/10.1007/s00376-020-0211-7](https://doi.org/10.1007/s00376-020-
860 0211-7), 2021.

861 Ouyang, S., Deng, T., Liu, R., Chen, J., He, G., Leung, J. C.-H., Wang, N., and Liu, S. C.:
862 Impact of a subtropical high and a typhoon on a severe ozone pollution episode in
863 the Pearl River Delta, China, *Atmos. Chem. Phys.*, 22, 10751–10767,
864 <https://doi.org/10.5194/acp-22-10751-2022>, 2022.

865 Qin, L., Chunyan, D., Biwu, C., and Jianfeng, L.: Reason Analysis and Control of Ozone
866 Pollution in a Southern Coastal City, 2020.

867 Qiu, Y., Li, X., Chai, W., Liu, Y., Song, M., Tian, X., and Zou, Q.: Insights into ozone
868 pollution control in urban areas by decoupling meteorological factors based on
869 machine learning, 2013, 1749–1763, 2025.

870 Qu, K., Wang, X., Yan, Y., Shen, J., Xiao, T., Dong, H., Zeng, L., and Zhang, Y.: A
871 comparative study to reveal the influence of typhoons on the transport, production
872 and accumulation of O₃ in the Pearl River Delta, China, *Atmos. Chem. Phys.*, 21,
873 11593–11612, <https://doi.org/10.5194/acp-21-11593-2021>, 2021.

874 Rolph, G., Stein, A., and Stunder, B.: Real-time Environmental Applications and
875 Display sYstem: READY, *Environ. Model. Softw.*, 95, 210–228,
876 <https://doi.org/10.1016/j.envsoft.2017.06.025>, 2017.

877 Shen, W., Jin, Y., Li, G., and Cong, P.: Analyzing the response distribution of DO
878 concentration and its environmental factors under the influence of typhoon rain
879 events with remote sensing, *Front. Ecol. Evol.*, 11,
880 <https://doi.org/10.3389/fevo.2023.1283281>, 2023.

881 Shuping, S., Chen, C., Haihua, M., Zhuoran, H., Lina, A., Sixin, D., Yan, Z., Min'er, K.,
882 and Weihua, C.: Characteristics of ozone pollution in Foshan city and its relationship
883 with meteorology during 2017-2019, 2022.

884 Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.:
885 NOAA's HYSPLIT atmospheric transport and dispersion modeling system, *Bull. Am.
886 Meteorol. Soc.*, 96, 2059–2077, <https://doi.org/10.1175/BAMS-D-14-00110.1>, 2015.

887 Wan, Y., Yin, Z., Huo, Q., Zhou, B., and Wang, H.: Weather Extremes Led to Large
888 Variability in O₃ Pollution and Associated Premature Deaths in East of China, *Front.
889 EARTH SCI.*, 10, <https://doi.org/10.3389/feart.2022.947001>, 2022.

890 Wang, J., Wang, P., Tian, C., Gao, M., Cheng, T., and Mei, W.: Consecutive Northward
891 Super Typhoons Induced Extreme Ozone Pollution Events in Eastern China, *npj Clim.*

892 Atmos. Sci., 7, 1–9, <https://doi.org/10.1038/s41612-024-00786-z>, 2024a.

893 Wang, J., Wang, P., Tian, C., Gao, M., Cheng, T., and Mei, W.: Consecutive Northward

894 Super Typhoons Induced Extreme Ozone Pollution Events in Eastern China, *NPJ Clim.*

895 *Atmos. Sci.*, 7, <https://doi.org/10.1038/s41612-024-00786-z>, 2024b.

896 Wang, K., Zhao, R., Wu, Q., Li, J., Wang, H., and Lin, H.: Responses of surface ozone

897 under the tropical cyclone circulations: Case studies from Fujian Province, China,

898 *Atmos. Pollut. Res.*, 16, <https://doi.org/10.1016/j.apr.2024.102323>, 2025.

899 Wang, N., Ling, Z., Deng, X., Deng, T., Lyu, X., Li, T., Gao, X., and Chen, X.: Source

900 Contributions to PM2.5 under Unfavorable Weather Conditions in Guangzhou City,

901 *China, Adv. Atmos. Sci.*, 35, 1145–1159, <https://doi.org/10.1007/s00376-018-7212-9>,

902 2018.

903 Wang, N., Huang, X., Xu, J., Wang, T., Tan, Z. M., and Ding, A.: Typhoon-boosted

904 biogenic emission aggravates cross-regional ozone pollution in China, *Sci. Adv.*, 8,

905 <https://doi.org/10.1126/sciadv.abl6166>, 2022a.

906 Wang, N., Huang, X., Xu, J., Wang, T., Tan, Z. M., and Ding, A.: Typhoon-boosted

907 biogenic emission aggravates cross-regional ozone pollution in China, *Sci. Adv.*, 8, 1–

908 <https://doi.org/10.1126/sciadv.abl6166>, 2022b.

909 Wang, N., Wang, H., Huang, X., Chen, X., Zou, Y., Deng, T., Li, T., Lyu, X., and Yang, F.:

910 Extreme weather exacerbates ozone pollution in the Pearl River Delta, China: role of

911 natural processes, *Atmos. Chem. Phys.*, 24, 1559–1570, <https://doi.org/10.5194/acp-24-1559-2024>, 2024c.

912 Wei, J., Li, Z., Li, K., Dickerson, R. R., Pinker, R. T., Wang, J., Liu, X., Sun, L., Xue, W.,

913 and Cribb, M.: Full-coverage mapping and spatiotemporal variations of ground-level

914 ozone (O₃) pollution from 2013 to 2020 across China, *Remote Sens. Environ.*, 270,

915 <https://doi.org/10.1016/j.rse.2021.112775>, 2022.

916 Xu, J., Zhou, D., Gao, J., Huang, X., Xue, L., Huo, J., Fu, Q., and Ding, A.: Biogenic

917 emissions-related ozone enhancement in two major city clusters during a typical

918 typhoon process, *Appl. GEOCHEMISTRY*, 152,

919 <https://doi.org/10.1016/j.apgeochem.2023.105634>, 2023.

920 Yang, L., Luo, H., Yuan, Z., Zheng, J., Huang, Z., Li, C., Lin, X., K K Louie, P., Chen, D.,

921 and Bian, Y.: Quantitative impacts of meteorology and precursor emission changes

922 on the long-term trend of ambient ozone over the Pearl River Delta, China, and

923 implications for ozone control strategy, *Atmos. Chem. Phys.*, 19, 12901–12916,

924 <https://doi.org/10.5194/acp-19-12901-2019>, 2019.

925 Yaoyao, C., Tong, L., Yu, W., Jin, S., Yuhong, Z., Siqi, Y., Duohong, C., and Jingyang, C.:

926 Characteristics of Ozone Pollution in Guangdong Province from 2016 to 2020, 2022.

927 Ying, M., Zhang, W., Yu, H., Lu, X., Feng, J., Fan, Y., Zhu, Y., and Chen, D.: An Overview

928 of the China Meteorological Administration Tropical Cyclone Database, *J. Atmos.*

929 *Ocean. Technol.*, 31, 287–301, <https://doi.org/https://doi.org/10.1175/JTECH-D-12-00119.1>, 2014.

930 Yufeng, Z., Junjun, Y., Tingting, C., Tao, W., Huang, C., Lili, Z., Boguang, W., and

931 Chengliang, Z.: Influence of typhoon track in northwest Pacific on ozone pollution in

932

933

934 autumn in Shantou City, 2024.

935 Zhan, C., Xie, M., Huang, C., Liu, J., Wang, T., Xu, M., Ma, C., Yu, J., Jiao, Y., Li, M., Li,
936 S., Zhuang, B., Zhao, M., and Nie, D.: Ozone affected by a succession of four landfall
937 typhoons in the Yangtze River Delta, China: major processes and health impacts,
938 *Atmos. Chem. Phys.*, 20, 13781–13799, <https://doi.org/10.5194/acp-20-13781-2020>,
939 2020.

940 Zhu, L., Zhou, R., Di, D., Bai, W., and Liu, Z.: Retrieval of Atmospheric Water Vapor
941 Content in the Environment from AHI/H8 Using Both Physical and Random Forest
942 Methods-A Case Study for Typhoon Maria (201808), *Remote Sens.*, 15,
943 <https://doi.org/10.3390/rs15020498>, 2023.

944

945

946