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Abstract. The Southern Ocean plays a vital role in global biogeochemical cycles, yet comprehensive assessments of its 

representation in Earth System Models (ESMs) are still limited. This study evaluates the performance of 14 Coupled Model 10 

Intercomparison Project Phase 6 (CMIP6) models in simulating key biogeochemical variables south of 30°S, including 

austral-summer surface chlorophyll, deep chlorophyll maxima (DCMs), nitrate, silicate, dissolved iron, and particulate 

organic carbon (POC). Model output for the period 2000-2014 is compared to multiple observational datasets, such as a 

Copernicus product for estimated chlorophyll and POC profiles, the World Ocean Atlas (WOA) for nitrate and silicate, and 

GEOTRACES products for dissolved iron. Model performance is assessed using statistical metrics including mean bias error 15 

(MBE), standardised standard deviation (SSD), root mean squared deviation (RMSD), and correlation coefficient (CC). The 

results reveal substantial inter-model variability, with individual models exhibiting strengths in simulating different 

variables. GFDL-ESM4 best reproduces surface chlorophyll and POC and DCM patterns, and IPSL-CM6A-LR performs 

best for all nutrients, including nitrate, silicate, and dissolved iron. Based on composite rankings, the top-performing models 

are IPSL-CM6A-LR, GFDL-ESM4, CNRM-ESM2-1, UKESM1-0-LL, and CMCC-ESM2. This work underscores the 20 

importance of multi-model evaluation for identifying model strengths and guiding future improvements in biogeochemical 

(BGC) model development, particularly in the context of understanding and projecting Southern Ocean biogeochemistry 

under climate change.  

1 Introduction 

Climate change is a critical global challenge, driving major shifts in marine conditions and ecosystems. The Southern Ocean, 25 

covering 30% of the global ocean, plays a crucial role in the oceanic carbon and nutrient cycles, absorbing over 40% of 

anthropogenic CO2 and 70% of human-induced warming (Gruber et al., 2019; Petrou et al., 2016; Xue et al., 2024). The 

Southern Ocean is characterised by complex interactions among physical circulation, biogeochemistry, and biological 

productivity, making it a challenge to model (Henley et al., 2020; Morley et al., 2020). The powerful eastward-moving 



2 
 
 

Antarctic Circumpolar Current (ACC), one of the Earth’s strongest currents, connects ocean basins and regulates global 30 

climate and ocean circulation, supports diverse marine ecosystems, and distributes nutrients (Böning et al., 2008; Rintoul et 

al., 2001; Lopes et al., 2011; Song, 2020). The upwelling of deep, nutrient-rich waters, driven by ACC, supports 

phytoplankton growth, influencing global carbon sequestration and ecosystem dynamics (Venables and Moore, 2010; 

Morrison et al., 2015; Hunt et al., 2021; Pollard et al., 2006). This complex region of both physical and biological processes 

is important due to its significant impact on global climate regulation, carbon sequestration, and the health of marine 35 

ecosystems. 

Phytoplankton, particularly silicifying diatoms, are a key component of the Southern Ocean food web and the global carbon 

cycle, playing a crucial role in carbon sequestration and nutrient cycling (Deppeler and Davidson, 2017; Baldry et al., 2020; 

Petrou et al., 2016; Nissen and Vogt, 2021; Timmermans et al., 2004; Hoffmann et al., 2008). Their biomass and primary 

production are often assessed through chlorophyll concentrations, which serve as an essential indicator in oceanic carbon 40 

fixation and ecosystem productivity (Carranza and Gille, 2015; Johnson et al., 2013). However, despite the abundance of 

macronutrients such as nitrate and silicate, phytoplankton growth is frequently constrained by light limitation and iron 

deficiency, both of which regulate their distribution and productivity (Boyd and Ellwood, 2010; Boyd, 2002). In response to 

these physiochemical conditions, deep chlorophyll maxima (DCMs) have been observed in nutrient-stratified waters during 

austral summer in the Southern Ocean, indicating robust phytoplankton production in the subsurface layer (Boyd et al., 2024; 45 

Cornec et al., 2021; Cullen, 1982; Cullen, 2015; Hopkinson and Barbeau, 2008; Li et al., 2012). These DCMs contribute 

significantly to the regional carbon cycle, for example, approximately 40% of primary production in the Southern Ocean 

occurs below the mixed layer (Vives et al., 2024), and support marine food webs by sustaining primary production below the 

surface, where light and nutrient conditions are more favourable, particularly the supply of iron and silicon, for certain 

phytoplankton communities (Signorini et al., 2015; Cornec et al., 2021; Sauzède et al., 2018).  50 

Ocean biogeochemical (BGC) modules, are an important component of coupled Earth system models (ESMs), and are 

indispensable for understanding the complicated physical and biogeochemical processes in the ocean (Follows and 

Dutkiewicz, 2011; Séférian et al., 2020). Depending on their complexity, these models simulate the cycles of key elements 

such as carbon, oxygen, nitrogen, phosphorus, silicate, and iron, and organisms including phytoplankton, zooplankton and 

bacteria, which are vital for marine ecosystems and global climate regulation (Dunne et al., 2020; Aumont et al., 2015; Pak 55 

et al., 2021; Ilyina et al., 2013). BGC models enable researchers to investigate how changes in environmental conditions, 

such as temperature, light, and nutrient availability, impact marine biogeochemistry and ecosystem dynamics (Kwiatkowski 

et al., 2020). They are particularly valuable for studying regions like the Southern Ocean, where observational data are 

limited, and the interactions between physical and biogeochemical processes are highly complex (Tagliabue et al., 2017; 

Lauderdale et al., 2017). Despite their significance, BGC models face considerable challenges, including the need for precise 60 

parameterisation of key biological processes, accurate representation of small-scale processes, and effective constrained by 

diverse data sources (Ackermann et al., 2024; Beadling et al., 2019). 
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The Coupled Model Intercomparison Project Phase 6 (CMIP6) represents the latest advancement in climate modelling, 

providing a standardised framework for evaluating ESMs across various simulations under different climate scenarios 

(Eyring et al., 2016; O'Neill et al., 2016; Meehl et al., 2020). Compared to previous phases, CMIP6 models feature higher 65 

spatial resolution, improved physical processes, and enhanced biogeochemical components, including expanded 

phytoplankton functional types, refined biogeochemical cycle representations and optimised parameterisation (Séférian et 

al., 2020; Kwiatkowski et al., 2020). However, significant discrepancies persist in biogeochemical performance due to 

variations in BGC model structures, parameterisation, and ocean physics (Séférian et al., 2020). Evaluating CMIP6 models 

highlights these differences, offering insights for future model development and refinement (Kwiatkowski et al., 2020; 70 

Séférian et al., 2020; Hauck et al., 2015).  

While some studies have assessed the performance of CMIP6 models in simulating biogeochemical variables globally and 

regionally, a comprehensive analysis of chlorophyll, nutrient distribution, and DCM characteristics in the Southern Ocean 

remains unexplored. Marshal et al. (2024) evaluated chlorophyll, phytoplankton, nitrate and dissolved oxygen across 13 

CMIP6 models in the South China Sea, ranking them using statistical metrics to identify the five best-performing models. 75 

Fisher et al. (2025) synthesised CMIP6 outputs to examine climate-driven shifts in Southern Ocean primary production, 

projecting a 30% increase in Antarctic zone productivity under a high-emission (SSP5-8.5) scenario, albeit with regional 

variations. Séférian et al. (2020) compared CMIP5 and CMIP6 models, demonstrating improved CMIP6 biogeochemical 

representations, including chlorophyll, dissolved oxygen, silicate and nitrate, due to more comprehensive biogeochemical 

cycles and Earth system interactions. Rohr et al. (2023) analysed 11 CMIP6 models and found that zooplankton grazing 80 

parameterisation introduced uncertainty in marine carbon cycle projections. These studies underscore the need for further 

evaluation of the CMIP6 models to assess the impact of biogeochemical processes and parameterisation on model 

performance. 

In this paper, we evaluate biogeochemical variables, including chlorophyll, silicate, nitrate, dissolved iron, and particulate 

organic carbon (POC) across 14 CMIP6 models and assess their performance in representing DCMs in the Southern Ocean. 85 

Section 2 details the observed and simulated data and the statistical analysis methods. Section 3 presents an inter-model 

evaluation of each biogeochemical variable. Section 4 discusses the ocean vertical carbon structure, model performance, and 

avenues for improvement. Section 5 provides a summary of our findings.  

2 Data and methods 

2.1 Study region 90 

This study focuses on the open waters of the Southern Ocean (south of 30°S). We divide the Southern Ocean into four zones: 

the subtropical zone (STZ), subantarctic zone (SAZ), polar front zone (PFZ) and Antarctic zone (AZ; Fig. 1). These zones 

are separated by three key fronts: the subtropical front, subantarctic front and polar front, which are defined by distinct 
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physical and biogeochemical properties (Orsi et al., 1995). We compare the CMIP6 model outputs of chlorophyll, nitrate, 

silicate, dissolved iron, and POC across these zones and across the entire Southern Ocean.   95 

2.2 CMIP6 datasets and availability 

We obtained outputs from 14 CMIP6 models from the Earth System Grid Federation (ESGF) Nodes (Cinquini et al., 2014). 

Specifically, we collected data from the historical experiment for model evaluation, using the ensemble member r1i1p1f1 for 

most models, while r1i1p1f2 was used for CNRM-ESM2-1, MIROC-ES2L, and UKESM1-0-LL. Dissolved iron and carbon 

data of ACCESS-ESM1-5 were collected from the National Computational Infrastructure. This includes monthly data for 100 

chlorophyll, nitrate, silicate, dissolved iron, POC which comprises phytoplankton, detritus, and bacteria (see Section 2.4 for 

details), and NPP. These data were also used to compare chlorophyll and DCM distribution. The selected CMIP6 models, 

their properties and available variables are detailed in Table 1. To ensure consistency, we regridded all outputs to a 1°×1° 

common horizontal resolution using bilinear interpolation in Climate Data Operators (CDO) software (Schulzweida, 2023), 

covering the time range from January 2000 to December 2014.  105 

Table 1. List of 14 CMIP6 models utilised, detailing the ESM name, coupled ocean biogeochemical model (OBGCM) name, 
averaged horizontal resolution and variables with available data. All variable abbreviations and their long names: chl (mass 
concentration of phytoplankton expressed as chlorophyll in seawater), no3 (dissolved nitrate concentration), si (total dissolved 
inorganic silicon concentration), dfe (dissolved iron concentration), phyc (phytoplankton carbon concentration), detoc (mole 
concentration of organic detritus expressed as carbon in seawater), bacc (bacterial carbon concentration), and intpp (integrated 110 
net primary production).  

ESM OBGCM Variable ESM and OBGCM Reference 

ACCESS-ESM1-5 WOMBAT chl, no3, dfe, phyc, detoc, intpp Ziehn et al. (2020); Oke et al. (2013) 

CanESM5 CMOC chl, no3, phyc, detoc Swart et al. (2019); Zahariev et al. (2007) 

CESM2 MARBL chl, no3, si, dfe, phyc, intpp Danabasoglu et al. (2020); Long et al. (2021) 

CMCC-ESM2 BFM v5.2 chl, no3, si, dfe, phyc, detoc, bacc, intpp Lovato et al. (2022); Vichi et al. (2015) 

CNRM-ESM2-1 PISCES-v2-gas chl, no3, si, dfe, phyc, detoc, intpp Séférian et al. (2019); Skyllas (2018) 

GFDL-ESM4 COLBALTv2 chl, no3, si, dfe, phyc, detoc, bacc, intpp Dunne et al. (2020); Stock et al. (2020) 

IPSL-CM6A-LR PISCES-v2 chl, no3, si, dfe, phyc, detoc, intpp Boucher et al. (2020); Aumont et al. (2015) 

MIROC-ES2L OECO-v2 chl, no3, dfe, phyc, intpp Hajima et al. (2020) 

MPI-ESM-1-2-HAM HAMOCC6 chl, no3, si, dfe, phyc, detoc, intpp Neubauer et al. (2019); Ilyina et al. (2013) 

MPI-ESM1-2-HR HAMOCC6 chl, no3, si, dfe, phyc, detoc, intpp Müller et al. (2018); Ilyina et al. (2013) 

MPI-ESM1-2-LR HAMOCC6 chl, no3, si, dfe, phyc, detoc, intpp Mauritsen et al. (2019); Ilyina et al. (2013) 

NorESM2-LM HAMOCC chl, no3, si, dfe, phyc, detoc, intpp Tjiputra et al. (2020) 

NorESM2-MM HAMOCC chl, no3, si, dfe, phyc, detoc, intpp Tjiputra et al. (2020) 

UKESM1-0-LL MEDUSA-2.0 chl, no3, si, dfe, phyc, detoc, intpp Sellar et al. (2019); Yool et al. (2013) 
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2.3 Observed datasets and availability  

Observed surface chlorophyll and POC data, as well as vertical chlorophyll profiles, were obtained from the Copernicus 

Global Ocean 3D Chlorophyll-a Concentration, Particulate Backscattering coefficient and Particulate Organic Carbon 115 

product (hereafter referred to as the Copernicus product; Sauzède et al., 2016). The original POC fields were estimated using 

a neural network approach (machine-learning method) known as SOCA2016 (Satellite Ocean Colour merged with Argo 

data; 2016 version), which integrates satellite-derived surface estimates of the particulate backscattering coefficient (bbp) 

and chlorophyll a concentration with depth-resolved physical properties derived from BGC-Argo floats (Sauzède et al., 

2016). In this study, we used the updated SOCA2024 product, which merges bbp and chlorophyll-a concentrations derived 120 

from both satellite and BGC-Argo floats. This product has been validated against a global independent pigment dataset 

obtained from High Performance Liquid Chromatography (HPLC) and BGC-Argo floats (Sauzède et al., 2024). The 

reprocessed dataset provides a spatial resolution of 0.25°×0.25° and 36 vertical levels from the surface to 1000 m depth, with 

a bathymetric mask applied to exclude grid cells shallower than 1000 m to avoid potential coastal artifacts (Sauzède et al., 

2024). This masking, however, removes several productive shelf regions such as around New Zealand and the Patagonian 125 

Shelf. The primary advantage of this dataset lies in its integration of satellite and BGC-Argo data, ensuring consistent 

vertical and horizontal chlorophyll and POC distributions. To verify the reliability of the Copernicus dataset, we compared 

multiple Copernicus versions and satellite-derived products using different algorithms from Johnson et al. (2013). 

Chlorophyll estimated with SOCA2024 showed the strongest agreement with BGC-Argo data (R2=0.89, slope=1.04; Table 

S1), outperforming other approaches. When validated against HPLC data, SOCA2024 also performed well (R2=0.53, 130 

slope=0.70) globally, similar to the MODIS-Aqua chlorophyll recalculated using the new algorithm of Johnson et al. (2013), 

which remains one of the best-performing satellite products for the Southern Ocean (Table S1). The SOCA2024 POC dataset 

also proved robust when compared with BGC-Argo bbp data in the Southern Ocean (R2=0.93, slope=0.89; Table S1). 

Moreover, a direct comparison between surface chlorophyll from Copernicus product and MODIS (Johnson et al., 2013) 

reveals a strong correlation (R2=0.69, slope=0.80; Fig. S1), confirming the reliability of the Copernicus dataset. Accordingly, 135 

we use the Copernicus chlorophyll and POC products for all subsequent analyses of surface chlorophyll, POC, and DCMs to 

maintain consistency across different observational comparisons. Additionally, we provide model-data comparison using 

Aqua-MODIS chlorophyll derived with the Johnson et al. (2013) algorithm in the supplement for cross-validation.  

Observed nitrate and silicate data were sourced from the World Ocean Atlas (WOA) 2018 (Garcia et al., 2019), representing 

climatological averages from 1955 to 2017. Observed dissolved iron data were obtained from GEOTRACES IDP2021v2 and 140 

a global compilation of dissolved iron measurements (Tagliabue et al., 2012), which compiles bottle-sampled dissolved iron 

measurements from 2001 to 2014.  

Existing NPP estimating algorithms exhibit large discrepancies in the Southern Ocean, with values ranging from 

approximately 400 to 1400 mg C m-2 d-1 in December (Silsbe et al., 2016). The scarcity of in situ NPP measurements makes 

it difficult to constrain or validate these NPP algorithms, introducing substantial uncertainty into any evaluation. Thus, this 145 
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study does not include NPP in the model performance ranking to avoid the influence of uncertain reference datasets. Instead, 

we provide model-data comparison figures in the Supplement (Figs. S2-5) for readers interested in model NPP performance, 

using NPP products derived from the Standard VGPM (Behrenfeld and Falkowski, 1997) and CAFE (Silsbe et al., 2016) 

algorithms available from the Ocean Productivity site (https://orca.science.oregonstate.edu/index.php, accessed on 3 October 

2025). Both algorithms estimate NPP using MODIS satellite inputs, including chlorophyll a concentration, sea surface 150 

temperature, and photosynthetically available radiation, among other parameters.  

2.4 Data analysis 

To evaluate the performance of CMIP6 models in simulating biogeochemical variables, we compared observations with 

model outputs for chlorophyll, nitrate, silicate and dissolved iron (Section 3.1), DCM (peak of chlorophyll concentration in 

the subsurface) representation and characteristics (Section 3.2) and particulate organic carbon (Section 3.3) and presented 155 

model rankings by variable (Section 3.4).   

Since Southern Ocean DCMs predominantly occur during austral summer (Cornec et al., 2021; Prakash and Bhaskar, 2024), 

all datasets (except observed dissolved iron) were restricted to December, January and February (DJF). We calculated 

temporal averages for CMIP6-simulated variables and Copernicus chlorophyll and POC profiles over DJF from 2000 to 

2014. Similarly, we computed DJF-averaged nitrate and silicate from observations.  160 

The observed dissolved iron data are distributed sporadically because of the limited source of bottled samples and towed fish 

samples. Tagliabue et al. (2012) compiled the bottled samples from voyages, and GEOTRACES IDP2021v2 have multiple 

sources of dissolved iron data, including bottled samples and towed fish samples. To match the surface dissolved iron south 

of 30°S in the model dataset, here we selected the observed dissolved iron data points south of 30°S and the depths no deeper 

than 30 m to represent the surface. In this case, there are only 834 and 910 data points in these spatial ranges, in 165 

GEOTRACES IDP2021v2 and Tagliabue et al. (2012), respectively. We merged these two datasets by removing the data 

points with the same longitude, latitude, depth and dissolved iron concentration. There are finally 1693 unduplicated data 

points. To mitigate the impact of uneven spatial sampling density on the overall assessment, we gridded all observational 

data points onto a 1° × 1° longitude–latitude mesh grid and aggregated multiple observations within the same grid cell (using 

the median) to obtain a representative value for subsequent analyses. Finally, there are 615 grid points with available 170 

dissolved iron concentrations, accounting for 4.33% of the total ocean grid points. In this research, we only compared the 

surface dissolved iron concentrations where the observed dissolved iron concentrations are available.  

In cases where CMIP6 models do not provide a specific variable representing total particulate organic carbon (POC), we 

manually derive it by summing different species of POC. The simulated POC concentration in this paper is calculated as the 

sum of phytoplankton carbon, detrital organic carbon (absent in CESM2 and unavailable in MIROC-ES2L), and bacterial 175 

carbon (available only in CMCC-ESM2 and GFDL-ESM4).  
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To quantify model performance, we calculated spatial variations, mean bias error (MBE), standardised standard deviation 

(SSD), correlation coefficient (CC), and root mean squared deviation (RMSD) for chlorophyll, nitrate, silicate and dissolved 

iron. We visualised spatial variations using Southern Ocean maps, MBE in bar charts, SSD, CC and RMSD using Taylor 

Diagram (TD) to illustrate the agreement between models and observations (Taylor, 2001). The TDs and their related 180 

statistics-SSD, CC, and RMSD-are provided in Supplementary Materials.  

DCMs are identified as the vertical peak of chlorophyll concentration, where the chlorophyll value exceeds 1.1 times the 

surface chlorophyll concentration. The 1.1 threshold is applied to account for potential measurement errors in the 

observation. To evaluate DCM characteristics, we calculated peak chlorophyll concentration at the identified DCM depth 

and frequency of DCM occurrence, which is defined as the area proportion where DCMs are detected.  185 

The assessment of CMIP6 model performance relies on the ranking of four statistical metrics, containing MBE (the lower 

|MBE| has the higher ranking), SSD (the closer to 1 has the higher ranking), RMSD (the lower has the higher ranking), and 

CC (the higher has the higher ranking) for chlorophyll, nitrate, silicate, dissolved iron, and POC. For the evaluation of 

DCMs, both the chlorophyll rank and DCM occurrence frequency (the closer to the reference, the higher ranking) are 

considered. The ranking score for each variable is calculated by averaging the rankings of its relevant statistical metrics. That 190 

means the model with a lower ranking score has a higher rank. The overall ranking score of each CMIP6 model is calculated 

by averaging the ranking score of all variables, where the model with a lower ranking score has a higher overall rank. We 

will present the ranking of each variable and the overall ranking in Section 3.4. 

All data processing and analysis were performed using MATLAB R2024a and its numerical toolboxes. Maps were generated 

using the M_Map toolbox (Pawlowicz, 2020). Taylor diagrams in supplementary materials were generated using MATLAB 195 

functions from Haroon Haider (https://www.youtube.com/@EngrHaroonHaider, accessed on: 22 April 2025).  

3 Results 

3.1 Southern Ocean biogeochemistry  

We evaluate the performance of 14 CMIP6 models in simulating Southern Ocean biogeochemistry by comparing their 

outputs for chlorophyll, nitrate, silicate, and dissolved iron with observational data. The surface chlorophyll concentration in 200 

the Southern Ocean exhibits a general increase from north to south, reaching its highest concentrations in the coastal regions 

of Antarctica (Fig. 1), with some exceptions associated with island wake effects related to continental iron input (Blain et al., 

2007). Another main exception is the exceptionally high chlorophyll on the Patagonian Shelf off southeastern South America 

(Fig. S6), driven by the convergence of the nutrient-rich Malvinas Current with the warm Brazil Current, in addition to shelf 

upwelling and riverine inputs (Piola et al., 2024; Ferreira et al., 2009; Rivas et al., 2006; Rijkenberg et al., 2014). However, 205 

none of the CMIP6 models reproduce this feature, likely because their coarse 1° resolution fails to resolve critical shelf-front 

dynamics.  
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Figure 1: Observed surface chlorophyll concentrations from Copernicus in DJF and spatial biases of surface chlorophyll 
concentrations for 14 CMIP6 models (model chlorophyll – Copernicus chlorophyll) in DJF for the Southern Ocean (>30°S). Black 210 
dashed lines in the maps denote the subtropical front, the subantarctic front, and the polar front, from north to south. Grey areas 
denote regions where no data are available.  

Most models underestimate the surface chlorophyll south of the subtropical front, except for the three MPI-ESMs, and many 

models underestimate the surface chlorophyll in the subtropical zone (Fig. 1). This discrepancy potentially reflects 

methodological differences: models include only chlorophyll in live phytoplankton, whereas satellites detect chlorophyll in 215 

both living and senescent cells. A slight overestimation in the Copernicus chlorophyll product (slope=1.04; Table S1; 

Sauzède et al., 2024) may also contribute. The three MPI-ESMs, MPI-ESM-1-2-HAM, MPI-ESM1-2-HR, and MPI-ESM1-

2-LR, tend to substantially overestimate chlorophyll concentrations throughout the Southern Ocean, with MBEs of 1.03, 1.79 

and 0.76 mg/m3 (Fig. 2), respectively, compared to a mean chlorophyll concentration of only 0.59 mg m-3 in observations. 

Conversely, the CanESM5, CMCC-ESM2, CNRM-ESM2-1, and IPSL-CM6A-LR models underestimate chlorophyll 220 

concentrations (Figs. 1 and 2). The ACCESS-ESM1-5, CESM2, MIROC-ES2L, NorESM2-LM, NorESM2-MM, and 

UKESM1-0-LL models exhibit small and negative MBEs for the entire Southern Ocean but show opposing biases across 

regions. For instance, they overestimate chlorophyll concentrations north of the subtropical front and underestimate 

concentrations to the south (Fig. 2). The GFDL-ESM4 model provides the most realistic simulation of chlorophyll 

concentration north of the polar front but underestimates concentrations south of the polar front (Fig. 1). 225 



9 
 
 

 

Figure 2: The mean bias errors in surface chlorophyll concentrations for the Southern Ocean (SO), the subtropical zone (STZ), the 
subantarctic zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF. All MBEs and means in each region are 
calculated using area-weighted averages.  

When considering other metrics such as standardised standard deviation (SSD), root mean-squared deviation (RMSD), and 230 

correlation coefficient (CC), we find that among the models, GFDL-ESM4, IPSL-CM6A-LR, and CMCC-ESM2 have the 

lowest RMSD, small bias errors, and CC values above 0.6, indicating that they were the best-performing models for 

simulating the distribution of chlorophyll across the Southern Ocean (Fig. S7 and Table S2). In contrast, the three MPI-

ESMs are less reliable due to their overestimation of chlorophyll concentration. Additionally, the ACCESS-ESM1-5, 

CanESM5, and NorESMs models exhibit poor performance, such as their low CC (<0.2), despite moderate bias errors (Fig. 235 

S7 and Table S2). The remaining models, including CESM2, CNRM-ESM2-1, MIROC-ES2L, and UKESM1-0-LL, exhibit 

moderate performance in simulating chlorophyll.  

Nitrate, a key macronutrient that regulates phytoplankton growth and primary production, is abundant in the Southern 

Ocean, particularly south of 50°S (Fig. 3). Three MPI-ESMs (MPI-ESM-1-2-HAM, MPI-ESM1-2-HR, and MPI-ESM1-2-

LR) underestimate nitrate concentrations, with MBEs of -4.72, -5.75, and -3.49 mmol/m3 (Fig. 4), respectively, compared to 240 

the observed mean surface nitrate concentration of 11.92 mmol/m3 from WOA. This underestimation may be linked to the 

high simulated chlorophyll levels, which could lead to excessive nutrient consumption. In addition, the CESM2, CMCC-

ESM2, and GFDL-ESM4 models also underestimate nitrate concentrations (Fig. 3). In contrast, the ACCESS-ESM1-5, 

CanESM5, CNRM-ESM2-1, MIROC-ES2L, NorESM2-LM, NorESM2-MM, and UKESM1-0-LL models overestimate 

nitrate concentration, although the two NorESMs underestimate it in the Antarctic zone. Among all models, IPSL-CM6A-LR 245 

has the best performance, with the lowest MBE of 0.29 mmol/m3 and a relative error of just 2.43% (Fig. 4).  
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Figure 3: Observed surface nitrate concentrations from WOA in DJF and spatial biases of surface nitrate concentrations for 14 
CMIP6 models (model nitrate – WOA nitrate) in DJF for the Southern Ocean (>30°S).  

 250 

Figure 4: The mean bias errors in surface nitrate concentrations for the Southern Ocean (SO), the subtropical zone (STZ), the 
subantarctic zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF.  
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Among the 14 CMIP6 models, IPSL-CM6A-LR, GFDL-ESM4, and CNRM-ESM2-1 produce the most accurate simulations 

of surface nitrate concentration for the Southern Ocean. They exhibit the lowest RMSD (<0.3), minimal MBE (absolute 

MBE < 4 mmol/m3), high CC (>0.95), and SSDs close to 1, indicating strong agreement with observations (Fig. S8 and 255 

Table S3). Conversely, the three MPI-ESMs models produce less accurate simulations of surface nitrate concentration for the 

Southern Ocean due to their large bias errors and significant deviations (represented by SSD, RMSD, and CC on a Taylor 

diagram; Fig. S8 and Table S3). The remaining models including ACCESS-ESM1-5, CanESM5, CESM2, CMCC-ESM2, 

MIROC-ES2L, NorESM2-LM, NorESM2-MM and UKESM1-0-LL demonstrate moderate performance.   

Among the CMIP6 models analysed, silicate concentrations are generally overestimated across the Southern Ocean (Fig. 5). 260 

The three MPI-ESMs exhibit the most significant overestimation, with MBEs exceeding 30 mmol/m3 (Fig. 6), over twice the 

observed surface silicate concentration of 12.65 mmol/m3 from WOA. The CMCC-ESM2, NorESM2-LM, NorESM2-MM, 

and UKESM1-0-LL models also show large positive biases, with their mean silicate concentrations roughly double that of 

observed values (Fig. 6). The CMCC-ESM2 and UKESM1-0-LL models underestimate silicate concentrations in the 

subtropical zone (STZ), while the two NorESMs underestimate silicate concentrations in the Ross Sea, Weddell Sea, and 265 

adjacent waters (Fig. 5). CESM2, CNRM-ESM2-1, GFDL-ESM4, and IPSL-CM6A-LR exhibit the lowest positive MBEs 

among the models (Fig. 6). and underestimate silicate concentrations in the STZ. Interestingly, in some regions around 

Antarctica, simulated silicate concentrations are lower than observations, particularly in areas where the GFDL-ESM4 and 

IPSL-CM6A-LR models overestimate chlorophyll (Fig. 1), suggesting a possible link between silicate availability and 

diatom growth. Three models, including ACCESS-ESM1-5, CanESM5, and MIROC-ES2L are excluded from the silicate 270 

comparison because they do not include diatoms as one of their phytoplankton species or silicate as a nutrient variable.  
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Figure 5: Observed surface silicate concentrations from WOA in DJF and spatial biases of surface silicate concentrations for 14 
CMIP6 models (model silicate – WOA silicate) in DJF for the Southern Ocean (>30°S). Models with unavailable silicate are 
labelled with *.    275 

 

Figure 6: The mean bias errors in surface silicate concentrations for the Southern Ocean (SO), the subtropical zone (STZ), the 
subantarctic zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF. Models with unavailable silicate are 
labelled with *. 
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Among the 11 CMIP6 models with available silicate data, IPSL-CM6A-LR is the best-performing model for representing 280 

silicate distribution across the Southern Ocean. It has the lowest MBE (1.50 mmol/m3, compared to the observation of 12.65 

mmol/m3), an SSD closest to 1 (1.04), the lowest RMSD (0.37), and the highest CC (0.94; Fig. S9 and Table S4), making it 

the most reliable model for simulating silicate concentrations. Following IPSL-CM6A-LR, the CNRM-ESM2-1, GFDL-

ESM4, and CESM2 models also show relatively good performance, although their statistical metrics are not as strong as 

IPSL-CM6A-LR. The remaining models, CMCC-ESM2, MPI-ESMs, NorESMs, and UKESM1-0-LL, produce less realistic 285 

simulations due to their large bias errors, which suggests significant discrepancies in their silicate simulations.   

After evaluating the overall model performance for surface nitrate and silicate, we further examined whether these surface 

biases are linked to errors in the deep upwelling source waters. To this end, we compared the model-observation biases in 

nitrate and silicate between the surface and 700 m depth, representing the upwelling Circumpolar Deep Water (CDW) south 

of 50° S. Most models show positive but weak correlations between surface and deep nitrate biases, with slopes ranging 290 

from -0.12 to 0.74 and R² from 0.01 to 0.42 (p < 0.001; Fig. S10), suggesting that surface nitrate errors are only weakly 

linked to deep-water biases. In contrast, correlations for silicate are slightly stronger but remain weak overall, with slopes 

between 0.23 and 0.76 and R2 of 0.06-0.50 (p < 0.001; Fig. S11). This suggests that surface silicate biases are more directly 

linked to deep CDW properties than nitrate, although neither nutrient exhibits a particularly strong surface-deep 

correspondence. The overall weak relationships imply that, although biases in deep nutrient fields contribute to surface 295 

discrepancies, other processes such as biological uptake, vertical mixing, and mixed-layer variability also play substantial 

roles in shaping the surface nutrient distributions. 

Dissolved iron concentrations in the Southern Ocean are generally low in open waters and higher in coastal regions in the 

observations (Fig. 7). Among the CMIP6 models analysed, the dissolved iron simulations exhibit significant discrepancies 

with MBEs ranging from -0.15 to 0.29 µmol/m3 compared to the observed mean of 0.31 µmol/m3 (Fig. 8). Four models 300 

including CESM2, CNRM-ESM2-1, GFDL-ESM4, and IPSL-CM6A-LR underestimate dissolved iron concentrations but 

reproduce the spatial pattern relative well, exhibiting small regional biases (Fig. 7). In contrast, ACCESS-ESM1-5, 

NorESM2-LM, NorESM2-MM, and UKESM1-0-LL overestimate dissolved iron in most Southern Ocean surface waters, 

while CMCC-ESM2, MIROC-ES2L, and the three MPI-ESMs show moderate overestimation except in Antarctic waters. All 

models share a consistent bias around the Antarctic Peninsula and East Antarctica, where they underestimate elevated 305 

dissolved iron levels found in observations (Fig. 7). These high-iron regions are maintained by the entrainment of iron-rich 

shelf waters by the iron-poor Antarctic Circumpolar Current through the Drake Passage (Measures et al., 2013) and by iron 

inputs from melting icebergs and sediments along the East Antarctic shelf (Schallenberg et al., 2016; Person et al., 2019). 

The incomplete representation of such physical mechanisms in models likely contributes to the underestimation of dissolved 

iron. Furthermore, insufficient representation of the transport of shelf-derived iron may also lead to the underestimation of 310 

chlorophyll, POC, and primary production on the Patagonian Shelf.  
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Figure 7: Observed surface dissolved iron concentrations from an integrated product by GEOTRACES IDP2021v2 and Tagliabue 
et al. (2012), and spatial biases of surface dissolved iron concentrations for 14 CMIP6 models (model dissolved iron – observed 
dissolved iron) for the Southern Ocean (>30°S). Models with unavailable dissolved iron are labelled with *. 315 

 

Figure 8: The mean bias errors in surface dissolved iron concentrations for the Southern Ocean (SO), the subtropical zone (STZ), 
the subantarctic zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF. Models with unavailable dissolved 
iron are labelled with *. 
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Although several models exhibit reasonable MBEs, most perform poorly in other statistical metrics for dissolved iron, with 320 

SSD values below 0.51, RMSD exceeding 0.99, and CC lower than 0.18 (Fig. S12 and Table S5). Some models, including 

the three MPI-ESMs and NorESM2-LM, even show negative CC values, indicating an unrealistic spatial distribution of 

dissolved iron. Among the models, IPSL-CM6A-LR and CNRM-ESM2-1 perform best when all four statistical metrics 

(SSD, RMSD and CC) are considered together (Table S5), largely benefiting from their shared ocean biogeochemical 

module, PISCES-v2 (Aumont et al., 2015). Despite these results, the large overall biases and weak correlations highlight 325 

persistent uncertainties in evaluating dissolved iron simulations, primarily due to the limited spatial and temporal coverage 

of observational data and the oversimplified representation of iron cycling processes in many models. Consequently, it 

remains difficult to draw definitive conclusions regarding model skill in reproducing dissolved iron distributions in the 

Southern Ocean. 

3.2 Performance of DCMs  330 

The observational data from Copernicus indicate that DCMs are widespread across approximately 85% of the Southern 

Ocean in austral summer (Fig. 9). Their occurrence frequency is lower in the SAZ (below 70%) but exceeds 90% in other 

regions. Areas without DCMs are primarily located south of Australia, southwest of Chile, and in the Weddell and Ross Seas 

and surrounding waters. CMIP6 models exhibit varying performance in simulating DCMs. GFDL-ESM4 has DCM 

occurrence frequency close to 100% across the Southern Ocean (Fig. 10), while the CanESM5 model simulates a DCM 335 

frequency similar to observations, but its spatial distribution deviates from observations where we find no DCMs in the 

Antarctic waters. CNRM-ESM2-1 simulates a high occurrence of DCMs in the STZ and AZ, but a low occurrence in the 

SAZ and PFZ (Fig. 9). CMCC-ESM2, IPSL-CM6A-LR, and UKESM1-0-LL models simulate DCMs in the STZ but fail to 

capture them south of the subtropical front (Fig. 9). The ACCESS-ESM1-5, CESM2, MIROC-ES2L, and the three MPI-

ESMs models sporadically simulate DCMs in the STZ, resulting in a low overall DCM frequency (<20% for the Southern 340 

Ocean). NorESM2-LM and NorESM2-MM fail to simulate any DCMs. Among the remaining models, CanESM5, CNRM-

ESM2-1, and GFDL-ESM4 exhibit DCM frequencies closest to observations. However, the simulations from CanESM5 and 

CNRM-ESM2-1 are less realistic for representing DCMs due to their poor chlorophyll performance (Figs. 1 and 2). They 

generally fail to reflect the actual distribution of the phytoplankton biomass in the water column, as chlorophyll serves as a 

key indicator of phytoplankton abundance, despite their accurate DCM frequencies. Consequently, GFDL-ESM4 is 345 

identified as the best-performing model for DCM simulation, given its strong agreement with both DCM frequency and 

chlorophyll distribution. 
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Figure 9: Chlorophyll concentration at deep chlorophyll maximum (DCM) depth during DJF for Copernicus product and 14 
CMIP6 models in the Southern Ocean (>30°S). The colours in the maps indicate the chlorophyll concentration at DCM depth, 350 
while white areas represent regions where no DCM occurred.  
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Figure 10: The percentage of DCM occurrence in the Southern Ocean (SO), the subtropical zone (STZ), the subantarctic zone 
(SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF. All percentages in each region are calculated using area-
weighted averages.  355 

3.3 Particulate organic carbon (POC) 

Observed particulate organic carbon (POC) concentrations in the Southern Ocean are higher in Antarctic coastal waters and 

lower at low latitudes, with elevated concentrations in the Antarctic Circumpolar Current (ACC) regions within the polar 

front zone (Fig. 11). Model simulations diverge markedly from this pattern. CMCC-ESM2, MPI-ESM-1-2-HAM, and MPI-

ESM-1-2-HR generally overestimate POC across most of the basin, except for underestimations in the subtropical zone, 360 

yielding MBEs of 18.3, 13.2, and 58.6 mg/m3 (Fig. 12), respectively, compared to the observed mean of 84.1 mg/m3. The 

overestimated POC concentrations in MPI-ESM-1-2-HAM and MPI-ESM-1-2-HR correspond to their significantly high 

simulated chlorophyll concentrations (Fig. 1). In contrast, ACCESS-ESM1-5, CanESM5, CESM2, CNRM-ESM2-1, GFDL-

ESM4, IPSL-CM6A-LR, and MIROC-ES2L tend to underestimate surface POC across most of the basin. MPI-ESM1-2-LR, 

two NorESMs, and UKESM1-0-LL slightly overestimate POC in the subtropical zone but also overestimate it south of the 365 

subtropical front. ACCESS-ESM1-5, CanESM5, CESM2, and MIROC-ES2L exhibit the largest negative MBEs (exceeding 

50 mg m-3), severely underrepresenting POC. These strong underestimations are primarily attributable to the absence of a 

diatom or silicon module in ACCESS-ESM1-5, CanESM5, and MIROC-ES2L and the lack of detrital organic matter output 

in CESM2 and MIROC-ES2L. Moreover, most models fail to reproduce the elevated POC concentrations observed in the 

polar front zone, which are sustained by nutrient supply by upwelling and cross-shelf transport, suggesting that the simulated 370 

ACC strength in these models may be weaker than observed.  
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Figure 11: Observed surface POC concentrations from Copernicus in DJF and spatial biases of surface POC concentrations for 14 
CMIP6 models (model POC – Copernicus POC) in DJF for the Southern Ocean (>30°S). POC data in CMIP6 models contain 
phytoplankton carbon, detrital organic carbon, and bacterial carbon.  375 

 

Figure 12: The mean bias errors in surface POC concentrations for the Southern Ocean (SO), the subtropical zone (STZ), the 
subantarctic zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF. POC data in CMIP6 models contain 
phytoplankton carbon, detrital organic carbon, and bacterial carbon.  
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Among 14 CMIP6 models, GFDL-ESM4 provides the most realistic simulations of POC, with an MBE of -24.16 mg m-3, an 380 

SSD (0.71) close to 1, the smallest RMSD (0.70), and one of the highest CC values (0.71), making it the best-performing 

model for representing POC (Fig. S13 and Table S6). IPSL-CM6A-LR, UKESM1-0-LL, and CMCC-ESM2 also show 

strong statistical performance across all metrics. CESM2 performs moderately well due to its favourable SSD, RMSD, and 

CC values despite exhibiting a relatively large bias error. In contrast, MPI-ESM1-2-LR performs poorly because of its weak 

statistical metrics, despite having the smallest |MBE|. Other models, including ACCESS-ESM1-5, CanESM5, CNRM-385 

ESM2-1, MIROC-ES2L, MPI-ESM-1-2-HAM, MPI-ESM1-2-HR, and the two NorESMs, are less reliable for simulating 

POC due to their large biases and poor overall statistical performance.  

3.4 Model ranking 

Based on the statistical evaluation of surface chlorophyll, nitrate, silicate, dissolved iron and POC using MBE, SSD, RMSD, 

and CC (Section 3.1 and 3.3), along with DCM occurrence frequency (Section 3.2), we computed a variable-specific and an 390 

overall ranking for each model following the methodology described in Section 2.4. The results are shown in Fig. 13 as a 

heat map. IPSL-CM6A-LR ranks the highest overall, placing within the top two models for all variables. GFDL-ESM4 

follows closely, achieving top two rankings across all variables except silicate and dissolved iron, where it ranks third and 

fourth, respectively. UKESM1-0-LL ranks third, supported by its relatively balanced performance across all metrics. 

CNRM-ESM2-1, which also incorporates the PISCES-v2 biogeochemical model (as in IPSL-CM6A-LR) ranks third, with 395 

performance slightly below that of IPSL-CM6A-LR across most variables. CMCC-ESM2 demonstrates strong performance 

in chlorophyll, DCM and POC (all rank in the top five), but its lower scores for nutrient variables reduce its overall ranking 

to fifth. Models such as MIROC-ES2L, CESM2, NorESM2-LM, and NorESM2-MM show moderate performance, ranking 

from sixth to ninth. CanESM5 and ACCESS-ESM1-5 perform poorly in biogeochemistry due to the absence of key variables 

(e.g. silicate and dissolved iron), ranking tenth and eleventh. The three MPI-ESMs, all coupled with HAMOCC6, occupy the 400 

lowest three positions, with weak performance across all variables. In summary, IPSL-CM6A-LR and GFDL-ESM4 emerge 

as the most robust models for simulating biogeochemical processes in the Southern Ocean, with consistent and reliable 

performance across a suite of key biogeochemical indicators.  
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 405 

Figure 13: Heat-map of performance ranks for 12 CMIP6 models. Columns list the evaluated variables—surface chlorophyll 
(Chl), nitrate (NO3), silicate (Si), dissolved iron (dFe), particulate organic carbon (POC), deep chlorophyll maximum metrics 
(DCM)—and an overall score (OVR). Rows list the models. Box colours and overlaid numbers give the rank for each model–
variable pair (1 = best, higher numbers = poorer performance): reds indicate higher ranks, blues lower ranks, and grey boxes 
indicate variables not available for that model. 410 

4 Discussion 

4.1 Vertical structure of carbon 

Most CMIP6 models perform relatively well in simulating surface chlorophyll in the Southern Ocean, but they exhibit only 

moderate skill in representing surface particulate organic carbon (POC). In contrast, the majority of models struggle to 



21 
 
 

accurately simulate the deep chlorophyll maxima (DCMs), which are crucial for capturing the vertical structure of 415 

chlorophyll distributions. As discussed in Sect 3.2, models such as CanESM5, CNRM-ESM2-1, and GFDL-ESM4 reproduce 

the horizontal frequency patterns of DCMs reasonably well. However, when surface chlorophyll performance is also 

considered, GFDL-ESM4 emerges as the only model that satisfactorily represents both surface chlorophyll concentrations 

and DCM frequency. This finding suggests that most CMIP6 models face challenges in simulating the vertical structure of 

chlorophyll, as well as POC distributions.  420 

To compare the vertical structure of chlorophyll and POC between models and observations, we integrated their 

concentrations over the top 100m of the water column, where the majority of primary production occurs (Henley et al., 2020; 

Arrigo et al., 2008). Unlike the surface chlorophyll and POC, which are generally close to observations, the vertically 

integrated chlorophyll and POC in the upper 100m are significantly underestimated by most CMIP6 models, except 

chlorophyll in MPI-ESM-1-2-HR and POC in CMCC-ESM2, both of which are overestimated (Fig. 14).  425 

 

Figure 14: Mean vertical profiles of chlorophyll during DJF (December–January–February) across the Southern Ocean (SO) and 
its subregions: the Subtropical Zone (STZ), Subantarctic Zone (SAZ), Polar Frontal Zone (PFZ), and Antarctic Zone (AZ), based 
on observations (Copernicus) and 14 CMIP6 models. Solid lines represent chlorophyll profiles in different regions, while dashed 
lines indicate the threshold depth of chlorophyll, defined as the depth at which chlorophyll concentration reaches 10% of the 430 
maximum value. 
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The underestimation of vertically integrated chlorophyll in the top 100 m ranges from −63% for CESM2 to −16% for GFDL-

ESM4 (Fig. 14) and is influenced by both surface chlorophyll concentrations and the vertical structure of the water column. 

For example, ACCESS-ESM1-5, CESM2, NorESM2-LM, and NorESM2-MM exhibit similar vertical chlorophyll profiles, 

characterised by low surface concentrations, almost no deep chlorophyll maxima (DCMs), and shallow chlorophyll threshold 435 

depth (CTD; defined as the depth where chlorophyll falls to 10% of the maximum), resulting in underestimations exceeding 

50% (Fig. 14). In contrast, MPI-ESM-1-2-HAM and MPI-ESM1-2-LR show high surface chlorophyll levels but extremely 

shallow CTD (<50 m), leading to low vertically integrated chlorophyll. A third pattern is found in CanESM5, CMCC-ESM2, 

CNRM-ESM2-1, IPSL-CM6A-LR, MIROC-ES2L, and UKESM1-0-LL, which simulate appropriate threshold depths 

(~150 m) and some occurrence of DCMs, but their low surface chlorophyll leads to insufficient primary production in the 440 

water column. GFDL-ESM4 demonstrates a vertical structure most similar to observations, with a slightly shallower 

threshold depth, resulting in only an 18% underestimation of integrated chlorophyll. While CMIP6 models vary widely in 

their simulation of surface chlorophyll concentrations and generally manage to control these levels, they largely lack the 

capability to accurately simulate the vertical structure of chlorophyll, including both DCMs and CTD.  

The vertical structure of chlorophyll and the formation of DCMs are influenced by various environmental and biological 445 

factors. Observational evidence indicates that roughly half of DCMs are driven by photoacclimation (Cornec et al., 2021), 

reflected by the decline in the carbon to chlorophyll (C:Chl) ratio from values exceeding 100 g:g at the surface to below 50 

at the base of the euphotic zone (Marañón et al., 2021; Boyd et al., 2024), while the other half are deep biomass maxima 

(DBMs) driven by the accumulation of phytoplankton biomass below the surface (Cornec et al., 2021). The poor 

representation of DCMs in ACCESS-ESM1-5 (with its coupled biogeochemical component WOMBAT), the MPI-ESMs 450 

(coupled with HAMOCC6), and the NorESMs (coupled with HAMOCC) is therefore likely due to their use of a fixed C:Chl 

ratio (Oke et al., 2013; Ilyina et al., 2013; Tjiputra et al., 2020), which prevents the simulation of photoacclimation 

processes. Moreover, most models represent chlorophyll as the biomass of living phytoplankton only, excluding pigments 

associated with detrital cells that can still be detected in the real water column (Behrenfeld and Boss, 2006). This structural 

difference contributes to weaker or shallower modelled DCMs compared to observations. In addition, Boyd et al. (2024) 455 

suggested that the formation and persistence of DCMs and DBMs can also result from subsurface recycled iron and the 

ammonium maxima, as well as upward silicate transport that supports diatom production, processes that are often poorly 

represented in models.  

Phytoplankton functional types (PFTs) significantly influence the vertical distribution of chlorophyll. For instance, siliceous 

diatoms, which account for approximately 75% of primary production in the Southern Ocean (Crosta et al., 2005), are not 460 

represented in ACCESS-ESM1-5 and CanESM5. This omission leads to the underestimation of chlorophyll, particularly in 

the Antarctic zone (Fig. 14). CMIP6 models represent no more than three PFTs, typically small phytoplankton, diatoms, and 

diazotrophs. In contrast, observational studies, such as Yingling et al. (2025), identify at least five ecologically significant 

PFTs in the Southern Ocean, including Synechococcus, Picoeukaryotes, nanoplankton, diatoms, and microplankton. This 
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simplification of PFT diversity in CMIP6 models likely contributes to inaccurate chlorophyll estimates and unrealistic 465 

vertical chlorophyll structures.  

The vertical structure of chlorophyll is linked to the mixed layer depth (MLD), which modulates nutrient supply (Durán-

Campos et al., 2019; Zampollo et al., 2023). Our analysis indicates a positive correlation between the CTD and MLD (Fig. 

S14a; R2=0.24, p=0.075), suggesting that deep mixing enables phytoplankton to extend further into the water column while 

maintaining detectable concentrations (Mignot et al., 2014). Conversely, the integrated chlorophyll within the upper 100m 470 

shows a negative correlation with MLD (Fig. S14b; R2=0.23, p=0.082), likely due to reduced light availability and dilution 

effects associated with deeper mixed layers (Behrenfeld and Boss, 2006).  

Furthermore, the occurrence frequency of DCMs exhibits a Gaussian-like relationship with MLD (Fig. S14c; R2=0.42), 

peaking at MLD of 31 m. When the MLD is excessively shallow, nutrient replenishment to the euphotic zone is limited, 

inhibiting phytoplankton growth below the surface, thereby reducing the likelihood of DCM formation (Letelier et al., 2004). 475 

Conversely, when the MLD becomes too deep, light availability at depth decreases to levels insufficient for sustaining 

phytoplankton biomass accumulation, which similarly suppresses DCM development (Mignot et al., 2014). Thus, the 

observed distribution reflects a balance between light limitation from above and nutrient supply from below, a mechanism 

well-documented in earlier studies (Cullen, 1982; Fennel and Boss, 2003).  

4.2 Model components and their performance 480 

The performance of CMIP6 models in simulating key biogeochemical variables such as chlorophyll, nitrate, silicate, 

dissolved iron, POC and DCMs is jointly determined by the complexity of the biogeochemical (BGC) module, the adopted 

parameterisations of key biogeochemical processes, and the resolution of their coupled ocean and atmosphere model.  

Among these, the complexity of the BGC module is the most crucial factor. Key aspects include the representation of 

phytoplankton functional types (PFTs), stoichiometry flexibility, and nutrient uptake and regeneration schemes. Models that 485 

incorporate multiple PFTs, particularly those distinguishing between diatoms and non-diatom phytoplankton, tend to 

outperform models with a single phytoplankton type in simulating chlorophyll and overall biogeochemical patterns (Fig. 

15a; p<0.01). In contrast, the inclusion of diazotrophs has a limited impact on chlorophyll performance, as nitrate is rarely 

limiting in the Southern Ocean (Fig. 15b; p=0.13).  
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 490 

Figure 15: Panels show statistical relationships between model rankings and key biogeochemical descriptors: (a) surface 
chlorophyll ranking vs. inclusion of diatom; (b) surface chlorophyll ranking vs. inclusion of diazotroph; (c) DCM frequency 
ranking vs. use of a variable C:Chl ratio; (d) POC ranking vs. presentation of silica cycling ( presence of an explicit Si pool or 
variable C:Si ratio); (e) silicate ranking vs silicate half-saturation coefficient (KmSi); (f) nitrate ranking vs. nitrate half-saturation 
coefficient (KmNO3); (g) dissolved iron ranking vs. iron half-saturation coefficient (KmFe); (h) dissolved iron ranking vs. iron 495 
chemistry complexity (simple-no ligand, simple ligand, or complex ligand scheme); (i) DCM frequency ranking vs model ability to 
assimilate ammonium for photosynthesis. (a), (b), (c), (i) are performed using T-test, (d) and (h) are performed using ANOVA 
(Analysis of Variance), (e), (f), (g) are performed using linear regression. Tests applied: two-sample t-tests for (a), (b), (c), (i); one-
way ANOVA for (d), (h); linear regression for (e)–(g). Each point (colour/shape) represents a CMIP6 model, and dashed lines 
indicate regression fits where relevant. Corresponding P-values and R² statistics (for regressions) are displayed on each panel.  500 

Cellular plasticity (stoichiometry) plays a vital role in regulating nutrient uptake and the cellular elemental composition 

under variable environmental conditions. Most models employ fixed carbon:nitrogen:phosphorus (C:N:P) ratios consistent 

with the Redfield Ratio, while carbon:iron ratios are generally dynamic. However, carbon:chlorophyll and carbon:silicate 
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ratios vary across models. A dynamic carbon:chlorophyll ratio significantly improves the simulation of DCM (Fig. 15c; 

p<0.01), as mentioned in Section 4.1, while a variable carbon:silicate ratio enhances POC representation (Fig. 15d; p<0.01), 505 

especially given the dominance of diatoms Southern Ocean primary production (Crosta et al., 2005).  

Phytoplankton growth in models is typically limited by light and nutrient availability, often represented using Michaelis-

Menten kinetics (Michaelis and Menten, 1913). However, our analysis did not reveal a clear relationship between model 

performance in simulating surface chlorophyll or DCMs and specific light or nutrient uptake parameters, such as initial PI 

(production-irradiance) slope or half-saturation coefficients for nitrate, silicate, and dissolved iron. This suggests that 510 

chlorophyll distribution is governed by a complex interplay of environmental drivers rather than any single parameter. In 

contrast, nutrient concentrations are more directly influenced by process parameterisation. For example, higher silicate half-

saturation coefficients (e.g. 8 mmol/m3 in PISCES-v2, as used in CNRM-ESM2-1 and IPS-CM6A-LR) spear to improve 

silicate simulations (Fig. 15e; R2=0.52, p=0.01; Nelson et al., 2001). Similarly, nitrate half-saturation coefficients in the 

range of 1–3 mmol m⁻³ tend to yield better agreement with observations (Fig. 15f; R2=0.36, p=0.02; Epply et al., 1969) . For 515 

dissolved iron, no clear correlation was found between model performance and the half-saturation coefficient (Fig. 15g; 

R2=0.01, p=0.81).  The complexity of the iron cycle contributes to variability in simulated dissolved iron performance (Fig. 

15h; p=0.03). Models with more advanced iron chemistry, such as PISCES-v2 (BGC model coupled in CNRM-ESM2-1 and 

IPSL-CM6A-LR), which includes strong and weak ligands, and five iron forms (free Fe(II), Fe(III), Fe(III) bounded to 

strong and weak ligands, and particulate iron) tend to simulate dissolved iron more accurately than those with simple iron 520 

complexation (Tagliabue et al., 2023). In contrast, models with simple iron complexation schemes do not show strong ability 

to simulate better iron concentrations than a simple iron model, which only contains basic iron processes such as scavenging. 

These inconsistencies are likely due to the limited spatial and temporal coverage of iron observations, which hinders robust 

evaluation and may mask the benefits of advanced iron cycling mechanisms. Additionally, the utilisation of ammonium 

appears to promote the formation of DCMs (Fig. 15i; p<0.01), as ammonium-primarily produced through remineralisation-is 525 

more readily and rapidly assimilated by phytoplankton than nitrate. This is due to its lower energy and electron requirements 

for incorporation into cellular biomass. Consequently, substantial ammonium production by heterotrophic bacteria in the 

subsurface can enhance phytoplankton growth and contribute to the development of DCMs (Boyd et al., 2024).  

We also found that the resolution of the ocean component in ESMs can influence the performance of simulated 

biogeochemical variables. For example, MPI-ESM1-2-HR and MPI-ESM1-2-LR, both coupled with the same 530 

biogeochemical model (HAMOCC6), differ significantly in ocean resolution 0.4° vs 1.5°, respectively, and show notable 

differences in biogeochemical performance. The mean surface chlorophyll concentration in austral summer is 2.37 mg m-3 in 

MPI-ESM1-2-HR, compared to 1.35 mg m-3 in MPI-ESM1-2-LR which is closer to the Copernicus chlorophyll dataset. 

These discrepancies may arise from resolution-induced differences in ocean circulation and physical conditions, which 

influence nutrient availability, light penetration, and phytoplankton dynamics. In contrast, variations in atmospheric model 535 

resolution appear to have a limited impact on ocean biogeochemistry. For instance, NorESM2-MM and NorESM2-LM, 
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which use the same ocean biogeochemical model (HAMOCC) but differ in atmospheric resolution (2° vs 1°), exhibit nearly 

identical biogeochemical outcomes such as mean austral summer surface chlorophyll concentrations of 0.56 and 0.55 mg m-

3, respectively. These findings suggest that while higher ocean resolution can improve the realism of physical processes 

affecting biogeochemical simulations, it does not necessarily guarantee better biogeochemical performance. 540 

4.3 Avenues for improvement in biogeochemical representation 

This study provides a comparative assessment of several ocean biogeochemical indicators for 14 CMIP6 ESMs over the 

Southern Ocean. Although some models performed adequately, there remain several key directions for future improvements:  

 Improvements in the underlying physical ocean models are equally critical for advancing BGC performance. Many 

biases originate from deficiencies in simulating stratification, mixed layer depth, and large-scale circulation. In 545 

particular, key processes such as the entrainment of nutrient-enriched shelf waters along the Patagonian Shelf and 

the nutrient supply from icebergs and glacial melt along East Antarctica are poorly resolved in coarse-resolution 

models. Increasing model resolution, refining submesoscale and vertical mixing parameterisations, and enhancing 

the coupling with sea-ice dynamics and meltwater fluxes will be essential to better capture nutrient transport 

pathways and the resulting spatial distribution of phytoplankton. 550 

 The representation of key biogeochemical processes in most BGC models remains simplified or parameterised 

based on limited observations. For instance, differences in the phytoplankton functional types (PFTs), elemental 

composition (fixed or variable stoichiometry), and nutrient uptake parameterisation contribute to model divergence. 

Future models should incorporate a more complex marine food web, and more dynamic parameterisations informed 

by field and laboratory experiments, especially under Southern Ocean specific conditions.  555 

 As the key factor controlling the Southern Ocean primary production, iron cycles and their representations remain 

poor in most models, compared to limited iron sampled data. Improvements in the simulation of iron sources (e.g., 

dust deposition, sediment resuspension), bioavailability (i.e., more complex iron chemistry module (Tagliabue et 

al., 2023), such as including iron-binding ligands), and biological recycling are essential to help reduce the bias in 

simulated chlorophyll.  560 

 Most models lack a good representation of the vertical structure of chlorophyll and biomass. For example, some 

models exhibit discrepancies in simulating mixed layer depth and other physical properties, which in turn affects 

nutrient supply. There is also an oversimplified remineralisation by heterotrophic bacteria, and a lack of diversity of 

PFTs. Future efforts could expand the model structure to capture these ecological dynamics, which are particularly 

important in determining vertical profiles and export efficiency for biomass.  565 

 Observational constraints remain limited, especially for subsurface variables such as DCMs, dissolved iron, and 

POC. Future work should prioritise the integration of additional in situ datasets to validate and improve model 
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parameterisations. Ensemble data assimilation or machine learning approaches could also be explored for model 

tuning. 

5 Conclusion 570 

This study evaluated the performance of key biogeochemical variables, including austral summer surface chlorophyll and 

deep chlorophyll maxima (DCMs), nitrate, silicate, dissolved iron, and particulate organic carbon (POC) across 14 CMIP6 

models in the Southern Ocean (south of 30°S). The results reveal substantial variability in model skill. While some models 

demonstrated strong performance, others showed significant over- or underestimations. Among them, GFDL-ESM4 was the 

most effective in reproducing surface chlorophyll and POC and DCM features, while IPSL-CM6A-LR performed best in 575 

simulating nutrient distribution, such as nitrate, silicate, and dissolved iron. Based on aggregated performance across all 

variables, the top five models for simulating Southern Ocean biogeochemistry are IPSL-CM6A-LR, GFDL-ESM4, CNRM-

ESM2-1, UKESM1-0-LL, and CMCC-ESM2. Our analysis highlights common limitations across CMIP6 models: the 

underrepresentation of vertical biogeochemical structures, such as the DCM distributions, and the inadequate simulation of 

physical nutrient transport processes, including upwelling and terrestrial nutrient inputs in productive shelf regions such as 580 

the Tasman Sea and the Patagonian Shelf. Additionally, spatial mismatches and persistent biases, particularly for dissolved 

iron and POC, underscore the need for targeted model improvements. Overall, this study not only provides a comprehensive 

evaluation of model performance for key biogeochemical variables but also offers insights into areas requiring refinement. 

These insights can guide future model development and support more informed model selection. Enhancing the 

representation of biogeochemical processes in Earth system models is essential for improving projections of the Southern 585 

Ocean's role in the global carbon and nutrient cycles under ongoing climate change.  
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historical.  

Data availability 590 

Raw CMIP6 used in this study are available on the Earth System Grid Federation (ESGF) Nodes for the CMIP6 Archive at 

https://esgf.github.io/nodes.html (Cinquini et al., 2014). Copernicus Global Ocean 3D Chlorophyll-a Concentration, 

Particulate Backscattering coefficient and Particulate Organic Carbon Product can be accessed at 

https://doi.org/10.48670/moi-00046 (Sauzède et al., 2016). The Aqua-MODIS chlorophyll concentration in the Southern 

Ocean by Johnson et al. (2013) can be accessed at https://portal.aodn.org.au/. The World Ocean Atlas (WOA) 2018 data can 595 
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be accessed at https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/ (Garcia et al., 2019). The GEOTRACES 

IDP2021v2 product can be accessed at https://www.geotraces.org/geotraces-intermediate-data-product-2021/. And the global 

compilation dataset of dissolved iron can be accessed at https://www.bodc.ac.uk/geotraces/data/historical/ (Tagliabue et al., 

2012).  
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