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Reaction between Criegee intermediates and hydroxyacetonitrile:
Reaction mechanisms, Kinetics, and atmospheric implications
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Abstract. Hydroxyacetonitrile (HOCH>CN) is released from wildfires and bleach cleaning environments, which is harmful to
the environment and human health. However, its atmospheric lifetime remains unclear. Here, we theoretically investigate the
reactions of Criegee intermediates (CH,OO and syn-CH3;CHOO) with HOCH,CN to explore their reaction mechanisms and
obtain their quantitative kinetics. Specifically, we employ computational strategies approaching CCSDT(Q)/CBS accuracy,
combined with a dual-level strategy, to unravel the key factors governing the reaction kinetics. We find an unprecedentedly
low enthalpy of activation of —5.61 kcal/mol at 0 K for CH,OO + HOCH,CN among CH,OO reaction with atmospheric species
containing a C=N group. Furthermore, we also find that the low enthalpy of activation is caused by hydrogen bonding
interactions. Moreover, the present findings reveal the rate constant of CH,OO + HOCH,CN determined by loose and tight
transition states has a significantly negative temperature dependence, reaching 107'° cm?® molecule™ s close to the collisional
limit at below 220 K. In addition, our findings also reveal that the rate constant of CH,OO + HOCH,CN is 103-10? times faster
than that of OH + HOCH,CN below 260 K. The calculated kinetics in combination with data based on global atmospheric
chemical transport model suggest that the CH,OO + HOCH,CN reaction dominates over the sink of HOCH,CN at southeast
China, northern India at 1 km and in the Indonesian and Malaysian regions at 5 and 10 km. The present findings also reveal
that the CH,OO + HOCH,CN reaction leads to the formation of glycolamide, which could contribution to the formation of

secondary oganic aerosols.
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1 Introduction

Hydroxyacetonitrile (HOCH,CN), a reactive nitrogen-containing compound, has recently been identified as a C;H3;NO
isomer. Earlier field measurements had attributed the C,H3NO signal to methyl isocyanate (CH3;NCO) when using chemical
ionization mass spectrometry (CIMS) (Priestley et al., 2018; Mattila et al., 2020; Wang et al., 2022a) , as CIMS is insensitive
to the detection of isomers, and thus cannot differentiate between the isomers of CH;NCO and HOCH2CN. However, very
recent detection with I" chemical ionization mass spectrometry (I-CIMS) identified the C;H3NO signal as HOCH,>CN (Finewax
et al., 2024). In other words, the CH3NCO detected in the atmosphere is essentially HOCH>CN. Therefore, the atmospheric
sources of CH3NCO from previous investigations are actually the sources of HOCH>CN. Consequently, HOCH,CN is emitted
in chemicals released from biomass burning, such as wildfires and agricultural fires, as well as in bleach cleaning environments
(Mattila et al., 2020; Priestley et al., 2018; Wang et al., 2022a; Koss et al., 2018; Papanastasiou et al., 2020).

Previous studies have demonstrated that HOCH,CN is secondary pollutant with negative impacts on the environment and
human health (Worthy, 1985; Etz et al., 2024; Zhang et al., 2025). Specifically, smoke with HOCH,CN can be injected into
the stratosphere through pyrocumulonimbus clouds, altering the composition of stratospheric aerosols, depleting the ozone
layer, and affecting the Earth's radiation balance (Bernath et al., 2022; Ma et al.; Katich et al., 2023). Additionally, HOCH,CN
is harmful to human health, including damage to the respiratory system and skin (Ganguly et al., 2017; Bucher, 1987).
Therefore, understanding the chemical processes of HOCH,CN is important in the atmosphere.

The atmospheric lifetimes of HOCH,CN in the gas phase are not well understood. Hydroxyl radical (OH) is the most
prevalent oxidant in the atmosphere (Wang et al., 2021). The generally considered removal for this species is through the
reaction with hydroxyl radical (OH). However, the rate constant of OH + HOCH>CN is very slow, about 2.6 x 107!* ¢m?
molecule™ s7! at 298 K (Marshall and Burkholder, 2024). This leads to that OH makes limited contribution to the sinks of
HOCH,CN in the atmosphere. Therefore, it is necessary to explore the other removal routes for HOCH,CN in the atmosphere.

Criegee intermediates are crucial compounds, resulting from the ozonolysis of unsaturated compounds in the atmosphere
(Criegee, 1975; Osborn and Taatjes, 2015; Chhantyal-Pun et al., 2020a; Bunnelle, 1991; Chhantyal-Pun et al., 2020b). They
play key roles in the chemical processes of atmosphere because they significantly contribute to the formation of hydroxyl
radical (OH) and sulfuric acid during the nighttime (Novelli et al., 2014; Lester and Klippenstein, 2018; Kroll et al., 2002;
Newland et al., 2018; Kukui et al., 2021). Additionally, they can form secondary organic aerosols via the formation of low-
volatile organic compound percussors (Khan et al., 2018; Inomata et al., 2014; Docherty et al., 2005; Chhantyal-Pun et al.,
2018). In particular, Criegee intermediates can initiate atmospheric reactions, resulting in additional sinks for atmospheric
species such as the reactions of Criegee intermediates with formic acid, nitric acid, hydrochloric acid, and formaldehyde and
so on (Khan et al., 2018; Peltola et al., 2020; Long et al., 2009; Chung et al., 2019; Foreman et al., 2016; Luo et al., 2023).
While reaction kinetics of Criegee intermediates with HOCH,CN are prerequisite for elucidating its chemical processes and

finding new sink pathways in the atmosphere, its kinetics are unknown.



55

60

65

70

75

In this article, we have investigated the reactions of Criegee intermediates (CH,OO and syn-CH3CHOOQO) with HOCH,CN
by using specific computational strategies and methods to obtain quantitative enthalpies of activation at 0 K for R1 and R2
(See Scheme 1). Then, we used a dual-level strategy to obtain their quantitative rate constants under atmospheric conditions.
In our dual-level strategy, W3X-L//DF-CCSD(T)-F12b/jun-cc-pVDZ is used to obtain conventional transition state theory rate
constants, while validated DFT methods capture recrossing and tunnelling effects through CVT with small-curvature
tunnelling. Additionally, torsional anharmonicity and harmonicity are considered in kinetics calculations. We also considered
the decomposition process of the intermediate product formed in R1. Finally, we discuss the importance of these reactions
investigated here by comparing with the corresponding OH radical reactions combined with the atmospheric concentrations

of these species based on global atmospheric chemistry transport model GEOS-Chem (http://www.geos-chem.org).

TS1 //N\
no” G

0—0

HOCH,CN + CH,00

HOCH,CN + syn-CH;CHOO —» HO/\C\/” T (®)

0—0
Scheme 1. The reaction route for CH:00/syn-CH3;CHOO) + HOCH2CN

2 Computational methods and strategies
2.1 Electronic structure methods and strategies

For simplicity, the activation enthalpy at 0 K is defined as the difference between the transition state and the reactants,
abbreviated as AH%. The difference between the products and the reactants is defined the reaction enthalpy at 0 K, abbreviated
as AH.

Morden quantum chemical methods and reaction rate theory can be used to obtain quantitative kinetics for atmosphere
reactions (Long et al., 2018). However, the calculated processes are very complex, where error bars are controlled by multiple
parameters. Furthermore, the parameters are correlated with each other. Gas-phase chemical reactions also crucially depend
on entropies in thermalized conditions at non-zero temperatures, as well as excess energy, collisional stabilization, and fall-
off effects in non-thermalized conditions. However, accurate determination of AH} remains essential for calculating
quantitative kinetics. The quantitative AHg that is determined by optimized geometries, zero-point vibrational energies, and
single point energies in electronic structure methods (Long et al., 2019a).

Our previous investigations have shown that W3X-L (Chan and Radom, 2015)//DF-CCSD(T)-F12b/jun-cc-pVDZ

(Gyorffy and Werner, 2018; Parker et al., 2014) can be utilized to obtain quantitative AH:F, for the bimolecular reactions
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containing Criegee intermediate (Wang et al., 2022b; Long et al., 2021; Xie et al., 2024; Zhang et al., 2024). Here, we used
W3X-L//DF-CCSD(T)-F12b/jun-cc-pVDZ to investigate the CH,OO + HOCH,CN reaction. Additionally, CCSD(T)-F12a/cc-
pVDZ-F12 was used to validate the reliability of DF-CCSD(T)-F12b/jun-cc-pVDZ for optimized geometries and calculated
frequencies in the CH,OO + HOCH,CN reaction. Thus, with respect to syn-CH;CHOO + HOCH,CN, the validated DF-
CCSD(T)-F12b/jun-cc-pVDZ method was used to do geometrical optimization and frequency calculations. In single point
energy calculations, it is noted that W3X-L is equal to W2X and post-CCSD(T) components (Chan and Radom, 2015). Here,
we assume that post-CCSD(T) contribution of syn-CH3;CHOO + HOCH,CN approximately equates to the contribution from
CH,00 + HOCH,CN. We used the approximation strategy mentioned previously (Sun et al., 2023) to obtain the accuracy
close to W3X-L in equation (1) for syn-CH3CHOO + HOCH,CN to reduce computational costs.
AEGE™! = MEG! + BB 1 wox M)

Here, AESS™ ™" is the barrier height for the transition state s-TS1 (See Scheme 1). AE{S-T" is the barrier height for s-TS1
calculated by W2X. AEFISY o is post-CCSD(T) contribution that comes from the difference between W3X-L and W2X
in TS1 (See Fig. 1 and 2). The benchmark methods are called higher level (HL) structure methods; this helps to clearly illustrate
the dual-level strategy for kinetics calculations discussed below.

A reliable density functional method was chosen in comparison to the benchmark results to perform direct kinetics
calculations. Here, we chose M06-CR (Long et al., 2016)/MG3S (Zhao et al., 2005) and M11-L (Peverati and Truhlar, 2012)
/MGS3S functional method for the reactions of CH>OO and syn-CH3CHOO with HOCH>CN due to the mean unsigned error
(MUD) of 0.23 kcal/mol and 0.72 kcal/mol as listed in Table 1, respectively. MO6CR/MG3S and M11-L/MG3S are called
lower level (LL) electronic structure method in the present work. The intrinsic reaction coordinate (IRC) was performed by

M11-L/MG3S, and the results were depicted the results in Figure S3.

Table 1. The enthalpies of activation at 0 K for the transition states of the CH:200/syn-CH;CHOO + HOCH:CN
reactions by various theoretical methods (in kcal/mol).

AH
Methods TSI MUD
CH,00 + HOCH,CN
W3X-L/DF-CCSD(T)-F12b/jun-cc-pVDZ —5.61 0.00
MO6CR/MG3S —5.38 0.23
W2X//CCSD(T)-F12a/cc-pVDZ-F12 —6.16 0.55
W2X//DF-CCSD(T)-F12b/jun-cc-pVDZ —6.19 0.58
CCSD(T)-F12a/cc-pVDZ-F12 —5.98 0.37
DF-CCSD(T)-F12b/jun-cc-pVDZ —6.77 1.16
M11-L/MG3S —7.52 1.91
syn-CH;CHOO + HOCH,CN
AERS~™S1//DF-CCSD(T)-F12b/jun-cc-pVDZ ~1.39 0.00
W2X//DF-CCSD(T)-F12b/jun-cc-pVDZ -1.97 0.58
M11-L/MG3S —2.11 0.72
DF-CCSD(T)-F12b/jun-cc-pVDZ -3.13 1.74
M06-CR/MG3S 0.47 1.86
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2.2 Scale factors for calculated frequencies

Previous studies have verified that the standard scale (See Table S1) is suitable for reactants and some transition states
(Bao et al., 2016b; Zhang et al., 2017). In order to further explore the effect of anharmonicity on the zero-point vibrational
energy, the calculation of the specific reaction scale factors was carried out. The results in Tables S2 and S4 show that the
anharmonicity can be neglected in calculating AH(*). Details of the calculations can be found in previous work of Long et al

(Long et al., 2023). Therefore, we used standard scale factor in this work.

2.3 Kinetics methods

The rate constants of the reaction (R1) are calculated by considering the tight and loose transition states because of its
low-temperature close-to-collision-limit rate constant. Here, the loose transition state refers to the process from the reactants
to the pre-reaction complexes, while the tight transition state is the process from the reactants to the products via the transition
state TS1 in Figure 1. The steady state approximation based on the unified statistical theory (CUS) (Garrett and Truhlar, 1982;
Bao and Truhlar, 2017; Zhang et al., 2020; Long et al., 2024) is used to calculate the total rate constant by simultaneously
considering both transition states by

_ ktightkloose
kCUS(T) - Ktight* Kloose (1)

where kiighe Was calculated by using a dual-level strategy described in detail below, while kisose Was calculated by variable-
reaction-coordinate variational transition state theory (VRC-TST) (Zheng et al., 2008; Bao et al., 2016a; Georgievskii and
Klippenstein, 2003). In VRC-TST calculation, the reaction coordinate s is obtained by defining the distance between one pivot
point on one reactant and the other pivot point on the other, and the dividing surface is defined by the pivot point connected to
each reactant. The pivot point is located in a vector at a distance d from the centre of mass (COM) of the reactants, which is
chosen to minimize the reaction rate. The vector connecting the pivot point to the centre of mass of reactant and is perpendicular
to the plane of the reactant. The distance s between the pivot points was varied between 2.6 and 10 A in steps of 0.1 A to find
the optimum value. Simultaneously, 500 Monte Carlo sampling points were used to sample single-faceted dividing surfaces.
The VRC-TST calculation were performed by minimizing the rate constant by changing the distance between two pivot points
and the location of the pivot points. The VRC-TST were performed using M06-CR/MG3S for reaction R1. However, the high-
pressure-limited rate constants of the reaction (R2) were calculated only by considering tight transition state s-TS1.

The dual-level strategy has been put forward and used in previous works (Long et al., 2022; Long et al., 2018, 2019b;
Xia et al., 2022; Gao et al., 2024; Long et al., 2016; Sun et al., 2023). The strategy combines the theory of conventional
transition states (Glasstone et al., 1941) on the HL with the theory of canonical variational transition states (Garrett and Truhlar,

1979; Truhlar et al., 1982) on the LL and takes into account the small curvature tunnelling effect (Liu et al., 1993). In addition,
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the torsional anharmonicity factor is considered in our strategy (Long et al., 2023; Zhang et al., 2024; Sun et al., 2023; Li and
Long, 2024; Xie et al., 2024; Jiang et al., 2025). The rate constant is given by eqn (2),

k= k(DR k5T (T) T (T) Fisar, @)

where k(T)J3T is the rate constant without recrossing and tunneling effects calculated at HL. k;¢! (T) and I'y; (T) is referred
to tunneling transmission coefficient and recrossing transmission coefficient calculated by LL, respectively. F}’[‘f‘; T is

torsional anharmonicity factor calculated by using multi-structural method with coupled torsional potential and delocalized
torsions (MS-T(CD) method) (Zheng and Truhlar, 2013; Chen et al., 2022). Three factors were calculated at the validated

density functional methods at LL. The calculation each component present in equation (2) were provided in Tables S5 and S6.

2.4 Software

All density functional calculations were performed by using Gaussian 16 (Frisch et al., 2016) and MN-GFM (Zhao et al., 2015)
for geometry optimization and frequency calculations and all coupled cluster calculations by using Molpro 2022 (Werner et
al., 2012) and MRCC code (Kallay et al., 2020). Direct kinetics calculations were performed using Polyrate 2017 (Zheng et
al., 2017b) and Gaussrate 2017-C (Zheng et al., 2017a). Torsional anharmonicity factor was calculated by using MSTor 2022
code (Zheng et al., 2012). And rate constants were calculated by Kisthelp program package (Canneaux et al., 2014).

3 Results and Discussion
3.1 Electronic Structure calculation results
3.1.1 The reaction of CH.00 + HOCH:CN

The reaction of CH,OO + HOCH,CN has not been reported in the literature. It is noted that there are three different
functional groups (H-O, C=N, and CH;) in HOCH,CN. Therefore, we explored four different mechanisms of CH,OO +
HOCHCN as described in Fig. 1. Three of them are similar to the CH,OO + CH3;CN reaction, as they contain the same C-H
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Figure 1: The relative enthalpies at 0 K for the reaction of CH200 + HOCH2CN. Values are given for all species as calculated by

The most feasible (first) mechanism leads to the formation of five-membered cyclic intermediate M1 via C=N group
addition to COO group in Fig. 1. Specifically, carbon atom of C=N group in HOCH,CN is added to the terminal oxygen atom
of CH,00 and N atom of C=N group in HOCH,CN is added to the central carbon of CH,OO by the transition state TS1 (See

Fig. 1). This mechanism is the same as CH>OO + CH3CN and is like that of the reaction between CH,OO and carbonyl group
160 (Long et al., 2021; Luo et al., 2023; Chhantyal-Pun et al., 2018; Chung et al., 2019). We called the mechanism as carbon-



165

170

175

180

185

190

oxygen addition coupled carbon-nitrogen addition mechanism. The second mechanism still occurs via five-membered cyclic
transition states TS1a and TS1b responsible for the formation of M1a in Fig. 1. The H atom of the OH group in HOCH,CN is
migrated to the terminal oxygen atom of CH>OO, and simultaneously the oxygen atom of OH group in HOCH,CN is added to
the central carbon atom of CH,OO by TS1a and TS1b, which is similar to the reaction of CH>OO with molecules containing
OH group such as H,O/H,O,/HOOCH,SCHO/CH3C(O)OOH/HOCI (Long et al., 2016; Zhao et al., 2022; Long et al., 2024;
Zhang et al., 2024; Xie et al., 2024). The third mechanism is the addition of C atom on the C=N group in HOCH,CN to the
central C atom of CH,OO and the N atom of C=N group in HOCH,CN to the terminal O of CH,OO by TS1d. The last
mechanism is that the H atom on the central CH» group in HOCH>CN shifts to the terminal O atom of CH>OO and the C atom
is added to the central C atom of CH,OO via TS1c, which leads to the formation of a peroxide. We mainly consider the most
feasible mechanism in detail in this work because AHg of TS1 is at least 5 kcal/mol lower than those of other reaction pathways
by M11-L/MG3S (See Fig. 1). Moreover, the intermediate product M1 formed has a larger AHp of —58.33 kcal/mol in Fig.1.
In addition, the calculated Gibbs free energy barriers at 298 K also show the five-ring closure reaction pathway via TS1 is the
lowest in the CH,OO + HOCH,CN reaction (See Figure S2); this reveals that entropy has a negligible effect on reaction
mechanism.

We previously showed that CCSD(T)-F12a/cc-pVDZ-F12 can reach the accuracy of CCSD(T)-F12a/cc-pVTZ-F12 for
geometrical optimization and frequency calculations for reactions containing C=N groups (Long et al., 2021; Zhang et al.,
2024; Zhang et al., 2022). Therefore, we further show the reliability of DF-CCSD(T)-F12b/jun-cc-pVDZ by using CCSD(T)-
Fl12a/cc-pVDZ-F12. As a result, the difference between W2X//CCSD(T)-F12a/cc-pVDZ-F12 and W2X//DF-CCSD(T)-
F12b/jun-cc-pVDZ shows that DF-CCSD(T)-F12b/jun-cc-pVDZ is only 0.03 kcal/mol for AHf, of TS1 (See Table 1); this
further shows that DF-CCSD(T)-F12b/jun-cc-pVDZ is quantitatively reliable for geometrical optimizations and frequency
calculations in the preset investigations.

AHE of R1 via TSI is computed to be —5.61 kcal/mol calculated by W3X-L//DF-CCSD(T)-F12b/jun-cc-pVDZ-F12,
which is 5.25 lower than that of CH>OO + CH3CN (Zhang et al., 2022) calculated by W3X-L//CCSD(T)-F12a/cc-pVTZ-F12.
The much lower AHg via TS1 in R1 leads to much faster rate constant of R1, comparing with the CH,OO + CH;3CN reaction.
Simultaneously, we also found that AHg of TSI is 2.05 kcal/mol lower than that of the (CF3),CFCN + CH»OO reaction

calculated using the best estimate (Jiang et al., 2025). From geometrical point of view, the much lower AHf, via TS1 is due to
the introduction of HO group in HOCH,CN, comparing with CH3CN; this remarkably change the reactivity of HOCH,CN
toward CH,0O0. We note that the introduction of OH in HOCH,CN results in the formation of hydrogen bonding in TS1. The
hydrogen bonding is formed via the interaction OH group in HOCH,CN with the terminal oxygen atom in CH,OO in TS1.
The bond distance between the hydrogen atom of HO group in HOCH>CN and the terminal oxygen atom of CH,OO in TS1 is
computed to be 1.942 A by DF-CCSD(T)-F12b/jun-cc-pVDZ (See Fig. 2); this shows the formation of hydrogen boning from
geometrical point of view (Kar and Scheiner, 2004). The present results reveal that the hydrogen bonding interaction opens a

way for decreasing AH}.
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Figure 2: The relative enthalpies at 0 K for the reaction of CH200/syn-CH3CHOO + HOCH:CN for R1 and R2. Values
are given for all species as calculated by M11-L/MG3S, and in small parentheses and brackets, values are given for the
transition state TS path as calculated by W3X-L//DF-CCSD(T)-F12b/jun-cc-pVDZ. The bond length in TS1 is in units
of A.

CCSD(T) has been considered as “gold standard” in the quantum chemical calculations. However, the previous
investigations have shown that post-CCSD(T) is necessary to obtain quantitative reaction energy barriers for atmospheric
reactions (Long et al., 2019b, 2016; Hansen et al., 2022; Xia et al., 2024). Here, we discuss the contribution of post-CCSD(T)
calculations. The contribution of post-CCSD(T) is 0.58 kcal/mol from the difference between W3X-L and W2X of TS1, which
is the same as the result of the reaction of CH,OO with CH3CN (0.58 kcal/mol) (Zhang et al., 2022) and our previous estimated
value (0.50 kcal/mol) (Zhang et al., 2022; Zhao et al., 2022). This shows that post-CCSD(T) calculations are necessary for

obtaining quantitative AHg for the reaction of Criegee intermediate with HOCH2CN. The MUD of M06-CR/MG3S is 0.23
kcal/mol for CH,00 and HOCH,CN in Table 1. Therefore, M06-CR/MG3S was chosen to perform direct kinetics calculation
for the reaction of CH,OO with HOCH,CN.
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Decomposition pathways for the formed product M1 have also been investigated at the M11-L/MG3S level; this is similar
to the product decomposition pathway in the CH,OO + CH3CN reaction (Zhang et al., 2022). Firstly, the product M1 undergoes
oxygen-oxygen bond cleavage via M1-TSa to result in forming a singlet biradical intermediate M2, which is similar to the
reaction of CH,OO + HCHO (Jalan et al., 2013). Subsequently, the intermediate M2 undergoes the formation of carbon-
nitrogen bonding to form a three-member ring with AHg of 21.76 kcal/mol relative to M1 via the transition state M2-TSb.
Then, the three-member ring intermediate M3 then undergoes two different reaction routes. One is open-ring coupled hydrogen
shift to form M4 via the transition state M3-TSc. The other is analogous to that proposed by Franzon et al. (Franzon et al.,
2023), which is an open-ring coupled bond breaking to form HCHO and HOCH,NCO via the transition state M3-TScl.
However, AH?; for M3-TS3c is 11.97 kcal/mol lower than that of M3-TScl. Therefore, M3-TSc is the dominant reaction
pathway for the unimolecular reaction of M3. Moreover, IRC calculations also show that M3-TSc connects well with M3 as
described in Figure S3. Subsequently, the H atom of the intermediate OH on intermediate M4 is transferred to the N atom to
yield the intermediate species M5. Then, the process was depicted in Fig. 3. The calculated enthalpy of reaction at 0 K of M5
is —86.55 kcal/mol, indicating the unimolecular isomerization is thermodynamically driven. Intermediate M5 undergoes
unimolecular isomerization via two different pathways. In the first pathway, an intramolecular hydrogen transfer from the
aldehyde group to the central carbonyl oxygen is followed by C—N bond cleavage, yielding CO and intermediate M6. Then,
hydrogen shift of OH in M6 to NH group leads to the formation of glycolamide. Alternatively, a second pathway involves
hydrogen migration from the aldehyde group to the central carbon atom, accompanied by C—N bond rupture, producing HNCO
and glycolaldehyde. The formation of carbon monoxide proceeds with a significantly lower activation enthalpy (—54.19
kcal/mol) compared to that for glycolaldehyde (—32.32 kcal/mol), indicating that the CO-forming channel is kinetically
favoured. Furthermore, the rate-determining step for the formation of the final product from the CH.0O + HOCH:2CN reaction

has been identified as the initial step, which is similar to the reaction of alkenes with ozone(Nguyen et al., 2015).

10
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Figure 3: The relative enthalpies at 0 K for the decomposition reactions of the intermediate product M1 formed in the
CH:00 + HOCH2CN reaction. Values are given for all species as calculated by M11-L/MG3S.

3.1.2 The reaction of syn-CH;CHOO + HOCH:CN

The reaction of syn-CH3CHOO with HOCH,CN has been also studied by considering similar mechanisms for the reaction
of CH,O0 + HOCH,CN. The HL calculation of AHg of s-TS1 was performed by employing an approximation method, as
listed in eqn (1), which is discussed in method section. The lowest energy route is depicted in Fig. 2 and details can be found
in Fig. S1. AHg of s-TS1 is —1.39 kcal/mol calculated by HL calculation, which is 4.22 kcal/mol higher than that of TS1. The
lower reactivity of syn-CH3CHOO than CH>OO results in the much slower reaction of syn-CH3CHOO with HOCH,CN.
However, AHS for s-TS1 is 5.45 kcal/mol is lower than the reaction of syn-CH3CHOO + CH3CN calculated by W3X-L//DF-
CCSD(T)-F12b/jun-cc-pVDZ; this again shows that the introduction of OH group in HOCH,CN can significantly reduce AHg
toward Criegee intermediates. However, the decrease in value of 5.45 kcal/mol between syn-CH3;CHOO + HOCH,CN and
syn-CH3;CHOO + CH3CN is different from the corresponding value of 5.25 kcal/mol between CH,OO + HOCH,CN and
CH,0O0 + CH3CN,; this indicates that the change in AH?; is not only determined by the change from CH3CN to HOCH>CN, but
also determined by the change from CH>OO to syn-CH3CHOO. We also found that the MUD between the HL result and M11-
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255
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270

275

L/MGS3S is only 0.72 kcal/mol. Therefore, the combination of M11-L functional method with MG3S basis set was chose to

perform direct kinetics calculations.

3.2 Kinetics

The rate constants for the reaction of R1 and R2 have been calculated and listed in Table 2. The details are listed in Table

S5 and S6. We have fitted the calculated rate constants by eqn (3).

n
ko ZA(T+T0) exp [ E(T+ To) 3

300 T R(T%+T42)

Here, T is temperature in Kelvin and R is ideal gas constant (0.0019872 kcal mol™! K!). The fitting parameters A, n, E,
and Ty were listed in Table S7. The temperature-dependent Arrhenius activation energy have been fitted by using eqn (4) as

listed in Table 3, which provides the phenomenological characteristics of temperature dependence of the rate constants.
“

The calculated rate constants for kg1 are decreased from 2.64 x 1071 cm?® molecule™ s7! to 1.83 x 10~'2 cm? molecule™ s~

dink
d(1/T)

E,(T)= —R
'at 200 - 340 K in Table 2, which shows significant negative temperature dependence. The temperature dependent activation
energies are decreased from —3.45 to —5.32 kcal/mol at 200 - 340 K, which provides the evidence for the negative temperature
dependence of the rate constants of R1. The rate constant for the reaction of CH>OO + HOCH,CN is 5.79 x 1072 cm® molecule”
s at 298 K, which is 24 times larger than the rate constant for the reaction of OH + HOCH,CN at 298 K (Marshall and
Burkholder, 2024). In particular, we have found that the rate constants of reaction R1 is two magnitude order faster than the
reaction of OH + HOCH>CN when temperature below 260 K (See Table 2).

The rate constant of the reaction R2 ranges from 3.00 x 10~'* cm? molecule™! s7! to 2.03 x 107> cm® molecule ! s™! in the
temperature range 200 — 340 K, which exhibits weak negative temperature dependence. As a result, we found that syn-
CH3;CHOO make a minor contribution for the sink of HOCH,CN because the rate constants of syn-CH;CHOO + HOCH,CN
are always lower than those of the reaction of OH + HOCH,CN at 200 — 340 K. However, the rate constant of reaction of R2
is 2.69 x 10715 cm® molecule™! s7! at 298 K, which is two orders of magnitude slower than the rate constant of the reaction of
OH + HOCH,CN and two orders of magnitude larger than that of the reaction of syn-CH;CHOO + CH3CN, suggesting that
the contribution of syn-CH3CHOO to the sink of HOCH,CN is small, yet this reaction is more favourable than that for the
reaction of syn-CH3;CHOO + CH3CN in the atmosphere (Zhang et al., 2022). Therefore, we do not consider the contribution
of syn-CH3CHOO to HOCH,CN in the atmosphere. Furthermore, for this barrierless reaction between small molecules where
the torsional degrees of freedom undergo minimal change, the effects of recrossing, quantum tunnelling, and torsional
anharmonicity are expected to be negligible This expectation is confirmed by our calculations, which show that the

corresponding coefficients are all close to unity, as listed in Tables S5 and S6.

Table 2. The rate constants (cm> molecule™ s™') and activation energies (kcal mol™?) for the CH200/syn-CH3CHOO +
HOCH:CN reactions at different temperatures.
T/K kr1 Eag; kro Eagry kou kri/kon
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280

285

290

200 2.64 x 10710 -3.45 3.00 x 10714 —7.65 1.06 x 10713 2495.80

220 1.32 x 10710 —4.33 8.16 x 1071 -3.54 1.25x 1071 1056.27
240 5.26 x 1071 —4.93 5.20x 1071 -2.55 1.48x 1013 354.83
250 3.39x 107! -5.14 4.46 x 1071 -2.33 1.61 x 10713 210.30
260 225 %101 -5.31 3.92 x 1071 -2.18 1.76 x 10713 127.83
270 1.52 x 107!t -5.43 3.16 x 10713 -2.02 1.91 x 10712 79.59
280 1.05 x 10712 -5.52 3.16 x 10713 -2.02 2.07 x 10713 50.90
298 5.79 x 10712 -5.59 2.69 x 10713 -1.98 239 x 10713 24.26
300 5.44 x 10712 -5.59 2.65x 1071 -1.98 242 %1071 22.45
320 3.04 x 10712 -5.55 229 x 1071 -1.99 2.81x 1071 10.84
340 1.83 x 10712 —5.42 2.03 x 10713 —2.04 3.22 %1071 5.68

3.3 Atmospheric implications

The reaction of OH with HOCH,CN has been investigated in previous work (Marshall and Burkholder, 2024). Therefore,
we considered the competition between the R1 reaction and the OH + HOCH,CN reaction by comparing with their rate ratios

followed by eqn (5),

_ kg1[CH,00][HOCH,CN] _ kgy[CH,00] 5)
1™ kou[OH][HOCH,CN] kom[OH]

where kg is referred to the rate constants of the reaction of CH,OO + HOCH,CN, kon is rate constants of the reaction of OH
with HOCH,CN from the literature (Marshall and Burkholder, 2024).

In the atmosphere, Vereecken et al. have evaluated that the concentrations for stabilized Criegee intermediates are in the
range between 10* and 103 molecule cm™, especially in the Amazon rainforest region, where sCls could reach a maximum
concentration of 10> molecule cm™ (Vereecken et al., 2017). Typically, the concentration of OH varies between 10* and 10°
molecules cm™ (Ren et al., 2003; Stone et al., 2012; Lelieveld et al., 2016). However, due to the consideration of reactions
CH,00 with HO and (H20),, the CH>OO concentration in the GEOS-Chem model simulations is always an order of
magnitude less than the results of Vereecken et al. Therefore, we consider the rate ratios between CH,OO + HOCH,CN and
OH + HOCH,CN at different concentrations of CH>OO and OH at 200-340 K in Table 3, and further discuss the atmospheric
implications based on global atmospheric chemistry model GEOS-Chem.

Table 3. The concentration ratio of CH200 to OH at different heights from different region in GEOS-Chem.

Height T/K P/mbar [CH,00]" [OH]? [CH,O0]/[OH]* kri/kon vi©
India
1 290.2 1013 253.44 1.92 x 104 1.32x 1072 33.27 0.44
5 250.5 495.9 23.10 1.40 x 104 1.65 %1073 203.47 0.34
10 215.6 242.8 20.22 6.24 x 10° 3.24 x1073 1262.75 4.09
the southeast of China
1 290.2 1013 95.21 1.49 x 104 6.39 x 1073 33.27 0.21
5 250.5 495.9 19.22 1.49 x 104 1.29 x 103 203.47 0.26
10 215.6 242.8 11.34 1.08 x 104 1.05 x 103 1262.75 1.33
Indonesian and Malaysian
1 290.2 1013 150.42 3.45 % 10* 436 x 1073 33.27 0.15
250.5 495.9 79.21 1.38 x 104 5.74 x 103 203.47 1.17
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295

300

305

310

315

10 215.6 242.8 137.75 5.51 x 103 2.50 x 102 1262.75 31.57

2 the data were extracted in the work of Long et al.(Long et al., 2024)
b the product of rate ratio and concentration ratio.

The competition between the CH,OO + HOCH,CN reaction and the OH + HOCH,CN reaction is determined by two
factors, one is the rate constant ratio and the other is the concentration ratio. The concentration ratio decreases with increasing
altitude until two orders of magnitude are observed at 10 km in the Indonesian and Malaysian regions. It is noted that when
the altitude increases, the atmospheric temperature is remarkably decreased. The atmospheric temperatures are 250.5-198 K
at the altitudes from 5-15 km. The results show that although the concentration ratio of two orders of magnitude, CH,OO does
make some contribution to the sink of HOCH,CN at 1 km. At 10 km, CH,OO + HOCH,CN can completely dominate over the
OH + HOCH,CN reaction in India, southeast China, Indonesia, and Malaysian region (See Table 3 and Figure 4). However,
CH,00 only dominates over the sink of HOCH>CN in the Indonesian and Malaysian regions due to the relatively large ratio
of rate constants and concentration ratios at low temperatures at 5 km. Using the model data, we find that the sink of CH,OO
to HOCH,CN has strong geographical and sensitivity to altitude (See Fig. 4.).

The reaction products of HOCH,CN with OH radicals exhibit significant differences from those formed by the reaction
of CH,OO with HOCH>CN. The main products of the HOCH,CN + OH reaction are H,O and the HOC(H)CN radical, which
subsequently reacts with O to yield HO, and formyl cyanide (HC(O)CN) (Marshall and Burkholder, 2024). In contrast, the
reaction of HOCH,CN with CH,OO proceeds through chemical transformation processes, ultimately forming CO and
glycolamide. Glycolamide is an amide, which can contribute to the formation of secondary organic aerosols and an

important interstellar molecule (Joshi and Lee, 2025; Sanz-Novo et al., 2020; Yao et al., 2016).

() ST L) ey 1 : R (c)

20°N oy SUBTRRG Y 2.50x10?

[ 3
- | | 1.06x10° _ | B4.59x10
@ 2.00x10?
% 7.94x10° 3.44x10° 10°S— i
30°N - L 30°N- L 1.50%102
’ ® )

5.29x10° . 2.30x10°

9.99x10°

0°s . I 0°s - @ 0°s L I
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The Ratio of CH,00/OH at 1 km The Ratio of CH,00/OH at 5 km The Ratio of CH,00/OH at 10 km

Figure 4: The ratio of CH200 to OH at night from literature.(Long et al., 2024) (a) at 1 km, (b) at 5 km, (c) at 10 km,
(d)at 15 km.
4 Conclusions

Wildfires have attracted the attention of researchers due to their impact on aerosols and the ozone layer, which can lead

to adverse effects on the environment and human health. HOCH,CN is a harmful species present in wildfires. Thus, it is
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325

330

335

340

345

necessary to study its atmospheric chemical processes. The quantitative kinetics for reactions of Criegee intermediates with
HOCH,CN have been investigated by using specific computational strategies for electronic structure calculations and dual-
level strategy for kinetics calculations coupled with atmospheric chemistry transport model analysis. The high-accuracy
quantum chemical calculations were performed by using W3X-L//DF-CCSD(T)-F12b/jun-cc-pVDZ-F12 for reaction of R1
close to CCSDT(Q)/CBS accuracy and an approximation strategy to reach W3X-L accuracy for R2. Additionally, CCSD(T)-
Fl12a/cc-pVDZ-F12 was used to verified the reliability of DF-CCSD(T)-F12b/jun-cc-pVDZ-F12 for reaction R1. Four
mechanisms were found for the reactions of CH,OO and HOCH,CN, with the lowest energy pathway route called carbon-
oxygen addition coupled carbon-nitrogen addition. We find an unprecedentedly low AHE of —=5.61 kcal/mol for the reactions
of CH,OO with C=N group of atmospheric species. Simultaneously, we show that the final product in the CH,OO + HOCH,CN
reaction is glycolamide and CO, where glycolamide could contribution to the formation of secondary organic aerosols. The
present findings uncover that the post-CCSD(T) is necessary to obtain quantitative AHg because its contribution is 0.58
kcal/mol. However, we also find that all the factors contain anharmonicity, recrossing and tunneling, torsional anharmonicity
effects, which are negligible for obtaining quantitative rate constants. The rate constants for the CH,OO with HOCH,CN
increase from 3.18 x 10719t0 2.25 x 107!! cm® molecule™ s™!, which is two orders of magnitude higher than the reaction of OH
+ HOCH,CN below 260 K. Therefore, the reaction of CH,OO with HOCH,CN dominates over the sinks of HOCH,CN in
southeast China, northern India at 5 km and in the Indonesian and Malaysian regions at 5 and 10 km. This work provides a

new insight into the role of Criegee intermediate in the removal of HOCH,CN.

Supplement. The following information is provided in the Supplement: Standard scale factors and Specific Reaction Scale

Factors; The activate enthalpies at 0 K for the CH,OO + HOCH,CN reaction at different methods; The anharmonicity effect
for the enthalpy of activation; The rate constants of the reaction of R1 and R2; The fitting parameters for k; and k»; The ratio
of the rate constants at various temperatures and different concentration; Absolute energies (Hartree) and the Cartesian

coordinates (A) of the optimized geometries; The relative enthalpies at 0 K for the reaction of CH,00 + HOCH,CN.
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