Tree island area in oil palm agroforests directly and indirectly drives evaporative fraction

Thorge Wintz¹, Alexander Röll², Gustavo Brant Paterno³, Florian Ellsäßer⁴, Delphine Clara Zemp⁵, Hendrayanto⁶, Bambang Irawan⁷, Alexander Knohl^{8,9}, Holger Kreft^{3,9}, Dirk Hölscher^{1,9}

⁴ Department of Natural Resources, ITC, University of Twente, 7522 NH Enschede, Netherlands

Correspondence to: Thorge Wintz (twintz@uni-goettingen.de)

¹ Tropical Silviculture and Forest Ecology, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany

² Horticultural Sciences, Institute for Crop Science and Resource Conservation, Bonn University, Auf dem Hügel 6, 53121 Bonn, Germany

³ Biodiversity, Macroecology & Biogeography, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany

⁵ Conservation Biology, Institute of Biology, Faculty of Sciences, University of Neuchâtel, Neuchâtel, Switzerland

⁶ Faculty of Forestry, Bogor Agricultural University, Campus Darmaga Bogor, Jawa Barat 16680, Indonesia

⁷ Forestry Department, Faculty of Agriculture, University of Jambi, Jambi, 36122, Indonesia

⁸ Bioclimatology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany

⁹ Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany

1. Structural equation modelling

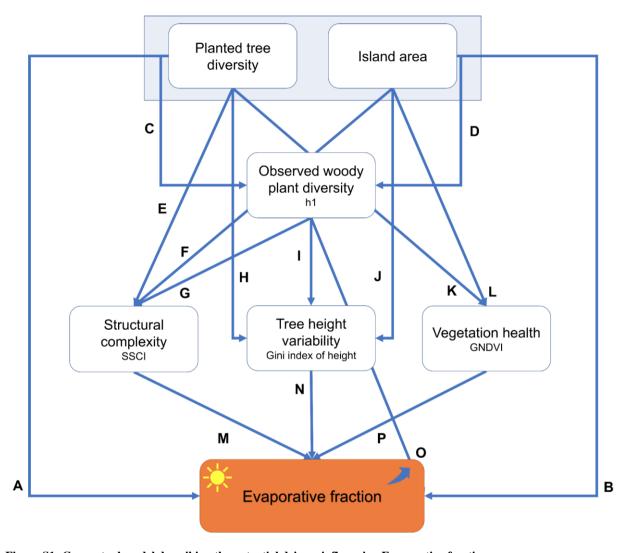


Figure S1: Conceptual model describing the potential drivers influencing Evaporative fraction.

Table S1: Mechanistic framework linking studied variables with evaporative fraction.

Path	Relationship	Mechanisms	Prediction
A	Planted tree	I - A higher tree diversity creates complementary	A higher (planted / spontaneous)
	diversity	effects that lead to a more efficient use of energy	diversity increases EF (Bigelow, 2001;
	\downarrow	and therefore higher EF.	González-Espinosa et al., 2004; Wang et
	EF		al., 2021).
	/		
0	Observed woody		
	diversity		
	\downarrow		
	EF		
В	Island area	I - In a larger tree island, the effect of trees over	In larger tree islands, EF is higher (Cregg
	\downarrow	oil palm is stronger, creating a more forest-like	and Dix, 2001).
	EF	microclimate.	
		II - Greater edge length in larger tree islands	
		increases the area influenced by edge effects,	
		where EF is typically higher.	
С	Planted Tree	I - Planted trees attract animals that spread seeds	Observed woody plant diversity is higher
	diversity	(zoochory) and thereby facilitate natural	in islands with higher planted tree
	↓	regeneration.	diversity (Paterno et al., 2016; Tinya et
	Observed woody	II - Planted trees modify environmental	al., 2019).
	plant diversity	conditions, create niches that support natural	
		regeneration.	

E	Planted tree	I - Different species occupy different parts of the	Structural diversity in oil palm increases
	diversity	growing space.	through higher planted tree diversity and
	\downarrow		observed woody plant diversity (Zemp et
	Structural		al., 2019; Kikuchi et al., 2024).
	complexity		
G	Observed woody		
	plant diversity		
	\downarrow		
	Structural		
	complexity		
I	Observed woody	I - A higher diversity of woody plants also results	Higher observed woody plant diversity
	plant diversity	in a higher morphological diversity, focusing here	leads to higher tree height variability.
	\downarrow	on tree height.	
	Tree height		
	variability		
J	Island area	I - Larger tree islands harbor a greater diversity	Higher diversity in larger tree islands
	\downarrow	of tree species.	(Drakare et al., 2006) leads to higher tree
	Tree height	II - Higher tree diversity results in an increased	height variability in these tree islands
	variability	variability of tree height.	(Marks et al., 2016).
L	Island area	I - Larger tree islands contribute to more	Larger tree islands increase vegetation
	↓	homogeneous microclimatic conditions, thereby	health.
	Vegetation health	fostering enhanced vegetation health.	
		II - Within larger tree islands, there is a greater	
		richness of tree species, thereby amplifying	
		vegetation health.	
D	Island area	I - Bigger islands receive more seeds from	Larger tree islands have more observed
	\downarrow	outside.	woody plant species than smaller tree
	Observed woody	II - Bigger islands harbor greater tree diversity by	islands (Zahawi and Augspurger, 2006;
	plant diversity	providing more niches (Island Biogeography	Holl et al., 2020; Zemp et al., 2023;
		theory).	Paterno et al., 2024).
F	Island area	I - Larger tree islands provide greater	Larger tree island have higher structural
	↓	opportunities for spatial diversification.	complexity (Zemp et al., 2019).

	Structural		
	complexity		
Н	Planted tree	I - Higher tree diversity increases tree height	Higher planted tree diversity increases
	diversity	variability due to interspecific differences in	variability in tree height (Marks et al.,
	\downarrow	morphology and growth strategy.	2016).
	Tree height		
	variability		
K	Planted tree	I - A higher diversity of planted trees enhances	Vegetation health increases with greater
	diversity	vegetation health, as a greater number of species	planted tree diversity (Cayuela et al.,
	\downarrow	increases the potential for beneficial interactions	2006; Pau et al., 2012; Mapfumo et al.,
	Vegetation health	among species.	2016).
M	Structural	I - In a more complex island, there are more layers	Higher structural complexity increases
	complexity	to capture radiation and transform it into latent	EF (Ehbrecht et al., 2017; Ren et al.,
	\downarrow	heat.	2018; Forzieri et al., 2020; Wang et al.,
	EF	II - More complex structures provide more	2021).
		surface area, which increases ET.	
N	Tree height	I - Higher variability in tree height increases	Higher tree height variability increases
	variability	surface roughness.	EF (Chen et al., 2020; Barbeta et al.,
	\downarrow	II - Higher surface roughness facilitates heath	2023).
	EF	fluxes.	
P	Vegetation health	I - Low health of vegetation reduces the ability to	Higher vegetation health increases EF
	\downarrow	convert radiation into latent heat.	(Yang and Wang, 2011; Er-Raki et al.,
	EF		2013; Zhou and Wang, 2016).

50 **2. Scale independence of EF**

Workflow:

55

60

- 1. Select 400 m^2 (n = 13) and 1600 m^2 (n = 13) tree islands.
- 2. Apply negative buffer to simulate smaller tree islands:
 - a. For 1600 m² tree islands:
 - i. 10 m buffer \rightarrow 400 m²
 - ii. 15 m buffer \rightarrow 100 m²
 - iii. 17.5 m buffer \rightarrow 25 m²
 - b. For 400 m² tree islands:
 - i. 5 m buffer \rightarrow 100 m²
 - ii. 7.5 m buffer \rightarrow 25 m²
- 2. For each original plot size group:
 - a. Fit a linear model: EF ~ size
 - b. Fit a mixed-effects model: $EF \sim size + (1|ID)$ using tree island ID as random effect

65 Table S2: Scale independence of EF

Model	Slope	SE	R ² (adj.)	p - value	Random effect
					variance
1600 m ²	0.0004	0.00062	- 0.012	0.52	
Linear					
1600 m^2	0.0004	0.00029		0.17	0.003
Linear mixed effects					
400 m^2	0.0016	0.00142	0.009	0.26	
Linear					
400 m^2	0.0016	0.001		0.12	0.001
Linear mixed effects					

3. LST min, LST mean and LST max vs. plot size

70 Workflow:

- 1. Use tree island polygons to clip land surface temperature (LST) orthomosaics.
- 2. For each tree island, extract:
 - a. Mean LST of all pixels
 - b. Mean of the 1% highest LST values
 - c. Mean of the 0.5% lowest LST values
- 3. Test for differences between tree island area groups using the Kruskal-Wallis test (non-parametric).

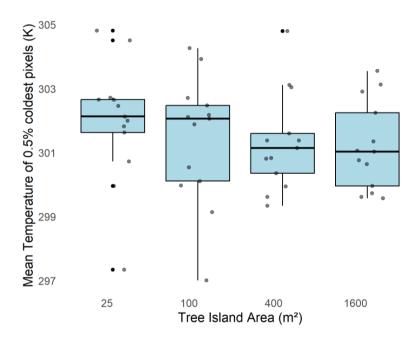


Figure S2: Mean land surface temperature of the 0.5% coldest pixels within each tree island, grouped by tree island area. No significant differences were found between island area groups (Kruskal-Wallis test, p = 0.48).

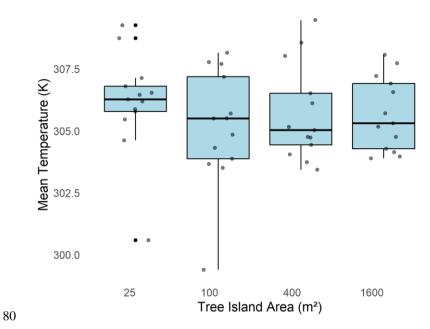


Figure S3: Mean land surface temperature of all pixels within each tree island, grouped by tree island area. No significant differences were found between island area groups (Kruskal-Wallis test, p=0.5).

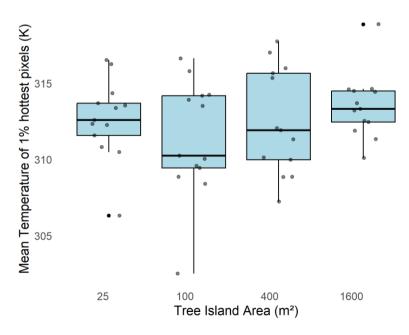


Figure S4: Mean land surface temperature of the 1% hottest pixels within each tree island, grouped by tree island area. No significant differences were found between island area groups (Kruskal-Wallis test, p = 0.48).

4. Edge gradients of EF

Workflow:

90

- 1. Generate concentric bands (0.5 m width) for each tree island of 100 m², 400 m² and 1600 m².
- 2. Calculate the area of each band.
- 3. Use the bands as spatial masks to extract EF values from QWater Model raster outputs.
- 4. Fit a linear mixed-effects model with edge distance as fixed effect, tree island ID as a random effect and band area as weights:

(EF ~ edge distance + (1|Plot), weights = 1 / area).

95 Table S3: Mixed random effects model results.

Tree island area	Edge	EF ~ Distance + (1 Plot), weights =	Marginal R ²	Conditional R ²
	gradient	1/area		
$100 \text{ m}^2 + 400 \text{ m}^2 0 - 5 \text{ m}$		Distance: n.s.		
$+ 1600 \text{ m}^2$				
$400\ m^2 + 1600\ m^2$	0-10 m	Distance: $p < 0.05$	0.011	0.943
100 m^2	0-4.5 m	Distance: n.s.		
400 m^2	0 - 9.5 m	Distance: $p < 0.001$	0.074	0.934
1600 m ²	0 - 17.5 m	Distance: $p < 0.05$	0.003	0.993

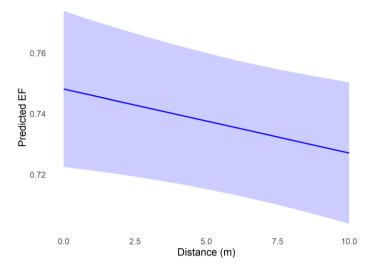


Figure S5: Predicted evaporative fraction for 400 m^2 and 1600 m^2 as function of edge distance. Predictions based on a linear mixed-effects model with distance as fixed effect and tree island as random intercept (EF = 0.748 + -0.0021 * Distance). EF decreased significantly with distance (-0.0021 ± 0.001 SE, p = 0.0386). The model explained 1.1% of the variance with fixed effects (marginal R²), and 94.3% including random effects (conditional R²).

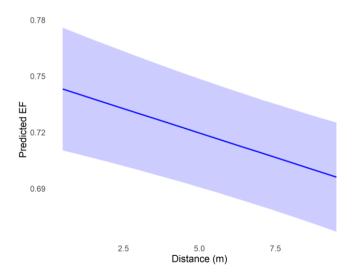


Figure S6: Predicted evaporative fraction for 400 m^2 as function of edge distance. Predictions based on a linear mixed-effects model with distance as fixed effect and tree island as random intercept (EF = 0.746 + -0.0052 * Distance). EF decreased significantly with distance (- 0.0052 ± 0.00125 SE, p = 0.00004). The model explained 7% of the variance with fixed effects (marginal R^2), and 93.4% including random effects (conditional R^2).

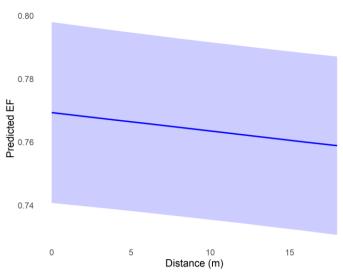


Figure S7: Predicted evaporative fraction for 1600 m^2 as function of edge distance. Predictions based on a linear mixed-effects model with distance as fixed effect and tree island as random intercept (EF = 0.769 + -6e-04 * Distance). EF decreased significantly with distance (- 0.00058 ± 0.00024 SE, p = 0.016). The model explained 0.3% of the variance with fixed effects (marginal R^2), and 99.3% including random effects (conditional R^2).

References

- Barbeta, A., Miralles, D. G., Mendiola, L., Gimeno, T. E., Sabaté, S., and Carnicer, J.: Disentangling the Role of Forest

 Structure and Functional Traits in the Thermal Balance of the Mediterranean–Temperate Ecotone, JGR Biogeosciences,
 128, https://doi.org/10.1029/2022JG007264, 2023.
 - Bigelow, S.: Evapotranspiration modelled from stands of three broad-leaved tropical trees in Costa Rica, Hydrological Processes, 15, 2779–2796, https://doi.org/10.1002/hyp.268, 2001.
- Cayuela, L., Benayas, J. M. R., Justel, A., and Salas-Rey, J.: Modelling tree diversity in a highly fragmented tropical montane landscape, Global Ecology and Biogeography, 15, 602–613, https://doi.org/10.1111/j.1466-8238.2006.00255.x, 2006.
 - Chen, J., Jin, S., and Du, P.: Roles of horizontal and vertical tree canopy structure in mitigating daytime and nighttime urban heat island effects, International Journal of Applied Earth Observation and Geoinformation, 89, 102060, https://doi.org/10.1016/j.jag.2020.102060, 2020.
- 135 Cregg, B. and Dix, M.: Tree Moisure Stress and Insect Damage in Urban Areas in Relation to Heat Island Effects, AUF, 27, 8–17, https://doi.org/10.48044/jauf.2001.002, 2001.
 - Drakare, S., Lennon, J. J., and Hillebrand, H.: The imprint of the geographical, evolutionary and ecological context on species-area relationships, Ecology letters, 9, 215–227, https://doi.org/10.1111/j.1461-0248.2005.00848.x, 2006.
- Ehbrecht, M., Schall, P., Ammer, C., and Seidel, D.: Quantifying stand structural complexity and its relationship with forest management, tree species diversity and microclimate, Agricultural and Forest Meteorology, 242, 1–9, https://doi.org/10.1016/j.agrformet.2017.04.012, 2017.
 - Er-Raki, S., Rodriguez, J. C., Garatuza-Payan, J., Watts, C. J., and Chehbouni, A.: Determination of crop evapotranspiration of table grapes in a semi-arid region of Northwest Mexico using multi-spectral vegetation index, Agricultural Water Management, 122, 12–19, https://doi.org/10.1016/j.agwat.2013.02.007, 2013.
- Forzieri, G., Miralles, D. G., Ciais, P., Alkama, R., Ryu, Y., Duveiller, G., Zhang, K., Robertson, E., Kautz, M., Martens, B., Jiang, C., Arneth, A., Georgievski, G., Li, W., Ceccherini, G., Anthoni, P., Lawrence, P., Wiltshire, A., Pongratz, J., Piao, S., Sitch, S., Goll, D. S., Arora, V. K., Lienert, S., Lombardozzi, D., Kato, E., Nabel, J. E. M. S., Tian, H., Friedlingstein, P., and Cescatti, A.: Increased control of vegetation on global terrestrial energy fluxes, Nat. Clim. Chang., 10, 356–362, https://doi.org/10.1038/s41558-020-0717-0, 2020.
- González-Espinosa, M., María Rey-Benayas, J., Ramírez-Marcial, N., Huston, M. A., and Golicher, D.: Tree diversity in the northern Neotropics: regional patterns in highly diverse Chiapas, Mexico, Ecography, 27, 741–756, https://doi.org/10.1111/j.0906-7590.2004.04103.x, 2004.
 - Holl, K. D., Reid, J. L., Cole, R. J., Oviedo-Brenes, F., Rosales, J. A., and Zahawi, R. A.: Applied nucleation facilitates tropical forest recovery: Lessons learned from a 15-year study, Journal of Applied Ecology, 57, 2316–2328,
- 155 https://doi.org/10.1111/1365-2664.13684, 2020.

- Kikuchi, T., Seidel, D., Ehbrecht, M., Zemp, D. C., Brambach, F., Irawan, B., Sundawati, L., Hölscher, D., Kreft, H., and Paterno, G. B.: Combining planting trees and natural regeneration promotes long-term structural complexity in oil palm landscapes, Forest Ecology and Management, 569, 122182, https://doi.org/10.1016/j.foreco.2024.122182, 2024.
- Mapfumo, R. B., Murwira, A., Masocha, M., and Andriani, R.: The relationship between satellite-derived indices and species diversity across African savanna ecosystems, International Journal of Applied Earth Observation and Geoinformation, 52, 306–317, https://doi.org/10.1016/j.jag.2016.06.025, 2016.

160

175

- Marks, C. O., Muller-Landau, H. C., and Tilman, D.: Tree diversity, tree height and environmental harshness in eastern and western North America, Ecology letters, 19, 743–751, https://doi.org/10.1111/ele.12608, 2016.
- Paterno, G. B., Brambach, F., Guerrero-Ramírez, N., Zemp, D. C., Cantillo, A. F., Camarretta, N., Moura, C. C. M., Gailing,
 O., Ballauff, J., Polle, A., Schlund, M., Erasmi, S., Iddris, N. A., Khokthong, W., Sundawati, L., Irawan, B., Hölscher,
 D., and Kreft, H.: Diverse and larger tree islands promote native tree diversity in oil palm landscapes, Science (New York, N.Y.), 386, 795–802, https://doi.org/10.1126/science.ado1629, 2024.
 - Paterno, G. B., Siqueira Filho, J. A., and Ganade, G.: Species-specific facilitation, ontogenetic shifts and consequences for plant community succession, J Vegetation Science, 27, 606–615, https://doi.org/10.1111/jvs.12382, 2016.
- Pau, S., Gillespie, T. W., and Wolkovich, E. M.: Dissecting NDVI–species richness relationships in Hawaiian dry forests, Journal of Biogeography, 39, 1678–1686, https://doi.org/10.1111/j.1365-2699.2012.02731.x, 2012.
 - Ren, Z., He, X., Pu, R., and Zheng, H.: The impact of urban forest structure and its spatial location on urban cool island intensity, Urban Ecosyst, 21, 863–874, https://doi.org/10.1007/s11252-018-0776-4, 2018.
 - Tinya, F., Márialigeti, S., Bidló, A., and Ódor, P.: Environmental drivers of the forest regeneration in temperate mixed forests, Forest Ecology and Management, 433, 720–728, https://doi.org/10.1016/j.foreco.2018.11.051, 2019.
 - Wang, X., Dallimer, M., Scott, C. E., Shi, W., and Gao, J.: Tree species richness and diversity predicts the magnitude of urban heat island mitigation effects of greenspaces, The Science of the total environment, 770, 145211, https://doi.org/10.1016/j.scitotenv.2021.145211, 2021.
 - Yang, J. and Wang, Y.: Estimating evapotranspiration fraction by modeling two-dimensional space of NDVI/albedo and day–night land surface temperature difference: A comparative study, Advances in Water Resources, 34, 512–518, https://doi.org/10.1016/j.advwatres.2011.01.006, 2011.
 - Zahawi, R. A. and Augspurger, C. K.: Tropical Forest Restoration: Tree Islands As Recruitment Foci In Degraded Lands Of Honduras, Ecological applications a publication of the Ecological Society of America, 16, 464–478, https://doi.org/10.1890/1051-0761(2006)016[0464:TFRTIA]2.0.CO;2, 2006.
- Zemp, D. C., Guerrero-Ramirez, N., Brambach, F., Darras, K., Grass, I., Potapov, A., Röll, A., Arimond, I., Ballauff, J., Behling, H., Berkelmann, D., Biagioni, S., Buchori, D., Craven, D., Daniel, R., Gailing, O., Ellsäßer, F., Fardiansah, R., Hennings, N., Irawan, B., Khokthong, W., Krashevska, V., Krause, A., Kückes, J., Li, K., Lorenz, H., Maraun, M., Merk, M. S., Moura, C. C. M., Mulyani, Y. A., Paterno, G. B., Pebrianti, H. D., Polle, A., Di Prameswari, A., Sachsenmaier, L., Scheu, S., Schneider, D., Setiajiati, F., Setyaningsih, C. A., Sundawati, L., Tscharntke, T., Wollni, M.,

- Hölscher, D., and Kreft, H.: Tree islands enhance biodiversity and functioning in oil palm landscapes, Nature, 618, 316–321, https://doi.org/10.1038/s41586-023-06086-5, 2023.
 - Zemp, D. C., Ehbrecht, M., Seidel, D., Ammer, C., Craven, D., Erkelenz, J., Irawan, B., Sundawati, L., Hölscher, D., and Kreft, H.: Mixed-species tree plantings enhance structural complexity in oil palm plantations, Agriculture, Ecosystems & Environment, 283, 106564, https://doi.org/10.1016/j.agee.2019.06.003, 2019.
- Zhou, C. and Wang, K.: Biological and Environmental Controls on Evaporative Fractions at AmeriFlux Sites, Journal of Applied Meteorology and Climatology, 55, 145–161, https://doi.org/10.1175/JAMC-D-15-0126.1, 2016.