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Abstract. Particulate matter (PM) emitted by aircraft engines primarily consists of soot particles formed through incomplete

fuel combustion, which can act as ice nuclei in the formation of contrails and contribute to poor air quality around airports. A

novel technique is introduced to investigate aircraft engine PM emissions using a short-range elastic backscattering lidar. This

approach was validated through trials conducted at the Airbus Bikini test site using the compact and field-deployable Colibri

Aerosol Lidar (CAL) sensor. This instrument enables rapid, non-invasive, and remote measurement of volume backscatter5

profiles, which can be converted into PM mass and number concentrations without the need to sample particles from the

aircraft exhaust. Our findings demonstrate the feasibility and potential of using a short-range elastic backscattering lidar for

remote assessment of aircraft PM emissions across various engine thrust levels.

1 Introduction

Quantifying non-CO2 emissions from aircraft engines, particularly non-volatile particulate matter (nvPM) or soot particles,10

have become a critical focus in aviation environmental research (Lee et al., 2023). These emissions impact local air quality

around airports and contribute to the formation of contrails and contrail-induced cirrus clouds, which may influence the global

Earth’s radiative balance by altering light absorption and scattering in the stratosphere (Yu et al., 2024; Klöwer et al., 2021).

Regulatory standards, such as those established by the International Civil Aviation Organization (ICAO, 2017), are also driving

industry efforts to reduce PM emissions from aircraft engines including technological advances in engine design, the use of low-15

sulfur jet fuel, and improved combustion efficiency. The PM emissions at the aircraft turbine engine exit plane consist mainly of

nonvolatile Particulate Matter (nvPM), or black carbon soot, while other constituents, such as volatile Particulate Matter (vPM),

may be formed downstream as the exhaust plume dilutes and cools in the atmosphere. These vPM are comprised primarily

of sulfur and organic compounds and generally do not form until the exhaust plume has sufficiently diluted and cooled in the

atmosphere downstream of the engine (Jones and Miake-Lye, 2024). The nvPM are defined as solid particles formed by the20

combustion process, with diameters typically between 10 nm and 100 nm, and present at the engine exit plane at temperatures
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higher than 350 °C (SAE International, 2018, 2019). Therefore, there has been a growing need to monitor nvPM emissions

from aircraft to better understand their composition and formation mechanisms, to mitigate their environmental and health

effects.

The measurement of nvPM emissions from aircraft engines is challenging due to the complex nature of the exhaust plume,25

which involves high temperatures, high velocities, and rapid dilution in the atmosphere. Engine certification procedure for

measuring nvPM concentrations has evolved recently, going from the measurement of smoke number to the measurement of

nvPM number and mass concentration (ICAO, 2017). Certification measurements require sample dilution and long lines (up to

32 meters), leading to significant uncertainties, especially in line loss corrections, and making it hard to estimate engine exit

plane values (Durand et al., 2023). Because of these challenges and the need for loss correction methods, new techniques have30

been developed to measure nvPM emissions from aircraft engines. These techniques include laser or active remote-sensing

methods, such as elastic backscatter lidar (EBL), which can provide information about the presence, distribution, and relative

concentration of a wide range of atmospheric aerosols, including soot particles.

Recent advancements have brought the use of lidar techniques closer to new applications involving in-situ instruments. In

particular, Short-Range Elastic Backscatter Lidar (SR-EBL) techniques have proven to be able to probe the mass and number35

concentration of black carbon aerosols in the first tens of meters, unlike traditional long-range atmospheric lidars. SR-EBL

sensors have demonstrated the ability to provide precise and non-invasive characterization of particulate matter near ground

level, in synergy with in-situ instruments for monitoring urban air pollution and traffic-related emissions (Bedoya-Velásquez

et al., 2024). These emerging lidar techniques may offer a more dynamic and continuous alternative to conventional in-situ

sampling methods for assessing nvPM concentrations, such as aircraft gas engines.40

Here, we introduce a novel approach for directly measuring nvPM from an aircraft engine using a short-range aerosol lidar.

First, the sensor and associated retrieval methodology are described. Subsequently, measurements are presented to demonstrate

the feasibility and potential of this technique for monitoring on-wing engine particulate emissions. Our novel sensor is designed

to offer a rapid, precise, and efficient characterization of soot emissions, while overcoming the limitations associated with in situ

sensors. The development of this sensor represents a step forward in the monitoring of non-CO2 aircraft emissions, contributing45

to efforts to mitigate the environmental impact of the aviation sector.

2 Materials and methods

2.1 Principle of measurement

In this section, an overview of the principle of the backscatter lidar-based technique is provided. The principle of operation

has been described in further detail in previous work Ceolato and Berg (2021). Briefly, the short-range elastic backscatter50

lidar (SR-EBL) technique consists in measuring the range-dependent backscattering intensity using the Time-of-Flight (ToF)

method to achieve a higher signal-to-noise ratio compared to other optical methods. The raw lidar signal S(r) directly depends

on the volume of illuminated particulate matter, located at a distance r from the sensor. It is a common practice to use the
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range-corrected signals RCS instead of the lidar signal to remove the range dependence on the signal, such as :

RCS(r) = S(r)r2 = Ko(r)U(r) [V m2] (1)55

where Ko(r) is the lidar constant, directly derived from the radiometric lidar constant, which depends on several parameters

such as the laser pulse energy or the sensor gain and sensitivity, and the overlap or geometric function. We note that the lidar

calibration constant changes from instrument to instrument because of the variation in laser, optical loss, and sensor response.

The elastic lidar equation provides a simple expression of the attenuated backscatter profiles U(r) under the single-scattering

approximation (SSA) Measures (1984); Ceolato and Berg (2021), i.e.60

U(r) = β(r)T (r) where T (r) = exp


−2

r∫

0

α(r′)dr′


 , (2)

where α(r) and β(r) are the range-dependent volume extinction and backscattering coefficients, with units of [m−1] and

[m−1sr−1], respectively.

For optically thin combustion plumes such as aircraft exhaust plumes, i.e. T (r)∼ 1, the volume backscattering coefficient

β(r) is approximately equal to the attenuated backscattering coefficient U(r). Thus, Eq. 1 becomes,

RCS(r) = Ko(r)β(r) [V m2]. (3)65

All optical instruments, including in-situ and remote sensing techniques, rely on having the appropriate optical model to

invert raw electrical signals into useful information. For instance, Laser Induced Incandescence (LII) requires a solid knowledge

of soot refractive index to infer absorption efficiency and retrieve mass concentration information. Absorption instruments such

as the Single-Particle Soot Photometer (SP2) use the mass-absorption coefficient (MAC) Fengshan Liu and Corbin (2020),

while extinction instruments such as the Photoacoustic Extinctiometer (PAX) or the Cavity Attenuated Phase Shift Extinction70

Monitor (CAPS) use the mass-extinction coefficient (MEC) Smith et al. (2015). Here, SR-EBL relies on the backscattering

properties of soot particles. Among these properties, two main parameters are needed to invert the CAL sensor signals into

number and mass concentrations: the differential backscattering cross-section dCbac and the mass-backscattering coefficient

(MBC), respectively. The volume backscattering coefficients can be converted to equivalent number and mass concentrations

by dividing them by a reference coefficient.75

The range-dependent particle number concentration no(r) is directly related to the volume backscattering coefficient,

no(r) =
β(r)
dCbac (4)

where dCbac is the mean differential backscattering cross-section, with units of [m2sr−1], defined as,

dCbac = dCbac =

Rmax∫

Rmin

p(R)dCbac(R)dR (5)

where p(R) is the normalized probability density function (PDF). The soot aerosols are assumed to constitute an isotropic scat-

tering medium consisting of a log-normal ensemble of randomly oriented particles with a mean geometric radius R. The radii
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Rmin and Rmax in Eq. (5) denote the minimum and maximum geometric mean radii, respectively. The differential backscattering80

cross section dCbac can, in general, be obtained from the Stokes phase matrix Mishchenko et al. (2002).

Similarly, the range-dependent particle mass concentration mo(r) is directly related to the volume backscattering coefficient,

mo(r) =
β(r)
MBC

(6)

where MBC, with units of [m2g−1sr−1], is defined as the ratio

MBC =
dCbac

soot

msoot
=

dCbac
soot

ρVsoot
(7)

where msoot is the mass of a soot particle and ρ is the soot density with units [kgm−3]. This coefficient, also called specific

mass backscattering coefficient, is essential to convert lidar signals into mass concentration. It can be seen as the backscattering85

analogue to the MAC or MEC used by other traditional optical techniques.

Consequently, the retrieval of physical quantities from lidar measurements relies on the use of appropriate optical properties.

It is important to acknowledge that the performance of the SR-EBL in measuring particle number and mass concentrations is

dependent on the knowledge of the optical properties of particulate matter. This information can be obtained through laboratory

calibration or by employing a suitable aerosol optical model. The latter approach is the method of choice in this study based90

on the state-of-the-art knowledge of aircraft soot particles and will be elaborated upon subsequently.

2.2 Optical model for aircraft engine particulate matter

Modeling backscattering properties is particularly challenging for soot particles, which are highly absorbing and have complex

optical properties, and has been investigated in previous studies Kanngiesser and Kahnert (2019); Liu and Mishchenko (2020).

Numerical calculations of the radiative properties of soot have been developed using various light-scattering theories: ranging95

from the Lorenz-Mie theory, which assumes simple spherical shapes, to more advanced approaches such as the T-Matrix and

Discrete Dipole Approximation (DDA) methods, which account for more complex morphologies Qin et al. (2024); Ishimoto

et al. (2019). These methods offer varying levels of accuracy for applications in atmospheric science, combustion diagnostics,

and climate research.

A backscattering model based on the Rayleigh-Debye-Gans for Fractal Aggregates (RDG-FA) is proposed for modeling the100

lidar parameters of soot particles, accounting for their fractal morphology. This model is a light-scattering approximation for

fractal aggregates, based on two assumptions: monomers scatter light independently, and the phase shift across each monomer

is negligible. Its accuracy depends on parameters like monomer size, fractal dimension, wavelength, and refractive index,

and has been extensively discussed in previous works Sorensen (2001). These assumptions hold for soot particles with small

aggregate with small monomers, which are typically found in aircraft particulate matter emissions. Despite its simplicity, RDG-105

FA shows good agreement with experimental light-scattering data for soot, especially when averaged over random aggregate

orientations, and has been recently introduced for lidar inversion. This model was successfully used for retrieving kerosene

number and mass concentration from a turbulent small-scale kerosene pool fire Ceolato et al. (2022).
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In the following, we will model the aircraft engine particulate matter as soot fractal aggregates Teoh et al. (2019). Such

aggregates are considered fractal if they display self-similarity across their size scales, that relates aggregate mass or number110

of monomers N , and follows the classic fractal scaling law,

N = ko

(
Dg

Dm

)Df

, (8)

where the fractal dimension Df characterizes the overall morphology of the aggregates and the fractal prefactor ko represents a

degree of compactness of the aggregate. In addition to these morphological parameters, the size of the particles are expressed

in terms of the monomer diameter, Dm, and the diameter of gyration, Dg, which represents the radius of a sphere with the same

moment of inertia as an aggregate with N monomers. Here, the proposed values of the soot fractal aggregate model for aircraft115

particulate matter is based on the following parameters : Df = 1.9, ko = 2.3, Dm = 20 nm, and Dg = 50 nm. These values

are typically obtained from imaging techniques such as transmission electron microscopy (TEM), as reported in the literature

Delhaye et al. (2017); Marhaba et al. (2019). Furthermore, the ratio XR = Dm/Dg = 0.4 is consistent with the median value

derived from measurements and used to model soot particle Kumal et al. (2020); Yu et al. (2024). However, significant uncer-

tainties remain regarding the nvPM morphological properties of modern engines such as the TXWB-84. This gap highlights the120

need for further research and comprehensive measurements. The selection of an appropriate complex refractive index for soot

remains debated due to the complex and interrelated uncertainties involved Digby et al. (2024). The recently recommended

value of m = 1.95+0.96i for freshly emitted black carbon N. Moteki and Adachi (2023) is used here and corresponds to a low

organic carbon to total carbon ratio (OC/TC), as reported for most aircraft engine thrusts Marhaba et al. (2019); U. Trivanovic

and Pratsinis (2022). Another key parameter is the effective mass density for particulate matter, commonly assumed to be125

ρ = 1000, kgm−3 in aircraft particulate studies ICAO (2017); Durdina et al. (2014). More complex and size-resolved effective

density models have been developed, but this value has been shown to give accurate results for a wide range of engine thrusts

Durdina et al. (2014).

An aerosol-optics model is proposed here based on the Rayleigh-Debye-Gans approximation for Fractal Aggregates (RDG-

FA). Here, the differential backscattering cross-section is defined in the backward scattering direction, i.e., for θ = π, where θ130

is the (polar) scattering angle as,

dCbac = N2k4R6
mF (m)S(qπ,Rg,Df), (9)

or using the aggregate volume Vagg = 4
3πNR3

m :

dCbac = 9π2
V 2

agg

λ4
F (m)S(qπ,Rg,Df), (10)

with qπ = q(θ = π,λ) = 2k defined as the backscattering wave-vector. In conventional light-scattering studies, the scattering

angle is varied to change q, and thus, probe different length scales (q−1). Note however, that in elastic backscatter lidar

applications, where the angle is fixed at θ = π, different length scales can still be probed by varying λ. For our lidar sensor,135

qπ = 0.0236 nm−1 for a laser emitting at 532 nm.
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An important parameter to introduce here is the backscattering structure factor S(qπ,Rg,Df). This factor describes the

backscattered intensity in the RDG-FA approximation and has been widely used to characterize combustion by-products. It is a

dimensionless value defined as the square of the Fourier transform of the auto-correlation function, representing an aggregate’s

structure in reciprocal space, and can be divided into three regimes scattering regimes Sorensen (2001). Several analytical140

expressions for S(q) are available and can be used to express S(qπ). Each have in common that yield the characteristic

behavior of the Guinier and power-law regimes described above.

A popular expression is the one proposed by Dobbins and Megaridis ? as ,

S(qπ) =





exp

(
−

q2
πR2

g

3

)
if qπRg <

√
3Df

2
,

(
3Df

2eq2
πR2

g

)−Df
2

if qπRg >

√
3Df

2
,

(11)

where e = 2.718. In the following, due to the small size of the particulate matter emitted by the aircraft engine such as qπRg <√
3Df
2 , a simple expression of the differential backscattering cross-section can be used as :145

dCbac = 9π2
V 2

agg

λ4
F (m)exp

(
−

q2
πR2

g

3

)
, (12)

2.3 Colibri Aerosol Lidar (CAL) sensor

A novel sensor, named Colibri Aerosol Lidar (CAL), has been developed for measuring nvPM concentrations in real-time with

high accuracy, without sampling, directly from an aircraft engine exhaust. Different versions of the CAL instrument have been

developed to address various needs and measurement scenarios Ceolato et al. (2022, 2020b). The CAL-210 is a compact and

lightweight forward-looking short-range elastic backscatter lidar (SR-EBL) with a bi-static and multi-axial architecture for150

remote measurements of aerosols with a range resolution of 10 cm and a time resolution of 1 ms. The emitter unit consists of a

compact, air-cooled Nd:YAG laser that emits ns pulses with a pulse energy of 25 mJ, wavelength of λ = 532.8 nm, 20 Hz, and

a beam divergence of 0.5 mrad. A pair of lenses expands and collimates the laser beam before directing it toward the particulate

matter, here the aircraft engine exhaust plume. The receiver unit, which features a Cassegrain telescope with a 90 mm effective

diameter and a field-stop (FS) to control the field of view, collects the backscattered light. Then, a collection of optical elements,155

including achromatic doublet (AD) lenses, a neutral-band filter (NBF), and an interference filter (IF), is placed on a translation

stage to allow fine adjustment of the focal plane. This feature is crucial as it resolves focusing problems encountered for short

ranges. The bi-static angle, i.e. the angle subtended between the transmitter and receiver units, is another essential feature

for short-range measurements as it enables full control of the overlap function. Subsequently, the sensing unit incorporates an

ultrafast photomultiplier tube (PMT). The signal from the PMT is digitized by a 12-bit analogue-to-digital converter (ADC) at a160

sampling rate of 1 GS/s, then processed by a field-programmable gate array (FPGA) to extract the distance-resolved backscatter
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signal. The data is then transmitted to a computer for analysis and processing to determine the range-resolved backscatter signal

using the Time-of-Flight (ToF) principle, which depend upon the number and mass concentration, no and mo respectively.

nvPM

Emission

Colibri Aerosol Lidar
CAL-210

Reception

Laser
532 nm

PMT

ApertureLensLens

Mirror

Mirror

Interferential
filter Teleobjective

Laser Wavelength 532 nm

Pulse duration 6 ns

Pulse repetition rate 1.0 kHz

Pulse energy 20 mJ

Beam divergence 0.5 mrad

Beam diameter 1 mm

Bi-static angle 1–5 mrad

Receiver Type Cassegrain

Effective diameter 90 mm

Focal length 500 mm

Sensor Type Hamamatsu PMT

Bandwidth 1.0 GHz

Active area 0.2 mm2

Figure 1. Optical diagram and specifications of the CAL-210 sensor. A Nd:YaG laser along with a collimator emits a laser beam in the

direction of the aerosol plume. The backscattered light is collected by a compact Cassegrain telescope then relayed by another achromatic

lens to the PMT.

The salient advantages of the SR-EBL technique, which is employed by the CAL sensor, are outlined below. Firstly, it pro-

vides a direct measurement of particles, thus obviating the potential errors associated with sampling. Specifically, sampling165

biases and contamination are two major sources of uncertainties that can significantly impact the accuracy of nvPM measure-

ments. Secondly, by reducing the overlap between the laser and receiver field of view, it leverages aerosol lidar technology

to directly measure particles in short-range, close to the aerosol emission source, such as an aircraft engine. This technique

thereby bridges the gap between in-situ and remote sensing techniques. In summary, this innovation eliminates the conventional

blind zone of atmospheric aerosol lidar systems within the initial hundred meters. Thirdly, SR-EBL offers higher spatial and170

temporal resolution than other lidar sensors, enabling more precise characterization of nvPM distributions, which is critical for

assessing soot emissions in a complex environment such as an airport with multiple sources of pollution. Finally, the sensitivity

of SR-EBL means that all particles can be detected over the entire lidar field of view in the vicinity of aircraft plumes. The

ranging capability of the SR-EBL technique ensures that all particles are actually detected and not missed, as is the case with

other local in situ techniques that rely on a complex sampling apparatus.175

The original feature of this technique is that it can be operated directly out of the exhaust, without contact, and without

sampling or diluting the soot particles in cells. The CAL sensor has been tested during a field campaign using a turbulent

kerosene Jet A-1 pool-fire and has shown promising results for measuring nvPM concentrations in real-time. The next step

here was to demonstrate the use of the CAL sensor in an airport campaign to assess its performance in a real-world scenario,
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using a commercial aircraft engine. The results of this study provide valuable information about the potential use of the CAL180

sensor to assess the nvPM mass and number concentration in the vicinity of aircraft plumes.

3 Results

The objective here is to demonstrate the feasibility of remotely measuring PM emissions using the CAL sensor based on engine

thrust conditions. A brief measurement campaign was conducted, as detailed in the following sections, to evaluate the potential

use of the CAL sensor for measuring nvPM emissions of aircraft engines, both in terms of mass and number concentrations.185

This campaign aimed to further assess the performance and suitability of the sensor under real-world conditions on an airport.

The data collected during this study provide valuable insights into the future capabilities of the CAL sensor for accurately

characterizing aircraft nvPM emissions.

3.1 Experimental conditions

The measurements presented in this study were collected during an experimental campaign that was conducted in February190

2022 at the Airbus SAS Bikini outdoor test facility, Toulouse Blagnac Airport (IATA:TLS), France (43°38′06′′N, 1°22′04′′E).

The CAL sensor was easy and practical to operate for several hours at an airport. It was placed at a lateral distance of about

50 meters from the plume. Lidar measurements were conducted along a near-horizontal trajectory using the CAL sensor

positioned inside a vehicle. The laser beam was maintained at an approximate height of 2 meters above the tarmac, precisely

aligned to target and intersect the aircraft engine plume perpendicularly. A single Rolls-Royce Trent XWB-84 engine on an195

Airbus A350-900 Flight Lab aircraft was operated on conventional Jet A-1 fuel.

Figure 2. Picture of the test setup at the Airbus SAS Bikini outdoor test facility with an Airbus A350-900 Flight Lab test aircraft. The arrows

indicate the location of the CAL sensor and a beam stop for laser safety.
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3.2 Calibration

A significant challenge in conducting short-range lidar measurements is the incomplete overlap between the lidar’s transmitter

and receiver. This overlap issue is a primary cause of uncertainty when profiling the radiative and microphysical properties of

aerosols using short-range lidars. This can be viewed as a variation in the image-plane position that depends on the range to200

the scattering volume, impacting the lidar’s collection efficiency. Consequently, backscattered light in the short-range may not

fully reach the optical sensor. This area is commonly known as the lidar incomplete overlap or blind zone. Despite numerous

techniques proposed to determine the overlap function of lidar systems Halldórsson and Langerholc (1978); Harms (1979);

Sasano et al. (1979); Dho et al. (1997); Wandinger and Ansmann (2002); Guerrero-Rascado et al. (2010); Vande Hey et al.

(2011); Biavati et al. (2011); Li et al. (2016), experimental approaches are often preferred due to the lack of accurate lidar205

specifications required for theoretical methods. The CAL sensor features a bi-static, multi-axial design specifically aimed at

profiling aerosols in the short-range while minimizing the incomplete overlap zone. A measurement of the range-dependent

overlap function was performed using a Lambertian surface, as detailed in Ceolato et al. (2020a), to confirm that full overlap

was achieved after 30 meters.

3.3 Aircraft PM measurements210

In the following, the nvPM or equivalent black carbon (eBC) mass and number concentrations are derived from volume

backscatter coefficients measured by our CAL sensor. Such backscatter measurements can be converted to mass concentra-

tions by dividing them by a reference mass backscatter coefficient (MBC; units of m2g−1sr−1) and number concentrations by

dividing them by a reference differential backscatter cross-section (dCbac; units of m2g−1sr−1), following Eqs. 2.1 and 2.1

respectively. This data processing is similar to the one commonly used in optical techniques such as LII, CAPS, or PAX and215

also rely on a reference coefficient, although here the measurand is not incandescence or absorption but backscattering. The

reference MBC used here to report eBC represents an assumed physical property of the nvPM emitted by the engine at a given

time. In this study, we have used the value of MBC = 0.025 m2g−1sr−1 and dCbac = 1.38 nm2sr−1, which is provided by the

backscattering RDG-FA model, described in Section 2.2.

A series of lidar measurements were performed during the test under various engine thrust conditions. An adaptive gain220

system was employed to prevent saturation of the CAL sensor from ambient light while maximizing the signal-to-noise ratio.

The recorded lidar signals were background-corrected and time-averaged to produce raw lidar signals. The volume backscatter

profiles were then derived from these raw signals using the analysis methodology outlined in Section 2.1.

Figure 3 presents a time-range false-color map of the volume backscatter coefficient (left) from an initial measurement test

and the retrieved nvPM mass and number concentration profiles (right). The left panel reveals temporal and spatial variations225

in backscattering, with a distinctly high backscatter coefficient at the location of the engine exhaust location. In particular, eBC

particles are clearly detected from the background aerosols with a volume backscatter coefficient greater than 10−6 m−1sr−1.

The right panel shows the time-integrated horizontal distributions of eBC mass and number concentrations, peaking at the

engine location and forming an almost perfect Gaussian plume of about 6 meters. The presence of a crosswind during the
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Figure 3. Time-range map of the volume backscatter coefficient (left). Retrieved equivalent black carbon mass and number concentration

profiles.

measurement caused fluctuations in the volume backscatter profiles during the measurements. However, these instabilities230

were identified and found to have minimal effect on the results, as detailed in the mass and number concentration retrievals.

Figure 4 complements the previous analysis by illustrating a time-range map of the volume backscatter coefficient (top

panel) and the retrieved nvPM mass and number concentration profiles (bottom panel) under three engine thrust conditions :

intermediate, high, and ground idle. It is important to note that the measurement duration at high power was relatively brief

compared to the longer periods recorded at intermediate power and idle power. The maximum mean and standard deviation235

values are reported in Table 2 for nvPM mass and number concentration. This result provides valuable insights into the tem-

poral and spatial variations of nvPM emissions, with the CAL sensor effectively quantifying the changes in number and mass

concentration corresponding to various engine thrust levels. Table 2 presents a comprehensive summary of the nvPM mass

and number concentrations using the CAL sensor. It demonstrates a clear correlation between engine power and particulate

emissions. The observed tendencies align with trends reported in the ICAO Aircraft Engine Emissions Databank International240

Civil Aviation Organization (2025), showing a non-linear relationship between engine thrust and emission levels: intermediate

thrust produces the highest concentrations, followed by slightly lower values at high thrust, while idle conditions exhibit the

lowest emissions. Interestingly, the concentrations do not increase linearly with thrust, suggesting complex interactions be-

tween engine parameters and particulate formation. These findings underscore the importance of considering specific engine

operating conditions when assessing aircraft particulate emissions and their potential environmental impact.245
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Figure 4. Time-range map of the volume backscatter coefficient (top) and retrieved equivalent black carbon mass and number concentration

profiles (bottom) under three engine thrust conditions: intermediate, high, and idle.

Table 1. Mass and number concentrations obtained from the CAL sensor at various engine thrust conditions. Maximum and standard devia-

tion values.

Engine thrust Mass [mg m−3] Number [106 part cm−3]

Intermediate 0.081± 0.018 1.47± 0.33

High 0.055± 0.014 0.99± 0.25

Idle 0.040± 0.009 0.72± 0.16
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4 Discussion

New scientific instruments are urgently needed to quantify non-CO2 emissions (such as nvPM or contrails), which create

complex climate impacts that cannot be addressed by traditional characterization methods alone. We propose to discuss several

uncertainties and limitations, as well as potential developments to enhance the performance of the CAL sensor.

4.1 Uncertainties and limitations250

Assessing uncertainties is a critical part in the development of any novel measurement method. Our analysis of the retrieval

method reveals that one of the primary sources of uncertainty lies in the limited knowledge of the backscattering properties of

particulate matter (PM) emitted by aircraft. To address this, an aerosol-optics model was introduced in Section 2.2, based on

the following key equations:

dCbac = 9π2
V 2

agg

λ4
F (m)S(qπ), (13)255

MBC =
dCbac

agg

ρVagg
= 9π2

Vagg

ρλ4
F (m)S(qπ). (14)

In light-scattering models, uncertainties in optical properties (e.g. refractive index) and morphological characteristics (e.g.

fractal dimension, ratio of monomer radius to radius of gyration) can introduce substantial errors in the predicted backscat-

tering behavior. To quantify the impact of these uncertainties on backscattering properties, we employ a Monte Carlo (MC)260

uncertainty analysis. This method involves generating a large number of random samples from the probability distributions

of the input parameters, as summarized in Table 2, and evaluating the measurement model for each sample set. The resulting

distribution of output values enables the estimation of both the best value and its associated uncertainty.

Table 2. Uncertainty components associated with optical properties and morphological properties of the backscattering model.

Components Symbols Units Value Uncertainty Cback (% Var) MBC (% Var)

Fractal dimension Df 1.9 ± 0.1 6.8 6.2

Fractal pre-factor kf 2.3 ± 0.2 6.3 5.7

Dm/Dg XR 0.40 ± 0.02 7.3 6.7

Monomer radius Rm nm 10.0 ± 1 76.2 69.3

Scattering function F(m) 0.4 ± 0.05 3.4 12.4

Backscattering Structure Factor S(qπ) 0.89 ± 0.01 0.0 0.1

Effective mass density ρ kgm−3 1000 ± 0.100 N/A 0.0

A sensitivity analysis is presented in Fig. 5, with results for Cbac shown in the top panel and for MBC in the bottom. The

analysis follows a one-at-a-time (OAT) approach, using Pearson correlation coefficients to quantify the influence of each input265

variable across the full ensemble of simulations. The scatter plots include linear regression fits, with the quality of the fit
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assessed using the Root Mean Squared Error (RMSE) and the coefficient of determination (R2). The R2 values indicate that

the investigated parameters have a substantial and variable impact on both Cbac and MBC, with explained variances of 78

(a) Sensitivity analysis of Cbac with respect to key input parameters.

(b) Sensitivity analysis of MBC with respect to key input parameters.

Figure 5. The results of the sensitivity analysis, based on 10000 Monte Carlo simulations, are displayed. Each panel illustrates how individual

parameters affect the variability of Cbac and MBC. The power density functions (PDFs) for Cbac and MBC are shown in the final figure of

each panel.

The other variables that showed a moderate positive linear correlation, with R2 values around 25%, are Df and k0 for both

Cbac and MBC, while the only variable that exhibited an anti-correlation trend is XR, with R2 = 26%. Lastly, F(m) exhibits270
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a weaker but still notable linear influence on both MBC and Cbac, although the magnitudes differ. The linear relationship

between MBC and F(m) accounts for a moderate R2 of 33%, whereas the relationship between Cbac and F(m) is substantially

weaker, with an R2 of only 16%. This indicates that while both parameters show some positive linear correlation with F(m),

MBC is more sensitive to variations in F(m) than Cbac. In contrast, S(qπ) exhibits a negligible linear correlation with both

MBC and Cbac. This indicates that linear changes in S(qπ) do not significantly impact Cbac or MBC within the context of275

this analysis. It is important to note that this evaluation is based exclusively on linear regression. Therefore, depending on

the analytical expression for S(qπ) presented in Eq. 11, additional nonlinear relationships may emerge, suggesting that new

possible nonlinearities might exist beyond the scope of this linear analysis.

Based on the input data summarized in Table 2, the results of the Monte Carlo (MC) simulation — performed with 10,000

samples drawn from normal distributions—yield a mean value of Cbac = 1.4± 1nm2 sr−1, and a mean mass branching coef-280

ficient (MBC) of (2.1± 0.8)× 10−2 m2 g−1 sr−1. The distributions of these outputs are depicted in the histograms shown in

Fig. 5. As expected, the probability density functions (PDFs) are normalized such that the area under each curve equals one. As

observed, Eqs. 13 and 14 exhibit nonlinearities; therefore, the individual impact of each variable on the properties of interest

cannot be fully captured through linear trends alone.

To evaluate the contribution of each variable, we expressed Equation 13 in logarithmic form and then quantified the variance285

associated with each term as follows:

logCbac = logA + 2logVagg + logS(qπ) + logFm (15)

Operating with Eqs.8 and 9 the following explicit form of Vagg is used

Vagg =
4
3
πk0 R3

m

(
X−1

R

)Df (16)

So Eq.16 it can be reformulated by combining the resulting terms as,290

logCbac = logA + 2
(
logko + 3logRm + Df log

(
X−1

R

))
+ logS(qπ) + logFm. (17)

Similarly for MBC, the Eq. 14 is decomposed as,

logMBC = logko + 3logRm + Df log
(
X−1

R

)
+ logS(qπ) + logFm− logρ + B. (18)

where the A = 9π2/λ4 and B accounts for the unit conversion of MBC.

The results of the variable apportionment are summarized in the last two columns of Table 2. In a nutshell, Rm is the295

most influential variable for Cbac, accounting for up to 76.2% of the explained variance, and 69.3% in the case of MBC. The

contributions from all other variables remain below 13% for both Cbac and MBC. This analysis further reveals that the variance

of Vagg explains up to 96.6% of the variability in Cbac, and 87.9% in MBC.
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4.2 Further development

This study introduces the CAL sensor, which was successfully used to measure nvPM emissions from the exhaust of an Airbus300

A350-900 Flight Lab aircraft engine. The sensor demonstrated high proficiency in real-time monitoring, providing critical

insights into soot properties and behavior under varying engine conditions. The results confirmed the accurate assessment of

nvPM equivalent mass and number concentrations, validating the CAL sensor’s capability for characterizing aircraft exhaust.

These findings highlight the potential of the CAL sensor to advance aerosol science, atmospheric research, and emission

monitoring in the aviation sector, offering novel opportunities for improving regulatory compliance and environmental impact305

assessments.

Compared to the concentrations reported by ICAO, we are reasonably confident that the measurement uncertainties in our

dataset are minimal. This supports the reliability of the aerosol optical model used to characterize aircraft PM emissions.

This gives us confidence in the model’s ability to reproduce key optical properties under realistic engine operating conditions.

However, comparing emissions data from different measurement platforms is challenging due to the variability introduced by310

particle dilution in the engine exhaust plume. The dilution factor, which is governed by ambient conditions, distance from the

exhaust, and plume mixing dynamics, can substantially alter the observed particle concentration. Further work should include a

direct comparison between in-situ measurements obtained near the engine exit plane and remote-sensing observations, such as

lidar measurements taken further downwind. Accurately accounting for dilution is essential to ensure meaningful comparisons

and model validation across different spatial and temporal measurement regimes.315

Future research should also address the formation and evolution of vPM. Lidar techniques offer the unique capability to

sample exhaust plumes both near the emission source, at the engine exit plane, and at greater distances where vPM may form

through cooling and condensation processes. This capability could improve upon traditional in-situ sampling methods and

provide a more comprehensive assessment of total particulate matter (tPM), which includes both nvPM and vPM. Another key

challenge is assessing particulate matter emission indices from lidar measurements by integrating engine performance data,320

such as fuel flow rates or carbon dioxide concentrations, in accordance with ICAO emission-index standards. This represents a

future critical step toward standardized quantification of aircraft emissions.

5 Conclusion

We developed and deployed a short-range elastic backscatter lidar, named CAL sensor, to measure the PM emissions of aircraft

engine on an airport in Toulouse. Field results demonstrate that the CAL sensor can reliably measure backscatter profiles325

of PM emitted by the engine at various thrust levels. By applying a backscattering model for soot particles, CAL sensor

measurements can be inverted to determine both number and mass concentrations. Utilizing CAS sensor capabilities could

enhance the quantification of PM emissions. Using the capabilities of CAS sensors could help to better quantify PM emissions.

Overall, our findings support further development of the CAL sensor as a flexible solution to quantify aircraft PM emissions.

This work presents a novel, non-invasive method for measuring particulate matter (PM) emissions from aircraft engines using330

a compact, field-deployable lidar system. This technology enables real-time, remote assessment of PM emissions at airports,
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addressing a major challenge in air quality monitoring and regulatory compliance. Aircraft engine PM emissions are a pressing

environmental and public health concern due to their role in degrading air quality around airports and their contribution to

contrail formation, which impacts climate. Our approach provides a breakthrough by allowing rapid and accurate emission

measurements without the need for direct sampling, which is logistically complex and often impractical. This advancement is335

timely and relevant, as it supports efforts to reduce aviation’s environmental footprint and informs policy on sustainable air

transport. The research is particularly newsworthy because it introduces a new measurement capability with direct implications

for air quality management, climate research, and regulatory monitoring. Such topics are believed to be of high public and

media interest. The method’s successful demonstration at a major European test site further enhances its relevance and potential

for broad application. In a nutshell, our findings offer a significant step forward in environmental monitoring technology, with340

clear benefits for science, policy, and society.
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