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Abstract. The Southern Ocean plays a vital role in global biogeochemical cycles, yet the qualitycomprehensive assessments 10 

of its representation in Earth System Models (ESMs) remains unquantifiedare still limited. This study evaluates the 

performance of 14 Coupled Model Intercomparison Project Phase 6 (CMIP6) models in simulating key biogeochemical 

variables south of 30°S, including austral-summer surface chlorophyll, deep chlorophyll maxima (DCMs), nitrate, silicate, 

dissolved iron, and yearly particulate organic carbon (POC). Model output for the period 2000–-2014 is compared to multiple 

observational datasets, such as a Copernicus product for estimated chlorophyll and POC profiles, the World Ocean Atlas 15 

(WOA) for nitrate and silicate, and GEOTRACES products for dissolved iron. Model performance is assessed using statistical 

metrics including mean bias error (MBE), standardised standard deviation (SSD), root mean squared deviation (RMSD), and 

correlation coefficient (CC). The results reveal substantial inter-model variability, with individual models exhibiting strengths 

in simulating different variables. GFDL-ESM4 best reproduces surface chlorophyll and POC and DCM patterns, and IPSL-

CM6A-LR performs wellbest for all nutrients, MIROC-ES2L forincluding nitrate, silicate, and dissolved iron, and CMCC-20 

ESM2 for POC.. Based on composite rankings, the top-performing models are IPSL-CM6A-LR, GFDL-ESM4, 

CMCCCNRM-ESM2-1, UKESM1-0-LL, and CNRMCMCC-ESM2-1. This work underscores the importance of multi-model 

evaluation for identifying model strengths and guiding future improvements in biogeochemical (BGC) model development, 

particularly in the context of understanding and projecting Southern Ocean biogeochemistry under climate change.  

1 Introduction 25 

Climate change is a critical global challenge, driving major shifts in marine conditions and ecosystems. The Southern Ocean, 

covering 30% of the global ocean, plays a crucial role in the oceanic carbon and nutrient cycles, absorbing over 40% of 

anthropogenic CO2 and 70% of human-induced warming (Gruber et al., 2019; Petrou et al., 2016; Xue et al., 2024). The 

Southern Ocean is characterised by complex interactions among physical circulation, biogeochemistry, and biological 

productivity, making it a challenge to model (Henley et al., 2020; Morley et al., 2020). The powerful eastward-moving 30 
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Antarctic Circumpolar Current (ACC), one of the Earth’s strongest currents, connects ocean basins and regulates global climate 

and ocean circulation, supports diverse marine ecosystems, and distributes nutrients (Böning et al., 2008; Rintoul et al., 2001; 

Lopes et al., 2011; Song, 2020). The upwelling of deep, nutrient-rich waters, driven by ACC, supports phytoplankton growth, 

influencing global carbon sequestration and ecosystem dynamics (Venables and Moore, 2010; Morrison et al., 2015; Hunt et 

al., 2021; Pollard et al., 2006). This complex region of both physical and biological processes is important due to its significant 35 

impact on global climate regulation, carbon sequestration, and the health of marine ecosystems. 

Phytoplankton, particularly silicifying diatoms, are a key component of the Southern Ocean food web and the global carbon 

cycle, playing a crucial role in carbon sequestration and nutrient cycling (Deppeler and Davidson, 2017; Baldry et al., 2020; 

Petrou et al., 2016; Nissen and Vogt, 2021; Timmermans et al., 2004; Hoffmann et al., 2008). Their biomass and primary 

production are often assessed through chlorophyll concentrations, which serve as an essential indicator in oceanic carbon 40 

fixation and ecosystem productivity (Carranza and Gille, 2015; Johnson et al., 2013). However, despite the abundance of 

macronutrients such as nitrate and silicate, phytoplankton growth is frequently constrained by light limitation and iron 

deficiency, both of which regulate their distribution and productivity (Boyd and Ellwood, 2010; Boyd, 2002). In response to 

these physiochemical conditions, deep chlorophyll maxima (DCMs) have been observed in nutrient-stratified waters during 

austral summer in the Southern Ocean, indicating robust phytoplankton production in the subsurface layer (Boyd et al., 2024; 45 

Cornec et al., 2021; Cullen, 1982; Cullen, 2015; Hopkinson and Barbeau, 2008; Li et al., 2012). These DCMs contribute 

significantly to the regional carbon cycle, for example, approximately 40% of primary production in the Southern Ocean occurs 

below the mixed layer (Vives et al., 2024), and support marine food webs by sustaining primary production below the surface, 

where light and nutrient conditions are more favourable, particularly the supply of iron and silicon, for certain phytoplankton 

communities (Signorini et al., 2015; Cornec et al., 2021; Sauzède et al., 2018).  50 

Ocean biogeochemical (BGC) modules, are an important component of coupled Earth system models (ESMs), and are 

indispensable for understanding the complicated physical and biogeochemical processes in the ocean (Follows and Dutkiewicz, 

2011; Séférian et al., 2020). Depending on their complexity, these models simulate the cycles of key elements such as carbon, 

oxygen, nitrogen, phosphorus, silicate, and iron, and organisms including phytoplankton, zooplankton and bacteria, which are 

vital for marine ecosystems and global climate regulation (Dunne et al., 2020; Aumont et al., 2015; Pak et al., 2021; Ilyina et 55 

al., 2013). BGC models enable researchers to investigate how changes in environmental conditions, such as temperature, light, 

and nutrient availability, impact marine biogeochemistry and ecosystem dynamics (Kwiatkowski et al., 2020). They are 

particularly valuable for studying regions like the Southern Ocean, where observational data are limited, and the interactions 

between physical and biogeochemical processes are highly complex (Tagliabue et al., 2017; Lauderdale et al., 2017). Despite 

their significance, BGC models face considerable challenges, including the need for precise parameterisation of key biological 60 

processes, accurate representation of small-scale processes, and effective integration ofconstrained by diverse data sources 

(Ackermann et al., 2024; Beadling et al., 2019). 
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The Coupled Model Intercomparison Project Phase 6 (CMIP6) represents the latest advancement in climate modelling, 

providing a standardised framework for evaluating ESMs across various simulations under different climate scenarios (Eyring 

et al., 2016; O'Neill et al., 2016; Meehl et al., 2020)(Eyring et al., 2016; O'neill et al., 2016; Meehl et al., 2020). Compared to 65 

previous phases, CMIP6 models feature higher spatial resolution, improved physical processes, and enhanced biogeochemical 

components, including expanded phytoplankton functional types, refined biogeochemical cycle representations and optimised 

parameterisation (Séférian et al., 2020; Kwiatkowski et al., 2020). However, significant discrepancies persist in 

biogeochemical performance due to variations in BGC model structures, parameterisation, and ocean physics (Séférian et al., 

2020). Evaluating CMIP6 models highlights these differences, offering insights for future model development and refinement 70 

(Kwiatkowski et al., 2020; Séférian et al., 2020; Hauck et al., 2015).  

While some studies have assessed the performance of CMIP6 models in simulating biogeochemical variables globally and 

regionally, a comprehensive analysis of chlorophyll, nutrient distribution, and DCM characteristics in the Southern Ocean 

remains unexplored. Marshal et al. (2024) evaluated chlorophyll, phytoplankton, nitrate and dissolved oxygen across 13 

CMIP6 models in the South China Sea, ranking them using statistical metrics to identify the five best-performing models. 75 

Fisher et al. (2025) synthesised CMIP6 outputs to examine climate-driven shifts in Southern Ocean primary production, 

projecting a 30% increase in Antarctic zone productivity under a high-emission (SSP5-8.5) scenario, albeit with regional 

variations. Séférian et al. (2020) compared CMIP5 and CMIP6 models, demonstrating improved CMIP6 biogeochemical 

representations, including chlorophyll, dissolved oxygen, silicate and nitrate, due to more comprehensive biogeochemical 

cycles and Earth system interactions. Rohr et al. (2023) analysed 11 CMIP6 models and found that zooplankton grazing 80 

parameterisation introduced uncertainty in marine carbon cycle projections. These studies underscore the need for further 

evaluation of the CMIP6 models to assess the impact of biogeochemical processes and parameterisation on model performance. 

In this paper, we evaluate biogeochemical variables-, including chlorophyll, silicate, nitrate and, dissolved iron, and particulate 

organic carbon (POC) across 1214 CMIP6 models and assess their performance in representing DCMs in the Southern Ocean. 

Sect.Section 2 details the observed and simulated data and the statistical analysis methods. Sect.Section 3 presents an inter-85 

model evaluation of each biogeochemical variable. Sect.Section 4 discusses the ocean vertical carbon structure, model 

performance, as well asand avenues for improvement. Sect.Section 5 provides a summary of our findings.  

2 Data and methods 

2.1 Study region 

This study focuses on the open waters of the Southern Ocean (south of 30°S). We divide the Southern Ocean into four zones: 90 

the subtropical zone (STZ), subantarctic zone (SAZ), polar front zone (PFZ) and Antarctic zone (AZ) (; Fig. 1). These zones 

are separated by three key fronts: the subtropical front, subantarctic front and polar front, which are defined by distinct physical 
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and biogeochemical properties (Orsi et al., 1995). We compare the CMIP6 model outputs of chlorophyll, nitrate, silicate and, 

dissolved iron, and POC across these zones and across the entire Southern Ocean.   

2.2 CMIP6 datasets and availability 95 

We obtained outputs from 14 CMIP6 models from the Earth System Grid Federation (ESGF) Nodes (Cinquini et al., 2014). 

Specifically, we collected data from the historical experiment for model evaluation, using the ensemble member r1i1p1f1 for 

most models, while r1i1p1f2 was used for CNRM-ESM2-1, MIROC-ES2L, and UKESM1-0-LL. Dissolved iron and carbon 

data of ACCESS-ESM1-5 were collected from the National Computational Infrastructure (NCI).. This includes monthly data 

for chlorophyll, nitrate, silicate, and dissolved iron, as well as yearly data for particulate organic carbon (POC), which 100 

comprises phytoplankton, zooplankton, detritus, and bacteria (see Sect.Section 2.4 for details).), and NPP. These data were 

also used to compare chlorophyll and DCM distribution. The selected CMIP6 models, their properties and available variables 

are detailed in Table 1. To ensure consistency, we regridded all outputs to a 1°×1° common horizontal resolution using bilinear 

interpolation in Climate Data Operators (CDO) software (Schulzweida, 2023), covering the time range from January 2000 to 

December 2014.  105 

Table 1. List of 14 CMIP6 models utilised, detailing the ESM name, coupled ocean biogeochemical model (OBGCM) name, averaged 
horizontal resolution and variables with available data. All variable abbreviations and their long names: chl (mass concentration of 
phytoplankton expressed as chlorophyll in sea waterseawater), no3 (dissolved nitrate concentration), si (total dissolved inorganic 
silicon concentration), dfe (dissolved iron concentration), phyc (phytoplankton carbon concentration), zooc (zooplankton carbon 
concentration), detoc (mole concentration of organic detritus expressed as carbon in seawater), bacc (bacterial carbon 110 
concentration), and intpp (integrated net primary production).  

ESM OBGCM Variable ESM and OBGCM Reference 

ACCESS-ESM1-5 WOMBAT chl, no3, dfe, phyc, zooc, detoc, intpp Ziehn et al. (2020); Oke et al. (2013) 

CanESM5 CMOC chl, no3, phyc, zooc, detoc Swart et al. (2019); Zahariev et al. (2007) 

CESM2 MARBL chl, no3, si, dfe, phyc, zoocintpp Danabasoglu et al. (2020); Long et al. (2021) 

CMCC-ESM2 BFM v5.2 
chl, no3, si, dfe, phyc, zooc, detoc, bacc, 

intpp 
Lovato et al. (2022); Vichi et al. (2015) 

CNRM-ESM2-1 PISCES-v2-gas chl, no3, si, dfe, phyc, zooc, detoc, intpp Séférian et al. (2019); (Skyllas,  (2018) 

GFDL-ESM4 COLBALTv2 
chl, no3, si, dfe, phyc, zooc, detoc, bacc, 

intpp 
Dunne et al. (2020); Stock et al. (2020) 

IPSL-CM6A-LR PISCES-v2 chl, no3, si, dfe, phyc, zooc, detoc, intpp Boucher et al. (2020); Aumont et al. (2015) 

MIROC-ES2L OECO-v2 chl, no3, dfe, phyc, zoocintpp Hajima et al. (2020) 

MPI-ESM-1-2-HAM HAMOCC6 chl, no3, si, dfe, phyc, zooc, detoc, intpp Neubauer et al. (2019); Ilyina et al. (2013) 

MPI-ESM1-2-HR HAMOCC6 chl, no3, si, dfe, phyc, zooc, detoc, intpp Müller et al. (2018); Ilyina et al. (2013) 

MPI-ESM1-2-LR HAMOCC6 chl, no3, si, dfe, phyc, zooc, detoc, intpp Mauritsen et al. (2019); Ilyina et al. (2013) 

NorESM2-LM HAMOCC chl, no3, si, dfe, phyc, zooc, detoc, intpp Tjiputra et al. (2020) 
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NorESM2-MM HAMOCC chl, no3, si, dfe, phyc, zooc, detoc, intpp Tjiputra et al. (2020) 

UKESM1-0-LL MEDUSA-2.0 chl, no3, si, dfe, phyc, zooc, detoc, intpp Sellar et al. (2019); (Yool et al., . (2013) 

 

2.3 Observed datasets and availability  

Observed chlorophyll data was obtained from the Copernicus Global Ocean 3D Chlorophyll-a Concentration, Particulate 

Backscattering coefficient and Particulate Organic Carbon (Sauzède et al., 2016), which estimates chlorophyll and POC using 115 

a neural network method. This reprocessed dataset has a 0.25°×0.25° horizontal resolution, covering 36 vertical levels from 

the surface to 1000 m depth. Observed nitrate and silicate data were sourced from the World Ocean Atlas (WOA) 2018 (Garcia 

et al., 2019), representing climatological averages from 1955 to 2017. Observed dissolved iron data were obtained from 

GEOTRACES (Tagliabue et al., 2012), which compiles bottle-sampled dissolved iron measurements from 2001 to 2014. 

Observed surface chlorophyll and POC data, as well as vertical chlorophyll profiles, were obtained from the Copernicus Global 120 

Ocean 3D Chlorophyll-a Concentration, Particulate Backscattering coefficient and Particulate Organic Carbon product 

(hereafter referred to as the Copernicus product; Sauzède et al., 2016). The original POC fields were estimated using a neural 

network approach (machine-learning method) known as SOCA2016 (Satellite Ocean Colour merged with Argo data; 2016 

version), which integrates satellite-derived surface estimates of the particulate backscattering coefficient (bbp) and chlorophyll 

a concentration with depth-resolved physical properties derived from BGC-Argo floats (Sauzède et al., 2016). In this study, 125 

we used the updated SOCA2024 product, which merges bbp and chlorophyll-a concentrations derived from both satellite and 

BGC-Argo floats. This product has been validated against a global independent pigment dataset obtained from High 

Performance Liquid Chromatography (HPLC) and BGC-Argo floats (Sauzède et al., 2024). The reprocessed dataset provides 

a spatial resolution of 0.25°×0.25° and 36 vertical levels from the surface to 1000 m depth, with a bathymetric mask applied 

to exclude grid cells shallower than 1000 m to avoid potential coastal artifacts (Sauzède et al., 2024). This masking, however, 130 

removes several productive shelf regions such as around New Zealand and the Patagonian Shelf. The primary advantage of 

this dataset lies in its integration of satellite and BGC-Argo data, ensuring consistent vertical and horizontal chlorophyll and 

POC distributions. To verify the reliability of the Copernicus dataset, we compared multiple Copernicus versions and satellite-

derived products using different algorithms from Johnson et al. (2013). Chlorophyll estimated with SOCA2024 showed the 

strongest agreement with BGC-Argo data (R2=0.89, slope=1.04; Table S1), outperforming other approaches. When validated 135 

against HPLC data, SOCA2024 also performed well (R2=0.53, slope=0.70) globally, similar to the MODIS-Aqua chlorophyll 

recalculated using the new algorithm of Johnson et al. (2013), which remains one of the best-performing satellite products for 

the Southern Ocean (Table S1). The SOCA2024 POC dataset also proved robust when compared with BGC-Argo bbp data in 

the Southern Ocean (R2=0.93, slope=0.89; Table S1). Moreover, a direct comparison between surface chlorophyll from 

Copernicus product and MODIS (Johnson et al., 2013) reveals a strong correlation (R2=0.69, slope=0.80; Fig. S1), confirming 140 

the reliability of the Copernicus dataset. Accordingly, we use the Copernicus chlorophyll and POC products for all subsequent 
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analyses of surface chlorophyll, POC, and DCMs to maintain consistency across different observational comparisons. 

Additionally, we provide model-data comparison using Aqua-MODIS chlorophyll derived with the Johnson et al. (2013) 

algorithm in the supplement for cross-validation.  

Observed nitrate and silicate data were sourced from the World Ocean Atlas (WOA) 2018 (Garcia et al., 2019), representing 145 

climatological averages from 1955 to 2017. Observed dissolved iron data were obtained from GEOTRACES IDP2021v2 and 

a global compilation of dissolved iron measurements (Tagliabue et al., 2012), which compiles bottle-sampled dissolved iron 

measurements from 2001 to 2014.  

Existing NPP estimating algorithms exhibit large discrepancies in the Southern Ocean, with values ranging from approximately 

400 to 1400 mg C m-2 d-1 in December (Silsbe et al., 2016). The scarcity of in situ NPP measurements makes it difficult to 150 

constrain or validate these NPP algorithms, introducing substantial uncertainty into any evaluation. Thus, this study does not 

include NPP in the model performance ranking to avoid the influence of uncertain reference datasets. Instead, we provide 

model-data comparison figures in the Supplement (Figs. S2-5) for readers interested in model NPP performance, using NPP 

products derived from the Standard VGPM (Behrenfeld and Falkowski, 1997) and CAFE (Silsbe et al., 2016) algorithms 

available from the Ocean Productivity site (https://orca.science.oregonstate.edu/index.php, accessed on 3 October 2025). Both 155 

algorithms estimate NPP using MODIS satellite inputs, including chlorophyll a concentration, sea surface temperature, and 

photosynthetically available radiation, among other parameters.  

2.4 Data analysis 

To evaluate the performance of CMIP6 models in simulating biogeochemical variables, we compared observations with model 

outputs for chlorophyll, nitrate, silicate and dissolved iron (Sect.Section 3.1), assessed DCM (peak of chlorophyll concentration 160 

in the subsurface) representation and characteristics (Sect.Section 3.2), analysed) and particulate organic carbon (Sect.Section 

3.3),) and presented model rankings by variable (Sect.Section 3.4).   

Since Southern Ocean DCMs predominantly occur during austral summer (Cornec et al., 2021; Prakash and Bhaskar, 2024), 

all datasets (except observed dissolved iron and POC) were restricted to December, January and February (DJF). We calculated 

temporal averages for CMIP6-simulated variables and observedCopernicus chlorophyll and POC profiles over DJF from 2000 165 

to 2014. Similarly, we computed DJF-averaged nitrate and silicate from observations. Given that dissolved iron observations 

are derived from bottle-sampled data rather than gridded products, we selected observations from depths less than 10 m to 

represent surface iron concentrations and interpolated CMIP6 outputs to these observation sites. 

The observed dissolved iron data are distributed sporadically because of the limited source of bottled samples and towed fish 

samples. Tagliabue et al. (2012) compiled the bottled samples from voyages, and GEOTRACES IDP2021v2 have multiple 170 

sources of dissolved iron data, including bottled samples and towed fish samples. To match the surface dissolved iron south 

of 30°S in the model dataset, here we selected the observed dissolved iron data points south of 30°S and the depths no deeper 

than 30 m to represent the surface. In this case, there are only 834 and 910 data points in these spatial ranges, in GEOTRACES 
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IDP2021v2 and Tagliabue et al. (2012), respectively. We merged these two datasets by removing the data points with the same 

longitude, latitude, depth and dissolved iron concentration. There are finally 1693 unduplicated data points. To mitigate the 175 

impact of uneven spatial sampling density on the overall assessment, we gridded all observational data points onto a 1° × 1° 

longitude–latitude mesh grid and aggregated multiple observations within the same grid cell (using the median) to obtain a 

representative value for subsequent analyses. Finally, there are 615 grid points with available dissolved iron concentrations, 

accounting for 4.33% of the total ocean grid points. In this research, we only compared the surface dissolved iron 

concentrations where the observed dissolved iron concentrations are available.  180 

In cases where CMIP6 models do not provide a specific variable representing total particulate organic carbon (POC), we 

manually derive it by summing different species of POC. The simulated POC concentration in this paper is calculated as the 

sum of phytoplankton carbon, zooplankton carbon, detrital organic carbon (absent in CESM2 and unavailable in MIROC-

ES2L), and bacterial carbon (optional; available only in CMCC-ESM2 and GFDL-ESM4). Because many CMIP6 models lack 

monthly POC-related data, we utilise yearly data instead, as carbon export predominantly occurs during summer months (Boyd 185 

et al., 2019; Buesseler et al., 2007; Blain et al., 2007).available only in CMCC-ESM2 and GFDL-ESM4).  

To quantify model performance, we calculated spatial variations, mean bias error (MBE), standardised standard deviation 

(SSD), correlation coefficient (CC), and root mean squared deviation (RMSD) for chlorophyll, nitrate, silicate and dissolved 

iron. We visualised spatial variations using Southern Ocean maps, MBE in bar charts, SSD, CC and RMSD using Taylor 

Diagram (TD) to illustrate the agreement between models and observations (Taylor, 2001). The TDs and their related statistics-190 

SSD, CC, and RMSD-are provided in Supplementary Materials. The equations for MBE, SSD, CC, and RMSD are presented 

below:  

𝑀𝐵𝐸 =
ଵ

௡
∑(𝑦௜ − 𝑥௜) ,           (1) 

𝑆𝑆𝐷 =
ට
భ

೙
∑(௬೔ି௬ത)

మ

ට
భ

೙
∑(௫೔ି௫̅)

మ
,           (2) 

𝐶𝐶 =
∑(௬೔ି௬ത)(௫೔ି௫̅)

ඥ∑(௬೔ି௬ത)
మ ∑(௫೔ି௫̅)

మ
 ,           (3) 195 

𝑅𝑀𝑆𝐷 = ට
ଵ

௡
∑(𝑦௜ − 𝑥௜)

ଶ ,           (4) 

where 𝑥௜ and 𝑦௜  represent the observed and simulated values, respectively. 𝑥̅ and 𝑦ത denote the mean values of observations 

and simulations. 𝑛 is the number of grid points in the datasets.  

DCMs are identified as the vertical peak of chlorophyll concentration, where the chlorophyll value exceeds 1.1 times the 

surface chlorophyll concentration. The 1.1 threshold is applied to account for potential measurement errors in the observation. 200 
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To evaluate DCM characteristics, we calculated peak chlorophyll concentration at the identified DCM depth and frequency of 

DCM occurrence, which is defined as the number of grid pointsarea proportion where DCMs are detected.  

The assessment of CMIP6 model performance relies on the ranking of four statistical metrics, containing MBE, (the lower 

|MBE| has the higher ranking), SSD, (the closer to 1 has the higher ranking), RMSD, (the lower has the higher ranking), and 

CC (the higher has the higher ranking) for chlorophyll, nitrate, silicate, dissolved iron, and POC. For the evaluation of DCMs, 205 

both the chlorophyll rank and DCM occurrence frequency are considered. The overall performance of each CMIP6 model is 

represented by the average rank across these six variables (Sect. 3.4).(the closer to the reference, the higher ranking) are 

considered. The ranking score for each variable is calculated by averaging the rankings of its relevant statistical metrics. That 

means the model with a lower ranking score has a higher rank. The overall ranking score of each CMIP6 model is calculated 

by averaging the ranking score of all variables, where the model with a lower ranking score has a higher overall rank. We will 210 

present the ranking of each variable and the overall ranking in Section 3.4. 

All data processing and analysis were performed using MATLAB R2024a and its numerical toolboxes. Maps were generated 

using the M_Map toolbox (Pawlowicz, 2020). Taylor diagrams in supplementary materials were generated using MATLAB 

functions from Haroon Haider (https://www.youtube.com/@EngrHaroonHaider, last accessed on: 22 April 2025).  

3 Results 215 

3.1 Southern Ocean biogeochemistry  

We evaluate the performance of 14 CMIP6 models in simulating Southern Ocean biogeochemistry by comparing their outputs 

for chlorophyll, nitrate, silicate, and dissolved iron with observational data. The surface chlorophyll concentration in the 

Southern Ocean exhibits a general increase from north to south, reaching its highest concentrations in the coastal regions of 

Antarctica (Fig. 1), with some exceptions associated with island wake effects related to continental iron input (Blain et al., 220 

2007). In contrast,Another main exception is the exceptionally high chlorophyll simulations exhibit significant discrepancies 

acrosson the Patagonian Shelf off southeastern South America (Fig. S6), driven by the convergence of the nutrient-rich 

Malvinas Current with the warm Brazil Current, in addition to shelf upwelling and riverine inputs (Piola et al., 2024; Ferreira 

et al., 2009; Rivas et al., 2006; Rijkenberg et al., 2014). However, none of the CMIP6 models reproduce this feature, likely 

because their coarse 1° resolution fails to resolve critical shelf-front dynamics.  225 
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Figure 1: Observed surface chlorophyll concentrations from Copernicus in DJF and spatial biases of surface chlorophyll 
concentrations for 14 CMIP6 models (model chlorophyll – Copernicus chlorophyll) in DJF for the Southern Ocean (>30°S). Black 
dashed lines in the maps denote the subtropical front, the subantarctic front, and the polar front, from north to south. Grey areas 
denote regions where no data are available.  230 

.Most models underestimate the surface chlorophyll south of the subtropical front, except for the three MPI-ESMs, and many 

models underestimate the surface chlorophyll in the subtropical zone (Fig. 1). This discrepancy potentially reflects 

methodological differences: models include only chlorophyll in live phytoplankton, whereas satellites detect chlorophyll in 

both living and senescent cells. A slight overestimation in the Copernicus chlorophyll product (slope=1.04; Table S1; Sauzède 

et al., 2024) may also contribute. The three MPI-ESM modelsESMs, MPI-ESM-1-2-HAM, MPI-ESM1-2-HR, and MPI-235 

ESM1-2-LR, tend to substantially overestimate chlorophyll concentrations throughout the Southern Ocean, with MBEs of 

1.03, 1.79 and 0, 1.8 and 0.8.76 mg/m3 (Fig. 2), respectively, compared to a mean chlorophyll concentration of only 0.659 

mg/m3 m-3 in observations. Conversely, the CanESM5, CMCC-ESM2, CNRM-ESM2-1, and IPSL-CM6A-LR models 

underestimate chlorophyll concentrations (Figs. 1 and 2). The ACCESS-ESM1-5, CESM2, MIROC-ES2L, NorESM2-LM, 

NorESM2-MM, and UKESM1-0-LL models exhibit small and negative MBEs for the entire Southern Ocean but showedshow 240 

opposing biases across regions. For instance, they overestimate chlorophyll concentrations north of the subtropical front and 

underestimatedunderestimate concentrations to the south (Fig. 2). The GFDL-ESM4 model provides the most accuraterealistic 

simulation of chlorophyll concentration north of the polar front but underestimates concentrations south of the polar front (Fig. 

1). 
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Figure 2: The mean bias errors in surface chlorophyll concentrations for the Southern Ocean (SO), the subtropical zone (STZ), the 
subantarctic zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF. All MBEs and means in each region are 
calculated using area-weighted averages.  

Figure 1: Observed surface chlorophyll concentrations from Copernicus in DJF and spatial biases of surface chlorophyll 250 
concentrations for 14 CMIP6 models (model chlorophyll – Copernicus chlorophyll) in DJF for the Southern Ocean (>30°S). Black 
dashed lines in the maps denote the subtropical front, the subantarctic front, and the polar front, from north to south. Grey areas 
denote regions where no data are available.  



 

11 
 
 

When considering other metrics such as standardised standard deviation (SSD), root mean-squared deviation (RMSD), and 

correlation coefficient (CC), we find that among the models, GFDL-ESM4, IPSL-CM6A-LR, and CMCC-ESM2 have the 255 

lowest RMSD, small bias errors, and CC values above 0.6, indicating that they were the best-performing models for simulating 

the distribution of chlorophyll across the Southern Ocean (Fig. S1S7 and Table S1S2). In contrast, the three MPI-ESMs are 

less reliable due to their overestimation of chlorophyll concentration. Additionally, the ACCESS-ESM1-5, CanESM5, and 

NorESMs models exhibit poor performance, such as their low CC (<0.2), despite moderate bias errors (Fig. S1S7 and Table 

S1S2). The remaining models, including CESM2, CNRM-ESM2-1, MIROC-ES2L, and UKESM1-0-LL, exhibit moderate 260 

performance in simulating chlorophyll.  

 

Figure 2: The mean bias errors in surface chlorophyll concentrations for the Southern Ocean (SO), the subtropical zone (STZ), the 
subantarctic zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF. All MBEs and means in each region are 
calculated using area-weighted averages.  265 

Nitrate, a key macronutrient that regulates phytoplankton growth and primary production, is abundant in the Southern Ocean, 

particularly south of 50°S (Fig. 3). Three MPI-ESMs (MPI-ESM-1-2-HAM, MPI-ESM1-2-HR, and MPI-ESM1-2-LR) 

underestimate nitrate concentrations, with MBEs of -4.772, -5.875, and -3.549 mmol/m3 (Fig. 4), respectively, compared to 

the observed mean surface nitrate concentration of 11.992 mmol/m3 from WOA. This underestimation may be linked to the 

high simulated chlorophyll levels, which could lead to excessive nutrient consumption. In addition, the CESM2, CMCC-270 

ESM2, and GFDL-ESM4 models also underestimate nitrate concentrations (Fig. 3). In contrast, the ACCESS-ESM1-5, 

CanESM5, CNRM-ESM2-1, MIROC-ES2L, NorESM2-LM, NorESM2-MM, and UKESM1-0-LL models overestimate 

nitrate concentration, although the two NorESMs underestimate it in the Antarctic zone. Among all models, IPSL-CM6A-LR 

has the best performance, with the lowest MBE of 0.29 mmol/m3 and a relative error of just 2.43% (Fig. 4).  
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 275 

Figure 3: Observed surface nitrate concentrations from WOA in DJF and spatial biases of surface nitrate concentrations for 14 
CMIP6 models (model nitrate – WOA nitrate) in DJF for the Southern Ocean (>30°S).  

 

Figure 4: The mean bias errors in surface nitrate concentrations for the Southern Ocean (SO), the subtropical zone (STZ), the 
subantarctic zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF.  280 
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Among the 14 CMIP6 models, IPSL-CM6A-LR, GFDL-ESM4, and CNRM-ESM2-1 produce the most accurate simulations 

of surface nitrate concentration for the Southern Ocean. They exhibit the lowest RMSD (<0.3), minimal MBE (absolute MBE 

< 4 mmol/m3), high CC (>0.95), and SSDs close to 1, indicating strong agreement with observations (Fig. S2S8 and Table 

S2S3). Conversely, the three MPI-ESMs models produce less accurate simulations of surface nitrate concentration for the 

Southern Ocean due to their large bias errors and significant deviations (represented by SSD, RMSD, and CC on a Taylor 285 

diagram) (; Fig. S2S8 and Table S2S3). The remaining models including ACCESS-ESM1-5, CanESM5, CESM2, CMCC-

ESM2, MIROC-ES2L, NorESM2-LM, NorESM2-MM and UKESM1-0-LL demonstrate moderate performance.   

 

Figure 4: The mean bias errors in surface nitrate concentrations for the Southern Ocean (SO), the subtropical zone (STZ), the 
subantarctic zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF.  290 

Among the CMIP6 models analysed, silicate concentrations are generally overestimated across the Southern Ocean (Fig. 5). 

The three MPI-ESMs exhibit the most significant overestimation, with MBEs exceeding 30 mmol/m3 (Fig. 6), over twice the 

observed surface silicate concentration of 12.765 mmol/m3 from WOA. The CMCC-ESM2, NorESM2-LM, NorESM2-MM, 

and UKESM1-0-LL models also show large positive biases, with their mean silicate concentrations roughly double that of 

observed values (Fig. 6). The CMCC-ESM2 and UKESM1-0-LL models underestimate silicate concentrations in the 295 

subtropical zone (STZ), while the two NorESMs models underestimate silicate concentrations in the Ross Sea, Weddell Sea, 

and adjacent waters (Fig. 5). CESM2, CNRM-ESM2-1, GFDL-ESM4, and IPSL-CM6A-LR exhibit the lowest positive MBEs 

among the models (Fig. 6). and underestimate silicate concentrations in the STZ. Interestingly, in some regions around 

Antarctica, simulated silicate concentrations are lower than observations, particularly in areas where the GFDL-ESM4 and 

IPSL-CM6A-LR models overestimate chlorophyll (Fig. 51), suggesting a possible link between silicate availability and diatom 300 



 

14 
 
 

growth. Three models, including ACCESS-ESM1-5, CanESM5, and MIROC-ES2L are excluded from the silicate comparison 

because they do not include diatoms as one of their phytoplankton species or silicate as a nutrient variable.  

 

Figure 5: Observed surface silicate concentrations from WOA in DJF and spatial biases of surface silicate concentrations for 14 
CMIP6 models (model silicate – WOA silicate) in DJF for the Southern Ocean (>30°S). Models with unavailable silicate are labelled 305 
with *.    
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Figure 6: The mean bias errors in surface silicate concentrations for the Southern Ocean (SO), the subtropical zone (STZ), the 
subantarctic zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF. Models with unavailable silicate are 
labelled with *. 310 

Among the 11 CMIP6 models with available silicate data, IPSL-CM6A-LR is the best-performing model for representing 

silicate distribution across the Southern Ocean. It has the lowest MBE (1.50 mmol/m3, compared to the observation of 12.65 

mmol/m3), an SSD closest to 1 (1.04), the lowest RMSD (0.37), and the highest CC (0.94) (; Fig. S3S9 and Table S3S4), 

making it the most reliable model for simulating silicate concentrations. Following IPSL-CM6A-LR, the CNRM-ESM2-1, 

GFDL-ESM4, and CESM2 models also show relatively good performance, although their statistical metrics are not as strong 315 

as IPSL-CM6A-LR. The remaining models, CMCC-ESM2, MPI-ESMs, NorESMs, and UKESM1-0-LL, areproduce less 

reliablerealistic simulations due to their large bias errors, which suggests significant discrepancies in their silicate simulations.   

 

Figure 6: The mean bias errors in surface silicate concentrations for the Southern Ocean (SO), the subtropical zone (STZ), the 
subantarctic zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF. Models with unavailable silicate are 320 
labelled with *. 

Dissolved iron concentrations in the Southern Ocean are generally low in open waters and higher in coastal regions, as observed 

from GEOTRACES data (Fig. 7). Among the CMIP6 models analysed, most tend to underestimate dissolved iron 

concentrations, with MBEs ranging from -0.06 to -0.28 µmol/m3 compared to the observed mean of 0.57 µmol/m3 (Fig. 8). 

The only exceptions are ACCESS-ESM1-5, NorESMs and UKESM1-0-LL, which overestimate the dissolved iron in Southern 325 

Ocean surface waters, except in some coastal regions around Antarctica (Fig. 7). No strong correlation is found between the 

spatial deviation of chlorophyll and dissolved iron concentrations across the models, despite iron limitation being a key factor 

controlling phytoplankton growth (Tagliabue et al., 2017). For example, the three MPI-ESM models simulate low dissolved 

iron and have a high half-saturation coefficient for iron (3.6 µmol/m3), yet they significantly overestimate chlorophyll 
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concentrations (Fig. 1). Conversely, NorESM2-LM and NorESM2-MM models simulate higher dissolved iron concentrations 330 

in the polar front zone and subantarctic zone, but their chlorophyll levels remain low in these regions. CanESM5 is excluded 

from dissolved iron comparison because it does not explicitly simulate dissolved iron; instead, iron limitation on phytoplankton 

growth is parameterised through a functional relationship with nitrate.  

 

After evaluating the overall model performance for surface nitrate and silicate, we further examined whether these surface 335 

biases are linked to errors in the deep upwelling source waters. To this end, we compared the model-observation biases in 

nitrate and silicate between the surface and 700 m depth, representing the upwelling Circumpolar Deep Water (CDW) south 

of 50° S. Most models show positive but weak correlations between surface and deep nitrate biases, with slopes ranging from 

-0.12 to 0.74 and R² from 0.01 to 0.42 (p < 0.001; Fig. S10), suggesting that surface nitrate errors are only weakly linked to 

deep-water biases. In contrast, correlations for silicate are slightly stronger but remain weak overall, with slopes between 0.23 340 

and 0.76 and R2 of 0.06-0.50 (p < 0.001; Fig. S11). This suggests that surface silicate biases are more directly linked to deep 

CDW properties than nitrate, although neither nutrient exhibits a particularly strong surface-deep correspondence. The overall 

weak relationships imply that, although biases in deep nutrient fields contribute to surface discrepancies, other processes such 

as biological uptake, vertical mixing, and mixed-layer variability also play substantial roles in shaping the surface nutrient 

distributions. 345 

Dissolved iron concentrations in the Southern Ocean are generally low in open waters and higher in coastal regions in the 

observations (Fig. 7). Among the CMIP6 models analysed, the dissolved iron simulations exhibit significant discrepancies 

with MBEs ranging from -0.15 to 0.29 µmol/m3 compared to the observed mean of 0.31 µmol/m3 (Fig. 8). Four models 
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including CESM2, CNRM-ESM2-1, GFDL-ESM4, and IPSL-CM6A-LR underestimate dissolved iron concentrations but 

reproduce the spatial pattern relative well, exhibiting small regional biases (Fig. 7). In contrast, ACCESS-ESM1-5, NorESM2-350 

LM, NorESM2-MM, and UKESM1-0-LL overestimate dissolved iron in most Southern Ocean surface waters, while CMCC-

ESM2, MIROC-ES2L, and the three MPI-ESMs show moderate overestimation except in Antarctic waters. All models share 

a consistent bias around the Antarctic Peninsula and East Antarctica, where they underestimate elevated dissolved iron levels 

found in observations (Fig. 7). These high-iron regions are maintained by the entrainment of iron-rich shelf waters by the iron-

poor Antarctic Circumpolar Current through the Drake Passage (Measures et al., 2013) and by iron inputs from melting 355 

icebergs and sediments along the East Antarctic shelf (Schallenberg et al., 2016; Person et al., 2019). The incomplete 

representation of such physical mechanisms in models likely contributes to the underestimation of dissolved iron. Furthermore, 

insufficient representation of the transport of shelf-derived iron may also lead to the underestimation of chlorophyll, POC, and 

primary production on the Patagonian Shelf.  

 360 

Figure 7: Observed surface dissolved iron concentrations from GEOTRACESan integrated product by GEOTRACES IDP2021v2 
and Tagliabue et al. (2012), and spatial biases of surface dissolved iron concentrations for 14 CMIP6 models (model dissolved iron 
– GEOTRACESobserved dissolved iron) for the Southern Ocean (>30°S). Due to the limited availability of observed data, all CMIP6 
model outputs were regridded to match the spatial resolution of the observational dataset, ensuring a consistent grid for comparison. 
Models with unavailable dissolved iron are labelled with *. 365 

All models exhibit poor statistics for dissolved iron, with SSD less than 0.5, RMSD larger than 0.9, and CC values lower than 

0.4 (Fig. S4 & Table S4). Most models, except the CMCC-ESM2, CNRM-ESM2-1, IPSL-CM6A-LR, MIROC-ES2L, and 

UKESM1-0-LL models, have negative CC values, indicating a distribution trend opposite to observations. Among them, the 

MIROC-ES2L model performs relatively better, with an MBE of -0.06 µmol/m3 (the fourth lowest among models), an SSD 
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closest to 1 (0.19), the lowest RMSD (0.91), and the largest positive CC (0.40) (Fig. S4 and Table S4). Despite these findings, 370 

the evaluation of dissolved iron simulation remains uncertain due to the limited availability of observational data, making it 

difficult to draw definitive conclusions about model performance in this regard.  

 

 

Figure 8: The mean bias errors in surface dissolved iron concentrations for the Southern Ocean (SO), the subtropical zone (STZ), 375 
the subantarctic zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF. Models with unavailable dissolved 
iron are labelled with *. 
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Although several models exhibit reasonable MBEs, most perform poorly in other statistical metrics for dissolved iron, with 

SSD values below 0.51, RMSD exceeding 0.99, and CC lower than 0.18 (Fig. S12 and Table S5). Some models, including the 

three MPI-ESMs and NorESM2-LM, even show negative CC values, indicating an unrealistic spatial distribution of dissolved 380 

iron. Among the models, IPSL-CM6A-LR and CNRM-ESM2-1 perform best when all four statistical metrics (SSD, RMSD 

and CC) are considered together (Table S5), largely benefiting from their shared ocean biogeochemical module, PISCES-v2 

(Aumont et al., 2015). Despite these results, the large overall biases and weak correlations highlight persistent uncertainties in 

evaluating dissolved iron simulations, primarily due to the limited spatial and temporal coverage of observational data and the 

oversimplified representation of iron cycling processes in many models. Consequently, it remains difficult to draw definitive 385 

conclusions regarding model skill in reproducing dissolved iron distributions in the Southern Ocean. 

3.2 Performance of DCMs  

The observational data from Copernicus indicatesindicate that DCMs are widespread across approximately 85% of the 

Southern Ocean in austral summer (Fig. 9). Their occurrence frequency is lower in the SAZ (below 70%) but exceeds 90% in 

other regions. Areas without DCMs are primarily located south of Australia, southwest of Chile, and in the Weddell and Ross 390 

Seas and surrounding waters. CMIP6 models exhibit varying performance in simulating DCMs. GFDL-ESM4 has DCM 

occurrence frequency close to 100% across the Southern Ocean (Fig. 10), while the CanESM5 model simulates a DCM 

frequency similar to observations, but its spatial distribution deviates from observations where we find no DCMs in the 

Antarctic waters. CNRM-ESM2-1 simulates a high occurrence of DCMs in the STZ and AZ, but a low occurrence in the SAZ 

and PFZ (Fig. 9). CMCC-ESM2, IPSL-CM6A-LR, and UKESM1-0-LL models simulate DCMs in the STZ but fail to capture 395 

them south of the subtropical front (Fig. 9). The ACCESS-ESM1-5, CESM2, MIROC-ES2L, and the three MPI-ESMs models 

sporadically simulate DCMs in the STZ, resulting in a low overall DCM frequency (<20% for the Southern Ocean). The 

NorESM2-LM and NorESM2-MM models fail to simulate any DCMs. Among the remaining models, CanESM5, CNRM-

ESM2-1, and GFDL-ESM4 exhibit DCM frequencies closest to observations. However, the simulations from CanESM5 and 

CNRM-ESM2-1 models are not considered reliableless realistic for representing DCMs due to their poor chlorophyll 400 

performance (Figs. 1 and 2), which fails). They generally fail to reflect the actual distribution of the phytoplankton biomass in 

the water column, as chlorophyll serves as a key indicator of phytoplankton abundance, despite their accurate DCM 

frequencies. Consequently, GFDL-ESM4 model is identified as the best-performing model for DCM simulation, given its 

strong agreement with both DCM frequency and its chlorophyll distribution. 
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 405 

Figure 9: Observed chlorophyllChlorophyll concentration at deep chlorophyll maximum (DCM) depth during DJF for Copernicus 
(observation)product and 14 CMIP6 models in the Southern Ocean (>30°S). The colours in the maps indicate the chlorophyll 
concentration at DCM depth, while white areas represent regions where no DCM occurred.  
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Figure 10: The percentage of DCM occurrence in the Southern Ocean (SO), the subtropical zone (STZ), the subantarctic zone (SAZ), 410 
the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF. All percentages in each region are calculated using area-weighted 
averages.  

3.3 Particulate organic carbon (POC) 

Observed particulate organic carbon (POC) concentrations in the Southern Ocean are higher in Antarctic coastal waters and 

lower at low latitudes (Fig. , with elevated concentrations in the Antarctic Circumpolar Current (ACC) regions within the polar 415 

front zone (Fig. 11). Model simulations diverge markedly from this pattern. CMCC-ESM2, the three MPI-ESM models-1-2-

HAM, and UKESM1-0-LLMPI-ESM-1-2-HR generally overestimate POC across most of the basin, apart from CMCC-

ESM2’s underestimationexcept for underestimations in the subtropical zone, MPI-ESM-1-2-LR’s underestimation south of 

the subantarctic front, and UKESM1-0-LL’s underestimation in the AZ, yieldyielding MBEs of 12.1, 1018.3, 13.2, and 58.6, 

28.8, 2.4, and 6.7 mg/m3 (Fig. 12), respectively, versuscompared to the observed mean of 70.484.1 mg/m3. The overestimated 420 

POC concentrations in three MPI-ESMs align withESM-1-2-HAM and MPI-ESM-1-2-HR correspond to their significantly 

high simulated chlorophyll concentrations (Fig. 1). In contrast, the remaining models, including ACCESS-ESM1-5, CanESM5, 

CESM2, CNRM-ESM2-1, GFDL-ESM4, IPSL-CM6A-LR, and MIROC-ES2L, and two NorESM models tend to 

underestimate the surface POC. CNRM-ESM2-1, GFDL-ESM4, and IPSL-CM6A-LR simulate nearly uniform values 

(regional means across most of 50 to 65 mg/m3), leading to large bias errors near Antarctica but small errors at lower latitudes 425 

(Fig. 12). NorESM2-LM and NorESM2-MMthe basin. MPI-ESM1-2-LR, two NorESMs, and UKESM1-0-LL slightly 

overestimate POC in the subtropical zone while strongly underestimatingbut also overestimate it south of the subtropical front 

(Fig. 12).. ACCESS-ESM1-5, CanESM5, CESM2, and MIROC-ES2L showexhibit the largest negative MBEs (40-exceeding 

50 mg/m3 m-3), severely underrepresenting POC, especially at high southern latitudes. These strong underestimations are 
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primarily attributable to the absence of a diatom or silicon module in ACCESS-ESM1-5, CanESM5, and MIROC-ES2L and 430 

the lack of detrital organic matter output in CESM2 and MIROC-ES2L. Moreover, most models fail to reproduce the elevated 

POC concentrations observed in the polar front zone, which are sustained by nutrient supply by upwelling and cross-shelf 

transport, suggesting that the simulated ACC strength in these models may be weaker than observed.  
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 435 

Figure 11: Observed yearly surface POC concentrations from Copernicus in DJF and spatial biases of yearly surface POC 
concentrations for 14 CMIP6 models (model POC – Copernicus POC) in DJF for the Southern Ocean (>30°S). POC data in CMIP6 
models containscontain phytoplankton carbon, zooplankton carbon, and detrital organic carbon, and bacterial carbon.  

Among 14 CMIP6 models, CMCC-ESM2 and MPI-ESM-1-2-LR have the most realistic simulations. Both have small MBEs 

(<13 mg/m3) and SSD closest to 1 (1.22 and 1.16; Fig. S5 and Table S5). The correlation coefficient of CMCC-ESM2 is the 440 

highest (0.60), making it the best-performing model for representing POC. CNRM-ESM2-1, GFDL‑ESM4, IPSL‑CM6A‑LR, 

MPI‑ESM‑1‑2‑HAM, and MPI‑ESM‑1‑2‑HR show intermediate skill with weaker statistics, whereas ACCESS-ESM1-5, 

CanESM5, MIROC-ES2L, NorESM2‑LM, and NorESM2‑MM are unreliable owing to large negative biases, high RMSDs, 

and negative correlations. 
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 445 

 

Figure 12: The mean bias errors in yearly surface POC concentrations for the Southern Ocean (SO), the subtropical zone (STZ), 
the subantarctic zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ).) in DJF. POC data in CMIP6 models 
containscontain phytoplankton carbon, zooplankton carbon, and detrital organic carbon, and bacterial carbon.  

Among 14 CMIP6 models, GFDL-ESM4 provides the most realistic simulations of POC, with an MBE of -24.16 mg m-3, an 450 

SSD (0.71) close to 1, the smallest RMSD (0.70), and one of the highest CC values (0.71), making it the best-performing 

model for representing POC (Fig. S13 and Table S6). IPSL-CM6A-LR, UKESM1-0-LL, and CMCC-ESM2 also show strong 

statistical performance across all metrics. CESM2 performs moderately well due to its favourable SSD, RMSD, and CC values 
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despite exhibiting a relatively large bias error. In contrast, MPI-ESM1-2-LR performs poorly because of its weak statistical 

metrics, despite having the smallest |MBE|. Other models, including ACCESS-ESM1-5, CanESM5, CNRM-ESM2-1, 455 

MIROC-ES2L, MPI-ESM-1-2-HAM, MPI-ESM1-2-HR, and the two NorESMs, are less reliable for simulating POC due to 

their large biases and poor overall statistical performance.  

3.4 Model ranking 

Based on the statistical evaluation of surface chlorophyll, nitrate, silicate, dissolved iron, and POC using MBE, SSD, RMSD, 

and CC (Sect.Section 3.1 and 3.3), along with DCM occurrence frequency (Sect.Section 3.2), we computed a ranking of each 460 

variable-specific and an overall ranking for each model following the methodology described in Sect.Section 2.4. The results 

are presentedshown in Fig. 13 as a heat map. IPSL-CM6A-LR ranks the highest overall, placing within the top two models for 

all variable rankings except for POC, for which it ranks fifth.variables. GFDL-ESM4 follows closely, achieving top threetwo 

rankings inacross all variables except silicate and dissolved iron, where it ranks eighth. CMCC-ESM2 demonstrates strong 

performance in chlorophyll, DCM and POC (all rank in the top three), but its lower scores for nutrient variables reduce its 465 

overall ranking to third. and fourth, respectively. UKESM1-0-LL ranks fourththird, supported by its relatively balanced 

performance across all metrics. CNRM-ESM2-1, which also incorporates the PISCES-v2 biogeochemical model (as in IPSL-

CM6A-LR) also ranks fourththird, with performance slightly below that of IPSL-CM6A-LR across most variables. CMCC-

ESM2 demonstrates strong performance in chlorophyll, DCM and POC (all rank in the top five), but its lower scores for 

nutrient variables reduce its overall ranking to fifth. Models such as MIROC-ES2L, despite having the highest ranking for 470 

CESM2, NorESM2-LM, and NorESM2-MM show moderate performance, ranking from sixth to ninth. CanESM5 and 

ACCESS-ESM1-5 perform poorly in biogeochemistry due to the absence of key variables (e.g. silicate and dissolved iron, 

ranks sixth due to weak performance in other variables.), ranking tenth and eleventh. The three MPI-ESM modelsESMs, all 

coupled with HAMOCC6, occupy the lowest three positions, despite showing reasonable POC estimates. Models such as 

NorESM2-LM, CESM2, NorESM2-MM, ACCESS-ESM1-5, and CanESM5 fall into the middle tier, ranking from seventh to 475 

eleventh.with weak performance across all variables. In summary, IPSL-CM6A-LR and GFDL-ESM4 emerge as the most 

robust models for simulating biogeochemical processes in the Southern Ocean, with consistentlyconsistent and reliable 

performance across a rangesuite of key biogeochemical parametersindicators.  
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Figure 13: Heat-map of performance ranks for 12 CMIP6 models. Columns list the evaluated variables—surface chlorophyll (Chl), 
nitrate (NO3), silicate (Si), dissolved iron (dFe), particulate organic carbon (POC), deep- chlorophyll- maximum metrics (DCM)—
and an overall score (OVR, the mean of the six individual ranks). Rows list the models. Box colours and overlaid numbers give the 
rank for each model–variable pair (1 = best, higher numbers = poorer performance): reds indicate higher ranks, blues lower ranks, 485 
and grey boxes indicate variables not available for that model. 
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4 Discussion 

4.1 Vertical structure of carbon 

Most CMIP6 models perform relatively well in simulating surface chlorophyll in the Southern Ocean, but they exhibit only 

moderate skill in representing surface particulate organic carbon (POC). In contrast, the majority of models struggle to 490 

accurately simulate the deep chlorophyll maxima (DCMs), which isare crucial for capturing the vertical structure of 

chlorophyll distributions. As discussed in Sect 3.2, models such as CanESM5, CNRM-ESM2-1, and GFDL-ESM4 reproduce 

the horizontal frequency patterns of DCMs reasonably well. However, when surface chlorophyll performance is also 

considered, GFDL-ESM4 emerges as the only model that satisfactorily represents both surface chlorophyll concentrations and 

DCM frequency. This finding suggests that most CMIP6 models face challenges in simulating the vertical structure of 495 

chlorophyll, as well as POC distributions.  

To compare the vertical structure of chlorophyll and POC between models and observations, we integrated their concentrations 

over the top 100m of the water column, where the majority of primary production occurs (Henley et al., 2020; Arrigo et al., 

2008). Unlike the surface chlorophyll and POC, which are generally close to observations, the vertically integrated chlorophyll 

and POC in the upper 100m are significantly underestimated by most CMIP6 models, except chlorophyll in MPI-ESM-1-2-500 

HR and POC in CMCC-ESM2, both of which are overestimated (Fig. 14).  
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Figure 14: Mean vertical profiles of chlorophyll during DJF (December–January–February) across the Southern Ocean (SO) and 
its subregions: the Subtropical Zone (STZ), Subantarctic Zone (SAZ), Polar Frontal Zone (PFZ), and Antarctic Zone (AZ), based 
on observations (Copernicus) and 14 CMIP6 models. Solid lines represent chlorophyll profiles in different regions, while dashed 505 
lines indicate the threshold depth of chlorophyll, defined as the depth at which chlorophyll concentration reaches 10% of the 
maximum value. 

The underestimation of vertically integrated chlorophyll in the top 100 m ranges from −63% for CESM2 to −16% for GFDL-

ESM4 (Fig. 14) and is influenced by both surface chlorophyll concentrations and the vertical structure of the water column. 

For example, ACCESS-ESM1-5, CESM2, NorESM2-LM, and NorESM2-MM exhibit similar vertical chlorophyll profiles, 510 

characterised by low surface concentrations, almost no deep chlorophyll maxima (DCMs), and shallow chlorophyll threshold 

depth (CTD; defined as the depth where chlorophyll falls to 10% of the maximum), resulting in underestimations exceeding 

50% (Fig. 14). In contrast, MPI-ESM-1-2-HAM and MPI-ESM1-2-LR show high surface chlorophyll levels but extremely 

shallow CTD (<50 m), leading to low vertically integrated chlorophyll. A third pattern is found in CanESM5, CMCC-ESM2, 

CNRM-ESM2-1, IPSL-CM6A-LR, MIROC-ES2L, and UKESM1-0-LL, which simulate appropriate threshold depths 515 

(~150 m) and some occurrence of DCMs, but their low surface chlorophyll leads to insufficient primary production in the 

water column. GFDL-ESM4 demonstrates a vertical structure most similar to observations, with a slightly shallower threshold 
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depth, resulting in only an 18% underestimation of integrated chlorophyll. While CMIP6 models vary widely in their 

simulation of surface chlorophyll concentrations and generally manage to control these levels, they largely lack the capability 

to accurately simulate the vertical structure of chlorophyll, including both DCMs and CTD.  520 

The vertical structure of chlorophyll and the formation of DCMs are influenced by various environmental and biological 

factors. DCMs are primarily driven by photoacclimation, as the carbon to chlorophyll (C:Chl) ratio decreases from values 

exceeding 100 g:g at the surface to below 50 at the base of euphotic layer (Marañón et al., 2021; Boyd et al., 2024). 

Consequently, theObservational evidence indicates that roughly half of DCMs are driven by photoacclimation (Cornec et al., 

2021), reflected by the decline in the carbon to chlorophyll (C:Chl) ratio from values exceeding 100 g:g at the surface to below 525 

50 at the base of the euphotic zone (Marañón et al., 2021; Boyd et al., 2024), while the other half are deep biomass maxima 

(DBMs) driven by the accumulation of phytoplankton biomass below the surface (Cornec et al., 2021). The poor representation 

of DCMs in ACCESS-ESM1-5 (with its coupled biogeochemical component WOMBAT), the MPI-ESM modelsESMs 

(coupled with HAMOCC6), and the NorESM modelsNorESMs (coupled with HAMOCC) is therefore likely due to their use 

of a fixed C:Chl ratio (Oke et al., 2013; Ilyina et al., 2013; Tjiputra et al., 2020). This simplification prevents the models from 530 

capturing photoacclimation processes, thereby limiting their ability to simulate realistic DCM structures. Additionally, 

phytoplankton, which prevents the simulation of photoacclimation processes. Moreover, most models represent chlorophyll as 

the biomass of living phytoplankton only, excluding pigments associated with detrital cells that can still be detected in the real 

water column (Behrenfeld and Boss, 2006). This structural difference contributes to weaker or shallower modelled DCMs 

compared to observations. In addition, Boyd et al. (2024) suggested that the formation and persistence of DCMs and DBMs 535 

can also result from subsurface recycled iron and the ammonium maxima, as well as upward silicate transport that supports 

diatom production, processes that are often poorly represented in models.  

Phytoplankton functional types (PFTs) significantly influence the vertical distribution of chlorophyll. For instance, siliceous 

diatoms, which account for approximately 75% of primary production in the Southern Ocean (Crosta et al., 2005), are not 

represented in ACCESS-ESM1-5 and CanESM5. This omission leads to the underestimation of chlorophyll, particularly in the 540 

Antarctic zone (Fig. 14). CMIP6 models represent no more than three PFTs, typically small phytoplankton, diatoms, and 

diazotrophs. In contrast, observational studies, such as Yingling et al. (2025), identify at least five ecologically significant 

PFTs in the Southern Ocean, including Synechococcus, Picoeukaryotes, nanoplankton, diatoms, and microplankton. This 

simplification of PFT diversity in CMIP6 models likely contributes to inaccurate chlorophyll estimates and unrealistic vertical 

chlorophyll structures. Moreover, the 545 

The vertical structure of chlorophyll is linked to the mixed layer depth (MLD), which modulates nutrient supply (Durán-

Campos et al., 2019; Zampollo et al., 2023). Our analysis indicates a positive correlation between the CTD and MLD (Fig. 

S7aS14a; R2=0.24, p=0.075), suggesting that deep mixing enables phytoplankton to extend further into the water column while 

maintaining detectable concentrations (Mignot et al., 2014). Conversely, the integrated chlorophyll within the upper 100m 
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shows a negative correlation with MLD (Fig. S7bS14b; R2=0.23, p=0.082), likely due to reduced light availability and dilution 550 

effects associated with deeper mixed layers (Behrenfeld and Boss, 2006).  

Furthermore, the occurrence frequency of DCMs exhibits a Gaussian-like relationship with MLD (Fig. S7cS14c; R2=0.42), 

peaking at MLD of 31 m. When the MLD is excessively shallow, nutrient replenishment to the euphotic zone is limited, 

inhibiting phytoplankton growth below the surface, thereby reducing the likelihood of DCM formation (Letelier et al., 2004). 

Conversely, when the MLD becomes too deep, light availability at depth decreases to levels insufficient for sustaining 555 

phytoplankton biomass accumulation, which similarly suppresses DCM development (Mignot et al., 2014). Thus, the observed 

distribution reflects a balance between light limitation from above and nutrient supply from below, a mechanism well-

documented in earlier studies (Cullen, 1982; Fennel and Boss, 2003).  

Similar to chlorophyll, the vertical distribution of POC is significantly underestimated by most CMIP6 models (Fig. 14). In 

this study, POC consists of four carbon pools: phytoplankton carbon, zooplankton carbon, detrital organic matter carbon, and 560 

heterotrophic bacteria carbon. Observational estimates suggest an approximate partitioning of these pools in the Southern 

Ocean at 20% phytoplankton, 37% zooplankton, 33% detritus, and 10% heterotrophic bacteria (Yingling et al., 2025; Liu et 

al., 2025; Yang et al., 2022). However, the allocation among POC components varies across CMIP6 models.  

Most models simulate integrated phytoplankton carbon reasonably well, with values comparable to observations, except for 

MPI-ESM1-2-HR and UKESM1-0-LL, which show significant overestimation (Table S6). The general agreement in 565 

phytoplankton carbon across the models contrasts sharply with the widespread underestimation of integrated chlorophyll, 

suggesting that models may be applying high C:Chl ratio below the surface. Integrated zooplankton carbon is substantially 

underestimated (Table S6), likely due to oversimplified zooplankton physiology and trophic structure. Only a few models, 

such as CMCC-ESM2, CNRM-ESM2-1, GFDL-ESM4, IPSL-CM6A-LR, and UKESM1-0-LL, include more than two 

zooplankton types, and many may apply low growth and grazing efficiency (Rohr et al., 2023), contributing to low biomass 570 

estimates.  

Detrital organic carbon shows the widest range of discrepancies. For example, CMCC-ESM2 overestimates detritus by more 

than threefold compared to observations, while GFDL-ESM4 and three MPI-ESMs simulate less than 2% of the observed 

values (Table S7). In contrast, CNRM-ESM2-1, IPSL-CM6A-LR, and UKESM1-0-LL provide detritus concentrations that 

align well with observations (Table S7). The success of CNRM-ESM2-1 and IPSL-CM6A-LR is attributed to their use of the 575 

PISCES-v2 model, which offers a detailed carbon pool structure, including small and large size particulate organic detritus 

with size-dependent sinking rates and complex exchanges with dissolved organic carbon (DOC) (Aumont et al., 2015). 

UKESM1-0-LL’s high detritus levels may result from elevated phytoplankton and zooplankton concentrations, potentially 

driven by a high C:Chl ratio and the absence of a DOC pool (Sellar et al., 2019). In contrast, the low detritus levels in GFDL-

ESM4 and MPI-ESMs may result from a lack of exchange between DOC and particulate detritus (Stock et al., 2020; Ilyina et 580 

al., 2013). This structural limitation can result in unrealistically low detritus levels, especially under strong remineralisation 

conditions, and when the exudation and residual matter from phytoplankton and zooplankton are directed primarily into the 
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DOC pool rather than contributing to particulate detritus pool. While NorESMs share the same biogeochemical framework as 

the MPI-ESMs, their relatively higher detritus levels may stem from parameter tuning specific to HAMOCC (Tjiputra et al., 

2020). CESM2 adopts a more simplified approach, lacking an explicit detritus tracer. This means there is no time lag between 585 

surface production and deep remineralisation, leading to unrealistic vertical carbon fluxes. Other models, such as ACCESS-

ESM1-5, CanESM5, and MIROC-ES2L, employ a basic NPZD (nutrient-phytoplankton-zooplankton-detritus) framework, 

which simplifies the marine food web and organic carbon cycling (Oke et al., 2013; Zahariev et al., 2007; Hajima et al., 2020).  

Only CMCC-ESM2 and GFDL-ESM4 simulate an explicit bacteria pool, and their integrated bacterial carbon concentrations 

are reasonably consistent with observational estimates (Table S7). Including bacteria is important in biogeochemical models, 590 

as it allows dynamic regulation of remineralisation and other microbial processes based on bacteria biomass. Furthermore, 

bacteria contribute significantly to carbon export, highlighting their importance as a key component for future model 

development and improvement.  

4.2 Model components and their performance 

The performance of CMIP6 models in simulating key biogeochemical variables such as chlorophyll, nitrate, silicate, dissolved 595 

iron, POC and DCMs is jointly determined by the complexity of the biogeochemical (BGC) module, the adopted 

parameterisations of key biogeochemical processes, and the resolution of their coupled ocean and atmosphere model.  

Among these, the complexity of the BGC module is the most crucial factor. Key aspects include the representation of 

phytoplankton functional types (PFTs), stoichiometry flexibility, and nutrient uptake and regeneration schemes. Models that 

incorporate multiple PFTs, particularly those distinguishing between diatoms and non-diatom phytoplankton, tend to 600 

outperform models with a single phytoplankton type in simulating chlorophyll and overall biogeochemical patterns (Fig. 15a; 

p<0.01). In contrast, the inclusion of diazotrophs has a limited impact on chlorophyll performance, as nitrate is rarely limiting 

in the Southern Ocean (Fig. 15b; p=0.1713).  
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 605 

Figure 15: Panels show statistical relationships between model rankings and key biogeochemical descriptors: (a) surface chlorophyll 
ranking vs. inclusion of diatom; (b) surface chlorophyll ranking vs. inclusion of diazotroph; (c) DCM frequency ranking vs. use of a 
variable C:Chl ratio; (d) POC ranking vs. presentation of silica cycling ( presence of an explicit Si pool or variable C:Si ratio); (e) 
silicate ranking vs silicate half-saturation coefficient (KmSi); (f) nitrate ranking vs. nitrate half-saturation coefficient (KmNO3); (g) 
dissolved iron ranking vs. iron half-saturation coefficient (KmFe); (h) dissolved iron ranking vs. iron chemistry complexity (simple-610 
no ligand, simple ligand, or complex ligand scheme); (i) DCM frequency ranking vs model ability to assimilate ammonium for 
photosynthesis. (a), (b), (c), (i) are performed using T-test, (d) and (h) are performed using ANOVA (Analysis of Variance), (e), (f), 
(g) are performed using linear regression. Tests applied: two-sample t-tests for (a), (b), (c), (i); one-way ANOVA for (d), (h); linear 
regression for (e)–(g). Each point (colour/shape) represents a CMIP6 model, and dashed lines indicate regression fits where relevant. 
Corresponding P-values and R² statistics (for regressions) are displayed on each panel.  615 

Cellular plasticity (stoichiometry) plays a vital role in regulating nutrient uptake and the cellular elemental composition under 

variable environmental conditions. Most models employ fixed carbon:nitrogen:phosphorus (C:N:P) ratios consistent with the 

Redfield Ratio, while carbon:iron ratios are generally dynamic. However, carbon:chlorophyll and carbon:silicate ratios vary 
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across models. A dynamic carbon:chlorophyll ratio significantly improves the simulation of DCM (Fig. 15c; p<0.01), as 

mentioned in Sect.Section 4.1, while a variable carbon:silicate ratio enhances POC representation (Fig. 15d; p=<0.0301), 620 

especially given the dominance of diatoms Southern Ocean primary production (Crosta et al., 2005).  

Phytoplankton growth in models is typically limited by light and nutrient availability, often represented using Michaelis-

Menten kinetics (Michaelis and Menten, 1913). However, our analysis did not reveal a clear relationship between model 

performance in simulating surface chlorophyll or DCMs and specific light or nutrient uptake parameters, such as initial PI 

(production-irradiance) slope or half-saturation coefficients for nitrate, silicate, and dissolved iron. This suggests that 625 

chlorophyll distribution is governed by a complex interplay of environmental drivers rather than any single parameter. In 

contrast, nutrient concentrations are more directly influenced by process parameterisation. For example, higher silicate half-

saturation coefficients (e.g. 8 mmol/m3 in PISCES-v2, as used in CNRM-ESM2-1 and IPS-CM6A-LR) spear to improve 

silicate simulations (Fig. 15e; R2=0.52, p=0.01) (Nelson et al., 2001).15e; R2=0.52, p=0.01; Nelson et al., 2001). Similarly, 

nitrate half-saturation coefficients in the range of 1–3 mmol m⁻³ tend to yield better agreement with observations (Fig. 15f; 630 

R2=0.36, p=0.02) (Eppley et al., 1969).; Epply et al., 1969) . For dissolved iron, no clear correlation was found between model 

performance and the half-saturation coefficient (Fig. 15g; R2=0.0001, p=0.8681).  The complexity of the iron cycle contributes 

to variability in simulated dissolved iron performance (Fig. 15h; p<=0.0103). Models with more advanced iron chemistry, such 

as PISCES-v2 (BGC model coupled in CNRM-ESM2-1 and IPSL-CM6A-LR), which includes strong and weak ligands, and 

five iron forms (free Fe(II), Fe(III), Fe(III) bounded to strong and weak ligands, and particulate iron) tend to simulate dissolved 635 

iron more accurately than those with simple iron complexation (Tagliabue et al., 2023). In contrast, models with simple iron 

complexation schemes do not show strong ability to simulate better iron concentrations than a simple iron model, which only 

contains basic iron processes such as scavenging. These inconsistencies are likely due to the limited spatial and temporal 

coverage of iron observations, which hinders robust evaluation and may mask the benefits of advanced iron cycling 

mechanisms. Additionally, the utilisation of ammonium appears to promote the formation of DCMs (Fig. 15i; p<0.01), as 640 

ammonium-primarily produced through remineralisation-is more readily and rapidly assimilated by phytoplankton than nitrate. 

This is due to its lower energy and electron requirements for incorporation into cellular biomass. Consequently, substantial 

ammonium production by heterotrophic bacteria in the subsurface can enhance phytoplankton growth and contribute to the 

development of DCMs (Boyd et al., 2024).  

We also found that the resolution of the ocean component in ESMs can influence the performance of simulated biogeochemical 645 

variables. For example, MPI-ESM1-2-HR and MPI-ESM1-2-LR, both coupled with the same biogeochemical model 

(HAMOCC6), differ significantly in ocean resolution 0.4° vs 1.5°, respectively, and show notable differences in 

biogeochemical performance. The mean surface chlorophyll concentration in austral summer is 2.37 mg/m3 m-3 in MPI-ESM1-

2-HR, compared to 1.35 mg/m3 m-3 in MPI-ESM1-2-LR which is closer to the Copernicus chlorophyll dataset. These 

discrepancies may arise from resolution-induced differences in ocean circulation and physical conditions, which influence 650 

nutrient availability, light penetration, and phytoplankton dynamics. In contrast, variations in atmospheric model resolution 
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appear to have a limited impact on ocean biogeochemistry. For instance, NorESM2-MM and NorESM2-LM, which use the 

same ocean biogeochemical model (HAMOCC) but differ in atmospheric resolution (2° vs 1°), exhibit nearly identical 

biogeochemical outcomes such as mean austral summer surface chlorophyll concentrations of 0.56 and 0.55 mg/m3 m-3, 

respectively. These findings suggest that while higher ocean resolution can improve the realism of physical processes affecting 655 

biogeochemical simulations, it does not necessarily guarantee better biogeochemical performance. 

4.3 Avenues for improvement in biogeochemical representation 

This study provides a comparative assessment of several ocean biogeochemical indicators for 14 CMIP6 ESMs over the 

Southern Ocean. Although some models performed adequately, there remain several key directions for future improvements:  

 Improvements in the underlying physical ocean models are equally critical for advancing BGC performance. Many 660 

biases originate from deficiencies in simulating stratification, mixed layer depth, and large-scale circulation. In 

particular, key processes such as the entrainment of nutrient-enriched shelf waters along the Patagonian Shelf and 

the nutrient supply from icebergs and glacial melt along East Antarctica are poorly resolved in coarse-resolution 

models. Increasing model resolution, refining submesoscale and vertical mixing parameterisations, and enhancing 

the coupling with sea-ice dynamics and meltwater fluxes will be essential to better capture nutrient transport 665 

pathways and the resulting spatial distribution of phytoplankton. 

 The representation of key biogeochemical processes in most BGC models remains simplified or parameterised 

based on limited observations. For instance, differences in the phytoplankton functional types (PFTs), elemental 

composition (fixed or variable stoichiometry), and nutrient uptake parameterisation contribute to model divergence. 

Future models should incorporate a more complex marine food web, and more dynamic parameterisations informed 670 

by field and laboratory experiments, especially under Southern Ocean specific conditions.  

 As the key factor controlling the Southern Ocean primary production, iron cycles and their representations remain 

poor in most models, compared to limited iron sampled data. Improvements in the simulation of iron sources (e.g., 

dust deposition, sediment resuspension), bioavailability (i.e., more complex iron chemistry module such as 

including iron-binding ligands), and biological recycling are essential to help reduce the bias in simulated 675 

chlorophyll. (Tagliabue et al., 2023), such as including iron-binding ligands), and biological recycling are essential 

to help reduce the bias in simulated chlorophyll.  

 Most models lack a good representation of the vertical structure of chlorophyll and biomass. For example, 

comesome models haveexhibit discrepancies in simulating mixed layer depth and other physical properties 

simulation, which influencesin turn affects nutrient supply. There is also an oversimplified remineralisation by 680 

heterotrophic bacteria, and a lack of diversity of PFTs. Future efforts could expand the model structure to capture 

these ecological dynamics, which are particularly important in determining vertical profiles and export efficiency 

for biomass.  
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 Observational constraints remain limited, especially for subsurface variables such as DCMs, dissolved iron, and POC 

and its classification.. Future work should prioritise the integration of additional in situ datasets to validate and 685 

improve model parameterisations. Ensemble data assimilation or machine learning approaches could also be explored 

for model tuning. 

5 Conclusion 

This study evaluated the performance of key biogeochemical variables, including austral summer surface chlorophyll and deep 

chlorophyll maxima (DCMs), nitrate, silicate, dissolved iron, and annual particulate organic carbon (POC) across 14 CMIP6 690 

models in the Southern Ocean (south of 30°S). The results reveal substantial variability in model skill. While some models 

demonstrated strong performance, others showed significant over- or underestimations. Among them, GFDL-ESM4 was the 

most effective in reproducing surface chlorophyll and POC and DCM features, while IPSL-CM6A-LR excelled performed 

best in simulating nutrient distribution, particularlysuch as nitrate and, silicate. MIROC-ES2L performed best for , and 

dissolved iron, and CMCC-ESM2 provided the most accurate representation of POC. Based on aggregated performance across 695 

all variables, the top five models for simulating Southern Ocean biogeochemistry wereare IPSL-CM6A-LR, GFDL-ESM4, 

CMCCCNRM-ESM2-1, UKESM1-0-LL, and CNRMCMCC-ESM2-1. Our analysis highlights a common 

limitationlimitations across CMIP6 models: the underrepresentation of vertical biogeochemical structures, including DCMs 

and subsurface POCsuch as the DCM distributions, and the inadequate simulation of physical nutrient transport processes, 

including upwelling and terrestrial nutrient inputs in productive shelf regions such as the Tasman Sea and the Patagonian Shelf. 700 

Additionally, spatial mismatches and persistent biases, particularly for dissolved iron and POC, underscore the need for 

targeted model improvements. Overall, this study not only provides a comprehensive evaluation of model performance for key 

biogeochemical variables but also offers insights into areas requiring refinement. These insights can guide future model 

development and support more informed model selection. Enhancing the representation of biogeochemical processes in Earth 

system models is essential for improving projections of the Southern Ocean's role in the global carbon and nutrient cycles 705 

under ongoing climate change.  

Code availability 

All codes for regridding datasets and data analysis are available at https://github.com/mingcheng7/Evaluation-CMIP6-

historical.  
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Data availability 710 

Raw CMIP6 used in this study are available on the Earth System Grid Federation (ESGF) Nodes for the CMIP6 Archive at 

https://esgf.github.io/nodes.html (Cinquini et al., 2014). Copernicus Global Ocean 3D Chlorophyll-a Concentration, 

Particulate Backscattering coefficient and Particulate Organic Carbon Product can be accessed at https://doi.org/10.48670/moi-

00046 (Sauzède et al., 2016).(Sauzède et al., 2016). The Aqua-MODIS chlorophyll concentration in the Southern Ocean by 

Johnson et al. (2013) can be accessed at https://portal.aodn.org.au/. The World Ocean Atlas (WOA) 2018 data can be accessed 715 

at https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/ (Garcia et al., 2019). The GEOTRACES dissolved iron dataThe 

GEOTRACES IDP2021v2 product can be accessed at https://www.geotraces.org/geotraces-intermediate-data-product-2021/. 

And the global compilation dataset of dissolved iron can be accessed at https://www.bodc.ac.uk/geotraces/data/historical/ 

(Tagliabue et al., 2012).  
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