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Abstract. Soil moisture (SM) is a critical variable governing land–atmosphere interactions and influencing ecohydrological

and climatic processes. Despite substantial progress in estimating SM through remote sensing and land surface models, con-

siderable uncertainties still remain, especially in near-natural and poorly monitored ecosystems interacting with deeper soil

layers. In this study, the performance of four state-of-the-art gridded SM products (SPL4SMAU, GLDAS-Noah, ERA5 and

ERA5-Land) is evaluated against in situ observations at ten natural monitoring sites in central and southern Chile, covering5

different hydroclimatic conditions (five semi-arid and five humid sites). The evaluation is performed at a 3-hourly temporal res-

olution, using well-known statistical metrics of performance, including unbiased root mean square error (ubRMSE), modified

Kling–Gupta efficiency (KGE′), deseasonalised Spearman’s rank correlation coefficient (ρ), and percent bias (PBIAS), each

applied separately for surface soil moisture (SSM) and root zone soil moisture (RZSM). Finally, the dynamic SM responses to

precipitation events is evaluated using rising time (RT) and amplitude (A) SM signatures during the first and the most intense10

precipitation events of the year.

Our results show that ERA5 and ERA5-Land consistently outperform SPL4SMAU and GLDAS-Noah on most metrics and

in most regions, with ERA5-Land being particularly strong in humid areas. However, SPL4SMAU achieved the best SSM

performance in selected northern arid locations, based on KGE′; while GLDAS-Noah performed the worst overall, with the

exception of moderate correlation values in southern RZSM. During the first precipitation event of the year, all products sys-15

tematically overestimated both rising times and amplitudes in the arid north, indicating challenges in capturing SM responses

under dry antecedent conditions. In contrast, all the gridded products aligned more closely with in situ measurements during

intense precipitation events, particularly in humid regions. Our findings suggest that both ERA5 and ERA5-Land are valuable

datasets for monitoring SM variability in near-natural and data-scarce ecosystems, while highlighting the value of event-based

SM signatures to complement traditional performance metrics. Finally, we recommend the use of the deseasonalised Spearman20

rank correlation to better detect inconsistencies in temporal dynamics, especially in regions with strong seasonal cycles, such

as arid environments.
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1 Introduction

A sound representation of the spatio-temporal dynamics of soil moisture (SM) is essential for improving our understanding of

eco-hydrological processes and for enhancing the accuracy of hydrological and climate models, particularly in regions with25

complex hydroclimatic conditions. SM has a direct influence on important hydrological processes such as infiltration, runoff,

and evaporation; mediates the exchange of energy and mass between land and atmosphere (Vereecken et al., 2022), and actively

regulates the water resources available to vegetation in space and time (Peng et al., 2021). Surface soil moisture (SSM) refers to

the moisture content within the top layer of soil, typically the first 5–10 cm. In contrast, root zone soil moisture (RZSM) refers

to the moisture available in deeper soil layers (typically 100 cm or more), where plant roots can extract water. Understanding30

the dynamic fluctuations of these two variables across different ecosystems is essential for improving drought monitoring,

hydrological modelling, long-term water availability estimates, and water resources management, among others.

Dynamic fluctuations of SSM and RZSM are primarily governed by changes in precipitation (P), the primary source of soil

water recharge. In particular, the spatial and temporal variability of SSM is directly influenced by the frequency and intensity

of P events, affecting its immediate availability in the top soil layer (Zheng et al., 2022b; Xi et al., 2023). In contrast, RZSM35

responds to precipitation changes with a delay, as water must infiltrate into deeper soil layers before being stored in the root

zone (Tian et al., 2019). This temporal difference plays a fundamental role in water tranfers in the soil, particularly in regions

with irregular precipitation patterns, where RZSM retains water for extended periods of time (Hao et al., 2019; Räsänen et al.,

2020).

Accurately representing SM dynamics across different ecosystems requires reliable and spatially continuous data. SM data40

are derived from diverse sources, including in situ measurements, satellite observations, land surface models (LSMs), and re-

analysis datasets. In situ measurements provide highly accurate data, although their spatial coverage is limited, with monitoring

networks concentrated predominantly in the Northern Hemisphere (Beck et al., 2021). Notable networks such as TERRENO

(Zacharias et al., 2011), Oznet (Smith et al., 2012), COSMOS-UK (Evans et al., 2016), and the International Soil Moisture

Network (ISMN; Dorigo et al., 2021) provide valuable long-term datasets. However, most of these networks only provide esti-45

mates for the first few centimetres of the soil profile (Dorigo et al., 2021), have limited coverage in the Southern Hemisphere,

and rarely include natural ecosystems with minimally disturbed soils.

On the other hand, satellite observations provide a consistent and (near-)global estimates of SSM at varying spatial and

temporal resolutions. Passive microwave sensors, such as those onboard Soil Moisture Active Passive (SMAP; Entekhabi et al.,

2010b) and the Advanced Microwave Scanning Radiometer 2 (AMSR2; Imaoka et al., 2012; Parinussa et al., 2015), estimate50

SM by detecting variations in land surface emissivity; while active microwave sensors, like those used in Sentinel-1, leverage

radar backscatter to retrieve SSM at higher spatial resolution (Paloscia et al., 2013). However, satellite-based SM retrievals are

generally limited to the top soil layer, typically within the upper 10 cm, and are affected by factors such as vegetation cover and

radio frequency interference. As a result, integrating multiple data sources is often necessary to enhance their accuracy (Peng

et al., 2021; Dorigo et al., 2021). More critically, satellite observations cannot capture SM dynamics in deeper soil layers (i.e.,55

in the RZSM), which is vital for understanding long-term water availability and plant growth dynamics.
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To address some of the limitations of satellite estimates, in the last decades several LSMs and reanalysis datasets have been

used to estimate SM across multiple soil depths. Land surface models, such as NOAH-MP (Niu et al., 2011) and the Commu-

nity Land Model (CLM; Lawrence et al., 2019), simulate physical, chemical, and biological processes at the land–atmosphere

interface by solving equations that govern the balances of energy, water, momentum, and carbon. Their inputs typically include60

atmospheric forcing data (e.g., P, radiation, wind, temperature) and they simulate SM at multiple depths based on soil, vegeta-

tion, and terrain characteristics (Van Den Broeke et al., 2018; Zhuo et al., 2019). On the other hand, reanalysis like ERA5-Land

(Muñoz-Sabater et al., 2021) and MERRA-2 (Gelaro et al., 2017) aim to create a comprehensive and time-consistent rep-

resentation of atmospheric, oceanic, and land variables, by using data assimilation to combine observations (e.g., satellites,

weather stations) with output from a global numerical weather prediction (NWP) model. Land surface models are often em-65

bedded within a reanalysis system to simulate land variables, resulting in high temporal and spatial resolution datasets covering

last decades (Gelaro et al., 2017; Hersbach et al., 2020). However, the accuracy of reanalysis depends on the quality of the

assimilated observations and model parameterisations, requiring validation against in situ measurements to improve regional

applicability (Beck et al., 2021).

Despite advances in LSMs, satellite observations, and reanalysis datasets, the limited availability of in situ SM data in the70

Southern Hemisphere poses a significant challenge for validating these (near-global) estimates. The lack of a comprehensive

ground-based SM network hinders our ability to analyse SM variability, particularly in heterogeneous landscapes. Furthermore,

while gridded SM products have demonstrated good performance in studies with many observations (Beck et al., 2021; Lai

et al., 2023; Zheng et al., 2023, 2024; Brocca et al., 2024), their applicability in data-sparse regions remains uncertain and

requires evaluation before widespread adoption.75

Direct evaluation of gridded SM datasets against in situ observations are complicated by differences in spatial and temporal

resolution, which might lead to misinterpretations of SM dynamics (Colliander et al., 2018). In addition, time series compar-

isons for medium to long-term periods fail to capture the complete SM dynamics, as they do not adequately reflect short-term

fluctuations and retention patterns that influence hydrological and ecological processes (Araki et al., 2022). To overcome these

limitations, SM signatures have emerged over the last decade as valuable metrics for analysing gridded datasets and assess-80

ing the dynamic response of SM to precipitation events in different ecological contexts (Branger and McMillan, 2020; Araki

et al., 2022). In contrast to traditional full-time series comparisons, SM signatures allow a more detailed characterisation of

SM dynamics and provide insights into key hydrological soil processes, such as wetting and drying cycles, water retention and

infiltration (Branger and McMillan, 2020; Araki et al., 2022, 2023). With climate projections suggesting further declines in

SM and increasing aridification in semi-arid regions (such as central Chile) by the end of the 21st century (Lai et al., 2023), an85

exhaustive evaluation of the SM responses to P events is critical to better understand the spatio-temporal dynamics of SM.

Chile’s diverse ecosystems, ranging from semi-arid shrublands to temperate native forests, exhibit distinct water retention

and infiltration processes (Bown et al., 2018); making the region an excellent natural laboratory for evaluating soil moisture

dynamics under contrasting hydroclimatic conditions. For instance, the limited water retention capacity of soils in the semi-

arid Petorca River Basin leads to rapid SM depletion after the occurrence of P events (Muñoz et al., 2020). In contrast, the90

deep soils and dense native vegetation typical of the Trancura River Basin allow for longer water storage (Frêne et al., 2020).
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By evaluating gridded SM products under such contrasting hydroclimatic and ecological conditions, this study will contribute

to filling the existing gap in their assessment on natural, undisturbed ecosystems, especially in under-represented regions of

the Southern Hemisphere. Our results will help to improve our understanding of eco-hydrological processes and increase the

accuracy of hydrological and climatic modelling applications. To this end, we present the first evaluation of 3-hourly gridded95

SM datasets for native ecosystems in South America, focusing on their ability to capture surface and root zone dynamics during

precipitation events. Specifically, we address the following two research questions:

– How well do 3-hourly gridded products represent SSM and RZSM dynamics in natural ecosystems of the Southern

Hemisphere during precipitation events?

– How reliably do gridded datasets represent SM signatures across diverse hydroclimatic conditions?100

2 Datasets

2.1 Study area

The study area is situated in central-southern Chile, between 32.01◦S and 39.64◦S, and is characterised by a wide variety

of elevations, land cover, soil properties, and aridity, as shown in Figure 1. In the north, the Petorca River Basin (PRB, in

the Valparaíso region) is semi-arid, dominated by sparse shrublands and low P amounts. The Mapocho en Los Almendros105

River Basin (MRB, in the Metropolitan region) transitions to a moderate climate with shrublands and agricultural fields. The

Cauquenes River Basin (CRB, in the Maule and Ñuble regions) is more humid, with a predominance of pine plantations and

native shrublands. Further south, the Trancura River Basin (TRB, in the Araucanía region) is characterized by dense native

forests, high P amounts, and elevations exceeding 2,000 m a.s.l. The aridity index (AI = P/PET , where PET stands for

potential evapotranspiration), derived from the Global-AI-PET-v3 dataset (Zomer et al., 2022), emphasises the pronounced110

climatic gradient in the study area, which ranges from arid conditions in the PRB (AI < 0.3) to very humid conditions in the

TRB (AI > 1.25).

2.2 Gridded SM datasets

In this study we evaluated four state-of-the-art SM gridded datasets: i) ERA5 (Hersbach et al., 2020), ii) ERA5-Land (Muñoz-

Sabater et al., 2021), iii) GLDAS-Noah (Xing et al., 2021), and iv) SMAP-SPL4SMAU (Reichle et al., 2017a, b), which are115

briefly described in the following lines.

2.2.1 ERA5

ERA5 is the fifth-generation reanalysis product developed by the European Centre for Medium-Range Weather Forecasts

(ECMWF; Hersbach et al., 2020). It uses the Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL)

to effectively simulate SM dynamics, capturing complex interactions among precipitation, evaporation, infiltration, and runoff.120
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Figure 1. Study area: (a) catchment location (CAMELS-CL; Alvarez-Garreton et al., 2018); (b) elevation (SRTMv4.1; Jarvis et al., 2008);

(c) land cover classification (LC.V2; Galleguillos et al., 2024); (d) soil properties (CLSoilMaps; Dinamarca et al., 2023); and (e) aridity index

(AI = P/PET ) 1970-2000 (Global-AI-PET-v3; Zomer et al., 2022). Basemap imagery © Google Earth (Google LLC, 2024).

These hydrological processes are modelled through advanced equations that elucidate the energy and water exchanges between

soil, vegetation, and the atmosphere. A key feature of ERA5 is the integration of remote sensing data for SM over land, using

backscatter data from C-band scatterometers. Although SM retrievals from satellite sources such as the Advanced Scatterometer

(ASCAT; Wagner et al., 2013) are not directly assimilated into ERA5, they have a significant impact on the modelled surface

fluxes and soil states, enhancing the accuracy of the simulated SM. This dataset contains high-resolution data on volumetric125

soil water content in four vertical layers: 0–7 cm for SSM and 7-28 cm, 28-100 cm and 100-289 cm for RZSM; with an hourly

temporal resolution and a native spatial resolution of 31 km, from 1940 to present. This high-resolution and globally uniform

coverage proves essential for various applications, ranging from hydrological modelling to agricultural planning. Here we used

the ERA5 single-levels reanalysis data, from the Copernicus Climate Data Store (Hersbach et al., 2023).
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2.2.2 ERA5-Land130

ERA5-Land is a reanalysis dataset that further refines the land component of ERA5, providing a high-resolution and consistent

overview of land variables over several decades (Muñoz-Sabater et al., 2021). ERA5-Land operates at a spatial resolution of

0.10◦ and extends from 1950 to present, using the HTESSEL as land surface model, driven by downscaled ERA5 meteorolog-

ical data to account for elevation differences (Muñoz-Sabater, 2019). In contrast to ERA5, which involves indirect assimilation

of observational data, ERA5-Land relies exclusively on physical modelling within HTESSEL to simulate SM dynamics in the135

four vertical soil layers without direct data assimilation. This method ensures a complete derivation of SM from high-resolution

meteorological data, which maintains the physical consistency of the land surface simulations and avoids artifacts due to cor-

rections of the observational data. This dataset provides volumetric soil water content in the same four vertical layers of ERA5,

allowing a more detailed visualisation of the local-scale variations of SM, as influenced by topography, vegetation and soil

properties (Muñoz-Sabater et al., 2021; Nogueira et al., 2020; Liu et al., 2024). Here we used the hourly data obtained from140

the Copernicus Climate Data Store (Muñoz-Sabater et al., 2021).

2.2.3 SMAP SPL4SMAU

The Soil Moisture Active Passive (SMAP; Entekhabi et al., 2010a) Level-4 Soil Moisture (Reichle et al., 2014) product provides

comprehensive global estimates of SM at the surface (0–5 cm) and in the root zone (0–100 cm) with a spatial resolution of 9 km,

updated every 3 hours from March 2015 onwards. This dataset integrates L-band brightness temperature observations from the145

SMAP radiometer into the Catchment Land Surface Model (CLSM; Reichle et al., 2022b). The data assimilation system used

in this product corresponds to the Goddard Earth Observing System Version 7 (GEOS-5 LDAS), which contains a spatially

distributed ensemble Kalman filter with a 3-hourly update interval for the integration of observations and model simulations

(Rienecker et al., 2008; Reichle et al., 2022b). The meteorological surface data of the GEOS-5 Forward Processing (FP) system

drives the CLSM model, using the daily CPCU precipitation observations to adjust and scale the GEOS-5 FP precipitation data150

to the climatology of the Global Precipitation Climatology Project version 2.2 (GPCP v2.2; Adler et al., 2020). The SMAP L4

product also integrates soil properties from the Harmonized World Soil Database (HWSD) V1.2 (Wieder et al., 2014) and land

cover data from the GlobCover 2009 (Arino et al., 2012). Here we used the SMAP L4 Global 3-hourly 9 km EASE-Grid grid

Surface and Root Zone Soil Moisture Analysis Update (SPL4SMAU; Reichle et al., 2022a) data version 7 available from the

NSIDC (https://nsidc.org/data/spl4smau/versions/7).155

2.2.4 GLDAS-Noah

The Global Land Data Assimilation System (GLDAS; Rodell et al., 2004) NOAH version 2.1 (Beaudoing et al., 2020) is

developed by NASA’s Goddard Earth Sciences Data and Information Services Center (GES DISC), and delivers optimal land

surface states and fluxes without incorporating data assimilation. Operating offline, the Noah Land Surface Model is driven

by a combination of atmospheric fields from NOAA’s Global Data Assimilation System, precipitation data from the Global160

Precipitation Climatology Project (GPCP) V1.3 Daily Analysis (Huffman et al., 1997), and radiation inputs from AGRMET
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(Meng et al., 2001). Soil moisture dynamics are represented in a four-layer soil column, simulated by the diffusive form of the

Richards equation. Additionally, GLDAS-Noah utilizes a hybrid STATSGO/FAO World Soil Map (Dy and Fung, 2016) and

applies a modified MODIS vegetation classification scheme with 20 categories (Rui et al., 2021). Unlike ERA5, the GLDAS-

Noah product is available at 3-hour intervals. Here we used the GLDAS-Noah v2.1 data from GES DISC (NASA/GSFC/HSL,165

2020).

Table 1. Gridded SM products used in this study.

Product Data Land surface Soil layers Temporal Spatial and Landcover References

type Model [cm] Coverage temporal resolution product

ERA5 Reanalysis (H)TESSEL 0–7, 7–28,

28–100, 100–289

1940–present 0.25◦, hourly GLCC v1.2 Hersbach et al. (2020)

ERA5-Land Reanalysis (H)TESSEL 0–7, 7–28,

28–100, 100–289

1950–present 0.10◦, hourly GLCC v1.2 Muñoz-Sabater (2019);

Muñoz-Sabater et al. (2021)

SMAP-SPL4SMAU LSM* GEOS 0–5, 0–100 2015–present 9 km, 3-hourly GlobCover 2009 Reichle et al. (2017a, 2022a)

GLDAS-Noah V2.1 LSM NOAH 0–10, 10–40,

40–100, 100–200

2000–present 0.25◦, 3-hourly MCD12Q1 Rodell et al. (2004);

NASA/GSFC/HSL (2020)

2.3 In situ SM observations

To evaluate the four gridded SM datasets descried in Section 2.2, we used the Kimün-Ko SM monitoring network, which has

been fully operational since 2022. It was developed to characterise SM variability in undisturbed ecosystems of central and

southern Chile, which are under-represented in global monitoring networks that primarily focus on agricultural areas in the170

Northern Hemisphere. (Dorigo et al., 2021; Beck et al., 2021).

The Kimün-Ko network estimate SM dynamics using TEROS 10 and TEROS 12 capacitance sensors, installed at depths

ranging from 10 to 200 cm and connected to ZL6 data loggers for high-frequency data acquisition. Ten monitoring sites were

selected within the study area (Figure 2); five in the semi-arid north (PRB and MRB, Figure 2.b) and five in the humid south

(CRB and TRB, Figure 2.c); to reflect a range of hydroclimatic conditions and land cover types. All ten SM monitoring sites175

are situated in areas classified as Sandy Loam (SaLo) based on CLSoilMaps (Dinamarca et al., 2023). The placement of each

station also ensures spatial correspondence with the cells of the gridded SM products being evaluated. At each site, volumetric

soil water content (m3/m3) is recorded at an hourly temporal resolution. Details of sensor depths and site characteristics are

summarised in tables 2 and 3, respectively. Each monitoring site is equipped with a rain gauge that is close enough to the SM

sensor to be considered representative of the precipitation falling over the site. Table 2 show a summary of the sensor depths,180

location, elevation and land cover of each monitoring site, while Table 3 summarise the soil texture in each site.
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Figure 2. Locations of in situ TEROS 10 and TEROS 12 sensors. (a) Example of TEROS 10 and TEROS 12 sensors installed across various

land cover types; (b) northern arid sites in the Petorca (PRB) and Mapocho (MRB) river basins; and (c) southern humid sites in the Cauquenes

(CRB) and Trancura (TRB) river basins. Red triangles indicate the locations of in situ SM monitoring sites. Grid cell boundaries of each

gridded SM product are shown for ERA5 (green), ERA5-Land (purple), SPL4SMAU (blue), and GLDAS-Noah (lightblue).
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Table 2. Summary of in situ SM sensors and main characteristics of each monitoring site

n ID Catchment Sector Landcover Latitude Longitude Elev. Slope AI Sensor depth

(°) (°) (m a.s.l.) (%) (P/PET) [cm]

1 SM01 PRB North Native Forest -32.22 -71.28 574 20.7 0.17 10, 30, 50, 80, 130

2 SM02 PRB North Shrubland -32.14 -71.05 879 4.2 0.14 10, 30, 50, 80, 120

3 SM04 PRB North Shrubland -32.07 -70.82 1386 18.7 0.14 10, 40, 80, 110*

4 SM05 PRB North Shrubland -32.22 -70.70 1240 22.8 0.15 10, 40, 70, 115*

5 SM07 MRB North Shrubland -33.40 -70.37 1341 27.5 0.32 10, 30, 60, 100, 140*

6 SM15 CRB South Native Forest -35.82 -72.40 613 14.6 0.72 10, 40, 70, 120*, 170*

7 SM10 TRB South Native Forest -39.43 -71.78 861 11.9 1.59 10, 30, 70, 120*, 160*, 200*

8 SM11 TRB South Grassland -39.40 -71.54 401 1.3 1.39 10, 30, 60, 110*

9 SM12 TRB South Native Forest -39.28 -71.56 850 5.9 0.97 10, 30, 60, 100, 150*, 200*

10 SM14 TRB South Native Forest -39.02 -71.47 1041 24.5 1.20 10, 30, 50, 115*

PRB: Petorca River Basin, MRB: Mapocho River Basin, CRB: Cauquenes River Basin, TRB: Trancura River Basin. *The sensors at these

depths were not used in the present study. AI: Aridity index.

Table 3. Soil texture for each in situ monitoring site for SSM (0–5 cm) and RZSM (0–100 cm).

n ID Dominant species ChSPD SSM (0–5 cm) RZSM (0–100 cm)

Clay (%) Sand (%) Silt (%) Clay (%) Sand (%) Silt (%)

1 SM01 Cryptocarya alba 13640 19.84 59.40 20.75 23.19 58.41 18.40

2 SM02 Colliguaja odorifera 13641 13.12 63.06 23.82 19.14 62.02 18.84

3 SM04 Retanilla trinervia 13910 19.41 54.86 25.72 20.95 55.23 23.82

4 SM05 Porlieria chilensis 13911 13.56 55.32 31.12 15.83 54.21 29.96

5 SM07 Lithraea caustica 13644 14.97 59.84 25.19 15.16 59.11 25.73

6 SM15 Nothofagus glauca 13667 15.57 67.16 17.27 19.14 65.43 15.44

7 SM10 Nothofagus dombeyi 13927 8.62 62.80 28.58 7.67 64.14 28.18

8 SM11 Ruderal grassland 13928 6.83 69.20 23.97 7.50 70.09 22.41

9 SM12 Araucaria araucana 13929 9.83 60.38 29.78 8.41 61.57 30.02

10 SM14 Nothofagus antarctica 13931 6.11 63.61 30.28 5.81 65.78 28.41

Clay, silt, and sand percentages are obtained from CLSoilMaps (Dinamarca et al., 2023), which provides data for the following layers: 0–5,

5–15, 15–30, 30–60, 60–100, and 100–200 cm. In addition, the corresponding ChSPD code (Seguel et al., 2024) is shown for each site,

referencing the original database of 14,029 soil profile descriptions across Chile. Detailed descriptions of the specific profiles used in this

study are available in supplementary material S1 (Zambrano-Bigiarini et al., 2025).
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3 Methodology

3.1 Data processing

3.1.1 Common temporal resolution

All gridded SM data were downloaded at their highest temporal resolution, and time series were extracted at the grid cell185

corresponding to each in situ monitoring site. As GLDAS-Noah and SPL4SMAU provide data at 3-hour intervals, all analyses

were conducted at this common temporal resolution. To ensure temporal consistency, hourly data from ERA5, ERA5-Land,

and in situ measurements were averaged into 3-hour intervals starting at 00:00:00 UTC.

3.1.2 Surface soil moisture

Table 2 shows that all upper in situ SM measurements were taken at 10 cm depth and, therefore, this depth was adopted as190

representative of in situ SSM. On the other hand, each gridded dataset defines SSM over different soil depths and, therefore, a

single definition of SSM was adopted to ensure a fair comparison between all SM datasets and in situ observations. For ERA5

and ERA5-Land, the top layer of 0–7 cm was selected to represent SSM, as it is closest to the surface conditions measured by

in situ sensors. On the other hand, GLDAS-Noah defines SSM as the 0–10 cm layer, and SMAP SPL4SMAU provides direct

SSM estimates for the 0–5 cm layer, which are very close to the in situ sensor depth and require no additional adjustments.195

3.1.3 Root zone soil moisture

Table 1 shows the different number of soil layers used all gridded datasets to estimate the SM dynamics in the root zone of the

soil profile. In particular, ERA5 and ERA5-Land provide SM estimates for four layers up to 289 cm depth. GLDAS-Noah also

provides SM estimates for four layers, but up to 200 cm; and SPL4SMAU provides only a single RZSM estimate from 0 to 100

cm depth. Therefore, in this work, the root zone considered for analysing SM dynamics was defined from 0 to 100 cm depth,200

as this was the only depth for which all gridded datasets have information. Consequently, the RZSM for all gridded datasets,

except SPL4SMAU, was computed as a weighted average of the soil water content of the top three soil layers (0–100 cm), as

shown in Figure 3a) and described in Equation 1a.

On the other hand, each in situ monitoring site has a different number of SM sensors, each located at a different depth (see

Table 2). Therefore, in order to be compared against the gridded RZSM, a single estimate of RZSM was calculated for each205

site, using a weighted average of all in situ measurements to the depth closest to 100 cm, following Xing et al. (2021), as shown

in Figure 3b) and described in Equation 1b and Equation 2.

θGD
RZSM =

1
100

i=n∑

i=1

θi · ti (1a) θIS
RZSM =

1
100

i=n∑

i=1

θi · ei (1b)
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ei = Hi−Hi−1 (2a) Hi = di +
di+1− di

2
(2b) H1 = e1 = 2 · d1 (2c)

In Figure 3 and equations 1 and 2, θi represents the volumetric soil moisture, [m3/m3], at the i-th soil layer; ti and ei are the210

thickness of the i-th soil layer in the gridded SM dataset and in situ monitoring site, respectively; di is the depth of the i-th in

situ SM sensor; h1,h2,h3 are the depths of to bottom of each gridded soil layer; and H1, ...,Hn are the depths of to bottom of

the i-th soil layer associated to the in situ θi. This method provides a representative estimate of RZSM by integrating data from

multiple depths to capture variability across the soil profile.

Figure 3. Panel a) illustrates the computation of the RZSM for all gridded datasets, except SPL4SMAU, using the first three soil layers

of each SM product. Panel b) illustrates the computation of the RZSM for each in situ monitoring site, using n SM sensors installed at

depthsd1, ...,dn.

3.2 Evaluation of gridded SM datasets215

The evaluation of the gridded SM datasets involved the application of two different methods: i) a traditional time series com-

parison of gridded SM estimates with in situ observations using statistical metrics of performance, and ii) a comparison of SM

signatures to assess important aspects of SM dynamics at each site. The following sections provide a detailed description of

both methods.
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3.2.1 Statistical metrics of performance220

To evaluate the gridded SM estimates against in situ observations we first used four well-known statistical metrics: i) the un-

biased root mean square error (ubRMSE; Entekhabi et al., 2014), ii) the percent bias (PBIAS; Yapo et al., 1996), iii) the

Spearman rank correlation coefficient (ρ), and iv) the modified Kling-Gupta efficiency (KGE′; Kling et al., 2012). ubRMSE

removes the mean bias in traditional RMSE caused by differences in spatial representativeness between in situ SM measure-

ments and gridded datasets, making it a more reliable metric for evaluating deviations from in situ observations (Entekhabi225

et al., 2014). A lower ubRMSE indicates superior model performance. PBIAS quantifies the systematic overestimation or un-

derestimation of the gridded dataset (Yapo et al., 1996), with values equal to zero indicating unbiased representation of in situ

values, and positive (negative) values indicate overestimation (underestimation). The Spearman rank correlation coefficient (ρ),

unlike its Pearson counterpart, evaluates the strength and direction of a monotonic relationship between gridded and observed

values. As a non-parametric metric, it is less affected by outliers or deviations from normality (Helsel and Hirsch, 1993), mak-230

ing it particularly suitable for SM time series with non-linear dynamics (Wang et al., 2021). In this study, ρ was calculated using

deseasonalised time series, where each value is adjusted by subtracting the monthly mean SM value, to remove the seasonal

component and ensure a consistent evaluation of temporal variability. This approach follows the general framework proposed

by Albergel et al. (2012) to account for seasonal influences when evaluating SM time series, but instead of applying a centred

35-day moving average window, we used the long-term monthly mean for each calendar month as seasonal reference. The235

modified KGE′ combines the Pearson correlation, bias, and variability into a single metric to provide a comprehensive view

of performance (Kling et al., 2012). Higher KGE values, with an optimum of 1, indicate a well-performing gridded dataset,

which accurately captures both the temporal dynamics and distributional characteristics of in situ SM. The four selected met-

rics have been widely used in the evaluation of remotely-sensed SM datasets (e.g., Beck et al., 2021; Peng et al., 2021; Liu

et al., 2024; Zheng et al., 2024). Detailed formulas and their interpretations are provided in Table 4, and all the computations240

were made with the hydroGOF R package (Zambrano-Bigiarini, 2024).

These metrics were calculated at a 3-hour time step to match the temporal resolution of the GLDAS-Noah and SPL4SMAU

products and to allow accurate assessment of SM dynamics across different temporal scales. This temporal adjustment also

takes into account the availability of in situ measurements and ERA5 products at hourly intervals. Performance thresholds, ideal

values and detailed interpretations of these metrics are described in Table 4. This structured approach categorises performance245

from excellent to poor, facilitating a comprehensive comparison between datasets and highlighting the different capabilities of

each SM product in representing the observed soil moisture dynamics.

Finally, a regional-scale assessment beyond individual point-to-pixel comparisons was carried out, where all 3-hourly in situ

and gridded SM time series were aggregated separately for the northern and southern regions. For the northern region, in situ

time series from SM02, SM04, SM05, SM01, and SM07 were averaged to create a single representative time series, while for250

the southern region, the same was made for SM15, SM12, SM14, SM11, and SM10. These two regional in situ averages were

then compared to the corresponding gridded averages, which were obtained by averaging all grid cells from each SM product

located within the northern (PRB, MRB) and southern (SRB, TRB) catchments, respectively.

12

https://doi.org/10.5194/egusphere-2025-2606
Preprint. Discussion started: 28 July 2025
c© Author(s) 2025. CC BY 4.0 License.



Table 4. Performance metrics, including formulas, ranges of variation, ideal values, and interpretation criteria.

Metric Formula Range of varia-

tion

Ideal

value

Interpretation criteria

ubRMSE
√

1
N

∑N
i=1(GPi− ISi−Bias)2 [0,+∞[ 0 E < 0.04 ; G > 0.04;

S > 0.08 ; B > 0.12

PBIAS 1
N

∑N
i=1(GPi− ISi) ]−∞,+∞[ 0 E < |10%| ; G < |20%|

S < |30%| ; B ≥ |30%|

ρ 1− 6
∑N

i=1 d2
i

N(N2−1)
[−1,1] 1 E ≥ 0.75 ; G ≥ 0.65

S ≥ 0.5 ; B < 0.5

KGE 1−
√

(r− 1)2 +
(

CVGP
CVIS

− 1
)2

+
(

IS

GP
− 1

)2

]−∞,1] 1 E ≥ 0.7 ; G ≥ 0.3

S ≥ -0.4 ; B < -0.4

GP: gridded product; IS: in situ observation; CV, Coefficient of variation, E: Excellent; G: Good; S: Satisfactory; B: Bad

3.2.2 Soil moisture signatures

In addition to the standard statistical metrics, we used two SM signatures to provide a comprehensive evaluation of the gridded255

products. SM signatures provide a process-oriented approach to evaluate SM dynamics and capture the SM response to P events

that are often overlooked by statistical metrics of performance (Branger and McMillan, 2020; Araki et al., 2022). In particular,

they characterise processes such as infiltration and water retention, which are important for understanding the mechanisms of

runoff generation and water storage capacity in different ecosystems (Liang et al., 2011; Tian et al., 2019).

We adapted the methodology proposed by Branger and McMillan (2020) and Araki et al. (2022) to calculate two key SM260

signatures: rising time (RT ) and amplitude (A). RT represents the time delay between the onset of a P event and the maximum

of the SM, and reflects the response time of the soil. On the other hand, A represents the change in SM during the precipitation

event, which is calculated as the difference between the maximum SM value and its initial state. Figure 4 shows a conceptual

representation of the two SM signatures used in this study, and illustrates how RT and A capture the timing and magnitude of

SM responses to different P events.265
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Figure 4. Soil moisture signatures: rising time (RT ) and amplitude (A) for selected precipitation events (PE).

To assess the sensitivity of SM dynamics to different combinations of P characteristics and antecedent SM conditions, for

each site we analysed two precipitation events, considered as extreme cases of the wide range of P and SM combinations that

a site experiences during a year: i) the first precipitation event of the year (FE), i.e., when the SM is at its driest condition;

and ii) the most intense precipitation event within the wet season of the year (IE), when the SM should be close to field

capacity. Precipitation events were identified using the criteria described in Section 3.2.3 to ensure consistency between sites270

and datasets.

3.2.3 Identification of precipitation events

To identify individual P events (PEs) for the SM signature analysis at each site, we used hourly P data from 1 January 2022 to 31

December 2023, recorded by the rain gauge nearest to each in situ SM monitoring site. The identification method, illustrated

in Figure 5, follows the approach of Dunkerley (2019) and Araki et al. (2022). A P event is defined as any period with an275

intensity larger or equal to 0.2 mm h−1, separated from other events by at least six consecutive dry hours (i.e., hours with

less than 0.2 mm of P). The end of a P event is defined as when a new P event began or five days after the last recorded P

amount. This five-day buffer after the last recorded P amount is important to clearly distinguish individual storms, as it helps to

avoid biases due to evapotranspiration effects that could otherwise influence the SM response (Araki et al., 2022). The adopted

identification framework ensures that SM signatures associated with storm events are accurately captured and provides a robust280

and complementary basis for assessing SM dynamics in response to P events.
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Figure 5. Selection of P events and their corresponding SM signature computation periods. Each storm event is separated by dry intervals

of at least six hours, and the SM signature computations extend beyond the P event itself, with a five-day buffer period to ensure proper

distinction between successive P events.

4 Results and discussion

4.1 Overall soil moisture dynamics

Figures 6 and 7 show the temporal dynamics of SSM, RZSM and P for four monitoring sites that are representative of the

arid shrublands that predominate in the north (SM05 and SM07) and the humid native forests in the south (SM15 and SM14),285

respectively. They show a distinct event-driven SM response that emphasises different SM responses to P events. The remaining

time series are available in Supplementary Material S2 (Zambrano-Bigiarini et al., 2025).

Figure 6 shows that at SM05 (PRB, panels a-c), both in situ SSM and RZSM remained consistently low during the dry season

(January to May), with average values close to 0.1 m3/m3. The first P event of 2022 (01-Jun 21:00 hrs – 03-Jun 18:00 hrs; 3.4

mm total) had no noticeable impact on either SSM or RZSM. A sharp increase in August 2022 corresponded to the soil response290

to an intense P event (19.2 mm in 21 hours), with SSM and RZSM reaching values of 0.34 and 0.27 m3/m3, respectively. On

the other hand, all gridded SM products exhibited an important variability in SSM during the dry season, which contrasts with

the relatively flat response observed in the in situ measurements. While this variability was largely dampened in the root zone,

all products still overestimated RZSM. During the most intense P event of the year, GLDAS-Noah closely followed in situ SSM

and RZSM, while ERA5 and ERA5-Land overestimated it (particularly during the recession curve) and SMAP SPL4SMAU295

underestimated it. At SM07 (MRB, panels d-f), the overall behaviour of both in situ and gridded SSM and RZSM was similar to

15

https://doi.org/10.5194/egusphere-2025-2606
Preprint. Discussion started: 28 July 2025
c© Author(s) 2025. CC BY 4.0 License.



that observed at SM05. However, SMAP SPL4SMAU showed a much closer agreement with the in situ SSM. It is noteworthy

that in September 2022, while in situ RZSM was decreasing at both sites, ERA5 and ERA5-Land showed some increases. This

discrepancy suggests that the P data used in these gridded products exhibit a substantial difference in time from the in situ

observations.300

Figure 6. Panels (a), (b), and (c) show time series of surface soil moisture (SSM), root zone soil moisture (RZSM), and precipitation (P),

respectively, for 2022–2023 at site SM05 (shrubland in PRB). Panels (d), (e), and (f) present the same variables for site SM07 (shrubland in

MRB). The labels FE and IE indicate the first and the most intense precipitation event of the year, respectively.
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Figure 7 shows that at SM15 (CRB, panels a–c), both in situ SSM and RZSM presented a gradual decline in SM during the

dry season (Oct-Mar), reaching average values of 0.16 m3/m3 for both SSM and RZSM, which is much higher than the value

observed at the northern sites, especially for SSM. After the first P event of the year (26-Apr 18:00 hrs to 27-Apr 12:00 hrs;

6.4 mm total), an important increase in in situ SM was observed, which had a greater impact on SSM than on RZSM. During

the rainy season (Apr-Sep), both SSM and RZSM showed high variability in their response to P events, with average values of305

about 0.35 and 0.30 m3/m3, respectively. On the other hand, all gridded products captured well the seasonal patterns in both

soil layers. ERA5-Land most closely matched the timing and magnitude of the in situ observations, while ERA5 and GLDAS-

Noah tend to underestimate soil water content, and SMAP SPL4SMAU slightly overestimated it. During the dry season, the

underestimation of SM by ERA5 and GLDAS-Noah was about 0.10 m3/m3. At SM14 (TRB, panels d–f), the frequency and

intensity of P events were higher than in SM15. This led to greater variability and higher mean values of both the in situ310

SSM and the RZSM, including several P events during the dry season (Oct-Mar). All gridded SSM products captured the

temporal pattern of in situ observations, but consistently underestimated their magnitude. For RZSM, ERA5 and ERA5-Land

overestimated soil water content, while GLDAS-Noah consistently underestimated it. SMAP SPL4SMAU underestimated

RZSM during the wet season, but overestimated it during the dry season.

4.2 Statistical metrics of performance315

4.2.1 Surface soil moisture

Figure 8 summarises the time series comparison of gridded products against in situ observations of SSM at all monitoring sites,

using the four statistical metrics defined in Section 4.2.1. In each panel, monitoring sites are ordered from left to right following

a north-south latitudinal gradient, from the most arid sites to the most humid ones, and the yellow shaded area stands for an

excellent performance. Panel a) shows that most products had good (ubRMSE between 0.04 and 0.08) to excellent (ubRMSE320

< 0.04) performance. Errors were higher at the northern sites than in the southern ones. In the north, SPL4SMAU generally

achieved the lowest ubRMSE values, ranging from 0.034 to 0.052 m3/m3, while the other products typically showed ubRMSE

values between 0.051 and 0.080 m3/m3. At the southern sites, most products achieved excellent ubRMSE values (below 0.040

m3/m3), with ERA5 performing best at SM14 and SM15 (0.033 and 0.039 m3/m3, respectively). The full set of performance

values for all products and stations is provided in Appendix A and in Supplementary Material S2 (Zambrano-Bigiarini et al.,325

2025). In particular, sites SM05 and SM07 (previously discussed in Section 4.1) exhibited good ubRMSE values for ERA5

(0.066 and 0.080 m3/m3, respectively) and ERA5-Land (0.077 m3/m3 in both sites), which was in line with the overestimations

described in Section 4.1. In contrast, SPL4SMAU and GLDAS-Noah presented lower errors at SM05 and SM07, with ubRMSE

values of 0.046 and 0.052 m3/m3 for SPL4SMAU and 0.057 and 0.049 m3/m3 for GLDAS-Noah, respectively. At the southern

sites, in particular SM14 and SM15, most products achieved excellent ubRMSE values (below 0.040 m3/m3). It is worth330

noting that ERA5 performed best at these two southern sites, with ubRMSE values of 0.033 and 0.039 m3/m3 for SM14 and

SM15, respectively. Panel b) shows that all northern arid sites exhibited PBIAS values above 25% for ERA5, ERA5-Land and

GLDAS, while SMAP SPL4SMAU presented PBIAS lower than -25% in most monitoring sites. In the humid south, most
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Figure 7. Panels (a), (b), and (c) show time series of surface soil moisture (SSM), root zone soil moisture (RZSM), and precipitation (P),

respectively, for 2022–2023 at site SM15 (native forest in the CRB). Panels (d), (e), and (f) present the same variables for site SM14 (native

forest in the TRB). The labels FE and IE indicate the first and the most intense precipitation event of the year, respectively.

products showed PBIAS values below 25%, except in SM11 and SM10. Panel c) shows that in the northern sites, the Spearman

rank correlations (ρ) between deseasonalised time series were lower than 0.5 for all gridded products, with GLDAS-Noah335

showing negative values in all arid monitoring sites but SM07. The ρ values showed an important increase in the humid south,
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with ERA5 and ERA5-Land reaching values above 0.75 for all gridded products and monitoring sites but SM11. Finally, panel

d) shows good KGE values in al northern sites (KGE ≤ 0.3) but SM02, and higher values in most humid southern sites.

Figure 8. Panels a), b), c) and d) shows the ubRMSE, PBIAS, ρ and KGE performance metrics obtained for SSM at each in situ monitoring

site, respectively. The in situ monitoring sites are shown on the x-axis, from the most arid (left) to the most humid (right) ones. The yellow

shaded area indicate an excellent performance range based on Table 4. The colours represent the data sources: green for ERA5, pink for

ERA5-Land, blue for SPL4SMAU, and light blue for GLDAS-Noah.

SPL4SMAU generally aligned well with in situ SSM measurements across northern monitoring sites, as evidenced by low

ubRMSE values and relatively high KGE′ scores (Figure 8). These findings are consistent with previous studies that highlight340

the robustness of SPL4SMAU in arid and semi-arid regions (Reichle et al., 2017a, b; Xu, 2020; Zheng et al., 2024). Notably,

SPL4SMAU showed stable behaviour during dry periods, avoiding the spurious SSM peaks seen in other gridded products. For

instance, during December 2022, SPL4SMAU closely tracked observed SSM, while other datasets recorded abrupt increases

not supported by ground observations. A similar, though slightly weaker, performance was observed at SM05. However, the

deseasonalised Spearman rank correlation (ρ) revealed poor to very poor performance for both GLDAS-Noah and SPL4SMAU345

at most sites, with the exception of SM07 (Mapocho River Basin), a transitional arid ecosystem that recorded the highest KGE′

among northern stations and reliably captured dry-season dynamics (Figure 6).

ERA5 and ERA5-Land showed stronger performance in humid southern sites (Figure 7), particularly SM14 and SM15,

where they achieved excellent ubRMSE values (< 0.040 m3/m3) and high Spearman correlations (ρ > 0.75), indicating good

agreement with in situ SSM. The good performance of ERA5 in humid environments is likely due to the assimilation of surface350

variables such as air temperature and humidity, which allows for more realistic lower boundary conditions and, consequently,

improves the accuracy of RZSM estimations in humid climates (Liu et al., 2024). On the other hand, the good correlation
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of ERA5-Land retrievals with empirical measurements in humid environments, where soil moisture plays a crucial role in

influencing evapotranspiration and local climate patterns, confirms previous findings by Schönauer et al. (2024); Zheng et al.

(2024). These results confirm the capability of ERA5 and ERA5-Land in capturing SSM dynamics in humid regions, supporting355

their use for long-term hydrological monitoring in those regions (Lal et al., 2022; Wu et al., 2021).

However, in arid northern sites, their performance declined, with higher ubRMSE and PBIAS values and lower deseason-

alised correlations (ρ < 0.5), reflecting limitations under dry conditions. This limited capability of ERA5 and ERA5-Land to

effectively capture soil moisture dynamics in arid environments has been already documented in the literature (Chang et al.,

2020; Ling et al., 2021; Andaryani et al., 2021; Jiao et al., 2024). Their coarse spatial resolution and oversimplified representa-360

tion of land-atmosphere interactions is not able to incorporate local climatic and geological conditions adequately (Ling et al.,

2021). This, limits their ability to represent rapid evaporation processes characteristic of dry regions, which are significantly

underestimated by reanalysis products (Chang et al., 2020; Jiao et al., 2024). These deficiencies often result in biased soil mois-

ture estimates, particularly under high evaporative demand and limited precipitation conditions (Jiao et al., 2024). Additionally,

these reanalysis products show reduced sensitivity to extreme climatic events—such as prolonged droughts—and may lag in365

responding to abrupt meteorological changes, further compromising their reliability in arid environments (Andaryani et al.,

2021). To enhance their performance, incorporating local observations and integrating additional atmospheric datasets sensi-

tive to soil moisture variability has been recommended in literature to avoid low performances in ecohydrologically complex

and under-monitored arid regions (e.g. Sanchez-Mejia and Papuga, 2017; Sehgal et al., 2017; Senanayake et al., 2022).

4.2.2 Root zone soil moisture370

Figure 9, analogous to Figure 8, summarises the evaluation metrics for RZSM. Panel a) shows that most products performed

well in terms of ubRMSE, with excellent (ubRMSE < 0.04) or good (0.04 ≤ ubRMSE < 0.08) match with in situ observations

across sites. ERA5-Land performed best in the arid northern sites, while ERA5 achieved the highest performance in the humid

southern regions. In contrast, GLDAS-Noah overestimated RZSM across most locations. Panel b) indicates that humid southern

sites generally had lower PBIAS values than the northern sites. SPL4SMAU showed the lowest PBIAS at most sites, while375

GLDAS-Noah underestimated in situ values in the south. ERA5 and ERA5-Land presented PBIAS values close to or larger than

50% in al northern sites but SM04; however, this bias decreased to less than 25% in the south. Panel c) shows a general better

agreement between deseasonalised time series in the southern sites compared to the northern ones, in terms of the Spearman

rank correlations (ρ). ERA5 and ERA5-Land achieved good to excellent correlations (ρ > 0.65 and ρ > 0.75, respectively) in

most sites, whereas GLDAS-Noah and SPL4SMAU often led to negative ρ values in northern sites. Finally, panel d) shows380

that most of the products had higher KGE’ values at the humid sites in the south than in the arid north. ERA5 and ERA5-Land

achieved good KGE values (> 0.3) and the best overall performance at all sites except SM02, while GLDAS-Noah performed

the worst, even with negative KGE’ values at two southern sites (SM12 and SM14).
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Figure 9. Panels a), b), c) and d) shows the ubRMSE, PBIAS, ρ and KGE performance metrics obtained for RZSM at each in situ monitoring

site, respectively. The in situ monitoring sites are shown on the x-axis, from the most arid (left) to the most humid (right) ones. The yellow

shaded area indicate an excellent performance range based on Table 4. The colours represent the data sources: green for ERA5, pink for

ERA5-Land, blue for SPL4SMAU, and light blue for GLDAS-Noah.

In general, gridded products performed better for RZSM than for SSM, with higher KGE′ values and lower errors across

most sites. An exception was observed at SM05, where all products performed better for SSM than for RZSM. This may385

be explained by the local soil profile—sandy loam with high gravel content and minimal clay—conditions known to limit

water retention in deeper layers and complicate RZSM representation in land surface models (Al-Yahyai et al., 2006; Beck-

Broichsitter et al., 2023). ERA5 and ERA5-Land showed strong performance in representing RZSM, with high Spearman

correlations (ρ > 0.65 and ρ > 0.75, respectively), low ubRMSE, and good KGE′ values across most sites, particularly in the

humid southern regions. These findings support the applicability of ERA5 and ERA5-Land in ecohydrological studies requiring390

accurate root-zone estimates (Balocchi et al., 2023).

SPL4SMAU exhibited weak Spearman correlations in southern humid sites but showed a mixed performance in the northern

arid regions. At SM07 (Mapocho River Basin), SPL4SMAU achieved ρ = 0.55 and KGE′ = 0.58, suggesting reasonable skill

in capturing RZSM dynamics. Conversely, at sites within the Trancura River Basin (SM01–SM05), where passive microwave

retrievals are theoretically favoured by dry conditions and sparse vegetation (Xu, 2020; Nadeem et al., 2022), SPL4SMAU395

performed poorly. Spearman correlations ranged from 0.06 at SM01 and SM02 to 0.07 at SM05, with a negative correlation of

–0.06 at SM04. GLDAS-Noah consistently underestimated both SSM and RZSM, particularly at southern humid sites during

high-intensity precipitation events. This is reflected in PBIAS values below –30% (Figure 9b) and low KGE′ values across

the network. Such systematic underestimation under wet conditions limits the suitability of GLDAS-Noah for monitoring SM

dynamics in humid environments (Spennemann et al., 2015; Araki et al., 2023).400
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4.2.3 Summary of regional performance

Table 5 summarises the performance of gridded SM products for SSM and RZSM across northern and southern regions,

based on the average values of statistical metrics of performance. For SSM, SPL4SMAU achieved the lowest ubRMSE in the

north (0.037 m3/m3), while ERA5-Land performed best in the south (0.031 m3/m3). For RZSM, ERA5 achieved the lowest

ubRMSE in both regions, 0.015 m3/m3 in the north and 0.024 m3/m3 in the south, indicating a strong agreement with in situ405

measurements at greater depths. In terms of PBIAS, SPL4SMAU obtained relatively low percent bias values in both regions.

In contrast, ERA5-Land exhibited significant overestimation in the north, with PBIAS values of 51.2% for SSM and 39.1%

for RZSM. In the south, biases were more balanced across products, although GLDAS-Noah consistently underestimated SM,

with PBIAS values of –20% for SSM and –30.1% for RZSM. The Spearman rank correlation coefficient (ρ) showed that ERA5

obtained the highest correlation for SSM in the north (ρ = 0.53), while ERA5-Land performed best for RZSM (ρ = 0.92). In410

the south, ERA5-Land achieved the highest correlations for both SSM (ρ = 0.74) and RZSM (ρ = 0.75), suggesting a strong

temporal agreement with in situ measurements in humid ecosystems. In terms of the KGE’, SPL4SMAU performed best

for RZSM in the north (KGE′ = 0.73), while ERA5-Land showed the highest performance in the south (KGE′ = 0.85).

Conversely, GLDAS-Noah generally had the lowest KGE′ values, particularly for RZSM in the northern catchments.

Table 5. Performance metrics for SSM (RZSM) across northern and southern regions. Metrics include ubRMSE, PBIAS, r, and KGE. Bold

values indicate the best performance for each metric in the respective region.

Product ubRMSE PBIAS ρ KGE

North South North South North South North South

ERA5 0.049 (0.015) 0.037 (0.024) 34.5 (50.6) 11.0 (9.1) 0.53 (0.80) 0.73 (0.74) 0.56 (0.34) 0.77 (0.79)

ERA5-Land 0.051 (0.018) 0.031 (0.025) 51.2 (39.1) 13.4 (9.2) 0.48 (0.92) 0.74 (0.75) 0.45 (0.52) 0.83 (0.87)

SPL4SMAU 0.037 (0.028) 0.044 (0.044) -25.3 (-12.7) -9.2 (-5.3) 0.14 (-0.14) 0.54 (0.30) 0.59 (0.53) 0.73 (0.67)

GLDAS-Noah 0.049 (0.039) 0.039 (0.042) 45.6 (17.6) -20.0 (-30.1) -0.15 (-0.52) 0.47 (0.51) 0.32 (0.43) 0.47 (0.10)

4.3 Soil moisture signatures415

4.3.1 Event-scale evaluation

In order to provide a closer look to the SM signatures analysed in this study, Figure 10 shows 3-hourly time series of SSM

(panels a and b) and RZSM (panels c, d) recorded in 2022 at SM05, a shrubland site in the arid PRB. This figure also shows

the amplitude (A) and rising time (RT ) obtained during the first P event (FE) and the most intense event (IE) of the year 2022,

for the in situ observations (black line) and all gridded datasets (coloured lines).420

For the FE, the in situ observations showed no response in either SSM or RZSM (A = 0 m3/m3, RT = 0 h). In contrast, all the

gridded datasets reported a soil response for this event, overestimating both in situ amplitudes and rising times. In particular,

the amplitudes derived from gridded products were in [0.012, 0.116] m3/m3 and [0.003, 0.016] m3/m3 for SSM and RZSM,
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respectively; while rising times were in [42, 45] h and [27, 45] h for SSM and RZSM, respectively. It is worth mentioning that

most of the products agreed on a rising time of 42-45 h for both SSM and RZSM, except SPL4SMAU which showed a shorter425

RT of 27 h for RZSM.

For the most intense P event of the year, in situ measurements showed a strong SM response in both SSM and RZSM, with

amplitudes of 0.066 m3/m3 and 0.015 m3/m3, respectively, and a rising times (RT ) of 12 h for both layers. In contrast, all

gridded datasets underestimated the amplitude and showed inconsistent rising times. For SSM, amplitudes ranged from 0.012

to 0.031 m3/m3, and for RZSM, from 0.004 to 0.006 m3/m3. On the other hand, most products underestimated RT for SSM430

(6–9 hours), except SPL4SMAU, which overestimated it (21 hours). For RZSM, ERA5 and ERA5-Land overestimated RT (21

hours), while SPL4SMAU and GLDAS-Noah underestimated it (9 hours each). These discrepancies highlight the challenges

of accurately capturing SM dynamics during intense P events.

Figure 11 is analogous to Figure 10, but for a native forest in the southern humid TRB (SM14). In contrast to the arid SM05

site, during the FE of the year the in situ observations showed a sharp increase in both SSM and RZSM, with amplitudes of435

0.185 and 0.153 m3/m3, respectively, and rising times of 18 h in both soil layers. Similarly, all the gridded datasets showed an

important response of SSM and RZSM during this event, underestimating the amplitudes and overestimating the rising times.

In particular, amplitudes derived from gridded products were in [0.007, 0.179] m3/m3 and [0.007, 0.063] m3/m3 for SSM and

RZSM, respectively; while rising times were in [18, 45] h and [21, 63] h for SSM and RZSM, respectively.

For the most intense P event of the year, in situ measurements also showed an important SM response in both soil layers440

(though less pronounced), with amplitudes of 0.034 and 0.053 m3/m3, respectively, and a rising times (RT ) of 12 h for both

layers. For SSM, ERA5-Land had the amplitude (0.038 m3/m3) and rising time (RT=9 h) closest to the corresponding in situ

values, followed by ERA5 (A = 0.017 m3/m3, RT = 15 h). For RZSM, all gridded datasets underestimated the amplitude

(0.003-0.030 m3/m3); and most of them overestimated the rising time (RT = 15 h), except SPL4SMAU (RT = 9 h). During

the most intense P event of the year, in situ measurements showed an important, but less abrupt, SM response in both layers;445

with amplitudes of 0.034 and 0.053 m3/m3 for SSM and RZSM, respectively, and rising times of 12 h in both cases. On

the other hand, all the gridded datasets showed important responses in SSM and RZSM. For SSM, ERA5-Land provided the

best match, with an amplitude of 0.038 m3/m3 and a rising time of 9 h, followed by ERA5, which reported an amplitude of

0.017 m3/m3 and a rising time of 15 h. For RZSM, all gridded datasets underestimated the amplitude, with values ranging from

0.003 to 0.030 m3/m3, and most products overestimated the rising time (RT = 15 h), except SPL4SMAU, which had a shorter450

RT of 9 h.

The evaluation of SM responses to P events offered additional insights beyond conventional statistical metrics of perfor-

mance, further highlighting the regional variability identified in earlier sections. In particular, it revealed marked discrepancies

between in situ observations and gridded datasets, especially across contrasting natural ecosystems.

Products such as SPL4SMAU and ERA5-Land aligned more closely with in situ SM dynamics under certain conditions;455

however, their performance presented large variations depending on the ecosystem type and intensity of the P event (Figures 10

and 11). This variability is illustrated by two representative sites: SM05, located in a northern shrubland, and SM14, situated

in a humid native forest in the south. At SM05, the in situ sensor registered no detectable response during the first P event of
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Figure 10. Amplitude (A) and rising time (RT ) for the first precipitation event of 2022 in SM05 (Shrubland in Petorca). Results are shown

for both surface soil moisture (SSM) and root zone soil moisture (RZSM) across observed (in situ) and gridded products. The bottom panel

shows cumulative precipitation for the first event event(Accum = 3.4 mm) and Intense event (Accum = 19.2 mm) of 2022.

the year, with both the amplitude (A) and response time (RT ) equal to zero. In contrast, the gridded products did simulated

a response, overestimating both variables. These discrepancies highlight the challenges of capturing localised SM responses460
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Figure 11. Amplitude (A) and rising time (RT ) for the first precipitation event of 2022 in SM05 (Native Forest in Trancura). Results are

shown for both surface soil moisture (SSM) and root zone soil moisture (RZSM) across observed (in situ) and gridded products. The bottom

panel shows cumulative precipitation for the first event event (Accum = 124.2 mm) and Intense event (Accum = 72.4 mm).

to small-scale precipitation events. Conversely, at SM14, ERA5-Land closely followed the observed dynamics during both the
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first and the most intense P event of the year. It accurately reproduced the amplitude (A = 0.179 vs 0.185 3/m3 measured in

situ) and response time (RT = 18 h), demonstrating its capability in more humid ecosystems.

Figure 12 confirms a recurring tendency among gridded products to simulate SM increases at northern sites that were not

observed in situ. This discrepancy may be attributed to the mismatch between the coarse spatial resolution of the P fields used465

in land surface models and the localized P measurements recorded by individual rain gauges, which can induce artificial SM

responses. For instance, ERA5-Land assimilates multiple satellite- and radar-based P sources (e.g., AMSR-2, GPM, TRMM,

FY-3C) (Liu et al., 2024). However, a direct comparison between these gridded P estimates and in situ observations was beyond

the scope of this work.

Figure 13 shows that, during the first P event of the year, gridded datasets generally underestimated the amplitude of in470

situ SM responses, particularly in northern arid ecosystems. Although estimates of rising time were somewhat closer to in situ

observations, substantial variability remained among products. Our findings confirm the difficulty of accurately representing

rapid infiltration and retention processes in arid environments, where P events are infrequent and exhibit a high spatial and

temporal variability, as already discussed in previous studies (Lal et al., 2022; Dai et al., 2022). Moreover, while the 3-hourly

temporal resolution of the datasets may be adequate for capturing large-scale SM dynamics, it might be not goo enough to475

resolve short-term fluctuations associated with high-intensity P events. Previous studies have shown that reanalysis products

tend to smooth out high-frequency variability, potentially missing short-lived anomalies in SM response (e.g. Zheng et al.,

2024).

To better understand the sources of discrepancy between gridded and in situ SM observations, future work should compare

P inputs from gridded datasets with in situ observations, thus enhancing the performance and regional applicability of gridded480

products in poorly monitored, and ecohydrologically heterogeneous regions.

4.3.2 Regional performance

In order to provide a regional summary (i.e., arid north vs humid south) of the capability of each gridded dataset of reproducing

the in situ SM signature, figures 12 and 13 show boxplots summarising the amplitude (panels a and b in each figure) and

rising times (panels c and d in each figure) for SSM and RZSM during the first P event and the most intense P event of the year,485

respectively.

Figure 12a) shows that in situ SSM amplitudes presented lower median values and reduced variability in the arid north

compared to the humid south. Most gridded datasets overestimated both the median amplitude and its variability relative to in

situ data. Additionally, all gridded datasets, except SPL4SMAU, showed lower median SSM amplitudes in the south than in

the north, which contrasts with in situ observations. Figure 12b illustrates that rising times for SSM were generally shorter in490

the north than in the south, consistent across both in situ observations and all gridded datasets. The median in situ rising times

were about 1 h in the north and 25 h in the south, while gridded datasets report median rising times ranging from 15 to 25 h.

A similar pattern was observed for RZSM. Figure 12c shows that in situ RZSM amplitudes were lower and less variable in

the north. Most gridded datasets overestimated the in situ amplitudes, with median values about 0.05 m3/m3 for all gridded

datasets vs less than 0.015 m3/m3 for in situ measurements. In terms of variability, ERA5 and ERA5-Land underestimated495
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in situ variability in the north but aligned more closely with them in the south. In contrast, SPL4SMAU and GLDAS-Noah

underestimated in situ variability in both regions. Finally, Figure 12d shows that rising times in the root zone followed a

regional pattern similar to SSM, with shorter times in the north across both observation types. Median rising times from in situ

data were about 10 h in the north and 30 h in the south, while gridded datasets showed median values ranging from 22 to 37 h.

Figure 13 presents results analogous to those in Figure 12, but for the amplitudes (panels a and b) and rising times (panels c500

and d) of SSM and RZSM in response to the most intense precipitation (P) event of the year.

Figure 13a shows that in situ SSM amplitudes presented lower median values and reduced variability in the arid north

compared to the humid south. Unlike the response to the first P event, most gridded datasets underestimated both the amplitude

and its variability, with the exception of ERA5 in the north, which was more closely aligned with the in situ observations. In

the south, ERA5 and GLDAS-Noah underestimated both the median amplitude and their variability, whereas ERA5-Land and505

SPL4SMAU overestimated the median values and presented similar levels of variability in both regions. In contrast to the first

event of the year, Figure 13b indicates that SSM rising times were generally shorter in the south than in the north, a pattern

observed in both in situ data and all gridded datasets but GLDAS-Noah. Median rising times from in situ observations were

about 15 h in the north and 10 h in the south, while gridded datasets presented values ranging from 10 to 18 h.

Figure 13c shows that in situ RZSM amplitudes were lower and more variable in the north than in the south. All gridded510

datasets substantially underestimated the in situ median amplitudes, with gridded values ranging from 0.007 to 0.015 m3/m3,

compared to 0.020 to 0.045 m3/m3 for in situ measurements. Among the datasets, ERA5 and ERA5-Land provided the esti-

mates closest to the in situ median amplitudes in both regions. In terms of variability, all products except GLDAS-Noah showed

higher variability in the north, though all (except GLDAS-Noah) underestimated the actual variability, with a more pronounced

underestimation in the north. Finally, Figure 13d reveals that rising times in the root zone followed the same regional pattern515

observed for SSM, with shorter times in the south across all data sources. Median rising times from in situ observations were

about 18 h in the north and 15 h in the south, while gridded datasets presented values ranging from 15 to 27 h.

Our results revealed consistent regional patterns in the SM responses to precipitation events, with pronounced differences

in amplitudes (A) and rising times (RT ) between the arid northern and humid southern sites. Some gridded products, such

as SPL4SMAU and ERA5-Land, showed better agreement with in situ observations, particularly in capturing rising times. In520

contrast, other products, such GLDAS-Noah, presented greater discrepancies, especially in the northern sites where both A

and RT had large differences with observed values. These findings highlight region-dependent variations in the performance

of gridded SM datasets, which will be further examined in the following section.

4.4 Challenges of spatial and temporal comparison

Discrepancies between the spatial and temporal scales of gridded SM datasets and point-based in situ observations pose ad-525

ditional challenges for product evaluation. In this study, four SM products were evaluated against the Kimün-Ko network

using two complementary approaches: i) a point-to-pixel time series comparison based on conventional statistical metrics of

performance, and ii) an evaluation of two event-based SM response signatures. Additionally, spatial averaging of in situ data

generally led to higher performance metrics for all products (Table 5).
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Figure 12. Boxplots summarising the amplitude (panels a and b) and rising times (panels c and d) for SSM and RZSM during the first P

event of the year. Filled boxplots corresponds to the northern arid sites (SM01 to SM07) and non-filled boxplots corresponds to the southern

humid sites (SM10 to SM15).
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Figure 13. Boxplots summarising the amplitude (panels a and b) and rising times (panels c and d) for SSM and RZSM during the most

intense P event of the year. Filled boxplots corresponds to the northern arid sites (SM01 to SM07) and non-filled boxplots corresponds to the

southern humid sites (SM10 to SM15).
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In point-to-pixel evaluations, the spatial representativeness of in situ SM measurements is limited by heterogeneity in soil530

properties, land cover, and P gradients. These factors can introduce representativeness errors, where point-scale observations

fail to reflect the broader-scale dynamics captured by gridded datasets (Brocca et al., 2010; Xia et al., 2014; Gruber et al.,

2020; Yu et al., 2024; Schmidt et al., 2024). In contrast, spatial averaging helps reduce local noise and improves alignment

with regional SM patterns, thereby enhancing correlation and reducing bias (Wang and Zeng, 2012; Xia et al., 2014; Bi et al.,

2016; Zheng et al., 2022a, 2024). However, recent studies indicate that higher spatial resolution does not necessarily translate535

into improved agreement with in situ data. For example, Schmidt et al. (2024) demonstrated that factors such as land cover,

mean SM conditions, and retrieval algorithms often have a greater influence on performance than spatial resolution alone.

Likewise, Degano et al. (2024) and Ortenzi et al. (2024) found that high-resolution datasets (e.g., SMAP/Sentinel-1 at 1 km

and 3 km) often produced larger errors compared to coarser products (e.g., SMAP at 9 km or 36 km), particularly in the absence

of local validation. These findings warn against assuming improved accuracy based solely on higher spatial resolution.540

Terrain heterogeneity plays a critical role in shaping SM dynamics (Larson et al., 2022). Variations in elevation, slope, and

soil composition across the study area influence water retention, infiltration, and lateral flow, thereby affecting SM estimates

from both in situ sensors and gridded datasets. For instance, steeper slopes tend to enhance surface runoff and limit infiltration,

while clay-rich soils typically retain more moisture than sandy soils. Incorporating these topographic and pedological factors is

essential for interpreting spatial discrepancies in product performance and for improving the physical realism of SM simulations545

across heterogeneous ecosystems. Temporal mismatches between gridded and in situ SM further contribute to evaluation

uncertainty. Most gridded SM products are produced at fixed temporal intervals (e.g., hourly, 3-hourly), which may not capture

the timing of rapid SM responses to precipitation events. Such mismatch can obscure key hydrological signatures, such as

response amplitude and rising time, particularly in regions characterised by high rainfall variability or pronounced seasonal

transitions.550

As discussed in previous sections, scale-related challenges affect the interpretation of product performance and complicate

the evaluation of gridded SM datasets. While spatial aggregation can partially alleviate some representativeness issues, tem-

poral desynchronization remains a major source of uncertainty, particularly when assessing SM dynamics at the P event scale.

This limitation is especially critical when evaluating how accurately gridded products capture the timing and evolution of SM

responses to P. Furthermore, in regions with sparse monitoring networks, such as many areas in the Southern Hemisphere,555

spatial averaging is often impractical due to the limited number of stations available per grid cell. In these contexts, one-to-one

comparisons between individual in situ stations and the corresponding grid cells, as used in this study, remain a practical and

essential approach for evaluating SM products in under-monitored and data-scarce ecosystems.

Finally, our study highlights the importance of incorporating deseasonalised statistical metrics in the evaluation of SM

products (Schmidt et al., 2024; Peng et al., 2021), particularly in arid regions where strong seasonal fluctuations may obscure560

short-term dynamics. Given the lower spatial variability of SM anomalies compared to absolute values, deseasonalisation offers

a more challenging basis for product assessment (Brocca et al., 2014; Albergel et al., 2012; Gruber et al., 2020; Peng et al.,

2021; Schmidt et al., 2024). We recommend its routine use in future validation efforts to improve robustness and comparability

across studies.
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4.5 Influence of vegetation representation565

The performance of gridded SM products is influenced not only by P inputs and soil parameterisation within land surface

models, but also by how vegetation and land cover are represented. These models typically rely on global land cover datasets

to define surface characteristics that affect key hydrological processes such as infiltration, evaporation, and runoff (Liu et al.,

2024). However, such datasets often oversimplify vegetation structure and rooting depth—particularly in regions like Chile,

where strong climatic and ecological gradients occur over short distances. These generalisations can introduce systematic bi-570

ases in SM estimates, as products differ in their land cover classifications and associated vegetation parameters. For instance,

GLDAS-Noah uses the AVHRR-based classification from the University of Maryland (Rui et al., 2021), while SPL4SMAU

relies on MODIS-derived or GLCC-based categories (Reichle et al., 2022b). These classification schemes directly affect mod-

elled processes such as canopy interception and transpiration, thereby influencing SM retention and temporal variability.

The previous limitations become particularly evident when comparing ecologically distinct sites (see Tables 2 and 3). In the575

semi-arid north (e.g., SM05), sparse vegetation and shallow-rooted species facilitate rapid infiltration and drying, resulting in

brief SM responses with low amplitude and short rising times. Conversely, southern humid sites such as SM14 exhibit longer

SM retention due to dense canopy cover and deep-rooted vegetation, which attenuate short-term fluctuations. These structural

and functional vegetation differences are not adequately captured by current gridded SM products, leading to discrepancies in

event-scale SM dynamics.580

These patterns are clearly illustrated in the event-based evaluation of SM signatures. At SM05 (Figure 10), in situ obser-

vations showed no discernible SM response during the first precipitation event of the year, whereas most gridded products

simulated a response, overestimating both amplitude and rising time. This indicates a limited ability to capture rapid depletion

processes typical of arid shrubland ecosystems. At SM14 (Figure 11), gridded products overestimated post-event moisture re-

tention, with rising times exceeding those observed in situ—likely due to oversimplified representations of forest transpiration585

and rooting depth in the land surface models.

This study contributes to better understand how gridded SM products simulate hydrological dynamics across ecologically

diverse regions in the Southern Hemisphere. The evaluation of event-based SM signatures (amplitude and rising time) provided

a process-oriented complement to traditional statistical metrics, allowing for a more nuanced assessment of SM dynamics.

Our results reveal consistent spatial and product-specific biases and underscore the importance of regionally contextualized590

validation in under-monitored natural ecosystems.

5 Conclusions

This study provides a comprehensive evaluation of gridded SM products using high-temporal-resolution (3-hourly) in situ

observations from the Kimün-Ko monitoring network, located across ecologically diverse native ecosystems in Chile. By

assessing product performance under contrasting hydroclimatic conditions, our analysis advances the understanding of SM595

dynamics in data-scarce regions of the Southern Hemisphere. Our findings highlight both the potential and the limitations of
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widely used gridded SM datasets for hydrological monitoring and modelling, and offer valuable guidance for their application

in heterogeneous, under-monitored environments.

– General performance for SSM: Gridded SM products demonstrated moderate skill in representing SSM dynamics, with

varying performance across datasets. Among the evaluated products, ERA5 and ERA5-Land consistently performed best,600

achieving average 3-hourly KGE′ values of 0.63 and Spearman rank correlations ranging from 0.53 in the arid north to

0.74 in the humid south. Their strong agreement with in situ temporal patterns suggests their suitability for monitoring

SSM conditions in natural ecosystems. In contrast, GLDAS-Noah and SPL4SMAU showed lower performance, with a

systematic tendency to overestimate SM, particularly at arid northern sites.

– General performance for RZSM: All gridded SM products showed stronger performance in representing RZSM than605

SSM, with greater consistency across monitoring sites. ERA5 and ERA5-Land achieved the highest overall performance,

with mean 3-hourly KGE′ values of 0.66 and 0.70, respectively, and Spearman correlation coefficients (ρ) above 0.5 for

deseasonalised time series at all monitoring sites. This strong performance likely reflects their capacity to capture the

slower, more buffered dynamics of deeper soil layers, which are less sensitive to short-term variability. In contrast,

GLDAS-Noah and SPL4SMAU showed notable deficiencies in reproducing RZSM patterns in natural ecosystems, with610

a low average KGE′ of 0.27 and poor correlation with in situ measurements.

– Enhanced performance of ERA5 and ERA5-Land in humid ecosystems: At the humid southern monitoring sites,

ERA5 and ERA5-Land consistently outperformed other gridded products in capturing both SSM and RZSM dynamics.

Their performance was particularly robust during wetter periods, with ERA5-Land achieving KGE′ values of 0.83 for

SSM and 0.87 for RZSM, among the highest obtained for all the monitoring sites of the Kimün-Ko network. These615

results highlight the effectiveness of ERA5 and ERA5-Land in representing SM variability in humid ecosystems, where

frequent P events and higher soil moisture levels prevail.

– Challenges in representing SM dynamics in arid ecosystems: In the northern arid ecosystems, all gridded products

consistently overestimated both the amplitude and rising time of SSM and RZSM during the first precipitation event of

the year. Across gridded datasets, amplitude overestimations exceeded 0.02 m3/m3, and rising times were overestimated620

by more than 20 hours (ca. 100%). Although SPL4SMAU showed comparatively better performance in arid sites based

on statistical metrics such as ubRMSE and KGE′, its Spearman rank correlation exhibited substantial variability across

monitoring locations, indicating inconsistencies in capturing temporal dynamics.

– Improved performance during intense precipitation events: Gridded SM products demonstrated better agreement

with in situ observations during intense precipitation events compared to the first dry event of the year. In the northern625

arid ecosystems, amplitude overestimations were reduced to approximately 0.01 m3/m3, and rising time overestima-

tion decreased by around 10 hours (∼50%). Similarly, in the southern humid sites, both amplitude and rising time

discrepancies were smaller than those observed during the first precipitation event. These findings suggest that product

performance improves under wetter conditions, likely due to more pronounced and sustained SM levels.
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– Deseasonalised metrics for soil moisture products evaluation: The use of Spearman rank correlation (ρ) applied to630

deseasonalised time series proved effective in identifying discrepancies between observed and gridded SM estimates.

This approach was particularly valuable in arid regions, where strong seasonal patterns can obscure short-term SM

dynamics. In contrast, humid regions, characterised by more frequent P events, exhibited weaker seasonality, reducing

the relative impact of deseasonalistion.

– Complementary value of SM signatures in SM evaluations: While conventional statistical metrics of performance,635

such as KGE’, suggest acceptable to good performance across gridded SM datasets, event-based analysis of SM sig-

natures (amplitude and rising times) revealed systematic discrepancies not captured by these aggregate statistics. For

instance, ERA5-Land, which performed well in humid ecosystems, presented important timing and magnitude biases

under dry conditions during the first P precipitation event of the year. These findings demonstrate that SM signatures

offer valuable and complementary diagnostic insights beyond statistical metrics, and highlight the importance of incor-640

porating ecosystem-specific evaluation approaches when assessing SM dataset performance.

6 Concluding remarks

Despite inherent spatial uncertainties and dataset limitations, this study provides valuable contributions by: i) offering a com-

prehensive evaluation of gridded SM datasets in natural ecosystems of the Southern Hemisphere, regions that remain largely

under-monitored and under-evaluated in global studies; and ii) presenting an exhaustive assessment of both surface and root-645

zone SM responses to P events, revealing key spatial patterns and product-specific strengths and limitations.

Code availability. The code that support the findings of this study are available from the corresponding author, MZB, upon reasonable

request.

Data availability. The soil moisture observations from Kimün-Ko SM monitoring network are available at https://chi2.ufro.cl/Datos-en/

and will soon be hosted by the ISMN (Dorigo et al., 2011); in the meantime, they can be obtained from the corresponding author (MZB).650

All data are freely available. ERA5 data are available at https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al., 2023). ERA5-Land data

can be downloaded from https://doi.org/10.24381/cds.e2161bac (Muñoz-Sabater, 2019). The SMAP L4 dataset (SPL4SMAU, Version 7)

is accessible at https://doi.org/10.5067/EVKPQZ4AFC4D (Reichle et al., 2022a). GLDAS-Noah v2.1 data are provided at https://doi.org/

10.5067/E7TYRXPJKWOQ (NASA/GSFC/HSL, 2020). Detailed time series and calculated statistical metrics for each site are available in

the Supplementary Material S2 (Zambrano-Bigiarini et al., 2025).655
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Appendix A: Performance Metrics

Table A1. Surface soil moisture metrics: ubRMSE and PBIAS.

N ID ubRMSE (m3/m3) PBIAS (%)

ERA5 ERA5Land SPL4SMAU GLDAS-Noah ERA5 ERA5Land SPL4SMAU GLDAS-Noah

1 SM01 0.065 0.051 0.034 0.059 30.1 57.1 -33.5 21.5

2 SM02 0.070 0.061 0.043 0.058 90.7 95.7 -3.1 107.5

3 SM04 0.063 0.067 0.047 0.067 -5.1 21.0 -47.4 42.7

4 SM05 0.066 0.077 0.046 0.057 23.4 20.0 -35.1 35.4

5 SM07 0.080 0.077 0.052 0.049 54.2 75.1 4.1 42.8

6 SM15 0.039 0.046 0.040 0.034 -49.8 -3.5 14.3 -26.6

7 SM10 0.051 0.050 0.061 0.048 59.5 57.1 26.7 0.3

8 SM11 0.044 0.051 0.046 0.058 96.6 91.3 29.4 35.4

9 SM12 0.037 0.044 0.040 0.068 -8.5 -10.2 -46.8 -35.1

10 SM14 0.033 0.037 0.049 0.065 -6.6 -6.7 -25.5 -32.6

Colored according to interpretation criteria (defined in Table 4): E = Excellent (Green), G = Good (Yellow), S = Satisfactory (Orange), B =

Bad (Red).

Table A2. Surface soil moisture metrics: Spearman correlation (ρ) and Kling-Gupta Efficiency (KGE).

N ID ρ KGE

ERA5 ERA5Land SPL4SMAU GLDAS-Noah ERA5 ERA5Land SPL4SMAU GLDAS-Noah

1 SM01 0.34 0.29 0.06 -0.37 0.46 0.27 0.56 0.36

2 SM02 0.31 0.37 0.06 -0.31 0.06 0.00 0.42 -0.31

3 SM04 0.37 0.36 -0.06 -0.29 0.26 0.43 0.27 0.15

4 SM05 0.38 0.37 0.07 -0.15 0.46 0.30 0.38 0.31

5 SM07 0.11 0.27 0.55 0.32 0.36 0.19 0.58 0.35

6 SM15 0.81 0.85 0.68 0.61 0.41 0.62 0.80 0.67

7 SM10 0.61 0.64 0.58 0.58 0.19 0.28 0.38 0.78

8 SM11 0.38 0.41 0.25 0.16 -0.11 0.03 0.35 0.54

9 SM12 0.76 0.69 0.42 0.44 0.63 0.47 0.16 -0.58

10 SM14 0.71 0.68 0.53 0.46 0.88 0.85 0.61 0.00

Colored according to interpretation criteria (defined in Table 4): E = Excellent (Green), G = Good (Yellow), S = Satisfactory (Orange), B =

Bad (Red).

Author contributions. MZB and MG conceptualised the research. DNI downloaded and processed all the gridded and in situ SM data. All

authors agreed on the methodology. DNI carried out the formal analysis under the guidance of MZB and MG. DNI developed the R code

to analyse all the data and created all the figures, with contributions from MG and MZ. DNI wrote an early draft with contributions from

MG and MZB. MZB and MG contributed to the interpretation of the results. MZB and MG were in charge of funding acquisition, project660

administration and supervision. MZB edited the final manuscript submitted to HESS based on several drafts elaborated by all co-authors.
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Table A3. Root zone soil moisture metrics: ubRMSE and PBIAS.

ubRMSE (m3/m3) PBIAS (%)

ERA5 ERA5Land SPL4SMAU GLDAS-Noah ERA5 ERA5Land SPL4SMAU GLDAS-Noah

1 SM01 0.024 0.015 0.023 0.043 68.10 46.00 -9.70 7.90

2 SM02 0.018 0.009 0.029 0.050 132.30 101.90 15.80 46.20

3 SM04 0.029 0.024 0.040 0.051 -11.10 -7.50 -42.30 -0.30

4 SM05 0.029 0.039 0.034 0.040 60.60 45.80 3.90 47.00

5 SM07 0.036 0.047 0.031 0.024 44.30 40.60 -10.80 8.90

6 SM15 0.026 0.047 0.041 0.030 -44.10 0.10 35.60 -35.40

7 SM10 0.036 0.032 0.053 0.045 39.40 34.40 15.50 -20.60

8 SM11 0.030 0.039 0.039 0.046 7.60 2.00 -17.10 -34.80

9 SM12 0.019 0.033 0.039 0.051 -10.30 -13.70 -46.60 -43.50

10 SM14 0.021 0.028 0.040 0.052 25.60 23.10 -6.00 -20.00

Colored according to interpretation criteria (defined in Table 4): E = Excellent (Green), G = Good (Yellow), S = Satisfactory (Orange), B =

Bad (Red).

Table A4. Root zone soil moisture metrics: Spearman correlation (ρ) and Kling-Gupta Efficiency (KGE).

N ID ρ KGE

ERA5 ERA5Land SPL4SMAU GLDAS ERA5 ERA5Land SPL4SMAU GLDAS

1 SM01 0.79 0.92 0.08 -0.68 0.17 0.37 0.66 0.36

2 SM02 0.68 0.97 0.04 -0.62 -0.45 -0.13 0.33 0.07

3 SM04 0.74 0.93 -0.24 -0.53 0.73 0.83 0.25 0.30

4 SM05 0.81 0.76 -0.18 -0.46 0.25 0.37 0.27 0.09

5 SM07 0.26 0.40 0.61 0.37 0.36 0.51 0.70 0.77

6 SM15 0.57 0.79 0.65 0.60 0.45 0.40 0.61 0.02

7 SM10 0.77 0.82 0.59 0.62 0.36 0.55 0.50 0.51

8 SM11 0.48 0.62 0.51 0.47 0.74 0.46 0.50 -0.61

9 SM12 0.88 0.74 0.33 0.57 0.84 0.51 0.39 -0.61

10 SM14 0.81 0.73 0.52 0.62 0.62 0.73 0.66 0.24

Colored according to interpretation criteria (defined in Table 4): E = Excellent (Green), G = Good (Yellow), S = Satisfactory (Orange), B =

Bad (Red).
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