



# 1 Modeling surface water and groundwater mixing and mixing-dependent denitrification

## 2 with bedform dynamics

4 Xue Ping<sup>1</sup>, Zhang Wen<sup>1,2\*</sup>, Yang Xian<sup>1</sup>, Menggui Jin<sup>1,2</sup>, Stefan Krause<sup>3</sup>

<sup>8</sup> <sup>1</sup>Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of  
<sup>9</sup> Environmental Studies, China University of Geosciences, Wuhan, China

10 <sup>2</sup>State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences,  
11 Wuhan, China

12 <sup>3</sup>School of Geography, Earth and Environmental Sciences, University of Birmingham, UK

13

14 \*Corresponding author: Zhang Wen ([wenz@cug.edu.cn](mailto:wenz@cug.edu.cn))

15



16    **Abstract** The hyporheic zone (HZ), where surface water (SW) and groundwater (GW) interact and  
17    mix, acts as a critical interface that attenuates contaminants through enhanced biogeochemical  
18    cycling. While bedform migration significantly influences hyporheic exchange and non-mixing-  
19    driven reactions of solutes from upstream SW, the effects of bedform migration on SW-GW mixing  
20    dynamics and mixing-triggered biogeochemical reactions—particularly under gaining stream  
21    conditions—remain poorly understood. Pioneering a coupled hydrodynamic and reactive transport  
22    model that incorporates bedform migration this paper systematically examines nitrogen processing  
23    for scenarios of variable sediment grain size, stream velocities, and upwelling GW fluxes. Results of  
24    this study reveal that SW-GW mixing and mixing-triggered denitrification zones progressively  
25    transition from crescent shapes into uniform band-like configurations as bedforms migrate. Both  
26    hyporheic exchange flux and mixing flux increase with increasing stream velocity and associated  
27    bedform celerity. The mixing proportion and mixing zone size increase at the start of migration,  
28    while they remain approximately constant when turnover becomes the dominant water exchange  
29    mechanism for fine-medium sandy riverbed. Fast stream flows and migrating bedforms reduce solute  
30    residence timescales and limits denitrification opportunities. Consequently, nitrate removal efficiency  
31    from both stream- and groundwater-borne sources decreases significantly with bedform migration in  
32    fine-medium sandy sediments. The self-purification capacity of the HZ, and particularly its  
33    functioning as a natural barrier against GW contamination, is hindered under such dynamic bedform  
34    conditions. These findings highlight the need to maintain stable bedform conditions in restoration  
35    projects to enhance the capacity of HZ contaminant attenuation.

36    **1. Introduction**



37 Anthropogenic activities such as the intensification of agricultural practices with its increased  
38 used of mineral and organic fertilizers, together with high livestock densities and emissions of  
39 inadequately treated domestic and industrial wastewater have significantly increased nitrogen  
40 loading to rivers and groundwater, which impacts water quality, causing eutrophication, hypoxic and  
41 related deterioration of ecosystem functions (Conley et al., 2009; Rouse et al., 1999). Long-term  
42 regulatory monitoring data (e.g., from the UK) indicate that nitrate levels have stabilized in many  
43 rivers, while nitrate concentrations in groundwater-fed rivers continue to increase (Burt et al., 2011;  
44 Howden and Burt, 2008). The persistence of nitrate contamination in groundwater and associated  
45 risks of a “nitrate time bomb” (Ascott et al., 2019) has highlighted the urgency of exploring the  
46 potential of natural microbial processes to mediate nitrate transformation and removal in riverbed  
47 sediments (Shelley et al., 2017; Lansdown et al., 2015; Rivett et al., 2008).

48 The hyporheic zone (HZ) has received significant attention for its potential to facilitate  
49 enhanced nitrate transformation and removal via denitrification that is a primary process permanently  
50 reducing nitrate, with hyporheic exchange flows (HEFs) acting as a critical mechanism for  
51 transporting nitrate-rich surface water to the riverbed sediments where microbial activities and  
52 biogeochemical reaction rates are enhanced (Boano et al., 2014; Boulton et al., 1998; Cardenas,  
53 2015; Xian et al., 2022; Krause et al., 2022). It has for long been assumed that predominantly stream  
54 waters provide inputs of bioavailable (mainly dissolved) organic carbon (DOC), oxygen (O<sub>2</sub>) and  
55 nitrate (NO<sub>3</sub>) into the riverbed where the residence and rection times determine the occurrence of  
56 aerobic respiration and the potential for shifts into anaerobic conditions that may facilitate  
57 denitrification along the HEF paths in the presence of enough remaining DOC (Zarnetske et al.,  
58 2011a, b). These hydrological and biogeochemical mechanisms are in this form mainly



59 representative of headwater streams, where the HEF is induced by stream flow turbulence (Boano et  
60 al., 2011; Roche et al., 2018, 2019), local geomorphological setting (Cardenas et al., 2008; Marzadri  
61 et al., 2012; Tonina and Buffington, 2007), and flow obstacles such as woody debris, streambed  
62 engineering or restoration structures (Briggs et al., 2013; Wondzell et al., 2009), and hyporheic  
63 nitrate removal processes expected to mainly occur at the middle to end- hyporheic flow paths within  
64 HEF cell sediments.

65 In lowland systems, groundwater-fed streams and rivers in permeable catchments will be  
66 dominated by base flow of often nitrate enriched groundwaters. The subsurface hydrological  
67 conditions are driven by horizontal HEF as well as vertical fluxes resulting from regional  
68 groundwater flow toward (or from) the stream. Spatial variability in regional groundwater flow can  
69 significantly affect hyporheic exchange and biogeochemical cycling (Boano et al., 2013; Krause et  
70 al., 2013; Munz et al., 2011; Naranjo et al., 2015). It is important to note that the groundwaters of  
71 many piedmont plains and lowlands are often contaminated with high nitrate concentrations, but  
72 usually low in bio-available DOC (Krause et al., 2022). When nitrate-rich groundwater upwells  
73 through deeper sediments and reaches a region enriched in availability of DOC, nitrate reduction  
74 processes are significantly facilitated in the condition (Krause et al., 2009; Naranjo et al., 2015; Ping  
75 et al., 2023; Trauth et al., 2017). Stelzer and Bartsch (2012) developed such a conceptual framework  
76 of nitrate-rich gaining fluvial setting from 8 sites in the Waupaca River Watershed with three order  
77 magnitude in groundwater nitrate concentration. Lansdown et al. (2014) also measured high  
78 denitrification rate at deep sediment in the coarse-grained sediments typical of groundwater-fed  
79 system, located within the River Leith (Cumbria, UK) where diverse nitrogen concentration changes  
80 were confirmed earlier (Krause et al., 2009).



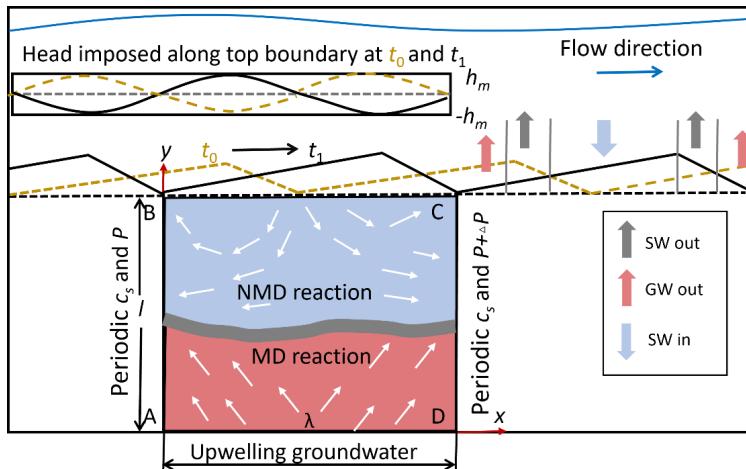
81 Turnover and removal of the large amounts of  $\text{NO}_3^-$  from groundwater require DOC either from  
82 autochthonous streambed sources or from downwelling surface water to stimulate nitrate reduction  
83 (Krause et al., 2013, 2022; Ping et al., 2023; Sawyer, 2015; Trauth et al., 2017). For coarse grain or  
84 sandy riverbeds with low autochthonous organic matter content, stream-borne DOC dominates the  
85 supply of carbon sources for nitrogen transformation processes. Sandy sediments with less  
86 autochthonous organic carbon sources covering the majority of alluvial riverbeds are commonly  
87 characterized by topographical features such as ripples, dunes, and riffle-pool sequenced. The typical  
88 and multiple HEF cells induced by bedform topography are generally in crescent shapes (Fox et al.,  
89 2014; Wu et al., 2024). The downward advection of stream borne DOC provides electron donor and  
90 mixes with nitrate-rich and anoxic groundwater. It has been shown that the highest potential for  
91 mixing triggered denitrification is often found at the margin of the HEF cells, which represents the  
92 last natural protection before nitrate enter a stream (Hester et al., 2013, 2014; Gu et al., 2008;  
93 Nogueira et al., 2022).

94 The effects of mixing triggered denitrification on groundwater borne nitrate transformation in  
95 HZs have been studied almost exclusively for the case of stationary, that is immobile bedforms  
96 (Hester et al., 2017, 2019; Trauth and Fleckenstein et al., 2017; Ping et al., 2023). Bedforms are  
97 mobile in dynamic equilibrium or undergo constant changes during periods of moderate to high  
98 stream flow, and they are typically found in medium and larger waterways under realistic field  
99 conditions (Bartholdy et al., 2015; Risse-Buhl et al., 2023; Schindler et al., 2015). For example,  
100 Harvey et al. (2012) observed the migrating bedforms of dunes (with a median grain size  $D_{50}$  of 380  
101  $\mu\text{m}$ ) at a velocity of 57.6 cm/h during base flow in the “Clear Run” stream in eastern North Carolina,  
102 USA. Ahmerkamp et al. (2017) found that the ripple bedforms for sands ( $D_{50} = 63 \mu\text{m}$ ) ranged from



103 11 to 29 cm with a constant ratio of bedform height and length at 1/9, and migrated at velocities of  
104 0.7–6.5 cm/h in the German Bight, Southeastern part of the North Sea. Bedforms migration  
105 complicates the development of hyporheic flow fields, increases solute exchange, alters redox  
106 conditions in riverbeds, and affects contaminant transport and transformation (Ahmerkamp et al.,  
107 2015; Schulz et al., 2023; Peleg et al., 2024). Specifically, bedform migration has negative influences  
108 on non-mixing-dependent denitrification (where nitrate and DOC are both derived from surface  
109 water and travel together along the flow paths) rate and nitrate removal efficiency (Jiang et al., 2022;  
110 Kessler et al., 2015; Ping et al., 2022; Zheng et al., 2019). However, no studies have yet investigated  
111 and explored the effects of bedforms migration on mixing of surface water and groundwater, as well  
112 as its controls and implications for mixing triggered denitrification reaction in groundwater-fed  
113 streams and rivers.

114 In this study, numerical modeling of hyporheic flow and multi-component solute transport is  
115 used to study the effect of bedform migration on mixing-dependent denitrification in the HZ of a  
116 gaining river, where the overlying water is induced into the sediment by ripple-type bedforms. The  
117 objectives of this study are to determine the effects of bedform migration on the overall extent and  
118 magnitude of mixing of surface water and upwelling groundwater, as well as its influences on  
119 groundwater borne nitrate transport and transformation.


120 **2. Methods**

121 **2.1 Model description**

122 Hyporheic flow, solute transport, and biogeochemical reactions were modelled in saturated  
123 sediments beneath a riverbed. Ripples form in the riverbed and migrate downstream due to sediment



124 bedload transport processes. The stream geometry is parameterized through its slope  $S$ , average water  
125 depth  $H$ , and mean velocity  $U$ . Triangular shaped ripple bedforms of wavelength  $\lambda$  are considered to  
126 develop and migrate downstream by a unidirectional average velocity  $u_c$ . Flow is driven by pumping  
127 (pressure variation along the bedform surface) and bedform migration processes and influenced by  
128 upwelling groundwater.



129

130 **Figure 1.** Schematic of the model domain with bed form geometry and boundary conditions. Stream  
131 flow and bedform migration are from left to right. The dashed yellow lines represent the streambed  
132 surface and head profile at time  $t_0$ , and the solid black lines represent the streambed surface and head  
133 profile after migration at  $t_1$ . “SW in” is where surface water enters the riverbed, and “SW out” is  
134 where surface water discharges to the stream, and “GW out” is along the upstream and downstream  
135 sides of bedforms where groundwater discharges to the stream. The gray band represents the mixing  
136 zone of surface water and groundwater. NMD reaction=non-mixing-dependent reaction and MD  
137 reaction=mixing-dependent reaction.

138 As bed migration occurs, sediment erosion and deposition primarily take place in the surface



139 layer of the streambed, thereby leading to the formation of bedforms such as ripples and dunes. In  
140 contrast, sediments in the deeper streambed layers remain relatively stable (Harvey et al., 2012;  
141 Precht et al., 2004). As illustrated in Figure 1, from the perspective of an observer stationary at a  
142 target riverbed segment with horizontal length  $\lambda$ , bedforms and their associated pressure fields  
143 migrate downstream at velocity  $u_c$  over the deeper immobile sediments (Ping et al., 2022; Teitelbaum  
144 et al., 2022). Given that ripple heights are negligible compared to the depth of the stable sediment  
145 domain, the undulating riverbed can be reasonably approximated as a flat bed with time-varying  
146 pressure patterns during bedform migration. Given the periodic nature of the morphological feature,  
147 we only focused on a representative section and constructed a two-dimensional rectangular domain  
148 of length 0.2 m and depth 0.16 m for modeling.

149 **2.2 Model formulation**

150 The pore water flow was calculated using Darcy's law and the groundwater flow equation:

$$151 \quad \nabla \cdot (-K \nabla h) = 0 \quad (1)$$

152 where  $h$  [L] is the hydraulic head, and  $K$  [L T<sup>-1</sup>] is the hydraulic conductivity.

153 The head profile on the streambed surface (BC) was described as a sinusoidal function that  
154 moves downstream by the ripple's migration velocity  $u_c$  (Ping et al., 2022):

$$155 \quad h|_{y=l} = h_m \cdot \sin m(x - u_c dt) \quad (2)$$

156 where  $h_m$  [L] is the amplitude of the head variation,  $m$  [-] is the wave number of the variation ( $m =$   
157  $2\pi/\lambda$ ), the head difference is related to the properties of the overlying flow (Elliott and Brooks, 1997):

$$158 \quad h_m = a \frac{U^2}{2g} \left( \frac{H_d / H}{0.34} \right)^n \quad (3)$$

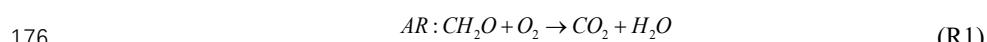


159 where  $a = 0.28$  [-] is a dimensionless coefficient,  $U$  [L T<sup>-1</sup>] is the average stream velocity,  $H_d$  [L] is  
160 the height of the ripple,  $H$  [L] is the water depth, and  $g$  [L T<sup>-2</sup>] is the gravity acceleration. The  
161 exponent  $n$  equals to 3/8 if  $H_d < 0.34H$  and 3/2 otherwise.

162 The transport of reactive solutes within the streambed sediment was described by the advection-  
163 dispersion-reaction equation:

164

$$\frac{\partial c_i}{\partial t} - \nabla \cdot (\mathbf{D}_{ij} \nabla c_i) + \nabla \mathbf{v} \cdot \mathbf{c}_i = R_i \quad (4)$$


165 where  $c_i$  [M L<sup>-3</sup>] represents the concentration of reactive components,  $\mathbf{v}$  [L T<sup>-1</sup>] is the seepage or  
166 linear pore water velocity,  $\mathbf{D}_{ij}$  [L<sup>2</sup> T<sup>-1</sup>] is the hydrodynamic dispersion and is defined by Bear and  
167 Verruijt (1998):

168

$$\mathbf{D}_{ij} = (\alpha_L - \alpha_T) \cdot \frac{\mathbf{v}_i \mathbf{v}_j}{|\mathbf{v}|} + \delta_{ij} \cdot (\alpha_T |\mathbf{v}| + \theta \cdot \iota D_m) \quad (5)$$

169 where  $\alpha_L$  [L] and  $\alpha_T$  [L] are longitudinal and transverse dispersivities, respectively,  $D_m$  [L<sup>2</sup> T<sup>-1</sup>] is  
170 molecular diffusion coefficient and  $\iota$  [-] is tortuosity.

171 The reactive transport model considered three chemical species: DOC, O<sub>2</sub>, and NO<sub>3</sub><sup>-</sup>. In order to  
172 distinguish non-mixing-dependent and mixing-dependent denitrification, we divided nitrate into two  
173 separate pools, denoted s-NO<sub>3</sub><sup>-</sup> for nitrate transported from the surface water and g-NO<sub>3</sub><sup>-</sup> for nitrate  
174 from upwelling groundwater. The biogeochemical reactions are aerobic respiration (AR), non-  
175 mixing-dependent, and mixing-dependent denitrification (DN):





178 Reaction rates were defined using Monod kinetics (Zarnetske et al., 2012):

$$179 R_{AR} = V_{AR} \times X_{AR} \times \frac{c_{O_2}}{c_{O_2} + K_{O_2}} \times \frac{c_{DOC}}{c_{DOC} + K_{DOC}} \quad (6)$$

$$180 R_{DN} = V_{DN} \times X_{DN} \times \frac{c_{s/g-NO_3^-}}{c_{s/g-NO_3^-} + K_{NO_3^-}} \times \frac{c_{DOC}}{c_{DOC} + K_{DOC}} \frac{K_{inh}}{K_{inh} + c_{O_2}} \quad (7)$$

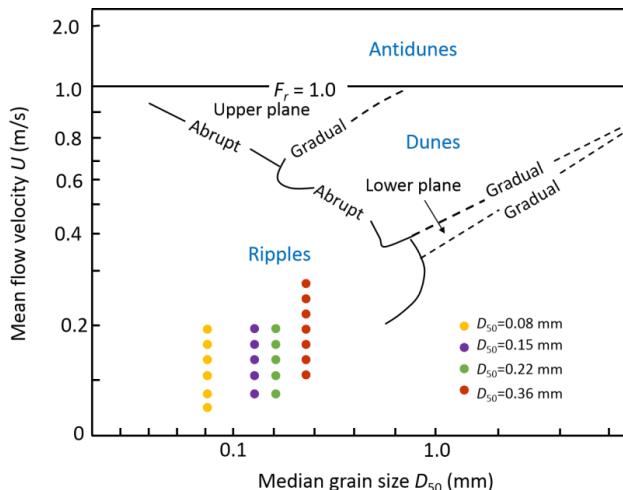
181 The reaction terms  $R_i$  was given by

$$182 R_{s-NO_3^-} = -R_{DN}(c_{s-NO_3^-}) \quad (8)$$

$$183 R_{g-NO_3^-} = -R_{DN}(c_{g-NO_3^-}) \quad (9)$$

$$184 R_{O_2} = -R_{AR} \quad (10)$$

$$185 R_{DOC} = -R_{AR} - 0.8(R_{DN}(c_{s-NO_3^-}) + R_{DN}(c_{g-NO_3^-})) \quad (11)$$


186 where  $V_{AR}$  and  $V_{DN}$  [ $T^{-1}$ ] are the maximum reaction rate of aerobic respiration and denitrification,  $X_{AR}$   
187 and  $X_{DN}$  [ $M L^{-3}$ ] are the biomass of functional microbial groups facilitating the reaction components  
188 of AR and DN.  $K_{inh}$  [ $M L^{-3}$ ] is a non-competitive inhibition factor used for representing inhibition of  
189 DN given oxygen availability.

190 The lateral boundaries AB and DC were set to be periodic boundaries:  $P(0, y, t) = P(\lambda, y, t)$   
191  $+ \Delta P$ ,  $c_i(0, y, t) = c_i(\lambda, y, t)$  and  $\partial c_i(0, y, t) / \partial y = \partial c_i(\lambda, y, t) / \partial y$ . The additional pressure drop  $\Delta P$  [ $M$   
192  $L^{-1} T^{-2}$ ] is derived from the streambed gradient and calculated using  $\Delta P = S \rho g \lambda$ . The top boundary BC  
193 was specified as an open Dirichlet boundary with constant solute concentrations in the stream. An  
194 upward groundwater flux with constant nitrate concentration was specified at the bottom boundary  
195 AD to mimic a nitrate polluted groundwater discharge.



196 **2.3 Bedform migration**

197 The mechanisms of bedform initialization, formation and migration are initiated through a set of  
198 criteria to ensure that ripples are expected to form under the modeled scenarios and reach a state of  
199 dynamic equilibrium, where the ripples remain mobile while maintaining their shape. The  
200 development of ripples is assessed under different conditions of median particle size  $D_{50}$  and flow  
201 velocity based on a set of quantitative criteria (as reference in Ping et al., 2022 for criteria on ripple  
202 formation). For a specific grain size of streambed sediment, particular stream velocities that fulfill all  
203 these criteria for the development of ripple bedforms that are mobile under dynamic equilibrium are  
204 selected (Figure 2). All simulation scenarios were listed in the Table S3 in the supplementary  
205 material.



206

207 **Figure 2.** The bedform stability diagram (modified from Ashley, 1990) showing the bedform  
208 properties and hydraulic conditions considered in this study.

209 Ripple migration velocities are implemented using an empirical relation after Coleman and  
210 Melville (1994), which was derived from flume experiments:



211

$$\frac{u_c}{(u^* - u_{cr}^*)(\tau^* - \tau_{cr}^*)} \left( H_d / D_{50} - 3.5 \right)^{1.3} = 40 \quad (12)$$

212 where  $D_{50}$  [L] is the median grain size,  $u^* = (gHS)^{0.5}$  [L T<sup>-1</sup>] is the bed shear velocity,  $S$  [-] is the  
213 stream gradient and calculated by Chezy equation ( $U = H^{2/3}S^{1/2}/n$ , where  $n$  [-] is the Manning  
214 coefficient and assumed to be 0.02 for sand).  $u_{cr}^*$  [L T<sup>-1</sup>] is the critical bed shear velocity and it can  
215 be calculated by the critical Shield parameter  $\tau_{cr}^*$  ( $\tau_{cr}^* = \tau_{cr} / g(\rho_s - \rho)D_{50}$ ,  $u_{cr}^* = (\tau_{cr} / \rho)^{0.5}$ ,  $\rho_s$  [M L<sup>-3</sup>]  
216 and  $\rho$  [M L<sup>-3</sup>] are the density of sediment and water), and  $\tau^*$  is the shield number related to the bed  
217 shear velocity ( $\tau^* = u^* / rgD_{50}$ ). The critical shields parameter defines the threshold for the  
218 initialization of motion. The derived celerity was substituted into Equation (2) to determine the  
219 migration of sinusoidal head profile with ripples moving.

220 **2.4 Governing non-dimensional numbers**

221 The characteristics of the modeled system were depicted by a series of non-dimensional  
222 numbers, which represent the relative dominance of various forces, transport, and reaction processes  
223 in this system. Firstly, we used the Reynolds number  $Re$  to characterize the flow condition of surface  
224 water (Cardenas and Wilson, 2006):

225

$$Re = \frac{UH_d}{v} \quad (13)$$

226 where  $v$  [L<sup>2</sup> T<sup>-1</sup>] represents kinematic viscosity of water.

227 We introduced the dimensionless parameter  $U_r$  [-] to represent the relative magnitude of  
228 bedform celerity and the pressure-induced pore water velocity driven by pressure variation over the  
229 ripple surface and upwelling groundwater:



230

$$U_r = \frac{\theta \cdot u_c - u_s}{u_p} \quad (14)$$

231 where  $u_s$  [L T<sup>-1</sup>] is the seepage velocity of the underflow induced by stream gradient ( $u_s = KS$ ), and  
232 thus the characteristic horizontal velocity is  $u_c - u_s/\theta$ .  $u_p/\theta$  [L T<sup>-1</sup>] is the pore water velocity induced  
233 by pumping process and is calculated using the analytical solution after Boano et al. (2009) and Fox  
234 et al. (2014) accounting for vertical groundwater flux ( $u_q$ ):

235

$$u_p = u_{p,0} \sqrt{1 - (u_q / \pi u_{p,0})^2} + (|u_q| / \pi) \sin^{-1} (|u_q| / \pi u_{p,0}) - (|u_q| / 2) \quad (15)$$

236

$$u_{p,0} = a \frac{KU^2}{g\lambda} \left( \frac{H_d/H}{0.34} \right)^m \quad (16)$$

237 where  $u_{p,0}$  represents the hyporheic exchange driven by pressure variation over the sediment-water  
238 interface; if  $U_r > 1$ , turnover process dominates and controls the hyporheic exchange, otherwise, the  
239 system is pumping process dominated (Jiang et al., 2022).

240

The relative magnitude of hyporheic exchange flux driven by pressure variation along the ripple  
241 surface and upwelling groundwater flux is determined as:

242

$$U_b = \frac{u_q}{u_{p,0}} \quad (17)$$

243

The relative dominance of hyporheic exchange and biogeochemical reaction in nitrate removal  
244 can be defined by the Damköhler number (Ocampo et al., 2006; Zarnetske et al., 2012; Zheng et al.,  
245 2019):

246

$$Da = \frac{\tau_T}{\tau_R} \quad (18)$$

247 the characteristic timescale for the transport of solutes through the ripple is estimated as (Azizian et



248 al., 2015):

249 
$$\tau_r = \frac{\lambda\theta}{\pi^2 u_p} \quad (19)$$

250 and the reaction timescale  $\tau_r$  represents the time needed to consume dissolved oxygen of hyporheic

251 water to a prescribed anoxic environment threshold (2 mg/L). The reaction timescale is described as:

252 
$$\tau_r = \frac{\ln(c_{O_2}/c_{O_2,lim})}{V_{AR}} \quad (20)$$

253 biogeochemical reactions are transport-limited when  $Da < 1$ . The biogeochemical reactions

254 depended on reaction kinetics due to the brevity of the time that reactants spend within the HZ.

255 Under these low  $Da$  conditions, the HZ remains oxic conditions, resulting in a minimal or no

256 denitrification to occur. Conversely, when  $Da > 1$ , the residence time of reactants exceeds the

257 reaction time, and thus oxygen is consumed and favors for the occurrence of denitrification in anoxic

258 conditions (Jiang et al., 2022; Zarnetske et al., 2011a).

259 **2.5 Model setup and parametrization**

260 All parameter values in this study were shown in Table 1. The bedform geometry of Ping et al.

261 (2022) was adopted for this study (streambed length and height:  $\lambda = 0.2$  m and  $l = 0.16$  m; the ripples

262 located at  $\lambda_c = 0.15$  m with a height of  $H_d = 0.02$  m). Here grain sizes  $D_{50}$  of 0.08, 0.15, 0.22 and 0.36

263 mm were considered, typically falling within characteristic grain diameters on sandy riverbeds

264 (Ahmerkamp et al., 2017; Harvey et al., 2012). We used the empirical relation  $k = Da \times 735 \times 10^6 \times D_{50}^2$

265 (where  $Da = 9.869 \times 10^{-13}$  is the conversion factor for unit Darcy to  $m^2$ ; Gangi, 1985).

266 The concentrations of DOC,  $O_2$ , and  $s-NO_3^-$  in stream were specified as 30 mg/L, 8 mg/L, and 5

267 mg/L. This configuration represents a pristine stream characterized by moderate nutrient levels



268 (Ocampo et al., 2006). The  $\text{g-NO}_3^-$  in groundwater was set as 15 mg/L, representing the chemical  
269 signature of nitrate-contaminated groundwater that lacks both oxygen and organic matter (Hester et  
270 al., 2014). The maximum reaction rate and corresponding functional microbial concentration for AR  
271 and DN are listed in Table 1, the choose biogeochemical values are consistent with the parameter  
272 setting of nutrient cycling in hyporheic zones and riparian zones (Gu et al., 2008; Nogueira et al.,  
273 2021; Zarnetske et al., 2012).

274 **Table 1.** Model parameters used in numerical simulations

| Parameter                       | Description                                           | Value                |
|---------------------------------|-------------------------------------------------------|----------------------|
| $l$ [m]                         | Streambed depth                                       | 0.16 <sup>a, b</sup> |
| $l_c$ [m]                       | Ripple crest                                          | 0.15 <sup>a, b</sup> |
| $\lambda$ [m]                   | Wavelength of ripple                                  | 0.2 <sup>a, b</sup>  |
| $H_d$ [m]                       | Height of ripple                                      | 0.02 <sup>a, b</sup> |
| $H$ [m]                         | Stream water depth                                    | 0.1 <sup>a, b</sup>  |
| $\theta$ [1]                    | Porosity                                              | 0.38                 |
| $\alpha_L$ [m]                  | Longitudinal dispersivity                             | 0.01                 |
| $\alpha_T$ [m]                  | Transverse dispersivity                               | 0.001                |
| $K_{inh}$ [mg L <sup>-1</sup> ] | Inhibition constant                                   | 0.25 <sup>c, d</sup> |
| $K_{DOC}$ [mg L <sup>-1</sup> ] | Half-saturation constant for dissolved organic carbon | 6 <sup>c, d</sup>    |
| $K_{NO3}$ [mg L <sup>-1</sup> ] | Half-saturation constant for nitrate                  | 1 <sup>c, d</sup>    |
| $K_{O2}$ [mg L <sup>-1</sup> ]  | Half-saturation constant for dissolved oxygen         | 0.5                  |
| $V_{DN}$ [h <sup>-1</sup> ]     | Maximum specific uptake rate for denitrification      | 1 <sup>c, d</sup>    |
| $V_{AR}$ [h <sup>-1</sup> ]     | Maximum specific uptake rate for aerobic respiration  | 2 <sup>c, d</sup>    |



|                                      |                                                     |    |
|--------------------------------------|-----------------------------------------------------|----|
| $C_{DOC}$ [mg L <sup>-1</sup> ]      | Concentration of dissolved organic carbon in stream | 30 |
| $C_{O_2}$ [mg L <sup>-1</sup> ]      | Concentration of dissolved oxygen in stream         | 8  |
| $C_{s-NO_3^-}$ [mg L <sup>-1</sup> ] | Concentration of nitrate in stream                  | 5  |
| $C_{g-NO_3^-}$ [mg L <sup>-1</sup> ] | Concentration of nitrate in groundwater             | 15 |

275 <sup>a</sup> Janssen et al. (2012) <sup>b</sup> Ping et al. (2022) <sup>c</sup> Zarnetske et al. (2012) <sup>d</sup> Sawyer (2015)

276 The following distinct model experiments were carried out: The Reynolds number, i.e., mean  
277 stream velocity, was varied for  $Re = 2000\text{--}6000$  in intervals of 500, with corresponding stream water  
278 velocities of  $U = 0.1\text{--}0.3$  m/s. The range of  $U_b$  was set from 0.3 to 0.7 in intervals of 0.1. A larger  
279 upward flux than  $0.9 \times u_{p,0}$  would eliminate the entire hyporheic flow cell, thus we set the maximum  
280 boundary flux at a value slightly below this threshold. Meanwhile a minimum of  $0.2 \times u_{p,0}$  ensures  
281 that upwelling groundwater is still mixing with surface water with minor influences on hyporheic  
282 flow cell.

283 The finite element software, COMSOL Multiphysics (version 6.1) was used to solve the Darcy  
284 flow and multi-component solute transport model. The domain was discretized with a grid spacing  
285 from  $4 \times 10^{-4}$  to 0.2 cm, the resultant mesh consisting of 19,940 elements. To maintain a constant  
286 bedform displacement ( $\Delta x$ ) per timestep, the simulation was conducted with  $\Delta x = 2$  cm, while  $dt$  was  
287 adjusted in inverse proportion to the migration celerity  $u_c$ . The total duration of the simulation was  
288 set to be equal to the time needed for hundreds of ripples to travel across the modeled domain until  
289 the hyporheic exchange and biogeochemical processes reached quasi-steady states.

290 **2.6 Model Metrics**

291 **2.6.1 Mixing of surface water and groundwater**



292 Mixing occurs at the interface between regions of advected surface water and upwelling  
293 groundwater, where the flow paths from these two sources run parallel to each other. We specified a  
294 constant concentration of conservative tracer ( $c_{gw} = 1 \text{ mg/L}$ ) in groundwater to represent  
295 groundwater. The tracer plume is used to visualize the surface water and groundwater mixing size  
296 and calculate the mixing magnitude quantitatively. The mixing zone is defined as the area where the  
297 groundwater proportion varies between 16% and 84% (Santizo et al., 2020). The size of the surface  
298 water and groundwater mixing zone ( $A_{mix}$ ) was calculated by integrating the area where the  
299 concentration of the conservative tracer ranges from 0.16 to 0.84 mg/L.

300 The amount of tracer mass that undergoes mixing as it transitions from flow paths originating at  
301 the bottom boundary to those emerging at the streambed surface was quantified to determine the net  
302 effect of mixing occurring along the entire length of the mixing zone. The streambed surface was  
303 divided into three zones (Figure 1): “SW IN”, where surface water enters the bed; “SW OUT”, where  
304 surface water discharges back into the overlying water column; and “GW OUT”, where upwelling  
305 groundwater discharges into the stream. The mass flux for the SW OUT zone was used to describe  
306 mixing. If no mixing occurred, all the conservative tracer mass entering the model at the bottom  
307 boundary would exit through the GW OUT zone on the streambed surface. The mixing flux (MF)  
308 across the sediment-water interface was determined by integrating the Darcy flux flowing outward  
309 through the SW OUT zone, representing the total cumulative effect of mixing along the entire length  
310 of the mixing zone (Hester et al., 2013).

### 311 **2.6.2 Nitrate reaction rate and efficiency**

312 When the hydro-physical and biogeochemical conditions reach a quasi-steady state, we select



313 the last 10 periods of ripple migration and calculate the total amount of stream- or groundwater-

314 borne nitrate being induced into the riverbed during the time interval:

$$315 \quad M_{in,s-NO_3^-} = B \int_{\Delta T} c_{s-NO_3^-} F_{SWI} dL_{top} dT \quad (21)$$

$$316 \quad M_{in,g-NO_3^-} = B \int_{\Delta T} c_{g-NO_3^-} q dL_{bottom} dT \quad (22)$$

317 where  $B$  [L] is the per unit width,  $F_{SWI}$  [L T<sup>-1</sup>] is the inward flux across the ripple surface.

318 The total amount of nitrate removed by non-mixing-dependent (NMD) denitrification and

319 mixing-dependent (MD) denitrification are calculated as follows during the same time interval:

$$320 \quad M_{NMD} = B \int_{\Delta T} \int R_{DN}(c_{s-NO_3^-}) dA dT \quad (23)$$

$$321 \quad M_{MD} = B \int_{\Delta T} \int R_{DN}(c_{g-NO_3^-}) dA dT \quad (24)$$

322 where  $A$  [L<sup>2</sup>] is the area of the streambed.

323 The nitrate removal efficiency is defined as the ratio of the amount of nitrate being removed by

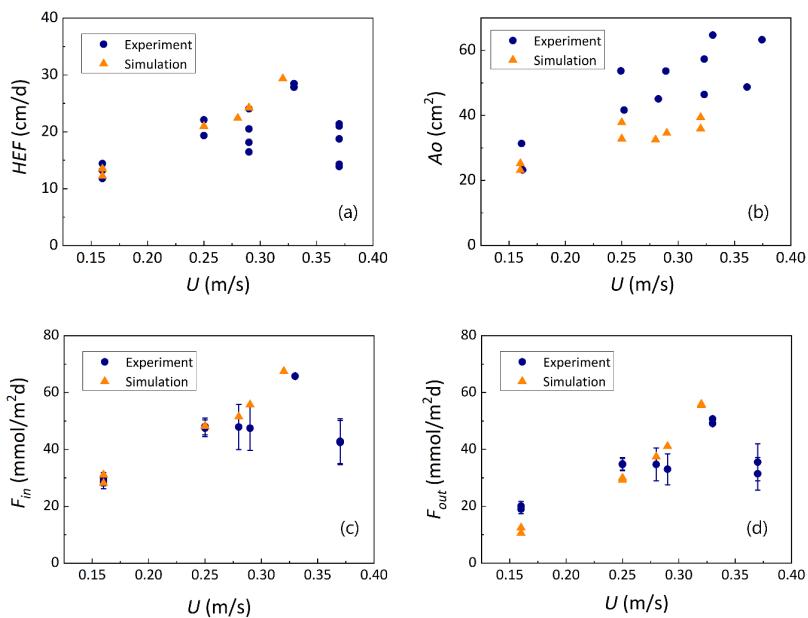
324 DN to the amount of nitrate being induced into the riverbed:

$$325 \quad N_{RE-NMD} = \frac{M_{NMD}}{M_{in,s-NO_3^-}}, \quad N_{RE-MD} = \frac{M_{MD}}{M_{in,g-NO_3^-}} \quad (25)$$

### 326 3. Results

#### 327 3.1 Model validation

328 The model development was validated by comparison to flume experiments of Wolke et al.


329 (2019) that were conducted to study the evolution of oxygen in the riverbed under different

330 conditions of mean stream velocity (0.16–0.32 m/s) and bedform migration celerity (0–0.394 cm/h).

331 No upwelling flux of groundwater was considered at the bottom of the riverbed. The experiment was



332 designed with a total of 5 operating conditions, each of which was repeated twice and labeled as Set  
333 1 and Set 2. Based on the criteria for ripple migration, it was determined that under the hydraulic  
334 conditions of Run 5, ripples could not migrate while maintaining their shapes due to increased flow  
335 intensity. Therefore, the model validation simulations considered four hydraulic conditions of Run 1  
336 to 4.



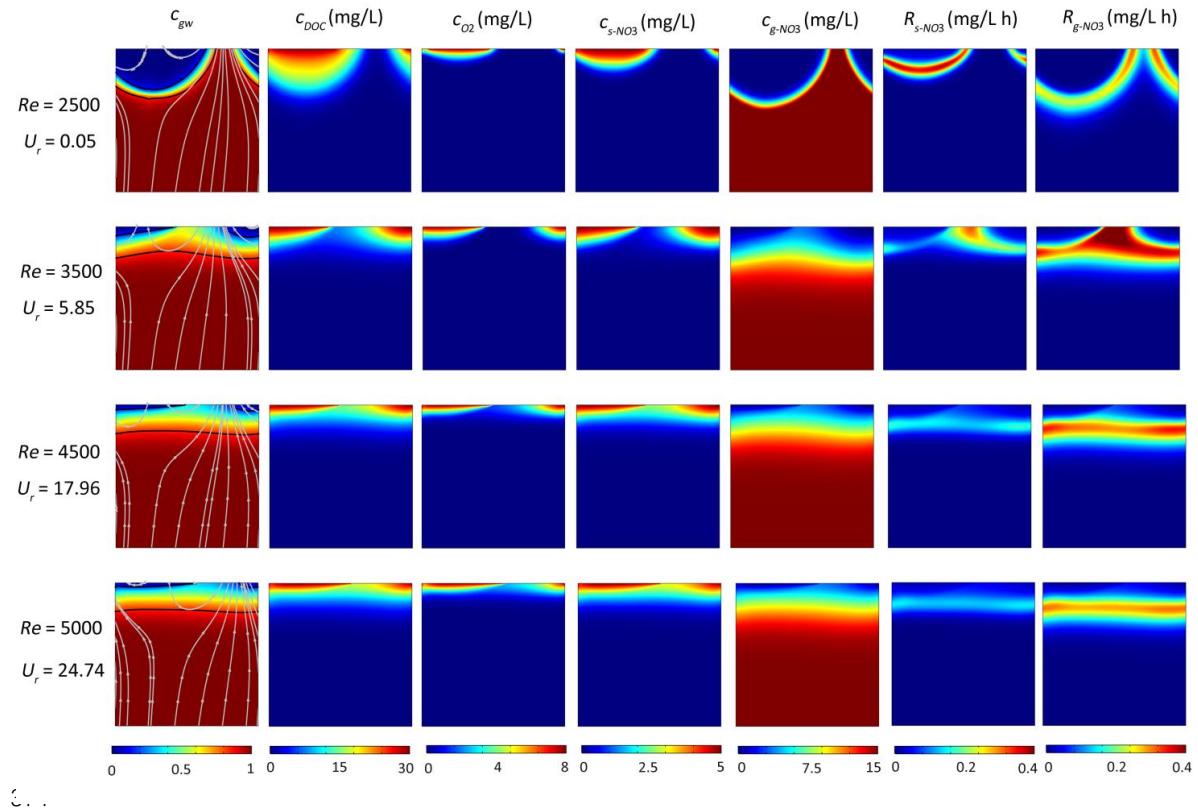
337

338 **Figure 3.** Comparison of numerical modeled (a) hyporheic exchange flux, (b) summed oxic zone and  
339 (c) oxygen influx and (d) oxygoutflux and experimental measurements by Wolke et al. (2019) under  
340 various conditions.

341 The parameters used for model validation are shown in supporting information Table S1 and S2.  
342 In stationary and slow-migrated beds, the spatial distribution of oxygen creates a typical  
343 conchoidally-shaped plume in the riverbed. In contrast, for fast-migrated beds, the oxygen plume  
344 becomes a more uniform front (Ping et al., 2022). The comparison of modeled oxygen distributions



345 with experimental measurements reveals that simulated values of the oxygenated zone was slightly  
346 lower than observed. This discrepancy is mainly attributed to two factors: firstly, the dissolved  
347 oxygen concentrations measured by the planar optode system were relatively high, as noted in Wolke  
348 et al. (2019) themselves. Secondly, only oxygen fluxes within immobile riverbeds were simulated  
349 and did not include the areas of the mobile sections in the numerical modeling. Because the mobile  
350 riverbeds exist in oxygen-rich environments, this exclusion led to the simulated values being lower  
351 than the measured values. Overall, the simulated hyporheic exchange flux, oxygen area and oxygen  
352 fluxes are displayed in Figure 3 and they are in good agreement with the measurements of Wolke et  
353 al. (2019) in trend, suggesting that the mobile bedform model is capable to reproduce realistic  
354 conditions well.


### 355 **3.2 Effect of bedform migration on mixing regimes and solute transport**

356 To simulate the range of natural environmental conditions, the reactive transport equations were  
357 solved for different stream velocities, grain sizes and groundwater upwelling fluxes, which include a  
358 corresponding range of ripple migration celerites and sediment permeabilities derived from the  
359 empirical relations. As an example, the patterns of pore water transport as well as SW and GW  
360 mixing are shown for a grain size of 0.15 mm, a constant ratio between pumping driven hyporheic  
361 exchange flux and upwelling GW flux  $U_b = 0.6$  and four different stream velocities, that is four  
362 different  $Re$  numbers.

363 For low surface water flow velocity ( $Re = 2500$ ,  $U = 0.125$  m/s), no migration of bedform was  
364 predicted by the model. SW enters the sediment in the high-pressure region on the stoss side, flows  
365 through the porous medium, and exits the bedform in the low-pressure region on the lee side,  
366 forming a typical conchoidally shaped hyporheic flow cell. Upwelling GW is diverted around the



367 hyporheic flow cell, mixes with SW, and then exits into the overlying water from both sides, in  
368 patterns similar to those shown previously by Fox et al. (2014) and Hester et al., (2019). SW and GW  
369 mixing zone (i.e. the mixing area where the fraction of GW ranges between 16% and 84%) emerges  
370 as a thin band along the hyporheic flow cell, and covers over 8 % of the modeled domain.  
371 Meanwhile, NMD denitrification occurs below the oxygen plume with the reactive zone in a  
372 conchoidal shaped distribution, while MD denitrification reactive zone develops along the edge of  
373 the mixing zone, where DOC from SW meets nitrate from GW (see row 1 in Figure 4).



375 **Figure 4.** Effect of bedform migration on riverbed biogeochemistry for  $U_b = 0.6$  and  $D_{50} = 0.15$  mm.

376 Shown are profiles of (column 1) conservation solute representing groundwater fraction ( $c_{gw}$ ),



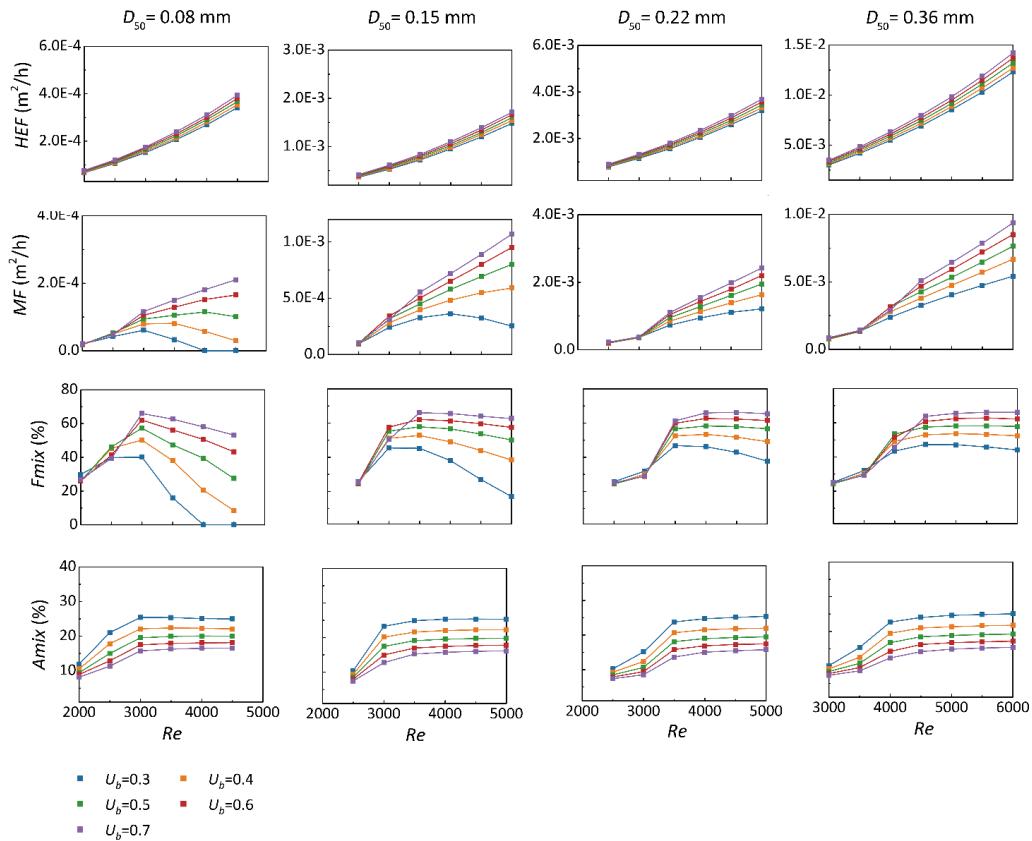
377 (column 2) DOC concentration ( $c_{DOC}$ ), (column 3) O<sub>2</sub> concentration ( $c_{O_2}$ ), (column 4) s-NO<sub>3</sub><sup>-</sup>  
378 concentration ( $c_{s-NO_3^-}$ ), (column 5) g-NO<sub>3</sub><sup>-</sup> concentration ( $c_{g-NO_3^-}$ ), (column 6) non-mixing-  
379 dependent (NMD) denitrification rate ( $R_{s-NO_3^-}$ ) and (column 7) mixing-dependent (MD)  
380 denitrification rate ( $R_{g-NO_3^-}$ ).

381 As stream flow velocity increases ( $Re = 3500$ ,  $U = 0.175$  m/s), this changes the pressure  
382 distribution patterns with its zones of high and low pressure. Consequently, the simulated hyporheic  
383 flow cells move downstream, while simultaneously also shrinking in size. The shape of the SW and  
384 GW mixing zone changes distinctly, forming a horizontal band with a wider range 17.01% of the  
385 while domain. The penetration of stream-derived solutes into the streambed is reduced, with a more  
386 gradual concentration gradient in the horizontal and vertical directions, whereas the g-NO<sub>3</sub><sup>-</sup> plume is  
387 uniformly distributed horizontally. Both NMD and MD denitrification hot spots form in the central  
388 position near the sediment-water interface as the bedform surface (see row 2 in Figure 4).

389 When bedform migration is further increased ( $U_r = 17.96$  and 24.74), the bedform migration  
390 fully dominates over the pore water flow, and hence, continuous solute layers are found in the  
391 subsurface (as depicted in row 3 and 4 of Figure 4). The penetration depths of stream-borne solutes  
392 are decreased in comparison to those in slow- to medium- fast migrating bedforms. The NMD and  
393 MD denitrification zones become thin and move upward with decreased reaction rates. Similar to the  
394 conclusions obtained in previous studies (Kessler et al., 2015; Zheng et al., 2019), the migration of  
395 the bedform reduces the penetration depth of solute and the scope of hyporheic exchange cell. We  
396 also found that a larger migration celerity increases the size of mixing zone between surface water  
397 and groundwater. The SW and GW mixing zone accounts for 17.74% and 17.86% of the domain  
398 area, respectively.



399 **3.3 Effect of migration celerity on mixing regimes**


400 The mixing intensity across the bedform surface and the size of the mixing area within the  
401 subsurface are estimated by simulating four different grain sizes and five upwelling groundwater  
402 fluxes, under varying stream velocities associated with the corresponding bedform celerity. The  
403 evolutions of the hyporheic exchange flux, net mixing flux and size of mixing zone with increasing  
404 *Re* number are summarized in Figure 5. In the third row of Figure 5, *Fmix* represents the ratio of the  
405 net mixing flux to the total hyporheic exchange flux. This total flux is triggered by both pumping and  
406 bedform migration, and is simultaneously influenced by upwelling groundwater. *Fmix* serves as a  
407 metric to quantify the proportion accounted for by the surface water-groundwater mixing flux within  
408 the overall flux of surface water and groundwater interaction across the sediment-water interface.

409 As shown in Figure 5, the hyporheic exchange flux increases as the stream velocity and  
410 bedform celerity rise across various grain sizes of the bedform, meanwhile the mixing flux across the  
411 sediment-water interface also increases with the increasing stream velocity, except for some special  
412 circumstances. For riverbed consists of very fine and fine sand ( $D_{50} = 0.08\text{--}0.15\text{ mm}$ ) under  
413 moderate groundwater discharging conditions ( $U_b < 0.5$ ), the mixing flux increases significantly at  
414 the start of bedform migration, and then the mixing flux across the sediment-water interface begins  
415 to decline with increasing celerity. In fact, this is because higher migration velocities of a riverbed  
416 with relatively low permeability limits the discharge of groundwater into the river (a horizontal  
417 distribution of stream borne solute plume), leading to the mixing of SW and GW primarily occurring  
418 within the streambed (see the column 1 in Figure 4). Concurrently, only the mixing flux through the  
419 water-sediment interface is reduced at this time.

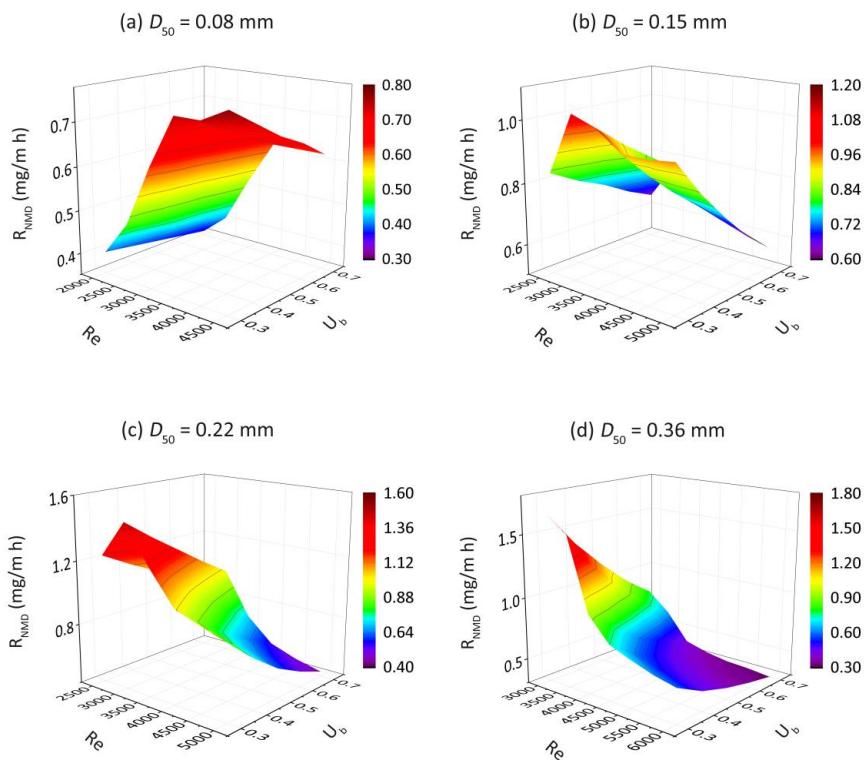
420 For medium sand ( $D_{50} = 0.22\text{--}0.36\text{ mm}$ ), we found that the SW and GW mixing flux



421 demonstrates a substantial increase relative to stationary bedforms when bedform migration initiates  
422 at moderate velocities. As migration celerity accelerates, the magnitude of mixing flux gradually  
423 approaches a plateau, with only marginal reductions observed at higher migration celerities. Besides,  
424 the size of SW and GW mixing zone also exhibit the similar trends.



425

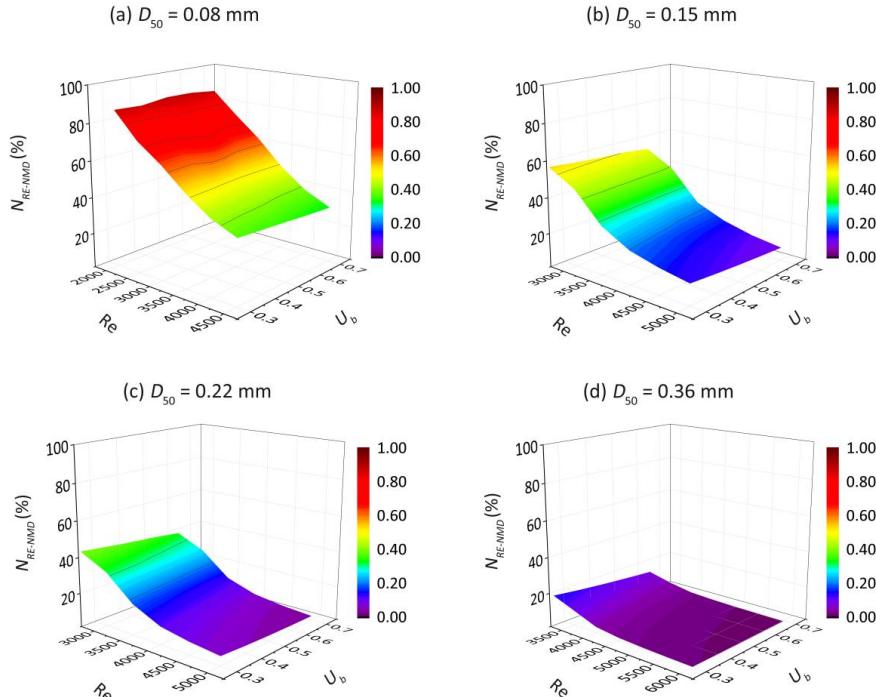

426 **Figure 5.** The variation of hyporheic exchange flux (HEF, row 1) and mixing flux (MF, row 2)  
427 across the sediment-water interface, the proportion of mixing flux to hyporheic exchange flux (Fmix,  
428 row 3) and size of mixing zone (Amix, row 4) with stream velocity and associated bedform celerity  
429 across different medium grain size when  $U_b = 0.3-0.7$ .



430 Overall, bedform migration controls the shape and size of the SW and GW mixing zone,  
431 enhances the magnitude of hyporheic exchange flux and mixing flux. The mixing flux and size is  
432 also influenced by the upwelling GW flux. As  $U_b$  increases from 0.3 to 0.6, the mixing flux and the  
433 proportion of mixing flux to total hyporheic exchange flux rise significantly. An increase in  $U_b$   
434 reduces the size of the mixing zone because both the hyporheic exchange flow cell and the mixing  
435 zone are confined to shallower depths within the riverbed due to the larger upward flow.

### 436 **3.4 Impact of ripples migration on nitrate removal**

437 To assess the impact of ripple migration on the removal of s- $\text{NO}_3^-$  and g- $\text{NO}_3^-$  within domains  
438 of varying medium grain sizes, the influx of nitrate into the riverbed and the total reaction rate were  
439 determined.




440

441 **Figure 6.** The non-mixing-dependent denitrification rates ( $R_{NMD}$ ) as functions of  $U_b$  and  $Re$  for

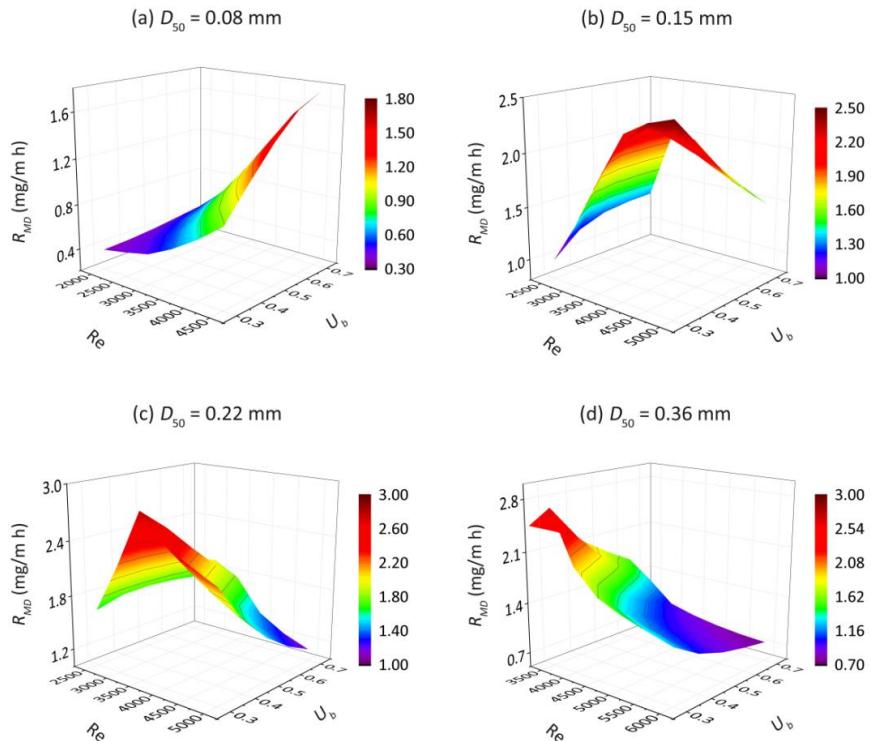


442 different medium grain sizes.



443

444 **Figure 7.** The removal efficiencies of stream-borne nitrate ( $N_{RE-NMD}$ ) as functions of  $U_b$  and  $Re$  for  
445 different medium grain sizes.


446 For  $s\text{-NO}_3^-$ , the NMD denitrification rate increases with both the overlying water velocity and  
447 the migration celerity in very fine sand ( $D_{50} = 0.08 \text{ mm}$ ). This is likely caused by higher flow  
448 velocities driving longer advective flow paths and increase solute residence times within the  
449 sediment, thereby enhancing denitrification in reaction-limited systems ( $Da > 2.85$ ). In contrast, in  
450 riverbeds of fine to medium sand ( $D_{50} = 0.15\text{--}0.36 \text{ mm}$ ) with higher permeabilities, the reduction  
451 rate of  $s\text{-NO}_3^-$  is negatively correlated with the mean stream velocity when the system becomes  
452 transport-limited ( $Da < 2$ ). This is likely because nitrate travels fast along flow paths and does not  
453 undergo denitrification within the moving bedforms (Figure 6). Additionally, the migrating bedforms

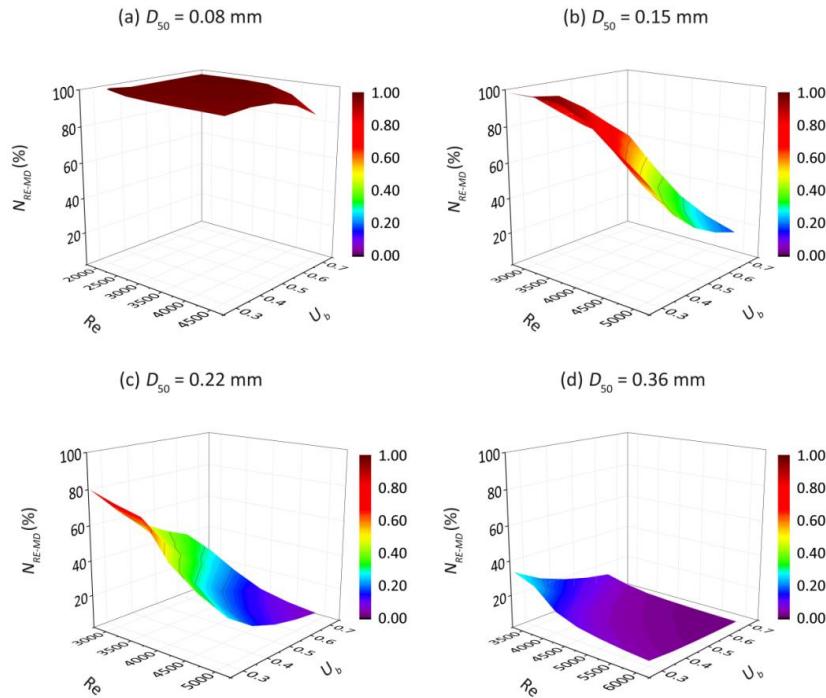


454 enhance the delivery of  $s\text{-NO}_3^-$  into the sediment due to increased hyporheic exchange flux.

455 Consequently, the removal efficiency of  $s\text{-NO}_3^-$  decreases monotonically across various medium

456 grain sizes (Figure 7).




457

458 **Figure 8.** The mixing-dependent denitrification rates ( $R_{MD}$ ) as functions of  $U_b$  and  $Re$  for different  
459 medium grain sizes.

460 For  $g\text{-NO}_3^-$ , the increase in MD denitrification is also seen for  $g\text{-NO}_3^-$  at low to medium  $Re$   
461 when  $D_{50} < 0.36$  mm (Figure 8). Compared to  $s\text{-NO}_3^-$ , the advective flow paths and residence times  
462 of  $g\text{-NO}_3^-$  in groundwater are longer. Consequently, the reduction rate of  $g\text{-NO}_3^-$  decreases only in  
463 riverbeds consisting of medium sand with fast bedform migration celerity ( $Re > 4000$ ), as the solute  
464 residence time is significantly reduced. Interestingly, the rise in the MD denitrification rate



465 compensates for the increased nitrate influx in very fine sand ( $D_{50} = 0.08 \text{ mm}$ ) at high stream  
466 velocity. Most of  $\text{g-NO}_3^-$  that enters the sediment is consumed before entering the overlying water  
467 column. For fine to medium sand riverbed ( $D_{50} = 0.15\text{--}0.36 \text{ mm}$ ), the  $\text{g-NO}_3^-$  removal efficiency  
468 decreases strongly with increasing  $Re$ . The natural protective role of the SW and GW mixing zone in  
469 preventing nitrate-contaminated groundwater from entering rivers is being hindered (Figure 9).



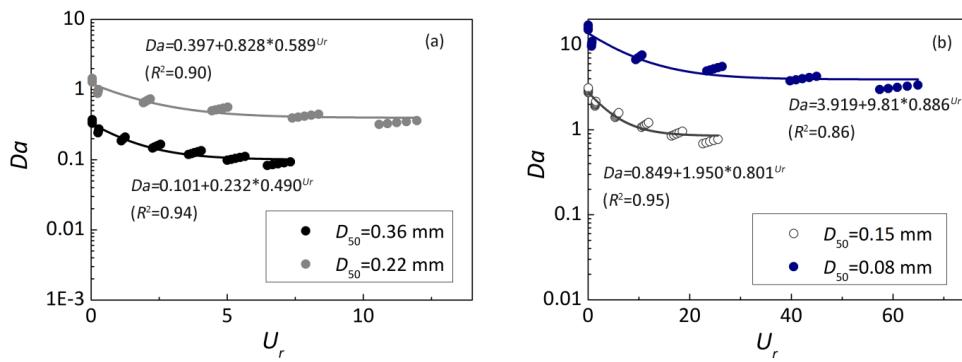
470

471 **Figure 9.** The removal efficiencies of groundwater borne nitrate ( $N_{RE-MD}$ ) as functions of  $U_b$  and  $Re$   
472 for different medium grain sizes.

#### 473 **4. Discussion**

474 This study for the first time quantified the effect of bedform migration on surface water and  
475 groundwater mixing process as well as mixing triggered denitrification. Previous research has  
476 primarily focused on the potential impacts of bedform migration on hyporheic exchange driven by  
477 streambed morphological features, as well as non-mixing-dependent biogeochemical processes




478 where reactants are assumed to reside predominantly in surface water. However, such studies  
479 represent only a small subset of possible streambed environmental conditions, focusing exclusively  
480 on specific headwater stream conditions (Jiang et al., 2022; Kessler et al., 2015; Ping et al., 2022;  
481 Zheng et al., 2019). The impact of bedform migration on the conceptual model of bedform-induced  
482 hyporheic exchange, which is influenced by groundwater upwelling and/or ambient lateral  
483 groundwater flow in the mid-stream section of lowland rivers, has received relatively less attention  
484 and examination.

485 In streams and rivers that are fed by regional groundwater and possess undulating bedforms,  
486 surface water gets mixed with groundwater throughout the local hyporheic exchange process. The  
487 mixing zone exhibits a typical crescent shape along the periphery of typical hyporheic exchange cells  
488 within a stationary streambed (as reported by Fox et al., 2014; Hester et al., 2019; Nogueira et al.,  
489 2022). The sizes of the surface water-groundwater mixing zone (e.g., thickness and area) occupy a  
490 small proportion of the whole HZ. In the immobile bedform, the thin mixing zones (16 ~ 84%  
491 ranges) occupying ~10% is consistent with prior work (Hester et al., 2013; Santizo et al., 2020).  
492 During the initiation of bedform migration, however, the mixing pattern, size, and intensity of  
493 surface water-groundwater interactions undergo modification. A continuous SW-GW mixing zone is  
494 formed within the ripples of the medium- to fast-moving bedform (Figure 4), and the area of mixing  
495 zone increases to approximately 15 ~ 25% at this time. Besides, the net flux of surface water and  
496 groundwater mixing across the sediment-water interface (or within the riverbed) is also increased  
497 with stream velocity and bedform migration celerity (Figure 5). As a result, bedform migration  
498 controls and determines the hotspots and magnitude of the SW and GW mixing. The bedforms are  
499 typically assumed to be immobile potentially making underestimations of surface water and



500 groundwater mixing flux and mixing zone in a HZ.

501 Instead of the typical crescent-shaped mixing-dependent (MD) denitrifying zone observed in  
502 stationary bedforms (Naranjo et al., 2015; Hester et al., 2014, 2019), the MD reaction zonation  
503 changes to the layer shape distributed at the fringe of the HEF cells, where mixing between SW and  
504 GW develop to a largest degree (Figure 5). Such a situation exists where the stream flows into with a  
505 relative homogeneous sandy riverbed with low autochthonous organic carbon content and encounters  
506 with nitrate enrich groundwater. The heterogeneous streambeds including buried autochthonous  
507 organic matter (Sawyer, 2015; Ping et al., 2022), deposited particulate organic particles (Drummond  
508 et al., 2017; Ping et al., 2023), and biological aggregate (Xian et al., 2022), would complicate the  
509 hyporheic exchange process, induce the rough and irregular shapes and boundaries of HEF cells and  
510 mixing zone, and therefore affect redox microenvironments and biogeochemical zonations. MD  
511 denitrifying hotspot would also occur around available sources of DOC.



512

513 **Figure 10.** Variation of the dimensionless Damköhler number as a function of the dimensionless  
514 parameter  $U_r$ .

515 Previous studies have demonstrated that migrating bedforms constrains the penetration depths  
516 of stream-borne solute and reduces the removal efficiency of stream-borne nitrate (Jiang et al., 2022;



517 Kessler et al., 2015; Ping et al., 2022; Zheng et al., 2019). Our results revealed that the bedform  
518 migration also reduces the HZ attenuation ability for groundwater borne nitrate. However, the  
519 reasons for this phenomenon are different for various riverbed sediments. For very fine sand ( $D_{50} =$   
520 0.08 mm), a larger celerity results in a decline in transport timescale with less impact on removal  
521 efficiency as the system is rate-limited ( $Da \gg 1$ ). For fine to medium sand riverbed ( $D_{50} = 0.15\text{--}0.36$   
522 mm), the transport-limited situation leads to a low denitrification rate with increasing  $U_r$  but  
523 constantly decreasing  $Da$  ( $Da < 1$ ). It is important to note that the reaction timescale we calculated is  
524 based on the consumption period of oxygen to a prescribed anoxic threshold. Under these conditions,  
525 the exhaustion of labile DOC would also lead to the cessation of denitrification (Zarnetske et al.,  
526 2011a, 2011b). These results demonstrate that in order to evaluate the self-purification capacity of the  
527 HZ and its function as a natural barrier mitigating groundwater contamination, riverbed sediment  
528 transport dynamics and grain size distributions need to be considered. Stabilizing bedform  
529 configurations in restoration projects would enhance the natural attenuation capacity of the HZ.

530 Different from previous studies that demonstrated the magnitude of NMD denitrification was  
531 often greater than that of MD denitrification (Hester et al., 2014; Trauth and Fleckenstein, 2017). The  
532 results in our study show that the total reaction rate of  $s\text{-NO}_3^-$  was smaller than that of  $g\text{-NO}_3^-$  in  
533 mobile bedforms. This phenomenon can be attributed to the following two reasons: First, the  
534 concentration of  $s\text{-NO}_3^-$  is one-third that of  $g\text{-NO}_3^-$ ; Second, the reaction zone is reduced by  
535 migration celerity for NMD denitrification, while the reaction zone for MD denitrification is  
536 increased in the riverbed at the onset of bedform migration. The mixing intensity increases with  
537 bedform migration, which facilitates the MD denitrification more effectively (Hester et al., 2019;  
538 Nogueira et al., 2024; Trauth and Fleckenstein., 2017). Moreover, migration celerity increases the



539 influx of nitrate into the HZ by enhanced hyporheic exchange, while it has less impact on upwelling  
540 GW flux. Hence, the removal efficiency of g- $\text{NO}_3^-$  is also higher than that of s- $\text{NO}_3^-$  in these  
541 scenarios. More attention should be paid to the mixing dynamics and mixing triggered  
542 biogeochemical reactions, which is helpful to put forward appropriate stream restoration plans so as  
543 to enhance the health of the aquatic ecosystem (Hester et al., 2017; Lawrence et al., 2013).

544 In this study, we focused on ripples and, more broadly, shorter-wavelength topographic  
545 roughness elements that form under low subcritical flow conditions in sandy riverbeds (Ashley,  
546 1990; Gomez-Velez et al., 2015; Raudkivi, 1997). The undulating bedforms maintain dynamic  
547 equilibrium through geometric adjustments, with their geometry remaining unchanged as the stream  
548 velocity fluctuates within a specific range (10–30 cm/s). When stream velocities exceed this upper  
549 threshold, a condition commonly observed in fast-flowing rivers, bedform geometries can be altered,  
550 ultimately leading to bedform erosion (Boano et al., 2013; Harvey et al., 2012). This process is not  
551 accounted for in the current model. If small-scale ripples develop and merge with larger-scale ripples  
552 and dunes under moderate stream velocities, the removal efficiency of s- $\text{NO}_3^-$  and g- $\text{NO}_3^-$  may be  
553 enhanced due to the extended hyporheic flow paths and increased residence timescales (Harvey et  
554 al., 2012; Zomer and Hoitink, 2024). Otherwise, the removal of s- $\text{NO}_3^-$  would be highly hindered  
555 because of shorter residence time and fully oxic condition in fast moving bedforms and fast flowing  
556 rivers, while the removal of g- $\text{NO}_3^-$  would likely be less affected within the immobile streambeds.

557 In our model, dissimilatory nitrate reduction to ammonium (DNRA) was not incorporated,  
558 given that denitrification is typically regarded as the predominant pathway for nitrate removal,  
559 whereas DNRA plays a secondary role in nitrate transformation (Zarnetske et al., 2012). Lansdown et  
560 al. (2012) and Quick et al. (2016) have demonstrated that approximately 5% of  $^{15}\text{NO}_3^-$  tracer in river



561 sediment incubations underwent DNRA, while 85% underwent denitrification. Nevertheless, DNRA  
562 competes with denitrification for  $\text{NO}_3^-$  and DOC as electron acceptor and donors within HZs. When  
563 an oligotrophic and/or a pristine stream infiltrate into the streambed and subsequently interact and  
564 mix with nitrate-enriched groundwater, the MD DNRA would not occur due to the low C/N ratio.  
565 MD denitrification zone shifts upstream toward the overlying water column, leading to a pronounced  
566 spatial mismatch between the denitrification zone and the mixing interface. This occurs because  
567 DOC is intensively consumed within the HEF cell, such that elevated MD denitrification rates  
568 emerge below the DOC and oxygen plumes yet above the mixing zone. Specifically, this  
569 phenomenon can be attributed to the critical role of dispersion effect in solute transport and mixing-  
570 triggered denitrification, besides advection effect. When an eutrophication stream with higher DOC  
571 concentration, DNRA would have a greater influence in nitrate transformation because DNRA is  
572 prone to occur in  $\text{NO}_3^-$ -limited (that is DOC sufficient) conditions compared to denitrification (Zhu  
573 et al., 2023). The ammonia produced by mixing-dependent DNRA would be further nitrified within  
574 the aerobic HEF cell, thereby potentially elevating the risk of nitrate pollution in surface water.

575 In our model, stream velocity and upward groundwater flux are considered constant in the  
576 present model, yet they may change in time due to storm events, tidal pumping, snowmelt, or  
577 reservoir hydro-peaking (Liu et al., 2024; Nogueira et al., 2022; Song et al., 2018). Hester et al.  
578 (2019) demonstrated that increasing surface water stage would enhance both NMD and MD  
579 denitrification. Nogueira et al. (2024) and Trauth and Fleckenstein (2017) pointed out that  
580 groundwater discharge events increase the magnitude of surface water-groundwater mixing,  
581 therefore effecting the prevalence of MD denitrification. The interactions among morphological  
582 dynamics, hyporheic exchange, and biogeochemical processes under transient conditions are key



583 areas for future research.

584 **5. Conclusion**

585 The numerical model developed in this study was applied to simulate the interaction and mixing  
586 of upwelling groundwater with bedform-induced hyporheic flow, examining how bedform migration  
587 influences surface water and groundwater mixing and the processing of groundwater-borne nitrate  
588 within the HZ. Our analysis quantified the mixing flux and the size of mixing zone, as well as the  
589 mixing-dependent denitrification rates and removal efficiencies across riverbed sediments  
590 characterized by varying grain sizes, stream flow velocities, and groundwater discharge fluxes. These  
591 model simulations reveal that as bedforms migrate, the surface water-groundwater mixing zone and  
592 the associated mixing-dependent denitrification zone progressively evolve into uniform, band-like  
593 structures. For riverbeds composed of fine to medium sand ( $D_{50} = 0.15\text{--}0.36\text{ mm}$ ), both the  
594 magnitudes of SW and GW exchange flux and mixing flux increase significantly when turnover  
595 becomes the dominant exchange mechanism, while the proportion of mixing flux across the  
596 sediment-water interface and the size of mixing zone remain approximately constant at this time.  
597 Meanwhile, both the mixing-dependent denitrification rates and removal efficiencies decline  
598 significantly with increasing stream flow velocities and associated bedform migration rates. Under  
599 dynamic bedform conditions, the self-purification capacity of the HZ is reduced, compromising its  
600 role as a natural barrier against groundwater contamination. The management of aquatic systems  
601 involving riverbed sediments can be enhanced by incorporating the analyzed factors identified here,  
602 particularly when management goals encompass the removal of groundwater borne nitrate.



603 **Notation**

|            |                                                           |
|------------|-----------------------------------------------------------|
| $S$        | Stream slope [-]                                          |
| $H$        | Water depth [L]                                           |
| $U$        | Stream velocity [L T <sup>-1</sup> ]                      |
| $\lambda$  | Ripple wavelength [L]                                     |
| $u_c$      | Bedform migration celerity [L T <sup>-1</sup> ]           |
| $l$        | Streambed height [L]                                      |
| $H_d$      | Ripple height [L]                                         |
| $D_{50}$   | Median sediment size [L]                                  |
| $x$        | Horizontal coordinate, rightward positive [-]             |
| $y$        | Vertical coordinate, upward positive [-]                  |
| $k$        | Sediment permeability [L <sup>2</sup> ]                   |
| $K$        | Sediment hydraulic conductivity [L T <sup>-1</sup> ]      |
| $h$        | Hydraulic head [L]                                        |
| $h_m$      | Amplitude of the sinusoidal head variation [L]            |
| $m$        | Wavenumber of the variation [-]                           |
| $g$        | Gravity acceleration [L T <sup>-2</sup> ]                 |
| $c_i$      | Concentration of reactive components [M L <sup>-3</sup> ] |
| $c_{gw}$   | Groundwater tracer [M L <sup>-3</sup> ]                   |
| $v$        | Seepage velocity [L T <sup>-1</sup> ]                     |
| $\theta$   | Sediment porosity [-]                                     |
| $\alpha_L$ | Longitudinal dispersivities                               |



|               |                                                                         |
|---------------|-------------------------------------------------------------------------|
| $\alpha_T$    | Transverse dispersivities [L]                                           |
| $D_{ij}$      | Hydrodynamic dispersion [ $L^2 T^{-1}$ ]                                |
| $D_m$         | Molecular diffusion coefficient [ $L^2 T^{-1}$ ]                        |
| $\tau$        | Tortuosity factor [-]                                                   |
| $V_{AR}$      | Maximum reaction rate of aerobic respiration [ $T^{-1}$ ]               |
| $V_{DN}$      | Maximum reaction rate of denitrification [ $T^{-1}$ ]                   |
| $K_{inh}$     | Non-competitive inhibition factor [ $M L^{-3}$ ]                        |
| $K_{DOC}$     | Half-saturation for dissolved organic carbon [ $M L^{-3}$ ]             |
| $K_{NO3}$     | Half-saturation for nitrate [ $M L^{-3}$ ]                              |
| $K_{O2}$      | Half-saturation for oxygen [ $M L^{-3}$ ]                               |
| $X_{AR}$      | Microbial concentration facilitating aerobic respiration [ $M L^{-3}$ ] |
| $X_{DN}$      | Microbial concentration facilitating denitrification [ $M L^{-3}$ ]     |
| $\rho_s$      | Sediment density [ $M L^{-3}$ ]                                         |
| $\rho$        | Water density [ $M L^{-3}$ ]                                            |
| $P$           | Hydraulic pressure [ $M L^{-1}T^{-2}$ ]                                 |
| $u^*$         | Bed shear velocity [ $L T^{-1}$ ]                                       |
| $u_{cr}^*$    | Critical bed shear velocity [ $L T^{-1}$ ]                              |
| $n$           | Manning coefficient [-]                                                 |
| $\tau^*$      | Shield parameter [-]                                                    |
| $\tau_{cr}$   | Critical shear stress [ $M L^{-1}T^{-2}$ ]                              |
| $\tau_{cr}^*$ | Critical Shield parameter [-]                                           |
| $r$           | Submerged specific gravity of sediment [-]                              |



|             |                                                                      |
|-------------|----------------------------------------------------------------------|
| $R_{O2}$    | Aerobic respiration rate [ $M L^{-3}T^{-1}$ ]                        |
| $R_{s-NO3}$ | Non-mixing-dependent denitrification rate [ $M L^{-3}T^{-1}$ ]       |
| $R_{g-NO3}$ | Mixing-dependent denitrification rate [ $M L^{-3}T^{-1}$ ]           |
| $R_{DOC}$   | Dissolved oxygen carbon consumption rate [ $M L^{-3}T^{-1}$ ]        |
| $\nu$       | Kinematic viscosity of water [ $L^2 T^{-1}$ ]                        |
| $u_s$       | Underflow seepage velocity induced by stream gradient [ $L T^{-1}$ ] |
| $Re$        | Reynolds number [-]                                                  |
| $U_r$       | ratio of bedform celerity to pore water velocity [-]                 |
| $u_p$       | Darcy velocity induced by pumping process [ $L T^{-1}$ ]             |
| $u_q$       | Vertical groundwater flux [ $L T^{-1}$ ]                             |
| $U_b$       | Ratio of vertical groundwater flux to hyporheic exchange flux        |
| $\tau_R$    | Biogeochemical reaction timescale [T]                                |
| $\tau_T$    | Water transport timescale [T]                                        |
| $Da$        | Damköhler number [-]                                                 |
| $\Delta x$  | Bedform migrating displacement per timestep (L)                      |
| $dt$        | The length of per timestep (T)                                       |
| $Da'$       | Conversion factor for unit Darcy to $m^2$ [-]                        |
| $F_{mix}$   | the proportion of mixing flux to hyporheic exchange flux [-]         |
| $A_{mix}$   | Surface water and groundwater mixing zone [ $L^2$ ]                  |
| $A$         | Streambed area [ $L^2$ ]                                             |
| $M_{NDN}$   | Nitrate removed by non-mixing dependent denitrification [M]          |
| $M_{DN}$    | Nitrate removed by mixing dependent denitrification [M]              |



$N_{RE}$  Nitrate removal efficiency [-]

$M_{in}$  Nitrate being introduced into streambed [M]

#### Abbreviations

HZ Hyporheic zone

SW Surface water

GW Groundwater

HEF Hyporheic exchange flow

MF Mixing flux

NMD Non-mixing dependent

MD Mixing dependent

AR Aerobic respiration

DN Denitrification

#### 604 Supporting information

605 Additional details of the model scenarios and model validation were displayed in the supporting

606 information.

#### 607 Data availability

608 All raw data can be provided by the first author upon request.

#### 609 Competing interest

610 The authors declare that they have no conflict of interest.

#### 611 Author contribution



612       Conceptualization: XP, YX  
  
613       Formal analysis: XP  
  
614       Funding acquisition: XP, ZW, YX, SK  
  
615       Investigation: XP, ZW  
  
616       Methodology: XP, ZW, YX  
  
617       Writing-original draft: XP  
  
618       Writing-review and editing: ZW, YX, MJ, SK  
  
619       Project administration: ZW

620       **Acknowledgments**

621       The work was financially supported by the National Natural Science Foundation of China (Nos.  
622       U23A2042, 42407075 and 42107089). This study was also supported by the “CUG Scholar”  
623       Scientific Research Funds at China University of Geosciences (Wuhan) (Project No.2023067), and  
624       supported by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation under  
625       Grant Number GZC20241601. SK has been supported by the Royal Society (INF\R2\212060).

626       **Reference**

627       Ahmerkamp, S., Winter, C., Janssen, F., Kuypers, M. M., and Holtappels, M.: The impact of bedform  
628       migration on benthic oxygen fluxes, *J. Geophys. Res.: Biogeosci.* 120, 2229–2242,  
629       <https://doi.org/10.1002/2015JG003106>, 2015.



630 Ahmerkamp, S., Winter, C., Krämer, K., Beer, D. D., Janssen, F., Friedrich, J., Kuypers, M. M. M.,  
631 and Holtappels, M.: Regulation of benthic oxygen fluxes in permeable sediments of the coastal  
632 ocean, Limnol. Oceanogr. 62(5), 1935–1954, <http://doi.org/10.1002/lno.10544>, 2017.

633 Ascott, M. J., Stuart, M. E., Goddy, D. C., Marchant, B. P., Talbot, J. C., Surridge, B. J., and Polya,  
634 D. A.: Provenance of drinking water revealed through compliance sampling, Environ. Sci.:  
635 Processes & Impacts, 21(6), 1052-1064, <https://doi.org/10.1039/C8EM00437D>, 2019.

636 Ashley, G. M.: Classification of large-scale subaqueous bedforms: A new look at an old problem-  
637 SEPM bedforms and bedding structures, J. Sediment. Res. 60(1), 160–172,  
638 <https://doi.org/10.1306/212F9138-2B24-11D7-8648000102C1865D>, 1990.

639 Azizian, M., Grant, S. B., Kessler, A. J., Cook, P. L. M., Rippy, M. A., and Stewardson, M. J.:  
640 Bedforms as biocatalytic filters: a pumping and streamline segregation model for nitrate  
641 removal in permeable sediments, Environ. Sci. Technol. 49, 10993–11002,  
642 <https://doi.org/10.1021/acs.est.5b01941>, 2015.

643 Bartholdy, J., Ernstsen, V. B., Flemming, B. W., Winter, C., Bartholomä, A., and Kroon, A.: On the  
644 formation of current ripples, Sci. Rep. 5(1), 11390, <https://doi.org/10.1038/srep11390>, 2015.

645 Bear, J., and Verruijt, A.: Modeling groundwater flow and pollution. D. Reidel Publishing Company,  
646 1998.

647 Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi, L., and Wörman, A.:  
648 Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical  
649 implications, Rev. Geophys. 52, 603–679, <https://doi.org/10.1002/2012RG000417>, 2014.



650 Boano, F., Poggi, D., Revelli, R., and Ridolfi, L.: Gravity-driven water exchange between streams  
651 and hyporheic zones, *Geophys. Res. Lett.* 36, L20402, <https://doi.org/10.1029/2009GL040147>,  
652 2009.

653 Boano, F., Revelli, R., and Ridolfi, L.: Water and solute exchange through flat streambeds induced by  
654 large turbulent eddies, *J. Hydrol.* 402, 290–296, <https://doi.org/10.1016/j.jhydrol.2011.03.023>,  
655 2011.

656 Boano, F., Revelli, R., and Ridolfi, L.: Modeling hyporheic exchange with unsteady stream discharge  
657 and bedform dynamics, *Water Resour. Res.* 49(7), 4089–4099,  
658 <https://doi.org/10.1002/wrcr.20322>, 2013.

659 Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., and Valett, H. M.: The functional  
660 significance of the hyporheic zone in streams and rivers, *Annu. Rev. Ecol. Syst.* 29(1), 59–81,  
661 <https://doi.org/10.1146/annurev.ecolsys.29.1.59>, 1998.

662 Briggs, M. A., Lautz, L. K., Hare, D. K., and González-Pinzón, R.: Relating hyporheic fluxes,  
663 residence times, and redox-sensitive biogeochemical processes upstream of beaver dams,  
664 *Freshw. Sci.* 32, 622–641, <https://doi.org/10.1899/12-110.1>, 2013.

665 Burt, T. P., Howden, N. J. K., Worrall, F., Whelan, M. J., and Bieroza, M.: Nitrate in United Kingdom  
666 rivers: Policy and its outcomes since 1970, *Environ. Sci. Technol.*, 45(1), 175–181,  
667 <https://doi.org/10.1021/es101395s>, 2011.

668 Cardenas, M. B.: Hyporheic zone hydrologic science: A historical account of its emergence and a  
669 prospectus. *Water Resour. Res.* 51, 3601–3616, <https://doi.org/10.1002/2015WR017028>, 2015.



670 Cardenas, M. B., and Wilson, J. L.: The influence of ambient groundwater discharge on exchange

671 zones induced by current-bedform interactions, *J. Hydrol.* 331, 103–109,

672 <https://doi.org/10.1016/j.jhydrol.2006.05.012>, 2006.

673 Cardenas, M. B., Wilson, J. L., and Haggerty, R.: Residence time of bedform-driven hyporheic

674 exchange, *Adv. Water Resour.* 31(10), 1382–1386,

675 <https://doi.org/10.1016/j.advwatres.2008.07.006>, 2008.

676 Coleman, S. E., and Melville, B. W.: Bed-form development, *J. Hydraul. Eng.* 120(5), 544–560,

677 [https://doi.org/10.1061/\(ASCE\)0733-9429\(1994\)120:5\(544\)](https://doi.org/10.1061/(ASCE)0733-9429(1994)120:5(544)), 1994.

678 Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot,

679 C., and Likens, G. E.: Ecology: controlling eutrophication: nitrogen and phosphorus, *Science*

680 323, 1014–1015, <https://doi.org/10.1126/science.1167755>, 2009.

681 Drummond, J. D., Larsen, L. G., González-Pinzón, R., Packman, A. I., and Harvey, J. W.: Fine

682 particle retention within stream storage areas at base flow and in response to a storm event:

683 Particle retention stream storage areas, *Water Resour. Res.* 53, 5690–5705,

684 <https://doi.org/10.1002/2016WR020202>, 2017.

685 Elliott, A. H., and Brooks, N. H.: Transfer of nonsorbing solutes to a streambed with bed forms:

686 Theory, *Water Resour. Res.* 33(1), 123–136, <https://doi.org/10.1029/96wr02784>, 1997.

687 Fox, A., Boano, F., and Arnon, S.: Impact of losing and gaining streamflow conditions on hyporheic

688 exchange fluxes induced by dune-shaped bed forms, *Water Resour. Res.* 50(3), 1895–1907,

689 <https://doi.org/10.1002/2013WR014668>, 2014.



690 Gangi, A. F.: Permeability of unconsolidated sands and porous rocks. *J. Geophys. Res.* 90(B4),  
691 3099–3104, <https://doi.org/10.1029/JB090iB04p03099>, 1985.

692 Gomez-Velez, J. D., Harvey, J., Cardenas, M. B., and Kiel, B.: Denitrification in the Mississippi  
693 River network controlled by flow through river bedforms, *Nat. Geosci.* 8, 941–975,  
694 <https://doi.org/10.1038/NGEO2567>, 2015.

695 Gu, C., Hornberger, G. M., Herman, J. S., and Mills, A. L.: Effect of freshets on the flux of  
696 groundwater nitrate through streambed sediments, *Water Resour. Res.* 44, W05415,  
697 <https://doi.org/10.1029/2007WR006488>, 2008.

698 Harvey, J. W., Drummond, J. D., Martin, R. L., Mcphillips, L. E., Packman, A. I., Jerolmack, D. J.,  
699 Stonedahl, S. H., Aubeneau, A. F., Sawyer, A. H., and Larsen, L. G.: Hydrogeomorphology of  
700 the hyporheic zone: Stream solute and fine particle interactions with a dynamic streambed, *J.*  
701 *Geophys. Res.* 117(G4), G00N11, <https://doi.org/10.1029/2012JG002043>, 2012.

702 Hester, E. T., Cardenas, M. B., Haggerty, R., and Sourabh, S. V. A.: The importance and challenge of  
703 hyporheic mixing, *Water Resour. Res.* 53, 3565–3575, <https://doi.org/10.1002/2016WR020005>,  
704 2017.

705 Hester, E. T., Eastes, L. A., and Widdowson, M. A.: Effect of surface water stage fluctuation on  
706 mixing-dependent hyporheic denitrification in riverbed dunes, *Water Resour. Res.* 55, 4668–  
707 4687, <https://doi.org/10.1029/2018WR024198>, 2019.

708 Hester, E. T., Young, K. I., and Widdowson, M. A.: Mixing of surface and groundwater induced by  
709 riverbed dunes: Implications for hyporheic zone definitions and pollutant reactions, *Water*  
710 *Resour. Res.* 49, 5221–5237, <https://doi.org/10.1002/wrcr.20399>, 2013.



711 Hester, E. T., Young, K. I., and Widdowson, M. A.: Controls on mixing-dependent denitrification in  
712 hyporheic zones induced by riverbed dunes: A steady state modeling study, *Water Resour. Res.*  
713 50, 9048–9066, <https://doi.org/10.1002/2014WR015424>, 2014.

714 Howden, N. J. K., and Burt, T. P.: Temporal and spatial analysis of nitrate concentrations from the  
715 Frome and Piddle catchments in Dorset (UK) for water years 1978 to 2007: Evidence for nitrate  
716 breakthrough? *Sci. Total Environ.* 407(1), 507–526, <http://doi.org/10.1016/j.scitotenv.2008.08.042>, 2008.

718 Janssen, F., Cardenas, M. B., Sawyer, A. H., Dammrich, T., Krietsch, J., and de Beer, D.: A  
719 comparative experimental and multiphysics computational fluid dynamics study of coupled  
720 surface-subsurface flow in bed forms, *Water Resour. Res.* 48(8), W08514,  
721 <https://doi.org/10.1029/2012WR011982>, 2012.

722 Jiang, Q., Liu, D., Jin, G., Tang, H., Wei, Q., and Xu, J.: N<sub>2</sub>O dynamics in the hyporheic zone due to  
723 ripple migration, *J. Hydrol.* 610, 127891, <https://doi.org/10.1016/j.jhydrol.2022.127891>, 2022.

724 Kessler, A. J., Cardenas, M. B., and Cook, P. L. M.: The negligible effect of bed form migration on  
725 denitrification in hyporheic zones of permeable sediments, *J. Geophys. Res.: Biogeosci.* 120,  
726 538–548, <https://doi.org/10.1002/2014JG002852>, 2015.

727 Krause, S., Abbott, B. W., Baranov, V., Bernal, S., Blaen, P., Datry, T., Drummond, J., Fleckenstein,  
728 J. H., Velez, J. G., Hannah, D. M., Knapp, J. L. A., Kurz, M., Lewandowski, J., Martí, E.,  
729 Mendoza-Lera, C., Milner, A., Packman, A., Pinay, G., Ward, A. S., and Zarnetzke, J. P.:  
730 Organizational principles of hyporheic exchange flow and biogeochemical cycling in river



731 networks across scales, *Water Resour. Res.* 58 (3), e2021WR029771,

732 <https://doi.org/10.1029/2021WR029771>, 2022.

733 Krause, S., Heathwaite, L., Binley, A., and Keenan, P.: Nitrate concentration changes at the  
734 groundwater-surface water interface of a small Cumbrian River, *Hydrol. Processes*, 23, 2195–  
735 2211, <https://doi.org/10.1002/hyp.7213>, 2009.

736 Krause, S., Tecklenburg, C., Munz, M., and Naden, E.: Streambed nitrogen cycling beyond the  
737 hyporheic zone: Flow controls on horizontal patterns and depth distribution of nitrate and  
738 dissolved oxygen in the upwelling groundwater of a lowland river, *J. Geophys. Res.:  
739 Biogeosciences*, 118, 54–67, <https://doi.org/10.1029/2012JG002122>, 2013.

740 Lansdown, K., Heppell, C. M., Dossena, M., Ullah, S., Heathwaite, A. L., Binley, A., Zhang, H.,  
741 Trimmer, M., 2014. Fine-Scale in situ measurement of riverbed nitrate production and  
742 consumption in an armored permeable riverbed, *Environ. Sci. Technol.* 48 (8), 4425–4434,  
743 <https://doi.org/10.1021/es4056005>, 2014.

744 Lansdown, K., Heppell, C. M., Trimmer, M., Binley, A., Heathwaite, A. L., Byrne, P., and Zhang, H.:  
745 The interplay between transport and reaction rates as controls on nitrate attenuation in  
746 permeable, streambed sediments, *J. Geophys. Res. Biogeosci.* 120, 1093–1109,  
747 <http://doi.org/10.1002/2014JG002874>, 2015.

748 Lansdown, K., Trimmer, M., Heppell, C. M., Sgouridis, F., Ullah, S., Heathwaite, L., Binley, A., and  
749 Zhang, H.: Characterization of the key pathways of dissimilatory nitrate reduction and their  
750 response to complex organic substrates in hyporheic sediments, *Limnol. Oceanogr.* 57 (2), 387–  
751 400, <https://doi.org/10.4319/lo.2012.57.2.0387>, 2012.



752 Lawrence, J. E., Skold, M. E., Hussain, F. A., Silverman, D. R., Resh, V. H., Sedlak, D. L., Luthy, R.

753 G., and McCray, J. E.: Hyporheic zone in urban streams: A review and opportunities for

754 enhancing water quality and improving aquatic habitat by active management, *Environ. Eng.*

755 *Sci.* 30, 480–501, <https://doi.org/10.1089/ees.2012.0235>, 2013.

756 Liu, F., Ding, Y., Liu, J., Latif, J., Qin, J., Tian, S., Sun, S., Guan, B., Zhu, K., and Jia, H.: The effect

757 of redox fluctuation on carbon mineralization in riparian soil: An analysis of the hotspot zone of

758 reactive oxygen species production, *Water Res.* 265, 122294,

759 <https://doi.org/10.1016/j.watres.2024.122294>, 2024.

760 Marzadri, A., Tonina, D., and Bellin, A.: Morphodynamic controls on redox conditions and on

761 nitrogen dynamics within the hyporheic zone: application to gravel bed rivers with alternate-bar

762 morphology, *J. Geophys. Res.: Biogeosci.* 117, 184–189,

763 <https://doi.org/10.1029/2012JG001966>, 2012.

764 Munz, M., Krause, S., Tecklenburg, C., and Binley, A.: Reducing monitoring gaps at the aquifer-river

765 interface by modelling groundwater-surface water exchange flow patterns, *Hydrol. Processes*,

766 25, 3547–3562, <https://doi.org/10.1002/hyp.8080>, 2011.

767 Naranjo, R. C., Niswonger, R. G., and Davis, C. J.: Mixing effects on nitrogen and oxygen

768 concentrations and the relationship to mean residence time in a hyporheic zone of a riffle-pool

769 sequence, *Water Resour. Res.* 51(9), 7202–7217, <https://doi.org/10.1002/2014WR016593>, 2015.

770 Nogueira, G. E. H., Partington, D., Heidbuchel, I., and Fleckenstein, J. H.: Combined effects of

771 geological heterogeneity and discharge events on groundwater and surface water mixing, *J.*

772 *Hydrol.* 638, 131467, <https://doi.org/10.1016/j.jhydrol.2024.131467>, 2024.



773 Nogueira, G. E. H., Schmidt, C., Brunner, P., Graeber, D., and Fleckenstein, J. H.: Transit-time and  
774 temperature control the spatial patterns of aerobic respiration and denitrification in the riparian

775 zone, *Water Resour. Res.* 57 (12), e2021WR030117, <https://doi.org/10.1029/2021WR030117>,

776 2021.

777 Nogueira, G. E. H., Schmidt, C., Partington, D., Brunner, P., and Fleckenstein, J. H.: Spatiotemporal  
778 variations in water sources and mixing spots in a riparian zone, *Hydrol. Earth Syst. Sci.* 26 (7),

779 1883–1905, <https://doi.org/10.5194/hess-26-1883-2022>, 2022.

780 Ocampo, C. J., Oldham, C. E., and Sivapalan, M.: Nitrate attenuation in agricultural catchments:

781 shifting balances between transport and reaction, *Water Resour. Res.* 42(1), 85–88,

782 <https://doi.org/10.1029/2004WR003773>, 2006.

783 Peleg, E., Teitelbaum, Y., and Arnon, S.: Exploring the influence of sediment motion on microplastic

784 deposition in streambeds, *Water Res.* 249, 120952,

785 <https://doi.org/10.1016/j.watres.2023.120952>, 2024.

786 Ping, X., Xian, Y., and Jin, M.: Influence of bedform migration on nitrate reduction in hyporheic

787 zones of heterogeneous sediments, *Water Resour. Res.* 58, e2022WR033258,

788 <https://doi.org/10.1029/2022WR033258>, 2022.

789 Ping, X., Xian, Y., and Jin, M.: Effect of particulate organic carbon deposition on nitrate reduction in

790 the hyporheic zone, *Water Resour. Res.* 59, e2022WR034253,

791 <https://doi.org/10.1029/2022WR034253>, 2023.



792 Precht, E., Franke, U., Polerecky, L., and Huttel, M.: Oxygen dynamics in permeable sediments with  
793 wave-driven pore water exchange, Limnol. Oceanogr. 49(3), 693–705,  
794 <https://doi.org/10.2307/3597786>, 2004.

795 Quick, A. M., Reeder, W. J., Farrell, T. B., Tonina, D., Feris, K. P., and Benner, S. G.: Controls on  
796 nitrous oxide emissions from the hyporheic zones of streams, Environ. Sci. Technol. 50 (21),  
797 11491-11500, <https://doi.org/10.1021/acs.est.6b02680>, 2016.

798 Raudkivi, A. J.: Ripples on stream bed, J. Hydraul. Eng. 123(1), 58–64,  
799 [https://doi.org/10.1061/\(ASCE\)0733-9429\(1997\)123:1\(58\)](https://doi.org/10.1061/(ASCE)0733-9429(1997)123:1(58)), 1997.

800 Risse-Buhl, U., Arnon, S., Bar-Zeev, E., Oprei, A., Packman, A. I., Peralta-Maraver, I., Robertson,  
801 A., Teitelbaum, Y., and Mutz, M.: Streambed migration frequency drives ecology and  
802 biogeochemistry across spatial scales, Wiley Interdiscip. Rev.: Water, 10.  
803 <https://doi.org/10.1002/wat2.1632>, 2023.

804 Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. W. N., and Bemment, C. D.: Nitrate attenuation in  
805 groundwater: A review of biogeochemical controlling processes, Water Res. 42, 4215–4232,  
806 <http://doi.org/10.1016/j.watres.2008.07.020>, 2008.

807 Roche, K. R., Blois, G., Best, J. L., Christensen, K. T., Aubeneau, A. F., and Packman, A. I.:  
808 Turbulence links momentum and solute exchange in coarse-grained streambeds, Water Resour.  
809 Res. 54, 3225–3242, <https://doi.org/10.1029/2017WR021992>, 2018.

810 Roche, K. R., Li, A., Bolster, D., Wagner, G. J., and Packman, A. I.: Effects of turbulent hyporheic  
811 mixing on reach-scale transport, Water Resour. Res. 55,  
812 <https://doi.org/10.1029/2018WR023421>, 2019.



813 Rouse, J. D., Bishop, C. A., and Struger, J.: Nitrogen pollution: an assessment of its threat to  
814 amphibian survival, *Environ. Health Perspect.* 107, 799–803,  
815 <https://doi.org/10.1289/ehp.99107799>, 1999.

816 Santizo, K. Y., Widdowson, M. A., and Hester, E. T.: Abiotic mixing-dependent reaction in a  
817 laboratory simulated hyporheic zone, *Water Resour. Res.* 56 (9), e2020WR027090,  
818 <https://doi.org/10.1029/2020WR027090>, 2020.

819 Sawyer, A. H.: Enhanced removal of groundwater-borne nitrate in heterogeneous aquatic sediments,  
820 *Geophys. Res. Lett.* 42(2), 403–410, <https://doi.org/10.1002/2014GL062234>, 2015.

821 Schindler, R. J., Parsons, D. R., Ye, L., Hope, J. A., Baas, J. H., Peakall, J., Manning, A. J., Aspden,  
822 A. J., Malarkey, J., and Simmons, S.: Sticky stuff: redefining bedform prediction in modern and  
823 ancient environments, *Geology*, 43, 399–402, <https://doi.org/10.1130/G36262.1>, 2015.

824 Schulz, H., Teitelbaum, Y., Lewandowski, J., Singer, G. A., and Arnon, S.: Moving bedforms control  
825 CO<sub>2</sub> production and distribution in sandy river sediments, *J. Geophys. Res.: Biogeosci.* 128,  
826 e2022JG007156, <https://doi.org/10.1029/2022JG007156>, 2023.

827 Shelley, F., Klaar, M., Krause, S., and Trimmer, M.: Enhanced hyporheic exchange flow around  
828 woody debris does not increase nitrate reduction in a sandy streambed, *Biogeochem.* 136 (3),  
829 353–372, <https://doi.org/10.1007/s10533-017-0401-2>, 2017.

830 Song, X., Chen, X., Stegen, J., Hammond, G., Song, H.-S., Dai, H., Graham, E., and Zachara, J. M.:  
831 Drought conditions maximize the impact of high-frequency flow variations on thermal regimes  
832 and biogeochemical function in the hyporheic zone, *Water Resour. Res.* 54 (10), 7361–7382,  
833 <https://doi.org/10.1029/2018WR022586>, 2018.



834 Stelzer, R. S., and Bartsch, L. A.: Nitrate removal in deep sediments of a nitrogen-rich river network:

835 A test of a conceptual model, *J. Geophys. Res.* 117, G02027,

836 <http://doi.org/10.1029/2012JG001990>, 2012.

837 Teitelbaum, Y., Shimony, T., Cifuentes, E. S., Dallmann, J., Phillips, C. B., Packman, A. I., Hansen,

838 S. K., and Arnon, S.: A novel framework for simulating particle deposition with moving

839 bedforms, *Geophys. Res. Lett.* 49(4), e2021GL097223, <https://doi.org/10.1029/2021GL097223>,

840 2022.

841 Tonina, D., and Buffington, J. M.: Hyporheic exchange in gravel bed rivers with pool-riffle

842 morphology: Laboratory experiments and three-dimensional modeling, *Water Resour. Res.* 43,

843 <https://doi.org/10.1029/2005WR004328>, 2007.

844 Trauth, N., and Fleckenstein, J. H.: Single discharge events increase reactive efficiency of the

845 hyporheic zone, *Water Resour. Res.* 53(1), 779–798. <https://doi.org/10.1002/2016WR019488>,

846 2017.

847 Trauth, N., Musolff, A., Knller, K., Kaden, U. S., and Fleckenstein, J. H.: River water infiltration

848 enhances denitrification efficiency in riparian groundwater, *Water Resour.* 130, 185–199,

849 <https://doi.org/10.1016/j.watres.2017.11.058>, 2017.

850 Wolke, P., Teitelbaum, Y., Deng, C., Lewandowski, J., and Arnon, S.: Impact of bed form celerity on

851 oxygen dynamics in the hyporheic zone, *Water*, 12(1), 62, <https://doi.org/10.3390/w12010062>,

852 2019.



853 Wondzell, S. M., LaNier, J., Haggerty, R., Woodsmith, R. D., and Edwards, R. T.: Changes in  
854 hyporheic exchange flow following experimental wood removal in a small, low-gradient stream,  
855 Water Resour. Res. 45, <https://doi.org/10.1029/2008WR007214>, 2009.

856 Wu, L., Gomez-Velez, J. D., Li, L., and Carroll, K. C.: The fragility of bedform-induced hyporheic  
857 zones: Exploring impacts of dynamic groundwater table fluctuations, Water Resour. Res. 60,  
858 e2023WR036706, <https://doi.org/10.1029/2023WR036706>, 2024.

859 Xian, Y., Jin, M., Zhan, H., and Liang, X.: Permeable biofilms can support persistent hyporheic  
860 anoxic microzones, Geophys. Res. Lett. 49, e2021GL096948,  
861 <https://doi.org/10.1029/2021GL096948>, 2022.

862 Zarnetske, J. P., Haggerty, R., Wondzell, S. M., and Baker, M. A.: Dynamics of nitrate production  
863 and removal as a function of residence time in the hyporheic zone, J. Geophys. Res. Biogeosci.  
864 116, G01025, <https://doi.org/10.1029/2010JG001356>, 2011a.

865 Zarnetske, J. P., Haggerty, R., Wondzell, S. M., and Baker, M. A.: Labile dissolved organic carbon  
866 supply limits hyporheic denitrification, J. Geophys. Res. Biogeosci. 116, G04036,  
867 <https://doi.org/10.1029/2011JG001730>, 2011b.

868 Zarnetske, J. P., Haggerty, R., Wondzell, S. M., Bokil, V. A., and González-Pinzón, R.: Coupled  
869 transport and reaction kinetics control the nitrate source-sink function of hyporheic zones, Water  
870 Resour. Res. 48 (11), 1–15, <https://doi.org/10.1029/2012WR011894>, 2012.

871 Zheng, L., Cardenas, M. B., Wang, L., and Mohrig, D.: Ripple effects: Bed form morphodynamics  
872 cascading into hyporheic zone biogeochemistry, Water Resour. Res. 55, 7320–7342,  
873 <https://doi.org/10.1029/2018WR023517>, 2019.



874 Zhu, Y., Dai, H., and Yuan, S.: The competition between heterotrophic denitrification and DNRA  
875 pathways in hyporheic zone and its impact on the fate of nitrate, *J. Hydrol.* 626: 130175,  
876 <https://doi.org/10.1016/j.jhydrol.2023.130175>, 2023.

877 Zomer, J. Y., and Hoitink, A. J. F.: Evidence of secondary bedform controls on river dune migration,  
878 *Geophys. Res. Lett.* 51(15), <https://doi.org/10.1029/2024GL109320>, 2024.