
We sincerely thank the Anonymous Referee #1 for the thorough and constructive comments on 
our manuscript. We appreciate the effort taken to highlight both the strengths and the 
shortcomings of our study, particularly regarding the use of observational data sets and the 
robustness of the model ranking exercise. Based on the instructions of the editorial support 
team of Copernicus Publications, we will provide a point-by-point response and outline the 
revisions we will undertake below before we make revision on the manuscript. Italic font will 
be used to distinguish our initial replies from the reviewer’ comments. Red colour font will be 
used to distinguish our responses after revision. The line numbers of our final responses with 
red colours are referred to the manuscript file with track-changes.  

Review of "Evaluating the performance of CMIP6 models in simulating Southern Ocean 
biogeochemistry" by Ming Cheng et al. 

Scope of the manuscript, general comments and recommendation 
 
------------------------------------------------------------ 

The manuscript by Cheng et al. evaluates the performance of the biogeochemical part of 
CMIP6 models in reproducing Southern Ocean biogeochemical observations. As the 
Southern Ocean is one of the regions where biogeochemical models diverge most strongly, 
this is an important subject for a study, especially since biogeochemical models have become 
quite a bit more complex on average in the transition from CMIP5 to CMIP6 (Seferian et al, . 

The evaluation in the manuscript is performed using the typical tools used in that type of 
study, namely looking at biases, correlation etc. between model output and climatologies of 
observations, in the end combining the different metrics into an overall ranking of the 
models. The study is, however, untypical, in that it attempts to judge the models not only 
against the 'classical' observations, for which good climatologies are avaialable, namely the 
macronutrients and chlorophyll, but also against observations of the micronutrient iron 
estimated depths and chlorophyll levels of deep chlorophyll maxima, where those are present, 
and finally the concentration of POC and even separately the biomasses of zooplankton, 
detritus and bacteria. Other 'standard' observations, like satellite-based net primary 
production, dissolved inorganic carbon and total alkalinity are not taken into account. 

While I think that the attempt to include new variables into the assessment of biogeochemical 
models is a progress, the manuscript does not take into account the uncertain state of our 
knowledge in many of the variables that the authors use. In my view the mauscript is too 
uncritical of the observational database that they use to compare the models against, and 
consequently too confident in the ability to judge model outcomes. 

Here are my main criticisms concerning this point: 

- Firstly, for their iron validation, the authors use the combination  of observed bottle data 
from Tagliabue et al. (2012). This data is (unlike the attribution of this dataset to 
GEOTRACES, made in the manuscript, which is simply wrong) mostly a compilation of pre-
GEOTRACES data of high quality. Since the publication of this data set, a large number of 
additional data has become available through the GEOTRACES intermediate data products, 
especially for the Southern Ocean. Why has this data not been taken into account? 



We acknowledge the error in attributing the Tagliabue et al. (2012) compilation to 
GEOTRACES. This will be corrected with the addition of the GEOTRACES IDP2021 
reference. In addition, we will extend the iron evaluation to include the most recent 
GEOTRACES Intermediate Data Product (IDP2021v2) for the Southern Ocean and repeat 
the comparison. This will improve the robustness of our iron assessment.  

We have corrected the dissolved iron comparison with the addition of the GEOTRACES 
IDP2021v2 product. The new dissolved iron reference data is the merged dataset of 
GEOTRACES IDP2021v2 and the global compilation in Tagliabue et al. (2012). The method 
of merging two dataset has been detailly added in the method part in lines 177-188. At the 
same time, we have updated the figures and contents of the dissolved iron comparison. 
Additionally, other figures, such as rankings and statistical relationships, have been updated.  

- For the evaluation of the depth of the deep chlorophyll maximum and chlorophyll 
concentration at the maximum, the authors have chosen the product from Copernicus, which 
is based on the works of Sauzede et al. (2016). The authors mention that this dataset estimates 
POC and chlorophyll using a neural network method, but do not give any further details. 
Here is therefore my summary of the method: The data set estimates the vertical distribution 
of particle backscatter (which can be used as a measure of POC) from the large data base of 
ARGO vertical profiles of temperature and salinity, and co-located surface satellite estimates 
of particle backscatter and chlorophyll a from MODIS. Actually, contrary to the statement 
made in the manuscript, the method presented in Sauzede et al (2016) only describes the 
estimation of POC profiles, NOT of chlorophyll. For the chlorophyll estimation one should 
probably cite the data manual (https://documentation.marine.copernicus.eu/QUID/CMEMS-
MOB-QUID-015-010.pdf). While this data set is unique in that it for the first time allows a 
look at the vertical distribution of biological activity in the ocean, it is not 'observations' 
(which is how it is repeatedly referenced to in the manuscript), but a fairly indirect estimate. 
The limits of this data set and its possible errors are not discussed at all in this manuscript, 
and neither are the error estimates, which are present in the data themselves, taken into 
account in the model assessment. Instead, the data set is uncritically taken as 'truth'. 

We agree that the Copernicus product for chlorophyll and POC is an indirect reconstruction 
based on neural network methods, not direct observations. As mentioned in the user manual 
of the Copernicus product, the current vertical chlorophyll profile product is generated by the 
latest neural network-based method called SOCA2024, upgraded from SOCA2016 described 
in Sauzède et al. (2016). That means, the chlorophyll product is uses the same method as with 
POC product, even though Sauzède et al. (2016) only mentioned the neural method to 
produce vertical POC profiles. We will explicitly state that these are observation-based 
estimates, not direct Chl a measurements. We will also discuss the uncertainties and potential 
errors in the data set. And we will adjust the language throughout to avoid overstating 
confidence. 

We have added some texts related to the description of the Copernicus chlorophyll and POC 
dataset in the method part, including the data source, method and some statistics to support 
the reliability of this product. See lines 120-144.  

- Why is the same data set also taken for the evaluation of surface chlorophyll and POC? As 
the processing of the data in the copernicus product involves chlorophyll and backscatter 
estimates from MODIS, it would remove one possible source of error to directly use the 



satellite data here. Actually at this point it should be discussed that the standard algorithm 
used in satellite estimates of chlorophyll has been questioned in the Southern Ocean by 
Johnson et al. 2009 (which is cited in the manuscript); the algorithm proposed in Johnson et 
al. 2009 gives on average higher values of chlorophyll in the Southern Ocean than the 
standard algorithm used at that time for SeaWIFS. I think this also hold for the GlobColor 
product used in the copernicus data set, but I have to admit that this is getting beyod my 
expertise. But I think it illustrates yet another source of uncertainty in the 'observations' that 
should be discussed. 

We acknowledge that using the analysed Copernicus data set for surface chlorophyll and 
POC is not ideal. In the revised manuscript, we will include direct satellite-based product 
(MODIS) as an independent comparison for surface chlorophyll and POC. We will also 
discuss the uncertainty of Southern Ocean chlorophyll satellite-based product as highlighted 
by Johnson et al. (2013), and how this may affect inter-model comparison and model-
observation comparison.  

We kept using Copernicus chlorophyll and POC product for comparison in surface 
chlorophyll and POC after comparing the statistics of Copernicus product, three satellite 
(SeaWIFS, Aqua-MODIS, and GlobColor) products and the three satellite products refined 
using the algorithms in Johnson et al. (2013). The three satellite products originally provided 
by NASA are proven to underestimate chlorophyll (Johnson et al., 2013). The Copernicus 
product has a stronger ability to estimate chlorophyll (R2=0.89, slope=1.04) and POC 
(R2=0.93, slope=0.89) when compared to BGC-Argo. And when compared to HPLC 
chlorophyll data, Copernicus shows R2=0.53 and slope=0.70 (Sauzède et al., 2024). The 
MODIS data processing using Johnson et al. (2013) algorithm shows an R2=0.51 and 
slope=0.90. To maintaining consistency across different comparisons (i.e. chlorophyll, 
DCMs, and POC), we decided to stick with the Copernicus data as it merges both satellite 
and BGC-Argo data and is proved to be reliable against HPLC pigment data (Sauzède et al., 
2024). We also present the chlorophyll comparison using MODIS in Johnson et al. (2013) in 
the supplement. In the manuscript, we\e have provided related information in the method part 
in lines 120-144.  

- Just out of curiosity: Many model assessments also use satellite-based estimates of net 
primary production. Is there a specific reason why this was not done here?  

We initially did the evaluation of NPP performance. When considering simulation on 
phytoplankton may be overweighted in model ranking and length of manuscript, we decided 
not to put NPP evaluation in the manuscript. Of course, we will consider putting the NPP 
data back to the manuscript. 

We finally did not assess the NPP in models. The existing NPP estimating algorithms exhibit 
large discrepancies (Silsbe et al., 2016) and extensive field measurements of NPP are lacking 
to constrain the NPP model. Therefore, the current NPP products are not reliable enough to 
serve as a reference for ranking the models. So, we decided not to include the NPPP 
assessment in the models. Instead, we present the spatial biases and MBE figures in the 
supplement information for readers interested in CMIP6 model NPP and this compares to the 
VGPM model and CAFE model estimates. We have added the related content into the method 
part of the manuscript and clearly state the reason we did not evaluate NPP in lines 149-157.  



- And finally, the authors use ONE number of how POC is distributed over phytoplankton, 
zooplankton, dead organic matter and bacteria that has been estimated for the Southern Ocean 
to convert the copernicus estimate of POC into one of phytoplankton, zooplanton, detritus, 
and bacterial carbon biomass. In their tables 6 and 7 they then judge whether models 
'underestimate zooplankton' etc. But when you actually read the paper by Yang et al. 2022, 
one immediately realizes the limits of that comparison. Firstly, the paper does not describe 
microzooplankton, but only the biomass of zooplankton that can be caught in plankton nets. 
Secondly, the biomasses of the three zooplankton groups studied in that paper 
(mesozooplankton, krill and salps) has a large regional variability, as for example shown in 
their figure 2. While the Yang paper indeed demonstrates that there is an inverted trophic 
pyramid in the Southern Ocean, the actual biomass numbers probably have a large 
uncertainty from sampling bias. Taking the one biomass number for the whole Southern 
Ocean obtained here then for conversion of a totally different POC estimate into zooplankton 
biomass further leads to errors. To add to that, the authors do not describe how they have 
combined the estimates from the three different papers cited into one. In my view it makes 
sense to investigate whether models obtain a similar inverted trophic pyramid as described in 
Yang et al, but not to write sentences like 'Most models describe integrated phytoplankton 
carbon reasonably well with values comparable to observations' when the observations are 
just indirect estimates of POC from copernicus, multiplied by one Southern Ocean estimate 
of the phytoplankton carbon:POC ratio, and then not taking possible erors into account. The 
whole section starting line 412 to line 445 in my view should be scrapped.  

We accept that our approach of applying a single partitioning ratio from Yang et al. (2022) is 
oversimplified and neglects large regional variability and sampling uncertainties. In our 
original research, we used annual POC data to avoid the effect of missing monthly data of 
some models. In this case, most models underestimated surface POC concentration according 
to that the effect of low data availability in winter months on calculation of annual mean. We 
did some work on classifying carbon type to address the potential points that the types of 
carbon in the models may have biases. In the revised manuscript, we will redo the surface 
POC comparison, by changing the annual comparison to summer comparison, to reduce the 
effect of errors on annual mean calculation. Also, we will delete the section between line 412 
and line 445 about discussing POC classification.  

We have deleted the section about discussing POC classification. On the one hand, errors 
exist in Copernicus POC product. On the other hand, using a constant ratio to define the 
classification of POC in the water column might be inappropriate.  

Given these criticisms I don't think the paper can be published without quite major revisions. 
To make it publishable, I think the following needs to be done: 

- Extend the data set used for the comparison of modeled iron by the data from the lates 
GEOTRACES intermediate data product and repeat the comparison. 

Dissolved iron comparison will be repeated using GEOTRACES IDP2021v2.  

We have redone the iron comparison using the merged dataset of GEOTRACES IDP2021v2 
and the global compilation of measurement in Tagliabue et al. (2012). See lines 346-386.  

- Redo the comparison of deep chlorophyll maximum frequency and chlorophyll levels taking 
into account the uncertainty of the copernicus data set. 



The uncertainty of the Copernicus data set will be discussed in comparison of DCM.  

We have added the contexts in methods to explain the performance of Copernicus product 
compared to measured datasets in lines 120-144.  

- use (at least in addition to the copernicus data set) the direct satellite-based estimated of 
chlorophyl and POC from MODIS for the surface comparison; possibly also discuss the issue 
of the chlorophyll algorithm uncertainty raised by Johnson et al, 2009. 

Surface chlorophyll and POC comparison will be repeated using MODIS data set. And the 
uncertainty of chlorophyll algorithm will be discussed.  

We have continued to use the Copernicus chlorophyll and POC product for comparison with 
the CMIP6 models. We selected the Copernicus product after considering the statistical 
robustness to measured datasets and those of multi-satellite products in lines 120-144.  

- either remove the comparison with the different components of POC completely or do it 
properly by accounting for the error margins 

The comparison with the different components of POC will be completely removed.  

We have removed the comparison with different components of POC.  

I think all these changes would probably be incompatible with the strong focus of the paper 
on 'ranking' of the different models, i.e. saying which one is 'the best', which comes second 
etc. Given the uncertainty of the data sets used, which is completely neglected in the present 
manuscript, I don't really think this can be done with any confidence. 

As this will require more or less a complete rewrite of the manuscript 
 
I limit my further specific comments to the most important ones. 

Specific comments 
 
----------------- 

Line 135-136: '.. we use yearly data instead, as carbon export predominantly occurs during 
summer months': I don't understand the reasoning here. If carbon export predomnantly occurs 
in summer, does not using annual POC values make the connection of export less reliable? 

As we mentioned above, we will redo the surface POC comparison by changing the annual 
comparison to a summer comparison. The new POC comparison will include all 14 models.  

We have redone the surface POC comparison by changing the annual comparison to an 
austral summer comparison. Additionally, we have removed zooplankton in the modelled 
POC as zooplankton is almost not included in the observed POC dataset.  

Formula 4: The formula for root-mean-square difference is given here corectly; but in the 
Taylor diagnam one should use the RSMD after correction for the mean model-data bias, 
otherwise the connection between CC, SSD and RSMD that is used to construct the diagram 
does not hold (Taylor 2001). Was this done here? 



We ensure that the RMSD values were bias-corrected, so the Taylor diagrams were correctly 
plotted.  

They were initially done before. Additionally, we removed the four basic statistical equations 
as requested by reviewer 2.  

line 153: 'the number of grid points..' Does that depend on the grid resolution? Is that a 
problem? 

Actually, the DCM frequency is calculated based on the area of the grid points, not simply the 
number of grid points. We will change “the number of grid points” to “the area proportion”.  

We have changed “the number of grid points” to “the area proportion” in line 202. 

Table S1: Were the calculations of CC and other statistical quantities for chlorophyll done 
using log-transformed data, as is done most of the times? 

We did not apply log transformation when calculating CC and other statistical metrics for 
chlorophyll. For visualisation, we used a moving scale.  

Comparison of surface nitrate and silicate: Given that the Southern Ocean is an upwelling 
region, would it make sense to also check the concentration of these nutrients in Circumpolar 
Depp water with data when tryng to explain the model-data difference at the surface? 

This is a sensible suggestion. In our manuscript, we mainly focus on biogeochemical 
performance and the effect of biogeochemical processes on biogeochemical performance. We 
acknowledge that CDW nutrient concentrations influence surface fields in the Southern 
Ocean, we will consider comparing CDW nutrient concentrations although this analysis is 
beyond our current scope. We will need to explore this.  

We have compared the surface nitrate/silicate to that at 700m in lines 335-345. The nitrate 
and silicate between the two depths do not show a strong correlation in most models. That is, 
the surface nutrients may be partially regulated by CDW, and also regulated by biological 
uptake, vertical mixing, and mixed-layer variability. We have added text discussing this. See 
lines 335-345.  

When comparing dissolved iron with the Tagliabue et al. 2012 data set, mean bias estimates 
are given. Does a mean make sense in such a sparse data set? Should one perhaps at least also 
have a look at the median? 

The dissolved iron data from Tagliabue et al. (2012) are distributed to 1°×1° grids by 
calculate their median of closest samples to plot the surface dissolved iron map. In this case, 
we compared the dissolved iron difference by calculating the mean. We will provide more 
details on how we used the iron dataset and how we have utilised the GEOTRACES 
IDP2021v2 data product, noting that most of the Tagliabue et al. (2012) included data from 
the IPY 2007-2008.  

We have provided a detailed method for processing the dissolved iron data in lines 169-180.  

In the iron comparison, repeatedly the 'limited availability of observational data' is referred 
to, which is correct. But the data is not that limited, given the GEOTRACES data that is 
ignored here. 



We will redo the dissolved iron comparison by using the latest GEOTRACES product 
(IDP2021v2).  

We have redone the dissolved iron comparison by using the merged dataset of GEOTRACES 
IDP2021v2 and Tagliabue et al. (2012). There are finally 615 grid points with available 
dissolved iron in 1 degree mesh grid, accounting for 4.33% of the total ocean grid points in 
SO. See lines 169-180.  

Model ranking: it is unclear to me how the different statistical quantities to judge model-'data' 
agreement are converted into one ranking. Is the lowest RSMD the criterium, the highest CC? 

The overall ranking of each model is based on its ranking of the different variables. The 
ranking of a variable for a model is based on rankings of four statistics: MBE (the lowest 
|MBE| have highest ranking), SSD (the closest to 1 have highest ranking), RMSD (the lowest 
have highest ranking), and CC (the highest have highest ranking). We will more detailly 
describe the criterium of ranking in the method section.  

We have provided a detailed description of how the model ranking works in lines 203-211.  

Line 383: "DCMs are primarili driven by photoacclimation". No, not all of them, see Cornec 
et al. 2021. The whole discussion of DCMs and the factors driving them is a bit superficial. 

We agree with that not all of DCMs are driven by photoacclimation. Cornec et al. (2021) 
indicated that around half of DCMs are driven by photoacclimation and another half are 
DBMs. This situation in models is different to conditions within the “real” water column. In 
models, chlorophyll only represents live phytoplankton, while it will be excluded from the 
count after phytoplankton dies and is transfer to the detritus pool. However, in the real water 
column, chlorophyll can also be detected in died phytoplankton. In addition, Boyd et al. 
(2024) suggested DCM and DBM formation and persistence can be a result from recycled 
iron within the subsurface associated with the maximum in ammonium and upward silicate 
transport from depth which support diatom production. The challenge is most models do not 
simulate this well.  These structural difference between the real water column and models 
makes simulating DCMs in models challenging. In this case, the modelled DCMs are not as 
strong as them discovered in the water column. We will add related content to the manuscript 
to interpret the bias on DCMs between observation and simulation.  

We changed the expression by stating that roughly half of DCMs are driven by 
photoacclimation and added some related texts mentioned above. See lines 521-537.  

 
References 
 
---------- 
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chlorophyll maxima in the global ocean: Occurrences, drivers and characteristics. Global 
Biogeochemical Cycles, 35, e2020GB006759. https://doi. org/10.1029/2020GB006759 

  



We sincerely thank the Anonymous Referee #2 for the thorough and constructive comments on 
our manuscript. We appreciate the effort taken to highlight both the strengths and the 
shortcomings of our study, particularly regarding the use of observational data sets and the 
robustness of the model ranking exercise. Based on the instructions of the editorial support 
team of Copernicus Publications, we will provide a point-by-point response and outline the 
revisions we will undertake below before we make revision on the manuscript. Italic font will 
be used to distinguish our initial replies from the reviewer’ comments. Red colour font will be 
used to distinguish our responses after revision. The line numbers of our final responses with 
red colours are referred to the manuscript file with track-changes. 

The manuscript “Evaluating the performance of CMIP6 models in simulating Southern 
Ocean biogeochemistry” analyzes coupled carbon-climate Earth system model fidelity for 
surface chlorophyll, nitrate, silicate, and iron, the deep chlorophyll maximum, and particular 
organic carbon across subregions of the Southern Ocean to rank the models which is a highly 
valuable analysis given the historical challenges in both observations collection and model 
fidelity and importance of the Southern Ocean for heat and carbon uptake.  The biggest 
weakness of the current manuscript is the assumption that inter-model differences and biases 
should be attributed to biogeochemical formulation rather than the underlying physics, 
including representation of temperature, mixed layer depth, upwelling, and upper ocean 
stratification, transport, and turbulence, all of which are long standing challenges in the 
climate community.  While a detailed discussion of the potential of physical biases and their 
potential implications is outside the scope of the present manuscript, the possibility of 
physical attribution should be mentioned.  Otherwise I have only minor comments. 

We will mention that the underlying physics of each will be mentioned and that this can 
influence the performance of the BGC component of the model, especially in coastal system .  

We have mentioned some physical processes may affect the BGC performance, such the 
entrainment of iron-rich shelf waters by the iron-poor Antarctic Circumpolar Current through 
the Drake Passage, and the iron inputs from melting icebergs and sediments along the East 
Antarctic shelf, which can modulate nutrient and chlorophyll distributions. See lines 221-225, 
lines 335-345, lines 352-359, and lines 431-433.  

Specific comments by line number: 

9 - This assertion is highly overstated - see lines 67-82 which contradict this as well as such 
literature as: 

  

Frölicher, T.L., Sarmiento, J.L., Paynter, D.J., Dunne, J.P., Krasting, J.P. and Winton, M., 
2015. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 
models. Journal of Climate, 28(2), pp.862-886. 

  

Mongwe, N.P., Vichi, M. and Monteiro, P.M., 2018. The seasonal cycle of p CO 2 and CO 2 
fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models. 
Biogeosciences, 15(9), pp.2851-2872. 

  



Rickard, G.J., Behrens, E., Chiswell, S., Law, C.S. and Pinkerton, M.H., 2023. 
Biogeochemical and physical assessment of CMIP5 and CMIP6 ocean components for the 
southwest Pacific Ocean. Journal of Geophysical Research: Biogeosciences, 128(5), 
p.e2022JG007123. 

  

Nevison, C.D., Manizza, M., Keeling, R.F., Stephens, B.B., Bent, J.D., Dunne, J., Ilyina, T., 
Long, M., Resplandy, L., Tjiputra, J. and Yukimoto, S., 2016. Evaluating CMIP5 ocean 
biogeochemistry and Southern Ocean carbon uptake using atmospheric potential oxygen: 
Present‐day performance and future projection. Geophysical Research Letters, 43(5), 
pp.2077-2085. 

We will change open sentence of the abstract “yet the quality of its representation in Earth 
System Models (ESMs) remains unquantified” to “yet comprehensive assessments of its 
representation in Earth System Models (ESMs) are still limited” 

We have changed the open sentence of the abstract “yet the quality of its representation in 
Earth System Models (ESMs) remains unquantified” to “yet comprehensive assessments of 
its representation in Earth System Models (ESMs) are still limited” in lines 9-10.  

48 - which?  High iron requirement?  

More favourable nutrient condition is iron and silicon supply.  

We have added “particularly the supply of iron and silicon” in line 49.  

60 - by "integration of". do the authors mean "assessment with"?  It is not clear what "data" is 
integrated into these models to represent the Southern Ocean except for topography and 
radiative forcing. 

Models are constrained by some observed dataset. We will change “integration of” to 
“constrained by”.  

We have changed “integration of” to “constrained by” in line 61.  

99 - Why define the acronym when it is not used again until the acknowledgments and also 
defined there? 

We will remove “(NCI)” at line 99 and line 563.  

We have removed “(NCI)” at line 99. For the acronym in acknowledgement, this is the 
template of acknowledgement for NCI so we do not remove it.  

Eq 1-4 - These are all pretty common statistical definitions which could be removed for 
space. 

We will remove these equations.  

We have removed these equations.  

167 – “MPI-ESM models” should be “MPI-ESMs” 

We will change “MPI-ESM models” to “MPI-ESMs” at line 167, 250, 300, 337, and 386.  



We have changed “MPI-ESM models” to “MPI-ESMs”. 

225 - Should be "Fig. 1" to point to chlorophyll. 

We will change “Fig. 5” at line 225 to “Fig. 1”.  

We have changed “Fig. 5” at line 300 to “Fig. 1”.  

510-558 - The attribution here to biological complexity seems to  assume that the Southern 
Ocean physics that drives the biogeochemistry is perfect in these models.  This is not the case 
and is the subject of many papers.  Much of the focus has been on wind and sea ice biases 
and upper ocean stratification (e.g. Beadling et al, 2020), temperature, (Luo et al., 2023 and 
polynya (Mohrmann et al., 2021): 

Beadling, R. L., Russell, J. L., Stouffer, R. J., Mazloff, M., Talley, L. D., Goodman, P. J., ... & 
Pandde, A. (2020). Representation of Southern Ocean properties across coupled model 
intercomparison project generations: CMIP3 to CMIP6. Journal of Climate, 33(15), 6555-
6581. 

Luo, F., Ying, J., Liu, T., & Chen, D. (2023). Origins of Southern Ocean warm sea surface 
temperature bias in CMIP6 models. npj Climate and Atmospheric Science, 6(1), 127. 

Mohrmann, M., Heuzé, C., & Swart, S. (2021). Southern Ocean polynyas in CMIP6 models. 
The Cryosphere, 15(9), 4281-4313. 

We accept the reviewer’s critique that this section over-attributes biases to biological 
complexity without considering physical drivers. Although a detailed discussion of the 
potential of physical biases and their potential implications is outside the scope of the 
manuscript, we will add some content to discuss the effect of physical attributes on 
biogeochemical performance.  

In the case that we have mentioned some physical processes may affect BGC performance, 
we have added a paragraph to state the future improvement for physical processes in lines 
660-666.   
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