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Abstract  15 
 
The near-source and downwind impacts of smoke aerosols depend on both emitted mass and injection 
height. This study examines aerosol dispersion sensitivity to these factors using four global models from 
the AeroCom Phase III Biomass Burning Emission and Injection Height (BBEIH) experiment. Each 
model performed four simulations: (1) BASE, using a common emission inventoryburned-area-based 20 
BB emissions GFED4.1s with default injection height; (2)heights; BBIH, with vertical distribution 
adjusted using monthly MISR plume injection heights; (3) BBEM, with an alternativeusing fire- 
radiative-power-based BB emission inventoryFEERv1.0; and (4) NOBB, excluding biomass burningBB 
emissions. The focus is the April 2008 Siberian wildfire event. Aerosol optical depth (AOD) 
variedvaries across models. TheIn BASE model median is 27% higher than the satellite median over the 25 
Siberian wildfire source region but is 37% lower over the western North Pacific, all models show a 
steeper AOD decline from the source to downwind regions than satellite data, indicating inadequate 
long-range transport or overly rapidexcessive aerosol removal in all models. Near the Moreover, near-
source, allmost models overestimate aerosol extinction below 2 km, suggesting injection heights 
wereare too low. TheIn BBIH, MISR plume injection heights slightly improved simulations, but 30 
downwind AOD remained largely underestimated.improve vertical aerosol distribution, but the 
magnitude is too small. In BBEM, increased emissions in the models enhanced AOD increases 
significantly near the source but did not improve AOD vertical structure there or due to enhanced BB 
emissions; however, the downwind. AOD remains largely underestimated in both BBIH and BBEM. 
Notably, CALIOP detectedlidar reveals aerosol layers above 6 km from the source to downwind 35 
regions— – features absent in all model simulations., although a high bias in the gridded CALIOP data 
makes the evaluation inconclusive. These findingsresults suggest that increasing emission 
strengthmonthly MISR plume injection heights and enhanced BB emissions alone isare insufficient; 
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improving vertical injection near-source to loft more to resolve the model–observation discrepancies. 
Injecting smoke above 3 kmat higher altitudes in Siberia and reducing excessive aerosol wet removal 
during transport are criticalwarrant further investigation. 

1 Introduction  

Smoke aerosols from wildfirewildfires can adversely affect air quality and visibility not only near the 5 
source locations (Konovalov et al., 2011; McCarty et al., 2017) but also in downwind regions hundreds 
or even thousands of kilometers away during transport. For example, smoke from the Siberia 
fireSiberian wildfires in Spring 2008 was found as far away as over Japan (e.g., Ikeda et al., 2015), the 
Arctic (Warneke et al., 2009), and Canada (Cottle et al., 2014). Transported smoke can affect the near-
source environment, e.g., the concentration of suspended sediment in a lake (Scordo et al., 2021) and 10 
can create air quality issues over extended areas (Liu et al., 2015, Xie et al., 2020; Lin et al., 2024). 
Wildfires can also impact surface albedo, air temperature, the atmospheric radiation field, cloud 
properties, and precipitation (Lu and Sokolik, 2013; Péré et al., 2014; Lee et al., 2022), and even 
stratospheric temperature and radiative forcing (Stocker et al., 2021; Das et al., 2021).  
 15 
The impact of smoke aerosols on the environments near the source and downwind depends not only on 
the emitted mass amount (or source strength)), but also on factors such as injection height, chemical 
transformation, removal processes, and subsequent transport after emission (Kahn et al., 2008; Paugam 
et al., 2016; Wilmot et al., 2022). This is especially true for large boreal forest fires that often emit 
smoke above the planetary boundary layer (PBL) into the free troposphere, and sometimes even into the 20 
lower stratosphere, where long-distance transport is more efficient (e.g., Val Martin et al., 2010, 2018; 
Peterson et al., 2018). Although some models use simple plume-rise parameterizations (Previous studies 
have demonstrated that biomass burning (BB) emission injection height has a substantial influence on 
surface-level air quality and on the agreement between model simulations and observations, particularly 
during intense wildfire events. Numerous modeling studies have shown that adjusting injection heights 25 
can significantly alter simulated surface aerosol and trace gas concentrations, thereby affecting air 
quality assessments, model accuracy, and radiative forcing estimates (e.g., Li et al., 2023; Feng et al., 
2024; June et al., 2025). When smoke remains within or near the planetary boundary layer (PBL), it 
contributes primarily to elevated regional pollution, including increased surface-level particulate matter 
and ozone concentrations (Kahn et al., 2008; Val Martin et al., 2010; Petrenko et al., 2012). By contrast, 30 
smoke injected into the free troposphere is generally transported more efficiently, with reduced surface 
deposition near-source, enabling long-range and even intercontinental impacts on air quality and 
visibility (e.g., Sessions et al., 2011; Sofiev et al., 2012). Intercomparison efforts, such as those 
produced by the AeroCom community, have consistently identified plume-rise representation as a key 
factor driving variability in simulated aerosol burdens and transport efficiency (Rémy et al., 2017; Zhu 35 
et al., 2018).Paugam et al., 2016, Lu et al., 2023) to estimate smoke injection height, most current 
atmospheric models operate under the assumption that fire emissions are primarily injected within the 
planetary boundary layer (PBL) or at altitudes below approximately 3 kilometers in the Aerosol 
Comparisons between Observations and Models (AeroCom) international initiative Phase-III study 
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(e.g., Petrenko et al., 2025). This assumption potentially underrepresents the impact of high-intensity 
fires that loft emissions well above this level.  Uncertainty in modeling the vertical smoke aerosol 
distribution in models has been reported in many studies, and the issue persists (e.g., Koch et al., 2009,; 
Chen et al., 2009,; Koffi et al., 2012,; Paugam et al., 2016,; Vernon et al., 2018,; Zhu et al., 2018; Tang 
et al., 2022,; Li et al., 2023.)).  5 
 
Current atmospheric models employ a range of approaches for parameterizing smoke injection height, 
from simple assumptions to physically based schemes. Common approaches include: 1) Prescribed 
injection heights that vary with altitude and latitude (e.g., Dentener et al., 2006; Matsui, 2017; Matsui 
and Mahowald, 2017; Horowitz et al., 2020; Xie et al., 2020). 2) Emission placement within the PBL or 10 
at a fixed altitude (e.g., Chin et al., 2002; Colarco et al., 2010; Takemura et al., 2005, 2009). 3) 
Climatological or seasonally averaged satellite-derived heights, e.g., from the Multi-angle Imaging 
SpectroRadiometer (MISR) and/or Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). 4) 
Daily satellite plume height retrievals, that constrain model emissions using observed vertical profiles 
(e.g., Val Martin et al., 2010; Rémy et al., 2017; Vernon et al., 2018; Zhu et al., 2018). 5)  Dynamic 15 
plume-rise models, that simulate plume rise in real time based on fire radiative power, estimated heat 
flux, burned area, boundary-layer depth, buoyancy, and/or meteorological conditions (e.g., Freitas et al., 
2007; Sofiev et al., 2012; Veira et al., 2015a, b; Paugam et al., 2016, Lu et al., This study reports the 
results on a multi-model experiment addressing the environmental effects of biomass burning (BB) 
emission and injection height on aerosol vertical profiles over the source and downwind areas for the 20 
Eurasia boreal region. This project, named Biomass Burning Emission Injection Height (BBEIH), is a 
part of the AeroCom international initiative Phase-III study (https://aerocom.met.no/node/110). The 
AeroCom BBEIH experiment is designed primarily to assess the impact of the smoke emission vertical 
profile. To assess the impact of fire emission injection height and source-strength for the major forest 
wildfires, we focus2023). Each of these approaches has advantages and limitations; for example, the 25 
climatological schemes (i.e. scheme 1-3) may present statistical conditions and are easier to implement 
in models, but they will not capture the highly variable nature of fire emission on daily and sub-daily 
bases, whereas the more dynamic schemes capture event-to-event variability but may be limited by 
either satellite coverage (scheme 4) or the accuracy of the input data, and they are sensitive to the 
parameterizations of atmospheric stability structure, entrainment, and turbulence (scheme 5). These 30 
different fire injection representations, along with various fire emission estimates, can lead to a wide 
range in simulated trace gases and aerosol amounts in the atmosphere, their vertical distributions, long-
range transport, surface concentrations, and other environmental impact (e.g., Petrenko et al., 2017; Pan 
et al., 2020; Parrington et al., 2025). 
 35 
Our project, named Biomass Burning Emission Injection Height (BBEIH), is a part of the international 
initiative AeroCom Phase-III study (https://aerocom.met.no/experiments/BBEIH/). It is designed 
primarily to assess the impact of the smoke emission vertical profile, while also examining the impact 
of emission source strength. We address two key questions in this study: 1) How sensitive are simulated 
near-source and downwind plume characteristics—including vertical aerosol distribution, near-surface 40 
concentration, and Aerosol optical depth (AOD)— to the injection height of biomass burning 
emissions? and 2) To what degree does the choice of biomass burning emission inventory affect smoke 
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dispersion? Unlike previous studies that typically rely on a single model, the novelty of the current work 
lies in its multi-model comparative analysis of BB plume representations. Specifically, this project 
consists of two components: 1) BBIH (BB Injection Height), in which we compare the default vertical 
distribution schemes implemented in each participating model (corresponding to Schemes 1 and 2 
described above) with a uniform application of monthly MISR-derived plume heights (Scheme 3) 5 
across all models. 2) BBEM (BB Emission Magnitude), in which we compare the model simulations 
using two emission datasets obtained with different methods: the Global Fire Emissions Database 
(GFED) that estimates fire emissions using burned area, fuel load, and combustion completeness 
(Giglio et al., 2013; van der Werf et al., 2017; Randerson et al., 2018), and the Fire Energetics and 
Emissions Research (FEER) dataset that derives emissions empirically from satellite-observed fire 10 
radiative power (FRP) (Ichoku and Ellison, 2014). Our case study focuses on the boreal fire case over 
Siberia and Kazakhstan in April 2008, which was the largest fire event in Russia during 2000-2008 in 
terms of total burned area, estimated from MODIS satellite observations in terms of total burned area 
(Vivchar, 2011). Long-range transport of thethis Siberia/Kazakhstan smoke was detected over Alaska 
during the NASA ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and 15 
Satellites) and NOAA ARCPAC (Aerosol, Radiation, and Cloud Processes affecting Arctic Climate) 
field campaigns over Alaska in April 2008, with CO and aerosol concentrations enhanced above 
background levels enhanced by 100-300% (Warneke et al., 2009, 2010).  
 
We compare model results using default smoke injection heights with those constrained by near-source 20 
plume-height observations from the Multi-Angle Imaging SpectroRadiometer (MISR) aboard NASA’s 
Earth Observing System (Val Martin et al., 2010; 2018). This study addresses two key questions: 1) 
How sensitive are simulated near-source and downwind plume characteristics—including vertical 
aerosol distribution, near-surface concentrations, and aerosol optical depth (AOD)—to the injection 
height of biomass burning emissions? and 2) To what degree does the choice of biomass burning 25 
emission inventory or source-strength affect smoke dispersion? 
 
In the following sections, we first describe the AeroCom Phase III BBEIH model experiment in Sect. 2, 
then present the results in Sect. 3, discuss the results in Sect. 4, and finally, present the conclusions from 
this study in Sect. 5. 30 

2. Overview of the AeroCom Phase III BBEIH experiment and analysis approach 

 
In this section, we summarizedescribe the AeroCom BBEIH model runs performed and 
analyzed,experiment, present the two biomass burning emission inventories we used, and describe the 
satellite aerosol amount and vertical distribution products used as constraints and for validationmodel 35 
evaluation. 
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2.1 BBEIH model experiment  

Table 1 listspresents the resolution,model framework and the default fireBB emission vertical 
distribution schemes applied in the four models participating in the BBEIH project, i.e., the schemes 
used in their BASE experiments. The CAM5-ATRAS (or CAM5 in short) and the GFDL-AM4 (or 
GFDL) models followed the vertical distribution scheme from Dentener et al. (2006), in which large-5 
scalethe wildfire emissions are distributed over six altitude rangesbins ranging from 0 to 6 km, 
according to wild-landwildland fire location and type. For example, in temperate region, 30° - regions 
of 50°N–60°N°N, where the April 2008 Siberian wildfire event occurred, BB emissions are distributed 
vertically as follows: 20% in 0-0.1 km, 20% from in 0.1-0.5 km, 20% in 0.5-1 km, 40% in 1-2 km, and 
zero for the remaining layers. Note that the fraction changes when the latitudevertical fractional 10 
distribution is different for latitudes lower than 30°N and higher than 60°N. In the MIROC-
SPRINTARS model (or SPRI), the BB emissions are injected between the surface and the altitude 
withhaving a sigma level equal to 0.74, assuming a homogeneous mixing ratio (~the first 13 levels, 
approximately 3 km in our study region). In the GEOS-i33p2 model (or GEOS), BB emissions are 
distributed uniformly up to the top of the Planetary Boundary Layer, with a PBL height (or PBLH) 15 
about 0.68 km over boreal Eurasia. (PBL).  
 
Table 1. List of models and thetheir default fireBB emission vertical distribution schemesaltitudes in the BBEIH 

project Boreal Eurasia (50°N–60°N) 

Model Name 
(abbreviation) 

lon°´°× lat°´ 
#lev 

Default BB emission altitude 
in boreal Eurasiascheme 

ContactMeteor
ology 

References 

CAM5-ATRAS 
(or CAM5) 

2.5°´°×1.9°´3
0 

30° - 60° N: Dentener scheme: 
20% inwithin 0-0.1 km,  
20% inwithin 0.1-0.5 km,  
20% inwithin 0.5-1 km,  
40% inwithin 1-2 km 

Hitoshi Matsui 
Free running 
with T and 
winds Nudged 
to MERRA-2 in 
free troposphere  

Matsui, 2017 
and; Matsui 
and Mahowald, 
2017 

GEOS-i33p2 
(or GEOS) 

0.5°´°×0.5°´°
×72 

Globe: PBL scheme: 
Uniformly distributed within 
PBLbetween surface and 
PBLH 

Xiaohua 
PanReplay with 
MERRA-2 
meteorology 

Chin et al., 
2002; Colarco 
et al., 2010 

GFDL-AM4 
(or GFDL) 

1.25°´°×1°´°×
49 

30° - 60° N: Dentener scheme: 
20% within 0-0.1 km,  
20% within 0.1-0.5 km,  
20% within 0.5-1 km,  
40% within 1-2 km 

Meiyun Lin, 
Yuanyu 
XieNudged to 
NCEP  
meteorology 
 

Horowitz et al., 
2020 ; Xie et 
al., 2020 

MIROC-
SPRINTARS 
(or SPRI) 
 

0.56°´°×0.56°
´°×40 

Globe: EmittedFixed altitude 
scheme: 
Uniformly distributed 
between the surface and the 

Toshihiko 
Takemura 
Free running 
with Ps, T, and 

Takemura et 
al., 2005 and, 
2009.  
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altitude with the sigma level 
of 0.74, nearly  (~3 km, with 
the homogeneous their mixing 
ratio (~the first 13 levels) 

) 

winds nudged to 
ERA5  

 
The model configurations differ across models. The CAM5-ATRAS model simulates meteorological 
and chemical fields interactively, including precipitation and wet deposition processes. To better 
represent realistic meteorological conditions during the simulation period, temperature and wind fields 
in the free troposphere (pressure < 800 hPa) were nudged toward the Modern-Era Retrospective 5 
analysis for Research and Applications, Version 2 (MERRA-2) reanalysis. The GEOS model was run in 
“replay” mode, in which winds, pressure, moisture, and temperature are constrained by the MERRA-2 
reanalysis meteorological data (Gelaro et al., 2017). This configuration enables realistic 
simulationmodel simulations of actual events, like a traditional offline chemistry transport model 
(CTM), while also incorporating full model physics, including radiation and moist processes. The 10 
GFDL AM4 model is driven by observed sea surface temperatures and sea ice distributions, with 
horizontal winds nudged toward those from the National Centers for Environmental Prediction (NCEP) 
reanalysis using a pressure-dependent nudging technique (Lin et al., 2012). Precipitation and 
temperature are simulated interactively within the model. In MIROC-SPRINTARS, horizontal wind, 
temperature, and surface pressure are nudged toward the European Centre for Medium-Range Weather 15 
Forecasts (ECMWF) Reanalysis v5 (ERA5) data. Precipitation, whereas precipitation is diagnosed 
using large-scale condensation and cumulus convection schemes, following Watanabe et al. (2011). 
 
Table 2 summarizes the four experiments conducted by each of the four models for the BBEIH project. 
1) In BASE, i.e., the control run, in which all models used the burned-area-based daily BB emission 20 
from the GFED4GFED version 4.1s emission inventory (Gigliovan der Werf et al., 2013; Randerson et 
al., 20182017), with the model-default biomass burning injection height (Table 1). Other emissions 
from anthropogenic and natural sources are also included. 2) BBIH (i.e., Biomass Burning Injection 
Height), is the same as BASE, but the BB emissionsemission vertical distribution is constrained by the 
monthly MISR plume injection height weighting functions (Val Martin et al., 2010; 2018) to examine), 25 
so the effects of different emission height between BASE and BBIH on aerosol dispersion and vertical 
distribution. can be examined. 3) BBEM, is the same as BASE, but withusing daily BB emissions from 
the Fire Energetics and Emissions Research (FEER,  version v1.0-G1.2 (Ichoku &and Ellison, 2014)), 
allows us to test model’smodel sensitivity to the choice of BB emission inventory. 4) NOBB, is the 
same as BASE, but with BB emissionemissions turned off, to allow us to isolate the aerosol from 30 
biomass burning sources. Accordingly, we derive the BB contribution in each experiment as the 
difference between the runs from individual experiment (BASE, BBIH, and BBEM) and the NOBB 
runs.  
 
Table 2. List of experiments in the BBEIH project 35 

Experiment Emissions BB emission injection height 
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BASE Anthropogenic: CMIP6 
Biomass burning: GFED4.1s 
Natural (dust, sea-salt, volcanic, biogenic): choice by individual model 

Default in each model 

BBIH Same as BASE MISR plume injection height 
BBEM* Anthropogenic and natural emissions: Same as BASE 

Biomass burning emissions: FEERv1.0-G1.2 
Default in each model 

NOBB Anthropogenic and natural emissions: Same as BASE 
Biomass burning emissions: None. 

N/A 

*GFDL does not have this experiment.   
 

2.2. BB emissions and injection height  

2.2.1 The target regions 

Figure 1 highlights the six regions targeted in this study. using red boxes. KAZA (yellow box over 5 
Kazakhstan) and RUS1 (red box over northeastern Russia) represent the two primary BB source 
regions. The remaining four regions—RUS2 (magenta box over northeastern Russia), RUS3 (green 
boxfurther east over northeastern Russia), PAC (blue box over the North Pacific Ocean), and ALA 
(purple box over Alaska)—are located progressively downwind to the east.  

2.2.2 BB emission inventories: GFED4.1s and FEER1.0 10 

This study employs two biomass burning (BB) emission inventories—GFED4.1s (used in the BASE 
and BBIH run) and FEERv1.0-G1.2 (or FEER1.0 (, used in the BBEM run)—to assess the sensitivity of 
aerosol distributions to differences in source strength and spatial allocation. Both GFED4.1s and 
FEER1.0 provide biomass burning emissions of primary aerosols and aerosol precursor gases such as 
organic carbon (OC), black carbon (BC), sulfur dioxide (SO₂), nitrogen oxides (NOₓ), and ammonia 15 
(NH₃), and non-methane volatile organic carbon (NMVOC) gases (van der Werf et al., 2017; Ichoku 
and Ellison, 2014). The predominant species determining the biomass burning aerosol extinction and 
AOD is organic aerosol (OA), equal to OC multiplied by an OA/OC ratio. All models participating in 
the BBEIH include aerosol-related emissions of OC, BC, and SO2, although the CAM5 and GFDL 
models include additional NMVOCs, NOx, and NH3 aerosol precursor gases. In all cases, OA is the 20 
predominant species for BB aerosol mass and AOD.  
 
Figure 1 compares their organic aerosol (OA)OC BB emissions for April 2008. from GFED4.1s (top 
panel) shows lower OA emissions in both key source regions, KAZA and RUS1, compared toand 
FEER1.0 (bottom panel). Regional total emissions for each of the six focus regions are also provided in 25 
Fig. 1. In KAZA, GFED4.1s reports total OA emissions of 106 kg s⁻¹—about one-quarter of those from 
FEER1.0. In RUS1, emissions are 578 kg s⁻¹ in GFED4.1s and 702 kg s⁻¹ (21% more) in FEER1.0.1. 
Emission from FEER1.0 is higher than GFED4.1s by factors of 3.7 and 1.2 in the two major source 
regions, KAZA and RUS1, respectively. Across both inventories, BB emissions in RUS1, largely driven 
by forest fires, are substantially higher than in KAZA, where agricultural waste burning dominates. 30 
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Notably, biomass burning activity in the Siberia–Lake Baikal region peaked in April 2008, exceeding 
levels observed in other months of the year (see Fig. A1). 
 
GFED4.1s estimates total dry matter consumed by biomass burning by multiplying the MODIS burned 
area product at 500m spatial resolution (Giglio et al., 2010) with fuel consumption per unit burned area 5 
(van der Werf et al., 2017). The latter is the product of the fuel load per unit area and the combustion 
completeness. Then, species-specific emissions are derived using an emission factor (EF, in grams of 
species per kilogram of dry matter burned) from Akagi et al. (2011), supplemented fromby Andreae and 
Merlet (2001). GFED4.1s considers also includes emissions from small fires that were not included in 
previous versions of GFED (Giglio et al., 2013; Randerson et al., 2012).  10 
 
In comparison, the FEER1.0 (Ichoku and Ellison, 2014) calculates BB emissions based on the satellite -
detected Fire Radiative Power (FRP) from MODIS. More specifically, the BB aerosol emission rate is 
derived by multiplying ecosystem-specific emission coefficients (Ce) byand MODIS FRP data that have 
been preprocessed and gridded in the GFAS1.2 analysis system (Kaiser et al., 2012). To derive the 15 
emission coefficients at pixel level within each grid cell, Ichoku and Ellison (2014) correlate the FRP 
for multiple cases with the plume AOD and area divided by the advection time (which is estimated from 
the apparent length of the plume in the MODIS imagery and a wind speed obtained from a reanalysis 
product). Ce corresponds to the slope of the linear regression fit. Then, the biomass burning emission of 
a given species is calculated by multiplying the ratio of that species with total particulate matter (TPM), 20 
based on the EF (Andreae and Merlet, 2001, with updates provided by Andreae, 2014). More 
information on the intercomparison of these two BB inventories can be found at Pan et al (2020; 
updated by Andreae, 2014).  
 
In a previous study (Pan et al., 2020), both GFED and FEER were used, along with four other fire 25 
emission inventories, to simulated global AOD with a single model (GEOS). One of the findings 
relevant to the current study is that FEER estimated higher emissions and produced larger positive AOD 
biases in April 2008 over the boreal region than GFED. The present study extends this comparison by 
evaluating GFED and FEER within a consistent multi-model framework. This approach offers a 
valuable opportunity to identify the drivers of model divergence and to quantify uncertainties in fire 30 
emissions and their downstream atmospheric effects. More information on the intercomparison of these 
two BB inventories can be found at Pan et al. (2020).  
 
Although all models use the same BB emission datasets in the same experiment, the actual emission 
amount of OA is different among models because different OA/OC ratios are assumed in each model. 35 
Table 3 lists the global BB emissions of OA (OC) and BC for April 2008 used in the BASE, BBIH, and 
BBEM experiments. Although the total emission of OC and BC are the same as in the prescribed 
emission datasets (small differences due to implementation into the model grid cell), the OA emissions 
in the models differ by a factor of 1.8, due to the different OA/OC ratios adopted. 
 40 
Table 3. Global biomass burning emissions of OA and BC for April 2008. Unit: Tg mon-1. 

Models Emission BASE & BBIH Emission BBEM 
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OA/OC 
ratio 

OA (OC) BC OA (OC) BC 

CAM5 1.4 2.31 (1.65) 0.150 5.12 (3.66) 0.384 
GEOS 1.8 2.95 (1.64) 0.150 6.62 (3.68) 0.385 
GFDL 1.6 2.59 (1.62) 0.148 - - 
SPRI 2.6 4.23 (1.63) 0.148 9.54 (3.67) 0.383 

 

2.2.3 MISR plume heights for 2008 

The MISR-retrieved plume injection height dataset used in BBIH is based on the work of Val Martin et 
al. (2018; Table S4). This dataset provides regional, monthly AOD-weighted statistical summaries of 
plume heights, derived using the MISR INteractive eXplorer (MINX) tool (Nelson et al., 2013). The 5 
MINX software derives plume heights by assessing the parallax of contrast elements in multi-angle 
imagery from MISR’s nine cameras, which acquire view angles of Earth ranging from 70 forward to 70 
aft along the satellite orbit. The product has 1.1 km horizontal resolution and between 250 m and 500 m 
vertical resolution (Nelson et al., 2013). As it takes about seven minutes for all nine MISR cameras to 
image a given location on Earth, the proper motion of plume contrast elements is also obtained and is 10 
used to derive plume-level motion vectors, from which wind corrections are made to the geometrically 
retrieved heights.   

Thousands of MISR-observed individual smoke plumes in 2008 were analyzed with the MINX tool, and 
the resulting vertical profiles were gridded according to six land cover types across seven geographic 
regions. Although fire detections occurred only at specific locations, the derived profiles were applied 15 
across grids sharing the same land cover classification. It is assumed that, within each land cover region, 
the sampled plume profiles are representative of those in the entire region. This assumption is supported 
in part by statistical consistency across multiple cases within most land cover types (Val Martin et al., 
2018; Noyes and Kahn, 2025). The final product is a monthly gridded dataset (longitude, latitude, 
altitude) with a horizontal resolution of 0.25° and a vertical resolution of 250 m, spanning from the 20 
surface up to 6 km in 25 altitude bins. This dataset provides the vertical distribution of near-source 
biomass burning emissions. For the BBIH simulation, modelers interpolated or re-gridded this dataset to 
match their model’s specific spatial and vertical resolution. The MISR-derived vertical fractions were 
then multiplied by the corresponding GFED4.1s BB emission amount to place the same fractions of BB 
emissions at those levels. 25 

Figure 2a reveals the spatial distribution of the percentage of the smoke emitted within the planetary 
boundary layer (or PBL) in April 2008 (units: %), derived from the MISR-retrieved plume injection 
height. (Val Martin et al., 2018). The numerical values in Fig. 2a represent the area mean percentage of 
smoke column-abundance concentrated inwithin the PBL in each of the six targeted regions, for April 
2008. Figure 2b presents the vertical distribution of smoke emissions for April 2008 over the BB 30 
emission source region of KAZA and RUS1. The PBL, derived depth from MERRA-2 data, is shown in 
gray shading, with average PBL heights-top altitudes of approximately 0.77 km in KAZA and 0.68 km 
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in RUS1. MISR-based plume height estimates indicate that only 53% of smoke in KAZA and 45% in 
RUS1 was injected within the PBL, as shown by the black cumulative profiles in Fig. 2b. For 
comparison, the default vertically cumulative fire emission profiles from the model BASE runs are also 
shown, with values summarized in Table 1.  Among the models, only GEOS assignsplaces 100% of fire 
emissions towithin the PBL. Both CAM5 and GFDL adopt the vertical distribution scheme from 5 
Dentener et al. (2006), resulting in identical vertical injection profiles in their BASE runs; below the 
PBL top, this scheme allocates a similar fraction of smoke as the MISR-based plume height estimates in 
KAZA and RUS1. However, this scheme puts no emissions above 2 km, it distributes less smoke 
thanwhere the MISR-based approach. In still releases 5-10% of the material. By contrast, SPRI, using 
the fixed altitude scheme (~3 km), diverges significantly from the other three models, allocating more 10 
smoke above the PBL than any of the other models and the MISR-based results. Overall, nearly all the 
smoke—close to 100%—is injected below 3 km in both KAZA and RUS1 across all distribution 
schemes, despite the observations showing smoke aerosols present above 3 km. This discrepancy is 
further discussed in Sect.3.4. 
The MISR-retrieved plume injection height dataset shown in Fig. 2 is based on a climatology developed 15 
from the work of Val Martin et al. 

It should be kept in mind that  (2018; Table S4). This dataset provides regional, monthly AOD-
weighted statistical summaries of plume heights, derived using the MISR INteractive eXplorer (MINX) 
tool (Nelson et al., 2013), with which thousands of individual smoke plumes observed in 2008 MISR 
data were analyzed. The resulting vertical profiles were gridded according to six land cover types across 20 
seven geographic regions. Although fire detections occurred only at specific locations, the derived 
profiles were applied across grids sharing the same land cover classification. It is assumed that, within 
each land cover region, the sampled plume profiles are representative of the entire region. This 
assumption is supported in part by statistical consistency across multiple cases within most land cover 
types. 25 

The final product is a monthly gridded dataset (longitude, latitude, altitude) with a horizontal resolution 
of 0.25° and a vertical resolution of 250 m, spanning from the surface up to 6 km (25 altitude bins). It 
provides the vertical distribution of near-source biomass burning emissions. For the BBIH simulation, 
modelers interpolated or re-gridded this dataset to match their model’s specific spatial and vertical 
resolution. The MISR-derived vertical AOD fractions were then multiplied by the corresponding 30 
GFED4.1s BB emissions at each model level. 

The MINX software derives plume heights by assessing the parallax of contrast elements in multi-angle 
imagery from MISR’s nine cameras, which acquire view angles ranging from 70 forward to 70 aft. The 
product has 1.1 km horizontal resolution and between 250 m and 500 m vertical resolution (Nelson et 
al., 2013). As it takes about seven minutes for all nine MISR cameras to image a given location on 35 
Earth, the proper motion of plume contrast elements is also obtained and is used to derive plume-level 
motion vectors, from which wind corrections are made to the geometrically retrieved heights.   
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MISR is in a sun-locked, near-polar orbit with a swath-width of about 380 km, so near-global coverage 
is obtained about once per week – about every eight days near the equator, and up to every two days 
near the poles (e.g., Diner et al., 1998). Equator crossing occurs at about 10:30 local time, so the typical 
late-afternoon peak in fire activity is not captured in the MISR observations.  Although the MISR-based 
monthly and regionally averaged plume-height used in the BBIH runs offers a valuable constraint on 5 
vertical smoke injection, it does not capture short-term variability in fire intensity or meteorological 
conditions. Recent work by Noyes and Kahn (2025), which analyzed MISR-derived plume heights over 
Siberia from 2017 to 2021, provides a statistical assessment of plume-height variability in Siberia, 
stratified by month, ecosystem, and whether plumes were confined to the PBL or entered the free 
troposphere (FT). They found that approximately 80% of 117 April fire plumes remained within the 10 
PBL. For these PBL-confined plumes, the median height was about 1 km ±0.2 km above sea level, 
whereas FT plumes reached a median height of about 2 km±0.5 km. Although these results support the 
use of monthly mean profiles as a first-order approximation, such monthly and regional averages 
smooth over high plume events and diurnal variability. For example, although the Val Martin et al. 
(2018) plume-height included monthly plumes from 2008, the plume injection heights during intense 15 
events, such as the strong April 2008 Siberian wildfires examined in this study, may be underestimated. 

2.3. Model Evaluation Datasets (MODIS, MISR, and CALIOP) 

We evaluated the simulated monthly AOD at 550 nm against three satellite datasets: MODIS, MISR, 
and CALIOP.  
2.3.1 We evaluated the simulated monthly AOD at 550 nm wavelength against three satellite datasets: 20 
MODIS, MISR, and CALIOP. They each provide spatial and temporal coverage, but with different 
sampling, across the source and downwind regions, which aligns with the AeroCom Phase III BBEIH 
experiment design. We computed monthly mean values for each observational dataset and each model 
within the focus regions, using only the valid data available from each source. Due to the logistical 
challenges of aligning model output with multiple satellites, each with distinct overpass timing and data 25 
gaps, we did not strictly synchronize model sampling with satellite observations. Although this 
approach introduces some temporal mismatch, it is commonly adopted in multi-model and multi-
satellite intercomparison studies to reduce complexity and ensure broader spatial and temporal 
coverage; it is usually unavoidable in statistically based analyses of this type (e.g., Kim et al., 2019). 
  30 

MODIS Aerosol Optical Depth 

: We used the AOD retrieved from the Levellevel 3 monthly MODIS collection 6.1 products from the 
Terra and Aqua satellites from the combination ofcombined Dark Target (DT) (Remer et al., 2005; 
Levy et al., 2013) and Deep Blue (DB) (Hsu et al., 2013; Sayer et al., 2014) aerosol algorithms.2014) 
aerosol algorithm products at one-degree spatial resolution and 550 nm wavelength from both the Terra 35 
and Aqua satellites. The DT aerosol algorithm was designed for aerosol retrievals over land (mostly 
vegetated) and ocean surfaces that are dark infrom the visible (VIS) to the shortwave infrared (SWIR) 
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parts of the spectrum. The DB algorithm was designed for aerosol retrieval over brighter surfaces such 
as deserts, using shorter blue wavelengths.  
2.3.2  

MISR Aerosol optical depth 

: We used the version 23 monthly level 3 total AOD data at half-degree resolution and 558 nm 5 
wavelength from the MISR instrument on board the EOS Terra satellite (Kahn et al., 2010; Witek et al., 
2019; Garay et al., 2020; MISR v23, with filename tagged as F15_0032), downloaded from the NASA 
Langley Atmospheric Sciences Data Center (ASDC) website https://asdc.larc.nasa.gov/project/MISR. 
The MISR product takes advantage of the nine view-angles acquired, ranging from 70˚ aft, through 
nadir, to 70˚ forward along the satellite orbit, at each of four wavelengths centered at 446, 558, 672, and 10 
867 nm (Diner et al., 1998), to derive constraints on particle size, shape, and light-absorption along with 
AOD (Martonchik et al., 2009; Kahn & Gaitley, 2015).  
2.3.3  

CALIOP aerosol vertical profile 

: CALIOP is a two-wavelength backscatter lidar on board the Cloud-Aerosol Lidar and Infrared 15 
Pathfinder Satellite Observation (CALIPSO) satellite that has daily equator crossing times of about 
13:30 and 01:30 and a 16-day repeating cycle. CALIOP measures directly the aerosol backscatter 
vertical profiles that are converted to aerosol extinction profileprofiles using assumed, aerosol -type-
dependent, lidar ratios (i.e., extinction-to-backscatter ratios) (Omar et al., 2009; Kim M.-H. et al., 2018). 
The mean extinction profiles of total aerosol are obtained from version 4.10 CALIOP Level 2 aerosol 20 
profile data with a nominal along‐track resolution of 5 km and vertical resolution of 30 meters. We used 
the cloud-free, quality- assured, nighttime aerosol extinction profiles from CALIOP at 532 nm, 
developed by Kim D. et al. (2019). These cover Asia and the North Pacific regions with stricter cloud-
aerosol-discrimination (CAD) scores of -100 to -70 (Yu et al. 2019) than the operational CAD score (-
100 to -20, Winker et al., 2013; Tackett et al., 2018; Winker et al., 2013) to better ensure the aerosol 25 
data quality. These data were then averaged over a month and gridded into 5°´°×2° (longitude x 
latitude).  
 
The CALIOP AOD is obtained by integrating the vertical extinction profiles in the atmospheric column. 
There are two ways to generate gridded monthly composites of the CALIOP data: assigning zero values 30 
to the level 2 data that are below the CALIOP detection limit (0.012 km-1 at night, Toth et al., 2018), 
and then 1) including those zero values in calculating the level 3 grid mean, or 2) excluding the data 
below the detection limit in calculating the grid mean. These two approaches represent the lower- and 
upper-bounds of the gridded CALIOP data, respectively (Kim et al., 2019). In this study, upper-bound 
gridded aerosol profiles and the resulting AOD are used, such that the CALIOP aerosol data should be 35 
considered as biased high, especially in the free troposphere when more data are below the CALIOP 
detection limit (more details in Kim et al., 2019).  
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3. Results  

 
In this section, we evaluate the model simulations of total-column AOD in the model simulations (Sect. 
3.1),) and the sensitivity of total column-AOD to BB emission injection height and source-strength 
(Sect. 3.2), the sensitivity of , surface aerosol surface concentration to BB emission injection height, and 5 
source-strength (Sect. 3.3), and the sensitivity of aerosol vertical aerosol extinction profile to BB 
emission injection heightBBIH and BBEM (section 3.2, 3.3, and source-strength (Sect. 3.4, 
respectively).  

3.1 Total-column AOD from satellite products and model simulations 

FigureFigures 3 presentsand 4 present the total-column AOD for April 2008 from the satellite products 10 
(MODIS-Terra, MODIS-Aqua, MISR, and CALIOP), as well as ). These are compared with AOD from 
the BASE simulations and . The BB AOD from the models (the difference between the BASE and 
NOBB simulations.) is also presented. Spatial distributions of AOD are shown in Fig. 3a, while3, 
whereas Fig. 3b4 displays regional mean AOD values, calculated over non-missing data points. Aerosol 
measurements from MODIS and MISR cover only below 60 ºN 60ºN latitude, due primarily to low sun 15 
angle and polar night. In contrast, CALIOP, with its active lidar sensor, can provide aerosol 
observations under low-sun or no-sun conditions and observeobserves plumes up to 70º N latitude, 
although70ºN, albeit with sparsersparse spatial sampling.  DifferencesNote that sampling differences 
account for much of the diversity among the satellite AOD products. For instance, differences between 
MISR and MODIS AOD are evident, in partlargely due to themuch broader MODIS spatial and 20 
temporal sampling of MODIS. The opticallycoverage. Optically thick smoke plumes tend to be 
geographically small targets, and they are captured more frequently captured in the MODIS data record; 
this can be, especially significant near source regions. AOD fromMISR provides about a quarter the 
coverage of each MODIS instrument, whereas CALIOP shows the highest AOD among the satellite 
products even though itsoffers orders-of-magnitude less coverage than MISR (except at high latitudes 25 
and during polar night). Despite the narrowest swarth of CALIOP, the apparent more complete spatial 
sampling is much less frequent than MODIS and MISR.coverage is due to the L3 gridding process that 
fills the 5°´2° grid space with data available within the coarse grid.  
 
In Fig. 3a3 (first row), despite the limited availability of satellite aerosol retrievals at high latitudes, 30 
MODIS-Terra, MODIS-Aqua, MISR, and CALIOP all show high aerosol loading near Siberia-Lake 
Baikal (RUS1) and in the downwind regions (RUS2, RUS3, and PAC). Additionally, pronounced 
aerosol loadings are observed in East Asia and South Asia. Enhanced AOD in Kazakhstan (KAZA) is 
evident across all four satellites.satellite datasets. As shown in Fig. 3b4, the regional-regionally 
averaged satellite AOD over KAZA ranges from 0.2 to 0.4, with MISR values about 40% lower than 35 
MODIS. Over RUS1, regional-regionally averaged AODs range from 0.3 to 0.6 across the four 
satellites.satellite products. Strong aerosol outflows from RUS1 toward RUS3 and PAC are also clearly 
visible in MODIS, MISR, and CALIOP data, with area-averaged AODs between 0.4 and 0.5. The area-
averaged AOD from CALIOP is 0.3 over ALA (Alaska). Measurements from the ARCPAC and 
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ARCTAS field campaigns (Warneke et al., 2009; Matsui et al., 2011) observed transported smoke 
aerosol and high trace gas concentrations in ALA during April 2008. 
 
The second row of Fig. 3a3 displays the total AOD simulated by the models in their BASE runs 
(CAM5, SPRI, GEOS, and GFDL), all using the GFED4.1s biomass burning emission inventory and the 5 
model default smoke injection height settings. The corresponding biomass burningBB AOD (BASE 
minus NOBB) is shown in Fig. 3a3 (third row). Over the BB source regions, all BASE runs (second row 
of Fig. 3a3) capture the high aerosol loading in RUS1, attributed to forest fires, and the slightly elevated 
AOD in KAZA due to agricultural fires (Warneke et al., 2009). However, the average model-simulated 
AODs differ significantly—by a factor of 2.8 over KAZA and 4.6 over RUS1, with CAM5 showing the 10 
lowest values (Fig. 3b4). The model-simulated AOD is lower than the MODIS AOD over KAZA, with 
varying degrees of agreement over RUS1: CAM5 largely underestimates, GEOS and GFDL align better 
with MODIS observations, and SPRI largely overestimates. Over RUS2, the models simulate slightly 
higher AODs than RUS1, consistent with MODIS observations. The higher AOD in RUS2 than RUS1 
is attributed to the increase of the “background” (i.e., non-BB) AOD in RUS2 despite the decrease in 15 
BB AOD by all models (Fig. 4). In the RUS3 and PAC regions, all models underestimate AOD relative 
to MODIS observations, with an even larger underestimation observed in ALA.  
 
Table 3 summarizes the medians of regional mean AOD from both satellite products and model 
simulations. Over the KAZA source region, the median AOD from the BASE model runs is only 52% 20 
of the satellite-derived median. In contrast, over RUS1, the BASE model median is 27% higher than the 
satellite median. Over PAC and ALA, the BASE model underestimates AOD by 37% and 65%, 
respectively. Figure 4 presents the normalized regional mean AOD from satellite observations and the 
BASE simulations. All BASE runs exhibit a steeper decline in AOD from RUS1 toward PAC compared 
to satellite data, indicating inadequate long-range transport or overly rapid aerosol removal in all models 25 
during transport. It should be noted that MISR shows anomalous behavior compared to MODIS in some 
regions, likely due to its sparse sampling coverage, which misses many short-lived, high-AOD plumes. 
 
Table 3. The medians of regional mean AOD from satellites and model simulations 
Median KAZA RUS1 RUS2 RUS3 PAC ALA 
Satellites 0.39 0.52 0.55 0.48 0.44 0.41 
BASE 0.20 0.66 0.68 0.38 0.28 0.14 
BBIH 0.20 0.64 0.66 0.39 0.29 0.15 
BASE/Satellites 0.52 1.27 1.23 0.80 0.63 0.35 
BBIH/Satellites 0.51 1.23 1.20 0.81 0.67 0.37 

 30 
 
In RUS1, BB dominates the total AOD in the BASE runs, contributing to nearly 80% (Fig. 3b4). 
Transported smoke from the RUS1 source region towardstoward surrounding areas, for example, RUS2, 
RUS3, and PAC, is also significant in all models. However, the fraction of BB AOD is reduced as 
smoke plumes transport from the source to downwind regions; the longer the distance betweenfrom the 35 
source and downwind region, the smaller the BB AOD fraction becomes. InMore specifically, in RUS1, 
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BB accounts for nearly from 70% (GFDL) to 92% (SPRI) of the aerosol extinction across all models. In 
RUS3, the contribution of BB is reduced, as might be expected, ranging from nearly 58% (CAM5) to 
41% (GEOS) to 58% (CAM5), and is further reduced in PAC, ranging from 38% (CAM5) to 32% 
(GEOS)-38% (CAM5).   
 5 

3.2 Sensitivity of total-column AOD to BB emission injection height and source-strength 

 
The spatial distribution and regional mean AOD differences between the model sensitivity experiments 
and BASE runs are shown in Fig. 5, with spatial differences shown in Fig. 5a, and regional mean AOD 
differences in Fig. 5b.6, respectively. These results highlightdemonstrate the impact of constraining the 10 
fire plume injection height based on MISR retrievals (BBIH) and increasing the source-strength. 
(BBEM). 

The AOD differences between BBIH and BASE (Fig. 5a,5 top row) extend from RUS1 to surrounding 
regions due to smoke transport but are generally and Fig. 6) remain relatively small—within ±0.05 for 
most models and less than 0.01 in CAM5. These results indicate that model responses to changes in 15 
biomass burning injection height vary. All models except SPRI show reduced AOD in RUS1 and 
increased AOD in the outflow regions (RUS2, RUS3, and PAC) in the BBIH run compared to BASE, 
consistent with the differences in vertical profiles betweenamong the models’ default profiles and the 
MISR-based profile (Fig. 2b). For example, GEOS exhibits the expected pattern: lower AOD in RUS1 
and higher AOD downwind, consistent with 55% of emissions being injected above the PBL (0.68 km), 20 
facilitating greater long-range transport. Similarly, in the BBIH run, CAM5 and GFDL emit 10% less 
biomass burning emissionssmoke below 2 km— in the BBIH run (90%%) compared to 100% in the 
BASE run. In (100%). By contrast, SPRI shows the opposite behavior, with higher AOD in RUS1 and 
lower AOD downwind in BBIH relative to BASE. This is consistentpattern aligns with itsthe SPRI 
vertical distributionprofile in BBIH, which increased towhere nearly 90% of the BB emissions were 25 
confined within the first 2 km, compared to 70% in BASE (Fig. 2b), thereby limiting transport in BBIH.  

Table 3 compares the medians of regional mean AOD from the BBIH and BASE simulations. Over the 
KAZA source region, the median AOD from the BBIH runs is similar to that from the BASE runs. In 
RUS1 and the downwind regions—RUS2, RUS3, PAC, and ALA—the BBIH medians are slightly 
closer to satellite-derived values, indicating that incorporating MISR plume injection heights generally 30 
improves AOD representation. However, these improvements are modest, typically ≤4%. This limited 
impact is attributed to differences in the default injection heights among models: GFDL and CAM5 
already use injection heights similar to MISR, whereas SPRI injects too high and GEOS injects too low, 
resulting in minimal change in the multi-model median. 

The overall increase in AOD from BASE to BBEM runs is shown spatially in Fig. 5aFigure 5 (bottom 35 
row),) shows the spatial distribution of AOD difference between the BASE and BBEM runs, with the 
corresponding regional mean differences summarized in Fig. 5b6. Only three models—-CAM5, GEOS, 
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and SPRI—-submitted BBEM simulations, which used FEER1.0 biomass burning (BB) emissions, 
whereas BASE runs used GFED4.1s. As shown in Fig. As shown in Fig. 1, GFED4.1s reports 
significantly lower OA BB emissions than FEER1.0: 106 kg s⁻¹ in KAZA (about one-quarter, which is 
only 27% of the FEER1.0 value) in KAZA and 578 kg s⁻¹80% in RUS1 compared to 702 kg s⁻¹ in 
FEER1.0. Consistent with the higher emissions, BBEM simulations produce significantly larger AODs 5 
than BASE, bothespecially near the source (e.g., +AOD increased by 0.09 to 0.12 in RUS1) and 26 over 
KAZA and 0.13 to 0.38 over RUS1). However, the increase diminishes quickly in downwind regions 
(e.g., only 0.006 to 0.03 over PAC). 
 
The discrepancies among satellite observations and models from source to downwind (e.g., +0.05 in 10 
RUS2regions are further illustrated in Figure 7. Figure 7a presents the satellites and model BASE 
simulations of regional mean AOD for RUS1, RUS2, RUS3, and PAC normalized to the source region 
RUS1. Figure 7b shows the model median AOD values from the BASE, BBIH, and BBEM experiments 
along with the satellite median values. Additionally, Table 4 summarizes these median values in all 
region and +0.02percentages of model median to satellite median.  15 
 
In Fig.7a, BASE simulations from the individual models (dashed color lines) as well as the model 
median (thick brown line) exhibit steeper AOD declines from RUS1 toward PAC compared to all the 
satellite products (solid grey lines) and the multi-satellite median (thick black line). Among the models, 
the source-to-downwind decrease of AOD is steepest in SPRI (blue dashed line), with a 78% reduction 20 
from RUS1 to PAC, compared to GEOS (green dashed line), with 46% reduction. Meanwhile, the 
differences among the satellite products in source-to-downwind gradient reflect the differences in 
sampling and data averaging approaches (see section 2.3). Overall, although the BASE model median is 
15% higher than the satellite median over RUS1, it captures only 57% of it over PAC (Table 4). This 
pattern suggests that the models may underestimate long-range aerosol transport or overestimate aerosol 25 
removal processes during transport. We discuss this further in Section 4. 
 
To assess how model behavior of source-to-downwind gradient changes with the BBIH and BBEM 
experiments, Fig. 7b presents the model-median AOD values over RUS1, RUS2, RUS3, and PAC from 
the BASE, BBIH, and BBEM simulations, along with the satellite medians for comparison. The results 30 
clearly show that constraining biomass burning injection heights using monthly MISR plume data 
(BBIH) or increasing emission strength (BBEM) leads to only modest changes near the source region 
(RUS1) and does not significantly improve aerosol persistence during downwind transport. 
Quantitatively, the BBIH experiment produces an AOD that is 3% lower than BASE in RUS1 and 2% 
higher in RUS3). PAC, directionally consistent with expectation, but much too small (or even 35 
negligible) to significantly reduce the discrepancy. The limited impact likely arises from differences in 
default injection heights among models: GFDL and CAM5 already use injection heights similar to 
MISR, whereas SPRI injects higher and GEOS injects lower than MISR. Consequently, the overall 
change in the multi-model median is minimal. Meanwhile, the median model AOD in the BBEM 
experiment (but lacking the GFDL model) exacerbated the high AOD bias by almost 20% in RUS1 40 
from the bias in BASE simulation, but the enhancement diminishes rapidly along the transport pathway, 
resulting in only a few percentage difference from BASE downwind. Notably, the higher BB emission 
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from FEER1.0 does help increase the AOD in KAZA, another source region, making it much closer to 
the satellite data (Table 4). 
 
Table 4. The medians of regional mean AOD from satellites and model simulations 
Median KAZA RUS1 RUS2 RUS3 PAC ALA 
Satellites 0.390 0.505 0.543 0.471 0.421 0.337 
BASE 0.198 0.583 0.631 0.371 0.242 0.101 
BBIH 0.196 0.565 0.641 0.371 0.247 0.104 
BBEM* 0.328 0.660 0.641 0.398 0.219 0.066 
BASE/Satellites 51% 115% 116% 79% 57% 30% 
BBIH/Satellites 50% 112% 118% 79% 59% 31% 
BBEM*/Satellites 84% 131% 118% 85% 52% 20% 

*GFDL did not provide results for this experiment 5 
 
As AOD represents only the integrated vertical column aerosol loading, sections 3.3 and 3.4 further 
examine the effects of biomass burning injection height and emission amount on surface aerosol 
concentration and vertical profiles, respectively. 

3.3 Sensitivity of surface mass concentration to BB emission injection height and source-strength 10 

The surface mass concentration concentrations of organic aerosols from biomass burning in BB runsOA 
(BASE minus NOBB) across all four models are shown in Fig. 6 (the first row). of Fig. 8. We find that 
biomass burning emissions produce enhanced contribute to surface OA mass concentrations near the 
source regions, by up to 50 ug/m3µg m-3 in KAZA and doublegreater than 100 µg m-3 in RUS1, 
especially in the GEOS model.   15 
 
Figure 6 (second row) shows theThe difference in surface OA mass concentration of organic aerosols 
between the BBIH and BASE. In RUS1,  is shown in the second row in Fig. 8. Both CAM5, GEOS, and 
GFDLGEOS simulate reduced surface mass concentrations,  in BBIH over the source regions of KAZA 
and RUS1, up to ~50 ugµg m-3, and littlebut the changes are small toward the downwind regions. InBy 20 
contrast, SPRI shows the opposite response, indicating thatas BBIH for this model leads to increased 
surface aerosol mass aerosols near the source region. This behavior is consistent results shown in Sect. 
3.2, where we found that SPRI also produced more AOD near the source region in the BBIH run due to 
the higher default BB injection height in the BASE simulation than the MISR injection height in the 
BBIH simulation. Interestingly, CAM5 and GFDL use the same default BB injection scheme in BASE, 25 
but CAM5 shows lower OA concentrations in BBIH than BASE in both the KAZA and RUS1 BB 
source regions, but GFDL shows higher OA concentrations in KAZA and lower concentrations in 
RUS1.   
 
Figure 6 (The third row) in Figure 8 presents the difference between BBEM and BASE. TwoAs 30 
expected, higher emission leads to higher surface concentration; all three models (CAM5 and GEOS5) 
show enhancedwidespread surface massOA concentration increases in the BBEM run compared to 
BASE, both near the source and outflow regions. This is consistent with the enhanced AOD seen in the 
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BBEM runs in Fig. 5, where the FEER inventory led to higher smoke aerosol loading in these two 
models.  
 
Consistent what we found in Sect. 3.2 in terms of AOD, the differencesThe reduction of surface mass 
concentrationOA in the eastern part and the southwestern corner of organic aerosols in BBIH of CAM5, 5 
GEOS, GFDL, and SPRI can be explained by the changes of BB emission profiles in their BBIH runs 
compared to their BASE runs (Fig. 2b).RUS1 is due to the shift in BB emission locations between 
GFED4.1s and FEER1.0.    
 

3.4 Sensitivity of vertical aerosol extinction profile to BB emission injection height and source-10 
strength   

  
Figure 79 presents the vertical profiles of CALIOP aerosol extinction vertical profiles in April 2008, 
which is based on its backscatter measurements and their assumed extinction coefficients, along with 
the aerosol extinction vertical profiles offrom the four models’ aerosol extinctions (CAM5, SPRI, 15 
GEOS, and GFDL)participating models in foursix regions (from west to east: the source regionKAZA, 
RUS1, and three downwind regionsRUS2, RUS3, PAC and ALA). Relevant statistics are listed next to 
the legend in within each panel.  
  
To evaluate the vertical profileprofiles, we used two vertical profile metrics, Za andthe average aerosol 20 
layer height, Za, and the fraction of total-column AOD in the lowest 2 km, F2 km. Following Koffi et al. 
(2012), Za is calculated as: 
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&()

 

 25 
 
Za represents the average aerosol layer height, following Koffi et al. (2012). Here k is the total number 
of layers in each column, 𝑏"#$,&is the aerosol extinction coefficient for layer i within the column, and Zi 
is the layer thickness for layer i. F2 km is the obtained by integrating the aerosol extinction from the 
surface to 2m and dividing by the CALIOP AOD fraction, obtained by integrating the reported aerosol 30 
extinction throughout the atmospheric column. Note that because the upper-bound CALIOP data are 
used, which exclude data below the CALIOP detection limit, in the lowest producing the level 3 mean 
aerosol extinction (section 2 km. 
  

As .4), the absolute values of CALIOP aerosol extinction shown in Fig. 7, in RUS1 (first column), 35 
CALIOP (thick black curves) has Za value of 2.74 km and F2 km value of 51%. In the downwind RUS3 
region (second column), CALIOP has a higher Za value of 3.5 km and F2km drops to 34%, because parts 
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of aerosol plumes below 2 km are removed while being transported to the downwind region. We found 
a similar trend in PAC (third column). Reaching to ALA (fourth column), F2km increases to 40%, 
indicating that aerosol plumes descended toward the surface were further removed from the atmosphere. 
9 could be biased high, especially at higher altitudes, where CALIOP tends to encounter the detection 
limit more often than in the PBL. As such, the calculated CLAIOP Za would be skewed toward higher 5 
altitudes, thus reducing the F2 km. 

The comparisons in Fig. 9 shows that over the source region KAZA (1st column), the aerosol extinction 
profiles from the model BASE simulations (blue lines) are ~40%-80% lower than the “upper-bound” 
CALIOP throughout all altitudes, with non-BB aerosol exceeding BB aerosol extinction, consistent with 
the BASE simulations of AOD (Fig. 4). This suggests that the GFED4.1s emissions used in the BASE 10 
runs is likely too low over KAZA. By contrast, over the source region RUS1 (2nd column), aerosol 
extinction below 2 km altitude from the BASE simulation is higher than the “upper-bound” CALIOP 
data (see section 2.3) for GEOS, GFDL, and especially SPRI, but is lower than CALIOP for CAM5. 
The simulations also show that BB aerosol is the major contributor to total aerosol extinction in RUS1. 
The wide range of model-simulated aerosol extinction in the lower atmosphere can be partly attributed 15 
to differences in mass extinction efficiency (MEE) that converts aerosol mass to aerosol extinction 
(discussed in section 4.1 below) and partly to the OA/OC ratio used in models (see Table 3). Both 
parameters are highest in SPRI and lowest in CAM5. Above 5 km, all model-simulated aerosol 
extinction values are lower than CALIOP. Consistent with the AOD comparisons (section 3.1), the 
model-simulated aerosol extinction decreases in downwind/remote regions (RUS2 to ALA, 3rd to 6th 20 
columns) much faster than the CALIOP data. 
 
Figure  
Compared to CALIOP observations, all BASE runs (blue curves) consistently overestimate F2km to 
varying degrees. For example, in the source region (RUS1), this overestimation ranges from 7% to 36% 25 
across models, suggesting that the models tend to overpredict aerosol loading in the lowest 2 km of the 
atmosphere. Similarly, in the downwind regions—RUS3 and PAC—the overestimations range from 6% 
to 17% and 10% to 22%, respectively, indicating that this high bias persists beyond the source region, 
and downwind smoke is distributed too close to the surface and/or descends too rapidly. Notably, 
CALIOP detects aerosol layers extending above 6 km from the source to downwind regions—features 30 
not reproduced by any of the models. As Fig. 2b shown, across all different schemes, nearly all smoke 
is injected only below 3 km in RUS1.    
 
It is evident that biomass burning contributes significantly to the total extinction profiles in the source 
region (Fig. 7 and Fig. 3b), by comparing BASE (blue curves) and NOBB runs (orange curves) in each 35 
model. However, the contribution from BB becomes less towards the downwind regions. In addition, 
the simulated total aerosol extinction is reduced much more rapidly in RUS3, PAC, and ALA than 
observed by CALIOP, indicating that both biomass burning and non-biomass burning aerosols are 
removed from the models too quickly. In contrast, smoke originating from Siberia and Kazakhstan was 
still observed over Alaska during the April 2008 NASA ARCTAS and NOAA ARCPAC field 40 
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campaigns. During this period, concentrations of carbon monoxide (CO) and aerosols were elevated by 
100–300% above background levels (Warneke et al., 2009, 2010).  
 
In the RUS1 region, the BBIH runs (red curves), where the smoke plume injection is constrained by 
MISR, brings three models (CAM5, GEOS, and GFDL) closer to CALIOP, with F2km coming closer to 5 
the observed 51% by 9-17% across the three models. However, SPRI performs worse in this 
configuration, because the MISR-based vertical profile places a greater fraction of smoke below 2 km 
than the default vertical profile for this model (Fig. 2b). In the downwind regions (RUS3 and PAC), the 
BBIH runs show little improvement from BASE in any model.   

The varying impact of BBIH across models reflects differences in their baseline (BASE) fire injection 10 
height schemes, as summarized in Table 1. In the BBIH run, all models adopted a consistent MISR-
based vertical distribution: 45% of smoke is emitted within the PBL (~0.68 km), with the remainder 
above, following the MISR-derived weighting function (Fig. 2a and Sect. 2.2.3).  The most significant 
improvement is observed in GEOS, where biomass burning emissions in the BASE run were confined 
entirely within the PBL. In contrast, the BBIH run injects 55% of emissions above the PBL, leading to 15 
improved agreement with observed vertical profiles in the RUS1 source region. Correspondingly, the 
fraction of aerosol extinction below 2 km (F2 km) decreases from 87% in BASE to 68% in BBIH. 

CAM5 and GFDL use multi-level vertical profiles from Dentener et al. (2006) in their BASE runs. 
Switching to the MISR-based scheme in BBIH brings the fraction of AOD below 2 km (F2km) closer to 
the observed value of 51% in RUS1—decreasing from 65% to 59% in CAM5, and from 64% to 60% in 20 
GFDL (Fig. 7). This reduction helps explain the lower AOD in RUS1 seen in their BBIH simulations 
(Fig. 5a and 5b). This trend is consistent with their vertical profile comparisons in Fig. 2b. 

The BBEM runs produced more BB emissions than BASE in three participating models (CAM5, 
GEOS, and SPRI), thus raising AOD near the source, yet not improving the vertical distribution or 
downwind AOD. 25 
9 also indicates that the differences made by the BBIH (red lines) and BBEM (green lines) simulations 
are seen primarily over the source regions (KAZA and RUS1), especially below 3 km, in the direction 
consistent with the differences between BBIH and BASE on injection height or between BBEM and 
BASE on emission amount. For example, the GEOS overestimation of aerosol extinction below 2 km 
from the BASE runs is reduced in the BBIH runs, because the default BB emission in BASE is confined 30 
entirely within the PBL but MISR-based injection height in BBIH releases 55% of emission above the 
PBL (Fig. 2). This leads to improved agreement with the CALIOP data in the source region. On the 
other hand, the BBIH run makes the overestimation by SPRI in RUS1 even more than in the BASE run, 
because the MISR-based injection places a greater fraction of smoke below 2 km than the default SPRI 
BB injection height (Fig. 2). Meanwhile, higher BB emission in BBEM significantly improves the 35 
agreement of aerosol extinction profiles between model and CALIOP in KAZA, especially below 3 km. 
In all cases, the differences among BASE, BBIH, and BBEM simulations become much smaller even 
negligible in downwind regions. 
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We further use the parameters Za and F2km to compare the aerosol vertical placement between models 
and CALIOP. As shown in Fig. 9, the Za from CALIOP is 2.7 km over the source regions KAZA and 
RUS1 as well as in the immediate downwind region RUS2, with about half of the AOD situated below 
2 km (F2km =50%-51%). The Za increases to 3.5 km further downwind over RUS3 and PAC, where 
about 1/3 of AOD is located below 2 km (F2km = 33%-34%). In the more distant ALA region, where the 5 
BB influence is expected to be reduced, the Za is maintained at 3.5 km, with 40% of AOD below 2km. 
 
In comparison, the model-calculated Za values from the BASE runs are lower than CALIOP and the 
F2km values are higher than CALIOP in all regions, except SPRI in KAZA, which goes in the opposite 
direction. Over the source region RUS1, the Za is lower by less than 1 km in CAM5, GFDL, and SPRI 10 
but by 1.8 km in GEOS. Correspondingly, the F2km values from all models is higher than CALIOP, from 
7%-14% in CAM5, GFDL, and SPRI to 36% in GEOS. These values are consistent with the differences 
in the default BB injection height among models. The differences between all models and CALIOP in 
the downwind regions converge to less than 1 km for Za and to less than 17% for F2km. These values in 
the BBEM runs are very similar to those in the BASE runs in all regions except KAZA, as expected, as 15 
both experiments use the same BB injection heights and the small differences between these two 
experiments can be attributed to the changes of BB contributions to total aerosol extinction. On the 
other hand, the Za values in the BBEM runs are 0.4-0.7 km lower and F2km are 7%-13% higher than 
those in the corresponding BASE runs, because the higher BB emission in BBEM significantly 
increases the BB aerosol fractions near the surface. That is, this tends to produce lower Za and higher 20 
F2km than non-BB aerosols (Fig. 9), making discernable differences in Za and F2km in the total aerosol 
extinction.  
 
The BBIH simulations makes the most noticeable differences in Za and F2km in the source region. In 
RUS1, for example, Za increases by ~ 0.2 km from the BASE in CAM5 and GFDL to be a little closer 25 
to the CALIOP Za value; meanwhile Za decreases by 0.2 km in SPRI from the BASE run, creating a 
greater departure from CALIOP. Correspondingly, F2km decreases by a few percent in CAM5 and 
GFDL but increases in SPRI. The largest magnitude changes in RUS1 are seen in the GEOS model: Za 
from the BBIH run increases by 0.8 km and F2km decreases by ~20% compared to the BASE run. 
Similar trends are also seen in KAZA, although the magnitudes are much smaller. Again, all these 30 
changes in BBIH from BASE are attributable to the difference in BB injection height in these two 
experiments. However, as we have shown in the comparison of AOD and extinction profiles, the 
differences between BASE and BBIH quickly become trivial in downwind regions.  
 
However, there are uncertainties and bias in the data as well. The upper-bound CALIOP data would 35 
likely have larger positive bias at higher altitudes (see discussion section 4.2), leading to Za values about 
1 km higher than the lower-bound CALIOP data (Kim et al., 2019). Therefore, it is difficult to draw 
definitive conclusions about the vertical displacement of model-simulated extinction based on the 
CALIOP data showing here. 
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4. Discussion  

4.1 BB AOD and emission. Sources of aerosol discrepancies among models 

To explore the sources of discrepancies among models, we examine the global spatial distribution of 
OA mass load (g m-2), OA AOD, and OA mass extinction efficiency (MEE, m2 g-1) for April 2008, as 
simulated by CAM5, SPRI, GEOS, and GFDL in their BASE runs (Fig. 8). The BBIH runs (not shown) 5 
resemble the BASE runs.  

The global spatial patterns of OA mass load are broadly similar across the models, though SPRI 
displays more localized concentrations and less dispersion from source regions to surrounding areas 
(row 1 in 
A key contribution of the current study is the ability to intercompare model performance in simulating 10 
smoke-transport. To this end, we investigated the sources of discrepancies among models by examining 
the model-simulated OA, the major BB aerosol component, averaged over four source-to-downwind 
areas, RUS1, RUS2, RUS3, and PAC, for April 2008. This analysis includes five key variables from the 
BASE runs by the four models: (1) total emission from biomass burning and anthropogenic sources, (2) 
loss frequency due to wet and dry deposition, (3) column mass load, (4) MEE, and (5) AOD. Here, the 15 
loss frequency is calculated as the ratio of column mass load to total (wet+dry) deposition rate, and 
MEE is the ratio of AOD to column mass load. Results are summarized in Table 5 for the individual 
models, along with the multi-model median, inter-quartile range (IQR) normalized by the median 
(expressed as a percentage to indicate inter-model spread), and the ratio of maximum to minimum 
values among the models. Figure 10 further illustrates the model diversity, expressed as the percentage 20 
deviation of each model from the multi-model median for each variable. For clarity, the deposition 
residence time in Fig.10 is calculated as the reciprocal of the loss frequency, to highlight whether 
shorter residence time leads to lower mass load, as expected). 
 
Table 5. Total emission, area-mean deposition loss frequency, column mass load, MEE, and AOD for OA 25 
averaged over RUS1, RUS2, RUS3, and PAC for April 2008 from model BASE simulation, along with 
associated statistical values. 
 

 Fig. 8). In contrast, OA AOD varies more substantially among the models, with CAM5 yielding 
notably lower values (row 2 in Fig. 8). These discrepancies are primarily driven by differences in MEE 30 
(row 3 in Fig. 8), as AOD is computed as the product of OA mass load and MEE. Due to extremely 
limited MEE measurements (e.g., Kahn et al., 2023), MEE is calculated within each model from species 
refractive indices, particle size distribution, particle density, and the RH-dependent hygroscopic growth. 
This leads to large diversity in model-adopted values. On both a global scale and within RUS1, GEOS 
and GFDL produce comparable MEE values, CAM5 the lowest, and SPRI the highest.   35 

To further investigate the sources of variability in OA mass load, we analyzed global emissions of OA 
from biomass burning in April 2008 (Table 4). The BASE runs indicate that the global total organic 
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carbon (OC) emissions from biomass burning are relatively consistent across the four models, ranging 
from 1.63 to 1.65 Tg. This consistency across models is confirmed in the global total black carbon (BC) 
biomass burning emission, ranging from 0.148-0.150 Tg (Table 5). However, substantial differences in 
the assumed OA/OC ratios—ranging from 1.4 to 2.6—lead to significant variations in total OA 
emissions in BASE, BBIH, and BBEM. The highest OA/OC ratio in SPRI (as 2.6) likely contributes to 5 
the overestimated AOD over RUS1 (Fig. 3a and 3b).   

Table 4. Global OC Biomass burning emission for April 2008. 

 

emibboa Emission 
(Tg/mon) 

200804) 

OA/OC ratioLoss 
frequency (day-

1) 
BASE 
Load  

BBIH
MEE  BBEMAOD 

 Total 
OA(BB,  
Anthro) 

OC
Total 

OA(Wet,  
Dry) OC (g m-2) 

OA
(m2 g-
1) OC 

CAM5 1.432 
2.31(1.32, 

0.003) 
1.65
0.54 

2.30
(0.53, 
0.01) 1.640.021 

5.12
4.29 3.660.09 

GEOS 1.860 
2.95(1.59, 

0.003) 
1.64
0.21 

2.91
(0.18, 
0.03) 1.620.028 

6.62
9.88 3.680.25 

GFDL 1.657 
2.59(1.56, 

0.002) 
1.62
0.22 

2.59
(0.17, 
0.05) 1.620.023 

N/A
8.89 N/A0.20 

SPRI 2.26 (2.26, 0.003) 0.74 
(0.72, 
0.02) 0.022 26.7 0.46 

Median 1.58 (1.58, 0.003) 0.38 
(0.35, 
0.03) 0.022 9.39 0.22 

IQR/Med% 16.2 (16.2,    5.25) 98.2 
(114, 
70.8) 9.33 67.7 58.6 

SPRIMax/Min 
2.6

1.71 
4.23(1.71,    

1.27) 
1.63
3.53 

(4.2329, 
4.64) 1.6332 

9.54
6.23 3.674.98 

      
 
Fundamentally, sources and removal rates determine the mass load, and the mass load and MEE 
together determine the AOD. In this study region and period, BB emission is the predominant source of 10 
OA, accounting for more than 99% of the total OA emission. For the OA loss due to deposition, all 
models agree that wet deposition is the major removal process, with the loss frequency 3 to 50 times 
higher than that of dry deposition (Table 5). Interestingly, despite significant differences in OA 
emissions and deposition rates among the models, the disparity of the resulting OA loads is surprisingly 
small. The inter-model spread in OA mass load, indicated by the IQR divided by the median, is only 15 
9.3%, compared to 16% for emissions and 98% for loss frequency. This small spread in OA mass load 

Inserted Cells



24 
 

is mainly due to the compensating effects of emission and removal frequency. For example, SPRI has 
the highest OA emission (because of its assumed highest OA/OC ratio among models as 2.6; Table 3) 
but also the fastest removal rate (i.e. the shortest deposition residence time), whereas GFDL has much 
lower emission but a significantly slower removal rate (i.e., longer deposition residence time). As a 
result, they end up with very similar OA mass load despite contrasting parameter choices. Note that this 5 
analysis does not account for OA inflow and outflow due to transport, nor for any secondary OA 
formation from volatile organic compound oxidation in the regional source/sink budget. Therefore, 
mass is not strictly conserved within the study region. Nevertheless, we are considering by far the 
dominant controls on OA in this case, so the key findings regarding the inter-model diversity remain 
robust.  10 

Although OA mass loads are relatively consistent across models (max/min = 1.3 and IQR/median = 
9.3%), the differences in OA AOD are very large (max/min = 5 and IQR/median = 59%). This large 
spread in AOD is primarily attributable to substantial differences in MEE (max/min = 6.2 and 
IQR/median = 68%). For instance, SPRI exhibits an extremely high MEE at 26.7 m2 g-1, whereas 
CAM5 has the lowest value of 4.3 m2 g-1 (Fig.10 and Table 5). This large contrast in MEE results in the 15 
large difference in OA AOD. Theoretically, MEE depends on aerosol optical and microphysical 
properties, including particle refractive indices, size distribution, dry density, and hygroscopic growth 
under ambient humidity (e.g., Hess et al., 1998; Chin et al., 2002). The results in Fig.10 indicate that 
SPRI assumes remarkably strong hygroscopic growth for OA particles, making MEE about three times 
the multi-model median value, whereas CAM5 assume much lower water vapor uptake ability, 20 
producing a MEE value roughly half the multi-model median. The global spatial distribution of OA 
mass load, OA AOD, and OA MEE are shown in supplemental Fig.A2. 

Clearly, using the remotely sensed AOD as a constraint is necessary to produce realistic model 
simulations, but by itself, it is insufficient for evaluating the underlying factors that contribute to model 
AOD diversity. To improve future aerosol modeling and AeroCom intercomparisons, this study—along 25 
with Petrenko et al. (2025)—strongly recommend constraining MEE values (ranging from 4.3 to 26.7 in 
this study) and OA/OC ratios (ranging from 1.4 to 2.6 in this study). Unfortunately, there are no 
statistically robust observational constraints for MEE, emission, deposition, and mass load covering the 
major aerosol types, key variables that each play a critical role in determining AOD (e.g., Kahn et al., 
2023). Further, the OA/OC ratio does exhibit a wide range in nature that depends on many factors, 30 
including the burned vegetation type, chemical structure of OA compounds, formation of OA from 
different precursors, aging of the airmass, and meteorological conditions in the environment. Although 
the range of OA/OC ratio in this study are within the observed values (e.g., Malm et al., 1994; Aiken et 
al., 2008; Hodzic et al., 2020), more systematic measurements of this ratio are highly desirable to obtain 
robust statistics for the most probable values under various conditions. 35 
 
4.2. Discrepancies between model and satellite observations 
 
As presented in Section 3, the models show a stronger meridional decline in AOD from the source 
regions to the downwind regions, compared to satellite data (e.g., Fig. 4, Fig. 7, and Table 4). The 40 
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models also significantly underestimate the aerosol extinction in the middle to upper troposphere 
compared to CALIOP lidar data (Fig.9). These discrepancies persist across all experiments and models. 
Possible explanations include a) excessively rapid aerosol wet removal along the transport pathways, b) 
underestimated BB injection height (with both model default assumptions and monthly MISR values 
lower than actual plume height in our study area), and c) insufficient vertical mixing. Below, we 5 
evaluate each explanation in turn. 
 
Excessive wet removal: Our model budget analysis indicates that wet deposition is the dominant 
removal process for OA across all models (Table 5). This is expected, given the submicron size and 
hygroscopic nature of OA smoke particles. Among the models, Figure 11 and Table 5 show that CAM5 10 
and SPRI exhibit significantly higher wet depositional loss rates than GEOS and GFDL, and their 
average deposition residence times over the four regions from RUS1 to PAC are ~50% lower than the 
multi-model median, whereas the GEOS and GFDL are 50% higher. This behavior is consistent with 
the steeper meridional reduction of AOD from RUS1 to PAC in CAM5 and SPRI than in other two 
models (Fig. 7a). The inter-model differences likely stem from differences in model representations of 15 
precipitation amount and wet scavenging parameterization, among other factors. A recent paper by 
Zhong et al. (2022) analyzing biomass burning aerosol lifetimes in the AeroCom global models found 
that the BB aerosol lifetime is strongly correlated with precipitation, indicating that wet deposition is a 
key driver for BB aerosol burden. Notably, however, even with much smaller loss frequency in the 
GEOS and GFDL models, their AOD decrease from RUS1 to PAC remain far more rapid than indicated 20 
by the satellite-retrieved AOD,  
 
Although the dominance of wet deposition is not surprising, the degree to which it varies among 
models-and its potential role in the underestimation of downwind AOD and vertical aerosol extent-
warrants further investigation. Future AeroCom experiments might consider performing additional 25 
sensitivity studies that involve changing the removal rates and/or implementing standardized 
diagnostics and tracer experiments to better quantify and compare aerosol removal pathways across 
models. In addition, improved wet removal metrics should be considered. Recent work (Hilario et al., 
2024) suggests that precipitation intensity and relative humidity are more robust indicators of wet-
scavenging efficiency, implying that models may benefit from incorporating these meteorological 30 
controls into wet-deposition parameterizations. 
 
Underestimated BB injection height: As shown in Section 3 (Fig. 5 and Fig. 6), the change of model 
simulated AOD in BBIH from BASE depends on BB injection profile differences between the default 
used in BASE and the MISR scheme in BBIH. Figure 2b shows that the GEOS default injection height 35 
(PBL scheme) is much lower than MISR, SPRI (fixed altitude scheme) is much higher than MISR, 
whereas GFDL and SPRI (Dentener scheme) are similar to MISR. As a result, GEOS gains the most 
notable improvement in BBIH. For example, in RUS1, the fraction of AOD below 2 km (F2km) 
improved significantly in BBIH, decreasing from 87% in BASE to 68% in BBIH, closer to the 
CALIOP-observed value of 51%. This improvement reflects a shift from all BB emissions being 40 
confined within the PBL in the BASE run to 55% of BB emissions being injected above the PBL in 
BBIH. In comparison, the default biomass burning injection heights in CAM5 and GFDL are relatively 



26 
 

close to those retrieved by MISR, such that the differences between the BASE and BBIH simulations 
are minimal for these two models. In SPRI, however, which used a fixed altitude scheme in BASE that 
distributed emissions uniformly up to 3 km, the BBIH scheme degrades agreement with observed AOD. 
This is because its default BB injection height is higher than MISR; using the MISR injection height 
puts more emission in the PBL (45-55%) than the default (22-25%), with increasing the fraction below 5 
1 km from 30% to 70%. Although the changes in BBIH are still too small to substantially improve the 
agreement between models and satellites, these results demonstrate that the model simulations do 
respond to changes in injection height, and shifting the injection profile to place more smoke above 3 
km would help.  
 10 
We did not conduct a simulation combining both MISR-based injection heights and the FEERv1.0-G1.2 
emissions (i.e., a BBIH+BBEM experiment), as our main goal in the current study is to disentangle the 
individual impacts of biomass burning injection height and emission strength. The impact of combined 
BBIH+BBEM experiment could be estimated from the BASE, BBIH, and BBEM experiments, with the 
assumption that the effects of injection height and emission strength are approximately multiplicative 15 
and independent, such that BBAODBBIH+BBEM = BBAODBBEM (1 + BBAODBBIH / BBAODBASE). 
However, given the small differences between the BASE and either the BBIH or BBEM results 
downwind and in the free troposphere, we do not expect that the BBIH+BBEM experiment would 
produce substantially better agreement between model and satellite data. 
 20 
Regarding the injection height, the monthly and regional-mean MISR plume height is broadly 
representative of typical plume injection behavior (Val Martin et al., 2018; Noyes and Kahn, 2025), but 
this approach might underrepresent extreme events or diurnal variability in plume rise, such as the 
strong April 2008 Siberian wildfires we focus on the current study. In addition, MISR observations (Val 
Martin et al., 2018), taken in the late morning (~10:30 a.m. local time), tend to underestimate typical 25 
peak daytime plume heights, as only about 20% of plumes rise above the boundary layer at that time, 
compared to ~55% by late afternoon (Ke et al., 2021). Future modeling should consider how injection 
profiles might be adjusted to address this limitation and better represent plume rise above 3 km.  
Providing observations to adequately constrain aerosol transport models in this respect might require 
applying the combination of near-source injection height from multi-angle imaging (e.g. MISR and 30 
follow-on multi-angle satellite imagers), and downwind aerosol-plume vertical distribution (e.g., 
CALIOP and subsequent space-based aerosol lidars) (Kahn et al., 2008).   
 
Insufficient vertical mixing: Underestimation of aerosol extinction at higher altitudes by the models 
may also indicate insufficient vertical mixing or turbulent mixing. It is difficult to attribute the 35 
difference between CALIOP and the models and among different models to the transport and/or 
removal processes without having adequate diagnostic tools. In that regard, implementing common 
tracers for transport and removal would be highly desirable to more precisely diagnose and attribute the 
causes responsible for these discrepancies. The models use different advection schemes, vertical 
diffusion parameterizations, and convective transport treatments, all of which can affect the vertical 40 
distribution of aerosols. However, a comprehensive evaluation of these processes is beyond the scope of 
this study.  
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Lastly, Table 5. Global BC Biomass burning emission for April 2008.  
emibbbc (Tg/mon) 

200804 

BASE  BBIH BBEM 

CAM5 0.150 0.149 0.384 
GEOS 0.150 0.146 0.385 
GFDL 0.148 0.148  N/A 
SPRI 0.148 0.148 0.383 
  
 
In summary, despite using identical biomass burning OC and BC emissions in the BASE simulations, 
the four models exhibit substantial variability in AOD and vertical aerosol profiles near the biomass 5 
burning source region (RUS1), as shown in Fig. 7. This variability is partly driven by the wide range of 
OA/OC ratios assumed across models—ranging from 1.4 to 2.6—which results in significant 
differences in total OA emissions across the BASE, BBIH, and BBEM runs. Additionally, large inter-
model differences in MEE further contribute to discrepancies in AOD and aerosol extinctionour 
evaluation of the model-simulated aerosol fields in our case study mostly uses the remote sensing AOD 10 
and aerosol extinction profile optical products. As we show in previous sections, the MODIS and MISR 
AOD data have spatial gaps over high latitudes and in cloudy or partially cloudy situations, whereas the 
CALIOP data suffer from the observability in low aerosol environments such as in the free troposphere, 
where the aerosol extinction is often below the CALIOP instrument detection limit. The differences 
between the mean CALIOP data with or without the assumed zero values under “clean” conditions can 15 
be 0.05 km-1 in the lower troposphere and 0.02 km-1 in the upper troposphere over the northwestern 
Pacific in spring (Kim et al., 2019), a range that could bound the range of model-simulated aerosol 
extinction vertical profile values, making quantitative assessment uncertain. Future model evaluation 
matrices should also involve aircraft data that provide more direct measurements of aerosol mass 
concentration, chemical composition, size distribution, optical properties, and vertical profiles, offering 20 
more reliable constraints on model processes. Understandably, the aircraft measurements are limited in 
space and time, and coordination with remove-sensing observations requires careful, strategic planning.  
. To improve future aerosol modeling and AeroCom intercomparisons, this study—along with Petrenko 
et al. (2025)—strongly recommends constraining OA/OC ratios and MEE values. However, the absence 
of systematic, region-specific measurements currently limits the ability to robustly constrain these 25 
parameters. Furthermore, the present analysis does not include the most extreme fire events, such as 
those associated with pyrocumulonimbus (PyroCb) development. Although beyond the scope of this 
study, such cases warrant further investigation, especially considering the projected increase in biomass 
burning intensity under a warming climate. 
 30 
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4.2 Removal processes in models  

The total aerosol mass load in models is governed by a balance between sources—such as primary 
emissions and secondary aerosol formation—and removal processes, including dry deposition, wet 
deposition, and, to a lesser extent, chemical loss. As discussed in Sect.3, the models may be 
underestimating long-range transport or overestimating aerosol removal or both. To investigate this, we 5 
examine organic aerosol deposition in each model’s BBIH run, where biomass burning emissions and 
the MISR-based vertical injection profile are held consistent across models. 

Figure 9 illustrates the dry and wet deposition of OA in each model. The spatial patterns and 
magnitudes of OA dry deposition are generally consistent across models, showing a maximum over the 
RUS1 region and reduced deposition along the eastern coast of East Asia and northern South Asia—10 
except too little in CAM5, which deviates from this pattern. In contrast, OA wet deposition is more 
widespread and stronger than dry deposition in all models, especially in CAM5. It spans regions 
including RUS1, RUS2, RUS3, PAC, and ALA, with decreasing intensity eastward.  

These findings suggest that wet deposition is the dominant mechanism for OA removal across all 
models and likely contributes most to the excessive removal of biomass burning aerosols from the 15 
source regions to the downwind regions. However, in the current study we are unable to distinguish the 
effects of too rapid deposition from too inefficient transport.  

5. Conclusions  

 
This BBEIH study addresses two key questions: 1) How sensitive are simulated near-source and 20 
downwind plume characteristics—including vertical aerosol distribution, near-surface 
concentrationsconcentration, and AOD—to the injection height of biomass burning emissions? and 2) 
To what degree does the choice of biomass burning emission inventory or source-strength affect smoke 
dispersion? 
 25 
We evaluated the sensitivity of smoke aerosol dispersion to smoke injection height and source-strength 
in four global models. for the year 2008 under the umbrella of the AeroCom Phase-III experiment, with 
a focus on the Siberian wildfires near the Lake Baikal region in eastern Russia during April. Each 
model performed four model simulation: Insimulations: (1) BASE, all models used the same biomass 
burningGFEDv4.1s emission inventory (GFEDv4.1s) but with and applied the model-specific BB 30 
injection height. In; (2) BBIH, same as BASE, but the vertical distribution of biomass burning at 
injection BB emissions was constrained by the statistically based monthly MISR plume injection height 
data, whereasheights in the study region; (3) BBEM, the dailysame as BASE, but with GFED4.1s 
replaced by the FRP-based biomass burning emission inventory (FEER) was used to assess model 
sensitivity to the emission dataset. In; (4) NOBB, BB emissions were excluded. This is the first 35 
AeroCom Phase III analysis to quantify inter-model variability in  entirely. Unlike previous studies 
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using a single model, this work compares BB emission injection height representations across multiple 
models. We assess each model’s default vertical smoke transport using distribution approaches (e.g., 
Dentener scheme, PBL scheme, and fixed height scheme) and then apply MISR-constrained injection 
height uniformly to evaluate its impact. 
 5 
In the BASE simulations, all models captured the AOD maximum associated with the Siberian wildfires 
near the Lake Baikal region in eastern Russia during April 2008.. In the RUS1 source region, biomass 
burning dominates the total AOD, contributing nearly 80% of the total.%. However, AOD levels varied 
notably among models: CAM5 significantly underestimates AOD, SPRI substantially overestimates it, 
whereas GEOS and GFDL show better agreement with MODIS observations. Despite thisthese 10 
differences, a common feature across all models is the much more rapid AOD decrease from RUS1 to 
PAC than the satellite retrievals. Specifically, all models consistently underestimatedunderestimate the 
strong aerosol outflow observed over the western North Pacific, where the satellite-derived median 
AOD is 0.44. The42, but the model ensemble median in this region is only 0.2824, representing a 
3743% underestimation. In addition, All BASE simulations show a sharper decrease in AOD from 15 
RUS1 to PAC compared to satellite observations, suggestingThis pattern suggests that all models either 
have insufficient long-range aerosol transport or overestimate aerosol removal processes during 
transport. ComparedFurthermore, compared to the upper-bound CALIOP data, all models 
overestimatedoverestimate the fraction of AOD below 2 km (F2km), by 73–36% in RUS1 and 
downwind, by, 6–17% in RUS3 and 10%, 9 to 22%,24% in PAC., and 1-15% in ALA, but are more 20 
similar in RUS2. Notably, CALIOP detects aerosol layers extending above 6 km, from the source to 
downwind regions—these features are not reproduced by any of the simulations. ItThe discrepancy 
indicates excessive smoke concentration near the surface across all models and partly explains the 
overly rapid AOD decrease during downwind transport. However, some of the discrepancies between 
CALIOP and models can also be attributed to the overestimation of aerosol extinction at high altitudes 25 
in the upper-bound CALIOP data. 

In the BBIH run, all models applied a consistent, MISR-based monthly vertical distribution of fire 
injection: 45% of the smoke was emitted within the planetary boundary layer (~0.68 km) in the source 
region (RUS1),) and 55% in KAZA, with the remainder above, following the MISR-derived weighting 
function. This led to a redistribution of AOD, surface OA mass concentration, and vertical profiles in 30 
most models. All models—except SPRI—showed reduced AOD in RUS1 and increased AOD ; the 
degree of improvement depended on the difference between the model default injection height in the 
outflow regions (RUS2, RUS3, BASE and PAC) comparedthe MISR injection height in BBIH. In 
general, the direction of AOD change was in the right direction to the BASE run, although the changes 
were generallyimprove the model agreement with satellite AOD, but the magnitude of AOD change was 35 
much too small—within ±0.05 for most models and less than 0.01 in CAM5. However, across all 
models, BBIH had limited to make a significant impact on vertical smoke distributionredistribution in 
the downwind regions (RUS3 and PAC) and did not substantiallyor to reduce the persistent AOD 
underestimation there. The most notable improvement occurredThis result suggests that a greater 
portion of BB emissions should be emitted to altitudes higher than those observed by the monthly MISR 40 
plume height used in BBIH of GEOS, particularly in RUS1. The fraction of AOD below runs in this 
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case study, which is not entirely surprising given the intensity of the fires associated with the event 
considered in here. Furthermore, the MISR observations in the late morning (Terra satellite overpass 
time) would underestimate the typical peak plume heights in the afternoon. In comparison, the BBEM 
experiment, which employed higher BB emission in the two major source regions, KAZA and RUS1, 
by factors of 3.7 and 1.2 km (F2km) improved significantly in BBIH, decreasing from 87% in than the 5 
BASE to 68% in BBIH, closer to the CALIOP-observed value of 51%. This improvement reflects a 
shift from all BB emissions being confined within the PBL in the BASE run to 55% being injected 
above the PBL in BBIH. In summary, the default biomass burning injection heights in CAM5 and 
GFDL are relatively close to those retrieved by MISR, whereas GEOS assumes all emissions are 
injected within the PBL. As a result, the differences between the BASE and BBIH simulations are 10 
minimal for CAM5 and GFDL, while more noticeable improvements are observedexperiment, resulted 
in significant increases in GEOS. 

In SPRI, however, which uniformly distributes emissions up to 3 km in the BASE run, the BBIH 
scheme degrades agreement with observed AOD—this is because its default BB injection height is 
higher than MISR; using the MISR injection height would put more emission in the PBL (45-55%) than 15 
the default (22-25%) to increase the fraction below 1 km from 30% to 70%.  

Across all vertical distribution schemes—including those adjusted using MISR plume heights—nearly 
all smoke, close to 100%, is injected below 3 km in both KAZA and RUS1. However, MISR 
observations (Val Martin et al., 2018), taken in the late morning (~10:30 a.m. local time), tend to 
underestimate typical peak daytime plume heights, as only about 20% of plumes rise above the 20 
boundary layer at that time, compared to ~55% by late afternoon (Ke et al., 2021). In addition, CALIOP 
detected aerosol layers above 6 km from the source to downwind near the source regions—features 
absent in all model simulations. This highlights the need to inject more smoke above 3 km. Future 
modeling should consider how injection profiles might be adjusted to address this limitation and better 
represent plume rise above 3 km.  Providing observations to adequately constrain aerosol transport 25 
models in this respect might require applying the combination of near-source injection height from 
multi-angle imaging (e.g. MISR and follow-on satellite missions), and downwind aerosol-plume 
vertical distribution (e.g., CALIOP and subsequent space-based aerosol lidars) (Kahn et al., 2008).   

The FEER-based emission inventory (BBEM runs) resulted in higher biomass burning emissions—
702 kg s⁻¹ of OA compared to 578 kg s⁻¹ in the GFED4.1s-based BASE runs for the RUS1 region. 30 
While. Although this increase helped improve model-simulated AOD in the KAZA region, it led to 
anmore overestimation of AOD in RUS1 and RUS2. Additionally, theMoreover, the models were 
unable to sustain the increase in downwind regions, as would be needed to improve the agreement with 
satellites there, nor did it increase the aerosol extinction at higher BB emissions did not enhance the 
vertical aerosol structure either locally or downwind, nor did they significantly increase AOD in 35 
downwind regionsaltitudes near-source or downwind. 

Overall, our 
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Lastly, model simulations of aerosol dispersion are essential tools for air quality forecasting and exposure assessment, as well as for 
climate prediction. Limitations in modeling, as indicated by diversity among models and discrepancies with available measurements, 
highlight the directions in which further advances are needed.  Our results  indicate that increasing biomass burning 
emission strength and simple modifications to the injection height alone isare insufficient to reproduce 
observed aerosol distributions.  As with the discussionThis study suggests several possible issues: (a) aerosols 5 
may be removed too quickly during transport, (b) the BB injection height profile derived from monthly 
MISR over the boreal region may still be biased toward the lower atmosphere, at least in this case study, 
and (c) vertical mixing is insufficient.  
 
We also investigated the sources of discrepancies among models. As discussed in Sect. 4 above, Petrenko et 10 
al. (2025) also , we found that different choices of MEE and OA/OC ratio, along with differences in aerosol 
loss rate, playedplay a major role in creating diversity among model BBmodeled AOD and in the 
discrepancies with MODISbetween model and satellite AOD. Similar findings are reported in Petrenko et 
al. (2025), which used 10 models, including simulations produced by the CAM5, GEOS, and SPRI models also 
applied in the current study as well. Equally critical is to quantitatively assess theassessing transport 15 
efficiencies of transport, in both the vertical and horizontal dimensions, and of aerosol removal of aerosols, 
which would require implementation of common diagnostic tracers in the models. These considerations 
are important for better understanding the model -simulated smoke near the -source andas well as 
downwind and determining how to make model improvements and. The proposed diagnostics should 
help the design ofin designing the upcoming AeroCom Phase IV experiments. Further, there is a lack of 20 
critical measurements for constraining particle microphysical properties such as MEE, and aerosol 
properties and processes such as OA/OC ratio, loss rates, and aerosol vertical distribution thatdistributions. 
These would be required to make the implied model adjustments consistently and appropriately (e.g., 
Kahn et al., 2023). Although the present study is unable to address these issues, it highlights the 
directions in which further advances are needed.Kahn et al., 2023).   25 
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Some of our results align with those of previous studies, which lends confidence to our conclusions and 
suggests greater applicability than just for the cases included here. We suggest that future experiments 
(e.g., AeroCom Phase IV) expand the analysis to include different fire regimes. We emphasize that this 
is the first coordinated multi-model intercomparison that systematically isolates the effects of injection 5 
height and emission strength using a harmonized experimental design and satellite-based constraints. 
The novelty of this work lies in the cross-model comparisons, the quantification of inter-model 
variability, particularly in vertical aerosol distribution and long-range transport, and the identification of 
relative differences in underlying model attributes. 

 10 
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Appendix A 
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Figure A1. Spatial distribution of monthly mean organic mattercarbon aerosol emissions from biomass 
burning from March to August 2008, based on the GFED4.1s inventory (from the GEOS BASE run), in 
units of kg m⁻² s⁻¹. The six focus regions are highlighted, with total emissions indicated for each region. 
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Figure A2. Spatial distribution of OA mass load (units: g m-2), OA AOD, OA mass extinction efficiency 
(MEE) (units: m2 g-1) for April 2008, as simulated by four models (CAM5, GEOS, GFDL, and SPRI) in 
their BASE runs. 5 
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Figure 1. Biomass burning emissions from two inventories. Top: Monthly mean spatial distribution of 
organic aerosol (OAcarbon (OC) emissions from biomass burning in April 2008, based on the GFED4.1s 
inventory (used in the BASE runand BBIH runs), in units of kg m⁻² s⁻¹. Bottom: Same as top, but from 5 
the FEERv1.0-G1.2 inventory (used in the BBEM run). The six focus regions—KAZA, RUS1, RUS2, 
RUS3, PAC, and ALA—are outlined and labeledlabelled with total emissions.  
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Figure 2. (a) Spatial distribution of the percentage of smoke emitted within the planetary boundary 
layer (PBL) in April 2008, derived from the MISR- based plume height (units: %), with regional mean 
values of the six focus regions listed below (over land only). 
(b) Cumulative vertical smoke emission profiles over KAZA and RUS1, with the black thick curve 5 
representing the MISR-based plume height used in the BBIH run and the colored curves representing 
the model default vertical profiles from the models' BASE runs. The PBL layer is shaded in graygrey.  
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Figure 3a. AOD observations and model simulations. (a) Spatial distribution of AOD at 550 nm in April 
2008, from four satellite instruments (MODIS-Terra, MODIS-Aqua, MISR, and CALIOP) (Row 1); 
from four model BASE simulations (CAM5, SPRI, GEOS, and GFDL) (Row 2), and from biomass 
burning only AOD (BASE minus NOBB) (Row 3). Black boxes indicate the six focus regions. 
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Figure 3b4.  Regional mean aerosol optical depth (AOD) at 550 nm in April 2008 over the six focus 
regions (KAZA, RUS1, RUS2, RUS3, PAC, and ALA), derived from four satellite datasets where valid 5 
(MODIS-Terra, MODIS-Aqua, MISR, and CALIOP), and from four BASE model simulations (CAM5, 
SPRI, GEOS, and GFDL). Model AOD values are separated into contributions from biomass burning 
(BB; darker color) and non-biomass burning (nonBB, from NOBB runs).; lighter color).  
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Figure 4. The normalized 550 nm AOD gradient from BB source region RU1 to downwind regions 
(AOD in all regions normalized to that in RUS1) from satellite observations and the BASE simulations 5 
in four regions.  
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Figure 5a.

 5 
 
Figure 5. Spatial differences in AOD at 550 nm between BBIH and BASE (Row 1) and between 
BBEM and BASE (Row 2), simulated by the four models for April 2008. Only three models—CAM5, 
GEOS, and SPRI—submitted BBEM simulations. Focus regions are outlined in black.  
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Figure 5b6. Regional mean differences in AOD at 550 nm for April 2008 across the six focus regions 
(KAZA, RUS1, RUS2, RUS3, PAC, and ALA), as simulated by four models (CAM5, SPRI, GEOS, and 5 
GFDL). Left in each panel: BBIH minus BASE; Right in each panel: BBEM minus BASE. Only three 
models—, CAM5, GEOS, and SPRI—, submitted BBEM simulations. 
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Figure 67. (a) The normalized 550 nm AOD gradient (relative to RUS1) from the BB source region 
RU1 to three downwind regions, based on satellite observations and the BASE simulations. (b) 
Comparison of the model median AOD values for four regions from the BASE, BBIH, and BBEM 
experiments, along with the satellite median values.  
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Figure 8. Spatial distribution of differences in surface organic aerosolOA concentrations for April 2008 
across four models: CAM5, SPRI, GEOS, and GFDL. Row 1: Only BB (BASE minus NOBB.). Row 2: 
BBIH minus BASE. Row 3: BBEM minus BASE. Note that only CAM5, GEOS, and SPRI provided 5 
BBEM simulations. 
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Figure 79. Vertical profiles of aerosol extinction in source and downwind regions. Aerosol extinction 
profiles for April 2008 from four models (CAM5, SPRI, GEOS, GFDL, and GFDLSPRI), averaged 
over foursix regions. Column 1:-2: KAZA and RUS1 (source regions); Columns 2–4:3–6: RUS2, 
RUS3, PAC, and ALA (downwind regions). Each panel includes CALIOP observations (thick black 5 
curves) and model outputs from four experiments—BASE, BBIH, BBEM, and NOBB—shown as 
colored curves. Summary statistics are listed beside the legend: Za (mean aerosol layer height) and F2km 
(fraction of AOD within the lowest 2 km.) 
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  Figure 8. Spatial distribution of OA mass load (units: g m-2), OA AOD, OA mass extinction 
efficiency (MEE) (units: m2 g-1) for April 2008, as simulated by four models (CAM5, GEOS, 
GFDL, and SPRI) in their BASE runs. 
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Figure 9.  
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Figure 10. Comparisons of model-simulated key variables determining OA AOD in each model for April 
2008, averaged over four regions from RUS1 to PAC. Colored symbols represent the percentage deviation 5 
of each model from the multi-model median. The actual values from individual models, along with the 
multi-model statistics (median, IQR/median, and max/min), are listed in Table 5. 
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Figure 11. Spatial distribution of OA dry deposition (units: µg m-2 s-1) and wet deposition for April 2008, 
as simulated by four models (CAM5, GEOS, GFDL, and SPRI) in their BBIHBASE runs. 5 
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