

1 **Extreme Glacier Melt in the Central Tibetan Plateau during the**

2 **Summer of 2022: Detection and Mechanisms**

3 Fei Zhu^{1,2}, Meilin Zhu^{3*}, Lu An^{1,2}

4 ¹College of Surveying and Geo-Informatics, Tongji University, Shanghai, 200092,
5 China.

6 ²Center for Spatial Information Science and Sustainable Development, Tongji
7 University, Shanghai, 200092, China.

8 ³Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000,
9 China.

10 Corresponding author: Meilin Zhu* (zhuml@lzu.edu.cn)

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31 **Abstracts**

32 Extreme glacier melt events accelerate mass loss, increase glacier instability, and
33 temporarily mitigate downstream drought. However, the glacier energy-mass balance
34 in the Geladandong region—the headwater of both the Yangtze River (China's longest
35 river) and Siling Co (Tibet's largest lake)—and its connection to the unprecedented
36 2022 summer melt remain insufficiently quantified. To address this gap, we integrated
37 in situ mass balance observations (October 2019–July 2022) and glacio-
38 meteorological data from a 5,700 m monitoring site (October 2020–July 2022) with a
39 surface energy-mass balance model, and applied a novel dual-threshold framework
40 (based on mean and standard deviation) to identify extreme mass loss/melt events in
41 short-term glacier mass balance records. Our novel methodology identified 2021–
42 2022 as a period of extreme mass loss and melt intensity, with melt during the 2022
43 summer heatwave reaching unprecedented extremes. Over 52 days, the heatwave
44 generated 1,135 mm w.e. of melt—accounting for 65.2% of the total 2021–2022 melt,
45 equivalent to 1.8 and 2.3 times the melt recorded in 2019–2020 and 2020–2021,
46 respectively. This extreme melt was driven by energy balance anomalies over glacier
47 surface, including reduced albedo, increased incoming longwave radiation, and
48 enhanced sensible heat fluxes, with these processes strongly linked to persistent high
49 temperatures and diminished precipitation. Such anomalies in the energy balance
50 were driven by large-scale atmospheric circulation anomalies—specifically, the
51 concurrent intensification and westward expansion of the Western Pacific Subtropical
52 High (WPSH) and the eastward extension of the South Asian High (SAH). This study
53 establishes a novel framework for identifying extreme mass loss events and
54 substantially advances understanding of glacier mass balance responses to extreme
55 weather and climate events.

56 **Keywords:** Energy and mass balance, Extreme heat waves, Extreme melt, Extreme
57 mass loss

58

59 **1. Introduction**

60 Extreme glacier melt events directly reflect glacier mass balance responses to
61 extreme weather and climate events, such as heatwaves, droughts, and wildfires.
62 Given the increasing frequency of extreme glacier mass loss events across Tibetan
63 Plateau (TP) and surrounding regions since the early 21st century, this short-term
64 intensive depletion events significantly alter long-term glacier mass balance trends
65 and increase risks of glacier-related geohazards (Yao et al., 2022; Immerzeel et al.,
66 2020; You et al., 2020; Zhang et al., 2023b; Zhu et al., 2024b). In recent decades,
67 scientific focus has increased on understanding spatiotemporal patterns and driving
68 mechanisms of glacial retreat and thinning across TP (Bolch et al., 2012; Yao et al.,
69 2012; Brun et al., 2017; Hugonnet et al., 2021). Studies have systematically revealed
70 how atmospheric circulation patterns and dominant climate variables govern
71 spatiotemporal variations in glacier mass balance across TP. Large-scale atmospheric
72 anomalies generate distinct regional disparities in air temperature-precipitation
73 regimes, potentially explaining the observed spatial heterogeneities in glacier mass
74 balance (Yao et al., 2012). Meteorological controls exhibit strong regional differences:
75 annual precipitation dominates mass balance variability in northwestern TP glaciers,
76 whereas ablation-season air temperatures primarily regulate mass balance in
77 southeastern regions (Zhu et al., 2018, 2020, 2021). Monsoon-driven cloud cover
78 significantly influences summer surface energy budgets, as evidenced by detailed
79 observations at East Rongbuk Glacier on the northern slopes of Mount Everest (Liu et
80 al., 2021). These findings collectively demonstrate pronounced spatial heterogeneity
81 in the sensitivity of TP glaciers to climate forcing. However, understanding the
82 mechanisms underlying extreme mass loss events across TP and adjacent regions
83 remains inadequate.

84 Emerging evidence identifies compound heat-drought events as primary drivers of
85 extreme glacier mass loss. Regional case studies across cryosphere hotspots—
86 including the eastern Tien Shan (Xu et al., 2024), Qilian Mountains (Chen et al.,
87 2024), and Tanggula and Nyainqntanglha ranges (Zhu et al., 2024b)—reveal

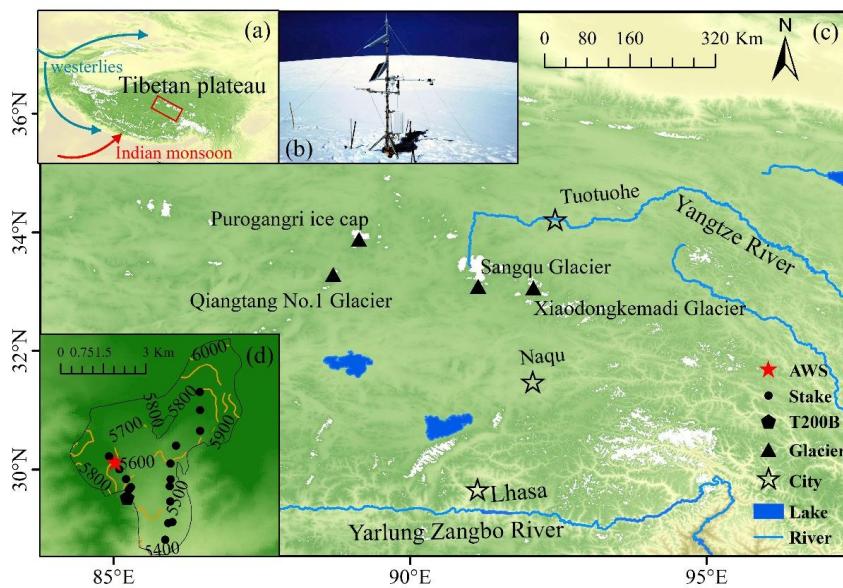
88 unprecedented mass loss rates associated with atmospheric teleconnections and
89 glacier surface energy budget anomalies. These events typically result from
90 synergistic interactions between external forcing (heat extremes/precipitation deficits)
91 and intrinsic glacier responses (albedo feedbacks/turbulent heat flux anomalies).
92 When superimposed, these drivers can push glacier systems beyond equilibrium
93 thresholds within weeks, producing nonlinear mass losses that challenge conventional
94 model predictions. However, comprehensive event attribution remains challenging
95 across most of TP.

96 This knowledge gap stems from two critical limitations: (1) methodological
97 constraints in detecting extremes from short mass balance records (under ten years),
98 and (2) sparse in situ monitoring networks—fewer than ten TP glaciers have decadal-
99 scale measurements. Traditional extreme detection methods (e.g., 10th percentile
100 thresholds, generalized extreme value [GEV] distributions) require multi-decadal data
101 unavailable for over 90% of TP glaciers. Consequently, developing robust frameworks
102 for identifying extremes in short-term observations (under ten years) is essential for
103 the region.

104 The exceptional 2022 heatwave, characterized by unprecedeted air temperature
105 anomalies and precipitation deficits, served as an ideal natural experiment to address
106 these challenges. Researchers have systematically analyzed the temporal
107 characteristics (frequency/duration), intensity metrics, and hydrological impacts of the
108 2022 heatwave-drought events in both the Yangtze River Basin (Hua et al., 2023;
109 Jeong et al., 2023) and TP (Yan et al., 2024; Zhou et al., 2024). Hua et al. (2023)
110 demonstrated that a 6.45 °C temperature anomaly in central China broke historical
111 records and reshaped climatological baselines for extreme temperature projections.
112 During summer 2022, central-eastern TP recorded mean maximum air temperatures
113 3.5 °C above the 1961–2013 baseline (Zhou et al., 2024). Concurrently, central-
114 eastern TP precipitation was 2.4 σ below the 1961–2013 mean (Zhou et al., 2024),
115 while southern China experienced rainfall deficits of 2–3 mm·day⁻¹ (Jeong et al.,
116 2023). Multiple drivers have been identified, including synoptic-scale circulation

117 anomalies (Hua et al., 2023; Duan et al., 2024), Indian Ocean Dipole–La Niña
118 interactions (Jeong et al., 2023), land-atmosphere feedbacks (Li et al., 2023), and
119 localized energy budget perturbations (Tian et al., 2023; Zhang et al., 2023b). These
120 studies collectively reveal that both TP and eastern China faced unprecedented
121 extreme heat and precipitation deficits during summer 2022.

122 The key glaciated complexes most exposed to this extreme event—located in the
123 Central Tanggula Mountains (encompassing the Geladandong and Dongkemadi
124 regions, and Puruogangri Ice Cap), a critical cryospheric zone in central TP—provide
125 a unique opportunity to develop novel methodologies for identifying extreme mass
126 loss events and elucidating their driving mechanisms. Continuous mass balance
127 monitoring began in 1989 at Xiao Dongkemadi Glacier in the Dongkemadi region (Pu
128 et al., 2008; Yao et al., 2012). Since entering a negative mass balance regime around
129 1995, Xiao Dongkemadi Glacier has experienced accelerated mass loss at ~ 0.3 m
130 w.e. yr^{-1} since 2000 (Pu et al., 2008; Yao et al., 2012; Kang et al., 2015). Research
131 demonstrates that summer mass balance controls annual mass balance variations in
132 summer-accumulation-type glaciers in the Dongkemadi region (Liang et al., 2018).
133 The Geladandong region recorded glacier mass loss rates of -0.24 ± 0.08 m w.e. yr^{-1}
134 from the 1960s to 2018 (King et al., 2023). Sangqu Glacier, located south of
135 Geladandong, was selected for in situ glacio-meteorological observations. Meltwater
136 from Sangqu Glacier drains into Siling Co, the largest lake in Tibet. Therefore,
137 investigating extreme mass loss events in this region will improve the understanding
138 of glacier change patterns and support sustainable water resource management.


139 Hence, this study aims to (i) investigate the energy-mass balance characteristics
140 of Sangqu Glacier in the Geladandong region; (ii) develop a novel framework for
141 detecting extreme mass loss events in short-term glacier mass balance records; and
142 (iii) elucidate melting mechanisms driven by the unprecedented 2022 summer
143 heatwaves. By integrating multi-source observational data with a surface energy-mass
144 balance model, this work advances understanding of glacier responses to extreme
145 heatwaves and proposes an innovative thermal-threshold framework—a

146 methodological advancement addressing critical gaps in TP cryosphere research.

147 **2. Study Area**

148 The valley-type continental Sangqu Glacier (33.1951°N, 91.1362°E) in
149 Geladandong was selected as the study site (Figure 1). This south-facing glacier has a
150 length of 2.2 km and covers 18 km². Spanning an elevational range of 5,400–6,104 m
151 a.s.l., its equilibrium line altitude (ELA) is ~5,700 m a.s.l. (Guo et al., 2015). Situated
152 in central TP, the region experiences low air temperatures and a semi-arid continental
153 climate. Over 70% of annual precipitation occurs during June–September, coinciding
154 with the warmest season (Zhu et al., 2024a). Glacier ablation and accumulation in
155 Geladandong primarily occur from June to September, characterized by a short melt
156 season (Pu et al., 2008). Multi-temporal digital elevation model (DEM) differencing
157 and in situ stake measurements reveal continuous mass loss in this region since the
158 1990s (Yao et al., 2012; King et al., 2023). Moreover, Sangqu Glacier lies at the
159 northern limit of Indian monsoon influence (Tian et al., 2001; Yao et al., 2013).

160

161 Figure 1. Overview of the study area. (a) and (c) Location of the study area on TP. (b) Photos of
162 AWS on Sangqu Glacier (Photo credit: Fei Zhu). (d) Stakes in October 2019, automatic weather
163 stations, and precipitation gauges are located on Sangqu Glacier.

164 **3. Data**

165 **3.1 Meteorological Data on Glacier Surface**

166 An automatic weather station (AWS) was installed on Sangqu Glacier at 5,700 m
167 a.s.l. in October 2020 ([Figure. 1b](#) and [1d](#)). Hourly measurements included air
168 temperature, relative humidity, wind speed, incoming/outgoing shortwave radiation,
169 and incoming/outgoing longwave radiation. Air temperature and relative humidity
170 probes, along with wind speed, were mounted 2 m above the glacier surface.
171 Radiation sensors were installed greater than 1.6 m above the surface. Data from July
172 2021 were incomplete due to power failure; operations resumed on 13 July 2021. A
173 Geonor T-200B precipitation gauge on adjacent bedrock (5,665 m a.s.l.) recorded
174 precipitation at 30-min intervals ([Figure. 1d](#)). Meteorological data cover the period
175 October 2020 to July 2022.

176 **3.2 Glacier Mass Balance Data**

177 Glacier mass balance measurements began in October 2019 using stake and
178 snow-pit methods. Stakes were distributed between 5,400 and 5,750 m a.s.l.. Stake
179 heights and snow-pit characteristics were measured in October 2019, October 2020,
180 October 2021, and July 2022. Using these measurements and assumed densities
181 (snow: 300 kg m⁻³; ice: 900 kg m⁻³), mass balance data were derived for three
182 periods: October 2019–October 2020, October 2020–October 2021, and October
183 2021–July 2022. Point and glacier-wide mass balances were calculated following [Yao](#)
184 [et al. \(2012\)](#).

185 **3.3 Other Data**

186 Hourly ERA5 reanalysis data ([Hoffmann et al., 2019](#)) including air temperature,
187 precipitation, relative humidity, wind speed, and incoming shortwave radiation were
188 used. These data reconstructed meteorological conditions at the AWS locations.
189 Glacier boundaries were obtained from the Second Chinese Glacier Inventory ([Guo et](#)
190 [al., 2015](#)). The 90-m resolution Shuttle Radar Topography Mission (SRTM) digital
191 elevation model (DEM) was used to extract elevation, slope, and aspect. These data
192 also drove model calculations of top-of-atmosphere radiation ([Hock and Holmgren,](#)

193 2005).

194 **4. Methods**

195 **4.1 Energy and Mass Balance Model**

196 We established the distributed coupled energy balance–snow/firn model (EBFM)
197 and subsurface model for Sangqu Glacier. This model describes the evolution of
198 vertical temperature, density, and water content profiles within the snow/ice pack,
199 incorporating percolation and refreezing processes (Van Pelt et al., 2012). The EBFM
200 has been successfully applied to mountain glaciers, including Abramov Glacier in the
201 Pamir Alay (Kronenberg et al., 2022) and Kuoqionggangri Glacier in the
202 Nyainqêntanglha Mountains (Zhu et al., 2024b). Detailed model descriptions are
203 provided by Van Pelt et al. (2012, 2019). The sum of each surface energy component
204 is equal to the melt energy (Q_M) and the surface energy balance formula is as follows
205 (Van Pelt et al., 2012):

206
$$Q_M = S_{net} + l_{net} + Q_H + Q_L + Q_G \quad (1)$$

207 where S_{net} is the net shortwave radiation, which consists of the incoming (S_{in}) and
208 outgoing (S_{out}) shortwave radiation. The S_{out} depends on the albedo of the glacier
209 surface. L_{net} is the difference between the incoming (L_{in}) and the outgoing longwave
210 radiation (L_{out}), where Q_H and Q_L are the sensible and latent heat fluxes, respectively.
211 Q_G represents the snow and ice heat flux. Following micrometeorological convention,
212 energy fluxes directed towards the surface are positive. The dichotomous iterative
213 method was used to calculate the glacier surface temperature, and the surface
214 temperature was constrained at less than 0°C.

215 The glacier mass balance on TP comprises four primary processes: snowfall,
216 melting, sublimation/evaporation, and refreezing at the glacial surface. The surface
217 mass balance components at each grid point can be expressed as:

218
$$B = P - M - E_{eva/sub} + C_{rf} \quad (2)$$

219 where B denotes the point mass balance of each grid. P is for precipitation. M is
220 the amount of melt on glacier surface. $E_{eva/sub}$ refers to the sublimation and

221 evaporation. C_{rf} is for refreezing. Surface ablation involves melting, sublimation and
222 evaporation. In this study, sublimation and evaporation were quantified based on
223 latent heat flux and surface temperature. Specifically, the phase transition criteria
224 were defined as follows: sublimation was identified under conditions where surface
225 temperatures remained below the melting point while latent heat flux exhibited
226 negative values. Conversely, evaporation was classified when surface temperatures
227 exceeded the melting point with concurrent negative latent heat flux values.
228 Additionally, the model explicitly includes deposition and condensation processes,
229 which are strictly governed by positive latent heat flux conditions. Here, deposition
230 occurs when surface temperatures remain below the melting point with positive latent
231 heat flux, while condensation occurs when surface temperatures exceed the melting
232 point with positive latent heat flux. However, both processes were excluded from the
233 final analysis due to their negligible impact on the overall mass balance. Mass
234 accumulation comprises snowfall and refreezing processes. Specifically, surface
235 accumulation was derived from solid precipitation events, determined by a
236 temperature-dependent rain-snow transition threshold applied to atmospheric forcing
237 data. Subsurface liquid water sources—including meltwater, rainfall, and
238 condensation—were tracked as potential contributors to refreezing events.

239 In this study, the EBFM was driven by air temperature, relative humidity, wind
240 speed, total precipitation, and cloud fraction at hourly intervals from October 2019 to
241 September 2022. To obtain the air temperature, relative humidity, wind speed, total
242 precipitation, and cloud fraction at hourly intervals from October 2019 to October
243 2021 and August 2022 to September 2022, meteorological data were reconstructed at
244 hourly intervals using the random forest method by combining the air temperature,
245 relative humidity, wind speed, and incoming shortwave radiation measured at AWS
246 and ERA5. Cross-validation techniques were also employed for the correction of
247 ERA5 data. Specifically, a 3-fold cross-validation approach was implemented for
248 modeling relative humidity and wind speed. In contrast, for air temperature and S_{in} ,
249 our tests indicated that a 10-fold cross-validation method was more suitable. The

correlation coefficients (R) were used to evaluate the simulation results. The R for air temperature, relative humidity, wind speed, and incoming shortwave radiation were 0.99, 0.88, 0.92, and 0.87 for the measurements and simulations on a daily scale (Figure. A1). The cloud fraction was defined as the ratio of incoming shortwave radiation to total radiation at the top of the atmosphere. The hourly calculation of S_{TOA} (total radiation from the top of the atmosphere) was based on elevation, slope, and aspect parameters (Hock & Holmgren, 2005). The glacier-wide mass balance was calculated using the cloudiness calculation method of Favier et al. (2004). Comparison with the (S_{in}/S_{TOA}) calculation gives a root mean square error (RMSE) of 139.89 mm w.e., a coefficient of determination (R^2) of 0.71 and a percentage bias (PBIAS) of 18.4%. We also estimated the total precipitation on Sangqu Glacier from October 2019 to September 2022. This was achieved by combining total precipitation data from ERA5 with data from direct measurements. First, we calculated the ratio (0.54) of total measured precipitation to that estimated by ERA5 for the overlap period (October 2020 to July 2022). Then, the ratio was used to correct all reanalysis precipitation data from October 2019 to September 2021. This approach has been extensively utilized in glacier-related studies on TP (Yang et al., 2013; Potocki et al., 2022; Zhu et al., 2024a).

The spatial interpolation of meteorological data considered the topographic conditions (elevation, slope, and aspect) of Sangqu Glacier. The mean air temperature lapse rate was $0.65^{\circ}\text{C}/100\text{ m}$. Precipitation gradient was the parameter for the EBFM model, taking into account glacier mass balance and albedo. The wind speed and relative humidity measured at the AWS represented the entire glacier. The methodology for calculating the energy balance components at the glacier surface was based on the findings of previous studies. The S_{in} was simulated as described by Klok & Oerlemans (2002) and Van Pelt et al. (2012) and accounts for the grid aspect and shading by the surrounding terrain. S_{out} depends on surface albedo. Snow albedo was related to temperature and humidity (Oerlemans and Knap, 1998; Bougamont et al., 2005; Van Pelt et al., 2019), and ice albedo was calculated using the dew point

279 temperature (Mölg et al. (2008)). The L_{in} was calculated based on the relative humidity
280 and air temperature (Brunt, 1932). L_{out} was calculated using the Stefan–Boltzmann
281 law. Q_H and Q_L were calculated using the method proposed by Klok & Oerlemans
282 (2002). Q_G was obtained as the sum of the conductive heat fluxes (Reijmer & Hock,
283 2008; Van Pelt et al., 2012).

284 The interpolation of meteorological data at the glacier scale, as well as the area-
285 averaged energy and mass balance, are related to the surface elevation of glaciers.
286 Beckmann et al. (2023) found the surface elevation feedback largely amplifies
287 melting for scenarios with and without extremes, with additional mass loss attributed
288 to this feedback having the greatest impact on projected sea level. In this study, we
289 employ sensitivity analysis to examine the extent to which the mass balance of the
290 Sangqu Glacier responds to variations in surface elevation. With SRTM data serving
291 as the benchmark for surface elevation, we established ten experimental scenarios
292 encompassing changes of +2 m, +5 m, +10 m, +20 m, and +50 m (alongside
293 corresponding decreases of -2 m, -5 m, -10 m, -20m, and -50 m). Throughout these
294 experiments, parameters related to air temperature, total precipitation, and albedo
295 were held constant while the model was executed. The sensitivity analysis reveals
296 that, when considering the scenarios with positive changes (+2m to +50m), the
297 magnitude of the mass balance response to surface elevation variations on Sangqu
298 Glacier amounts to 9.4 mm w.e. m^{-1} . In contrast, for the scenarios with negative
299 changes (-2 m to -50 m), the magnitude of the response increases to 12.6 mm w.e. m^{-1}
300 ¹. The terrain-associated feedback mechanism has the potential to exacerbate glacier
301 mass loss on TP when faced with decreasing glacier surface elevation.

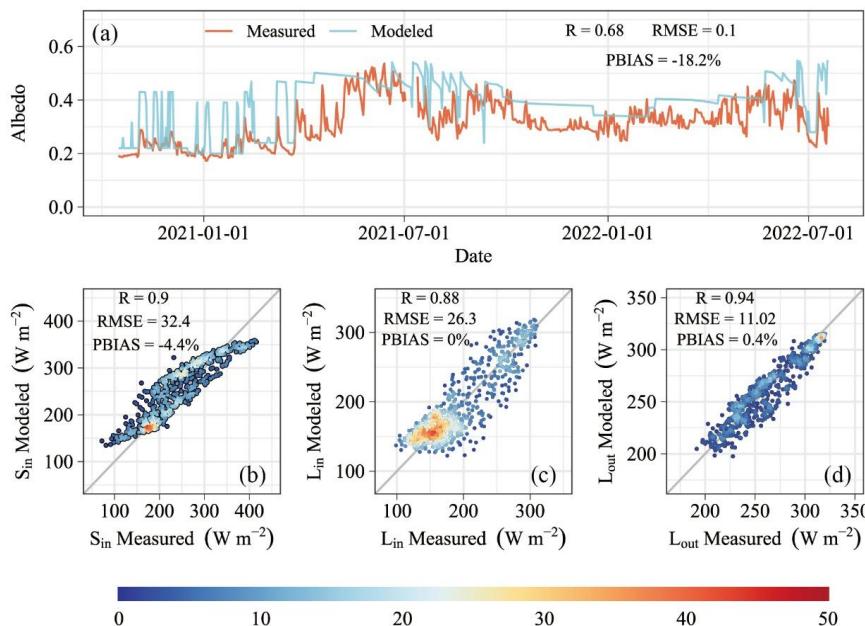
302 The standardized heatwave index (S_{HI}) was employed to detect heatwave events
303 (Raei et al., 2018; Shan et al., 2024). This index quantifies temperature deviations
304 relative to 30-year climatological norms. It ranks heatwaves by their recurrence
305 probability within a dynamic reference period. The reference period and climate
306 normal for calculating such probabilities must be carefully chosen because of the non-
307 stationarity of temperature records caused by global warming. Following Shan et al.

308 (2024), we implemented a 30-year moving window to address non-stationarity.
309 Therefore, we used the past 30 years as the historical reference period and averaged
310 the daily values. The S_{HI} was calculated for each day as follows (Raei et al., 2018;
311 Shan et al., 2024):

$$312 \quad T_{m,j}^A = \begin{cases} \frac{1}{N_h} \sum_{j=i-N_h+1}^i T_{m,j} & \text{if } i \geq N_h \\ \frac{1}{N_h} \left(\sum_{j=365-N_h+i+1}^{365} T_{m-1,j} + \sum_{j=1}^i T_{m,j} \right) & \text{if } i < N_h \end{cases} \quad (3)$$

$$313 \quad S_{HI}^{m,j} = \Phi^{-1} \left(F_{m,j}^h \left(T_{m,j}^A \right) \right) \quad (4)$$

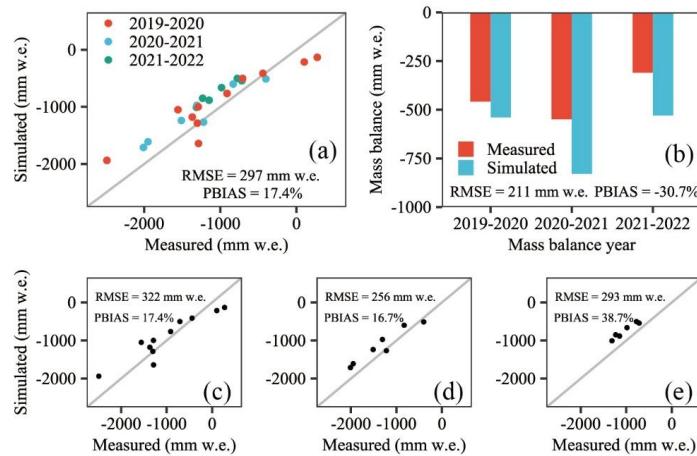
314 where i and j represent calendar days. M is the number of years of historical
315 observations, and $T_{m,j}$ ($^{\circ}\text{C}$) is the daily mean temperature at day i of year M . N_h is the
316 length of the accumulation period for a heatwave; $T_{m,j}^A$ is the mean temperature over
317 the accumulation period up to and including day i . $F_{m,j}^h$ is the cumulative distribution
318 function (CDF). Φ^{-1} is an inverse standard normal CDF. In this study, we calculated
319 the average between February 28 and 29, subsequently removed the leap day
320 (February 29) to maintain a 365-day annual cycle. We set up a 3-day averaging
321 window to run the S_{HI} program and used S_{HI} value greater than 1 to identify heat
322 waves.


323 **4.2 Modelling Validation and Uncertainty**

324 Model validation utilized in situ measurements of albedo, S_{in} , L_{in} , and L_{out} from
325 AWS to evaluate EBFM performance. The point mass balance at different elevations
326 on the glacier surface and glacier-wide mass balance measured during October 2019–
327 October 2020, October 2020–October 2021, and October 2021–July 2022 was used to
328 assess the accuracy of the EBFM model simulations.

329 Figure. 2 shows the results of comparing the measured and modelled albedo, S_{in} ,
330 L_{in} , and L_{out} at the AWS sites. The measured and modelled albedo show good
331 agreement, with RMSE and R of 0.1 and 0.68 at daily scale, respectively (Figure. 2a).

332 The RMSE and R for weekly scale observations and modelled albedo are 0.09 and
333 0.76, respectively (Figure. S1). Observed and modelled albedos during extreme heat
334 waves (30 May to 9 June and 3 July to 16 July) were also compared, with RMSE and
335 R of 0.14 and 0.77, respectively. The measured and modelled R and RMSE of S_{in}
336 were 0.9 and 32.4 W m^{-2} , respectively (Figure. 2b). Discrepancies between observed
337 and simulated S_{in} were mainly due to errors in the estimated cloud fraction (Van Pelt
338 et al., 2012). Good agreement between the measured and modelled albedo and S_{in}
339 ensures the accuracy of S_{net} , which is the main energy source at the glacier surface.
340 The L_{in} R and RMSE of the measured and modelled are 0.88 and 26.2 W m^{-2} ,
341 respectively (Figure. 2c). The L_{out} R and RMSE of the measured and modelled are
342 0.95 and 10.6 W m^{-2} , respectively (Figure. 2d). This good agreement ensures the
343 accuracy of the net longwave and surface temperature simulations of the surface
344 energy balance.



345
346 Figure 2. Comparison of (a) albedo in daily scale, (b) S_{in} , (c) L_{in} , and (d) L_{out} , measured and
347 modelled at the AWS sites on Sangqu Glacier.

348 We also compared the measured and modelled mass balances. The RMSE of the
349 measured and modelled point mass balances was 297 mm w.e. (Figure. 3a). The

350 RMSE of the measured and modelled glacier-wide mass balance was 211 mm w.e.
351 (Figure. 3b). We also present comparisons between observations and model
352 simulations for the periods October 2019–October 2020, October 2020–October 2021,
353 and October 2021–July 2022 (Figure. 3c, d, and e). RMSE values between simulated
354 and observed results were 322, 256, and 293 mm w.e., respectively. This consistency
355 allowed us to analyze the seasonal and interannual characteristics of the surface
356 energy and mass balance of Sangqu Glacier.

357
358 Figure. 3. Comparison of measured and modelled mass balance at (a) point scale and (b) glacier-
359 wide scale. (c), (d) and (e) are point scale comparisons of the mass balance measurements and
360 modelling for the years 2019-2020, 2020-2021 and 2021-2022 respectively. 2019-2020 refers to
361 October 2019 to October 2020 and also 2020-2021. 2021-2022 refers to October 2021 through
362 July 2022.

363 The uncertainty in model outputs arises primarily from key parameters governing
364 albedo (snow, firn, and ice), precipitation gradients, critical temperature thresholds,
365 and turbulent flux calculations, all of which critically determine mass balance
366 simulation accuracy. Following standard sensitivity analysis protocols in glaciology,
367 we implement a $\pm 10\%$ parameter perturbation approach, a methodology ubiquitously
368 adopted in both degree-day and energy-mass balance modeling frameworks for
369 systematic uncertainty quantification. Snow albedo and firn albedo (± 0.03)
370 uncertainties were used as recommended by [Van Pelt et al. \(2012\)](#). The total
371 uncertainty for the modelled mass balance in each year was estimated using the error

372 propagation law described by [Zhu et al. \(2024b\)](#) and [Zhu et al. \(2021\)](#). The
373 uncertainty in the mass balance averaged over three years was 222.9 mm w.e. ([Table](#)
374 [S2, S3, and S4](#)). The uncertainty of the melt during extreme heat waves has also been
375 discussed and was found to be 150.2 mm w.e. ([Table S1](#)).

376 **4.3 A Dual-Threshold Framework for Identifying Extreme Mass Loss Events in**
377 **Short-Term Glacier Mass Balance Records**

378 Accurately identifying extreme mass balance events across different temporal
379 scales is crucial for advancing our understanding of the characteristics and
380 mechanisms underlying glacier mass balance responses to climate change. Although
381 conventional approaches such as percentile thresholds ([Vargo et al., 2020](#)) (e.g., 10th
382 percentile) and generalized extreme value (GEV) distributions ([Thibert et al., 2018](#))
383 have been widely employed to detect extreme mass loss and melt events, these
384 methods require long-term mass balance records exceeding 30 years. On TP, only
385 Xiao dongkemadi Glacier possesses a continuous observational mass balance series
386 longer than three decades, with monitoring initiated in 1989 ([Yao et al., 2012](#)). Most
387 other reported glacier mass balance records in this region typically span less than 10
388 years. To address this limitation, we compiled available observed and reconstructed
389 annual mass balance data across TP and developed a novel methodology capable of
390 reliably identifying extreme mass loss events from short-term records (under 10
391 years).

392 This study proposes a dual-threshold extreme event detection method based on
393 quantile-statistical distribution coupling. The mathematical framework is constructed
394 as follows: First, the glacier mass balance (m_b) time series is partitioned into training
395 and test sets, where the training data is denoted as $\{m_{b,i}\}_{i=1}^n$ with corresponding
396 years $\{y_i\}_{i=1}^n$. The baseline criterion for extreme events is defined using the p -
397 quantile threshold of the training set:

398
$$Q_p = \inf\{m_b \in R \mid F_n(m_b) \geq p\} \quad (5)$$

399 Where Q_p denotes the p - quantile threshold for extreme event identification.

400 $F_n(m_b)$ corresponds to the empirical cumulative distribution function of the training
401 set mass balance data. $p \in (0, 1)$ defines the target probability level (default
402 $p = 0.1$) for extreme event selection.

403 To establish the statistical distribution criterion, we calculate the training set
404 parameters:

405
$$\mu = \frac{1}{n} \sum_{i=1}^n m_{b,i} \quad (6)$$

406
$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (m_{b,i} - \mu)^2} \quad (7)$$

407 Where μ represents the mean of training set mass balance values. σ quantifies the
408 standard deviation of training set mass balance values. n indicates the total number of
409 training years. $m_{b,i}$ refers to the mass balance measurement in the i training year.

410 A parameter space traversal algorithm is employed to solve for the statistical
411 threshold parameter kk that satisfies the equivalence conditions:

412
$$\begin{cases} \mu - K\sigma \leq Q_p \\ \{y_i | m_{b,i} < \mu - K\sigma\} \equiv \gamma_T \end{cases} \quad (8)$$

413 Where K controls the multiplier of standard deviations from the mean. $\mu - K\sigma$
414 specifies a candidate statistical threshold constrained by the quantile boundary Q_p .
415 γ_T comprises years identified as extreme events through the quantile criterion.

416 Let the solution set be $K \in [K_{\min}, K_{\max}]$, we then construct dual detection
417 thresholds:

418
$$\begin{aligned} T_{\text{strict}} &= \mu - K_{\max}\sigma \quad (\text{strict threshold}) \\ T_{\text{relaxed}} &= \mu - K_{\min}\sigma \quad (\text{relaxed threshold}) \end{aligned} \quad (9)$$

419 where K_{\max} and K_{\min} define the maximum and minimum valid scaling coefficients
420 satisfying the equivalence conditions, while T_{strict} and T_{relaxed} delimit the strict and

421 relaxed thresholds that respectively ensure full consistency with historical extremes
422 and complete coverage of quantile-defined events. During testing, a year y_i is
423 classified as an extreme event if $m_{b,i} < T_{relaxed}$, while $m_{b,i} < T_{strict}$ indicates a
424 high-confidence extreme event.

425 This method achieves mathematical equivalence between quantile-based and
426 statistical-distribution criteria through feasible region solving of parameter K . The
427 dual-threshold design effectively quantifies uncertainty boundaries in detection
428 results, maintaining consistency with historical extreme event definitions while
429 enhancing model adaptability to distribution characteristics.

430 **5. Results**

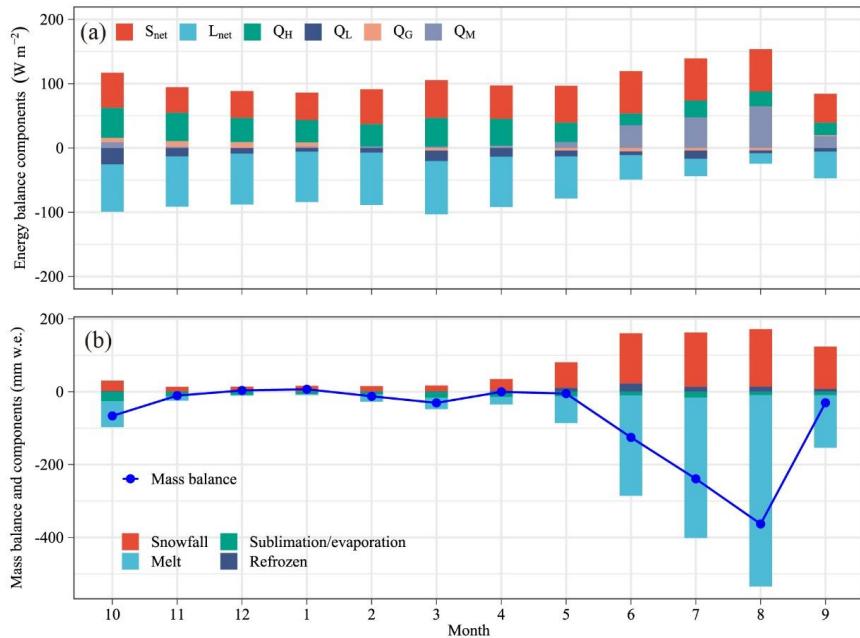
431 **5.1 Seasonal Cycle and Interannual Variation of Energy and Mass Balance**

432 Seasonally varying glacier-wide energy balances and their components are
433 shown in [Figure. 4a](#). The S_{net} shows significant seasonal variability in the range of 40
434 $W\ m^{-2}$ to $66.3\ W\ m^{-2}$, and this variability is mainly driven by the seasonal shift in the
435 solar elevation angle in conjunction with the glacier surface albedo. L_{net} is the major
436 energy-loss term for the glacier surface energy balance ([Figure. 4a](#)). The maximum
437 and minimum values of net longwave radiation are $-16.2\ W\ m^{-2}$ and $-82.3\ W\ m^{-2}$,
438 which occur in August and March, respectively. The mean L_{net} in the warm and cool
439 seasons are $-31\ W\ m^{-2}$ and $-77.2\ W\ m^{-2}$, respectively. The difference in L_{net}
440 between the warm and cool seasons mainly depends on the difference between L_{in} and
441 L_{out} . In this study, L_{in} is influenced by both air temperature and relative humidity, both
442 of which reach high values in the warm season, corresponding to higher L_{in} . The L_{out}
443 calculated from the glacier surface temperature was also high during the warm season.
444 Combining L_{in} and L_{out} , the absolute value of L_{net} was found to be lower during the
445 warm season than during the cold season.

446 The Q_H on Sangqu Glacier were continuously above $0\ W\ m^{-2}$ and was an
447 important heat source in the energy balance ([Figure. 4a](#)). This indicates that the
448 atmosphere continuously supplies heat to the glacier surface, which helps maintain the

449 glacier surface temperature. The Q_H in the cold and warm seasons are 39.3 W m^{-2} and
450 21.5 W m^{-2} , respectively, and this difference may be closely related to the
451 temperature gradient between the glacier surface and the atmosphere, as well as
452 seasonal changes in wind speed. In contrast, the Q_L on Sangqu Glacier is usually less
453 than 0 W m^{-2} , and the mean Q_L is -10.7 W m^{-2} , indicating that sublimation or
454 evaporation processes are continuously occurring at the glacier surface (Figure. 4a).

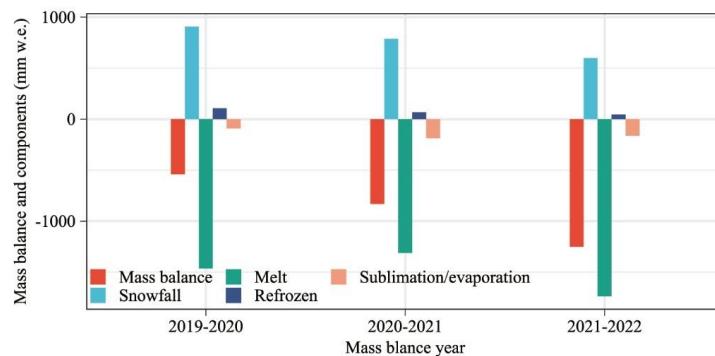
455 Q_G depends on the heat transfer coefficients of ice and snow, as well as the
456 temperature gradient (the temperature difference between the surface and the interior
457 of the glacier). The mean Q_G is 1 W m^{-2} , indicating that the Q_G accelerates the
458 melting process at the glacier surface (Figure. 4a). Further analysis showed that Q_G in
459 the cold season played an important role in maintaining the energy balance of the
460 glacier surface, whereas in the warm season, it accelerated the melting of the glacier
461 surface. Combining the S_{net} , L_{net} , Q_H , Q_L , and Q_G , it was found that the melt energy
462 started to be higher than 0 W m^{-2} in May, indicating that the melt on Sangqu Glacier
463 started, with peaks in July and August (Figure. 4a).


464 The glacial mass balance and its components at the glacial scale are shown in
465 Figure. 4b. Melt, snowfall, refreezing, and sublimation/evaporation are the major
466 mass components of glaciers on the central TP. Mass replenishment comes from
467 snowfall and the refreezing of the snowpack. 73.2% of snowfall is concentrated in the
468 warm season, and most precipitation falls as snow on glacier surfaces during the
469 warm season. Cold-season snowfall accounts for only 27% of the total snowfall, with
470 less mass replenishment. The total snowfall in April and May, which affects warm-
471 season albedo and glacier melt rates, accounted for 13.3% of the total snowfall.
472 Meltwater on the glacier surface and water content in the snow are the main sources
473 of mass for refreezing. The volume of refreezing peaks in June, which is related to
474 snow cover and meltwater on the glacier surface. During the observation period, the
475 refreezing amount on Sangqu Glacier accounted for 4% of the melting amount.

476 The major mass losses from glaciers include melt, sublimation and evaporation.
477 The melt is the dominant component of the mass balance. Melting begins at the

478 glacier surface in May and peaks in July or August, which is related to the seasonal
479 distribution of melt energy. 85% of melt occurs during the warm season. June, July,
480 August, and September account for 18%, 25%, 34%, and 9% of the total melt,
481 respectively.

482 Sublimation/evaporation is a component of the mass balance that cannot be
483 ignored; in this study, sublimation/evaporation on the Sangqu Glacier accounted for
484 17% of the mass balance. Previous studies have shown that Sublimation and
485 evaporation of the glacier surface, as a mass loss term, varies spatially on TP (Zhu et
486 al., 2020; Guo et al., 2022). Sublimation and evaporation on Sangqu Glacier (-161
487 mm w.e. yr^{-1}) was similar to Zhadang Glacier (-154.4 mm w.e. yr^{-1}) (Zhu et al.,
488 2018) and Qiangtang No. 1 Glacier (-175.5 mm w.e. yr^{-1}) (Li et al., 2018), lower than
489 Guliya (-194 mm w.e. yr^{-1}) (Zhu et al., 2022b) and Muztag Ata No. 15 Glacier (-272
490 mm w.e. yr^{-1}), higher than Parlung No. 4 (-144.8 mm w.e. yr^{-1}) and Parlung No. 94
491 Glacier (-60 mm w.e. yr^{-1}) (Yang et al., 2013; Zhu et al., 2018). Differences in
492 sublimation and evaporation from glaciers indicate differences in the exchange of
493 water and heat between the glacier surface and the atmosphere in different climatic
494 zones (Zhu et al., 2020; Guo et al., 2022).


495
496 Figure 4. (a) Glacier-wide mean monthly energy and (b) mass fluxes of the energy and mass
497 balance components from October to September during 2019-2022.

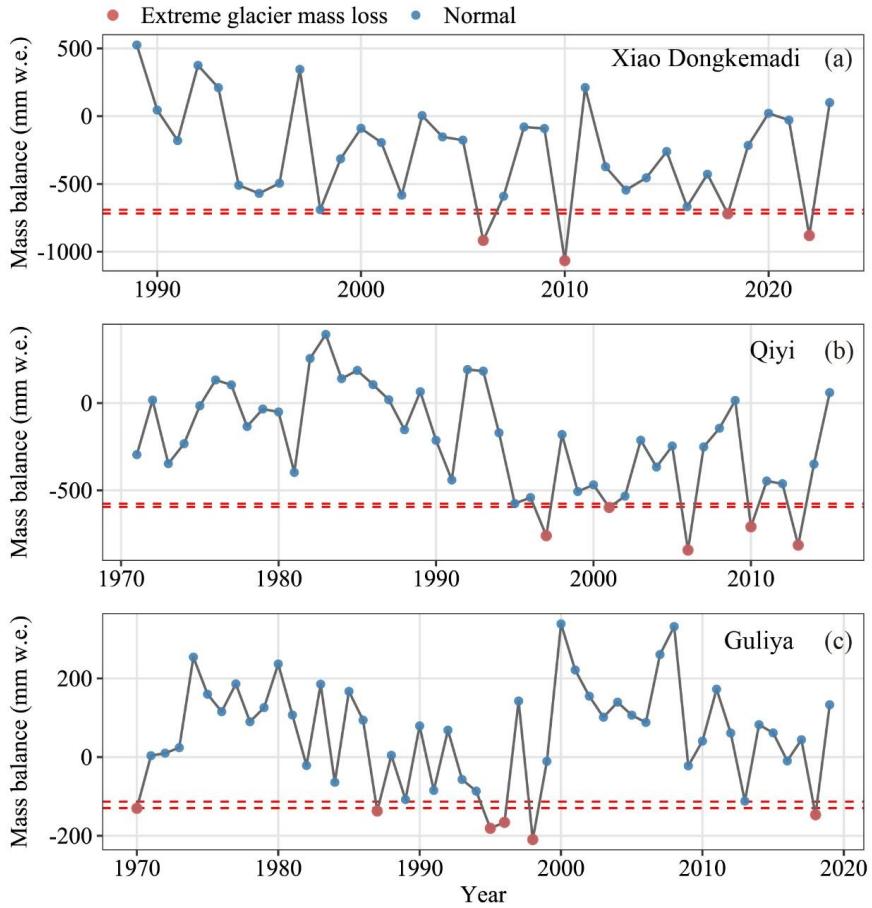
498 The interannual variability of the mass balance and its components was
499 examined. [Figure 5](#) quantifies glacier-wide fluctuations in mass balance, snowfall,
500 melt, sublimation/evaporation, and refreezing. The 2021-2022 mass balance year
501 emerged as historically exceptional, recording -1251 mm w.e. - corresponding to 2.3-
502 fold larger magnitude than 2019-2020 (-540 mm w.e.) and 1.5 times that of 2020-
503 2021 (-831 mm w.e.) - representing the most severe deficit since observational
504 records began.

505 In the central TP, sublimation/evaporation and refreezing typically constitute a
506 small portion of the mass balance, while snowfall and melting account for a larger
507 proportion. The melt exhibits significant interannual variability, ranging from 1464.2
508 mm w.e. in 2019-2020 to 1736.9 mm w.e. in 2021-2022. Snowfall variability was
509 comparable to sublimation/evaporation, with changes of 307 mm w.e. and 70.6 mm
510 w.e. from 2019-2020 to 2021-2022, respectively. Refreezing shows the smallest
511 variability, ranging from 20.9 mm w.e. to 60.5 mm w.e.. Thus, the interannual
512 variability in the mass balance of Sangqu Glacier was primarily influenced by melting

513 and snowfall during the study period.

514
515 Figure 5. Interannual variation in glacier-wide mass balance and its components on Sangqu
516 Glacier in 2019–2020, 2020–2021, and 2021–2022.

517 **5.2 Extreme mass loss and melting event detection**


518 **5.2.1 Identification and Validation of Extreme Glacier Mass Loss Events on TP**

519 The observed and reconstructed annual mass balance records across TP enable the
520 application of this novel methodology to define critical thresholds for extreme mass
521 loss events. To validate the methodology, we compiled annual mass balance data from
522 five glaciers: Xiao dongkemadi Glacier, Qiyi Glacier, Guliya Glacier, Ningchan No. 1
523 Glacier, and Anglong Glacier. The derived relaxed and strict thresholds are 1.06 and
524 1.13 for Xiao dongkemadi Glacier (Figure. 6a), 1.28 and 1.34 for Qiyi Glacier
525 (Figure. 6b), and 1.29 and 1.34 for Guliya Glacier (Figure. 6c), respectively. For
526 Ningchan No. 1 Glacier (Figure. S4a) and Anglong Glacier (Figure. S4b), the relaxed
527 thresholds are 1.28 and 1.35, while the strict thresholds are 1.49 and 1.60,
528 respectively. Using this method, we identified 4, 4, and 6 extreme mass loss events in
529 Xiao dongkemadi Glacier (Figure. 6a), Qiyi Glacier (Figure. 6b), and Guliya Glacier
530 (Figure. 6c), respectively. For Ningchan No. 1 Glacier (Figure. S4a) and Anglong
531 Glacier (Figure. S4b), 5 extreme mass loss events were identified in each case.

532 Since Xiao dongkemadi Glacier shares similar climate characteristics with
533 Sangqu Glacier, we applied its relaxed (1.06) and strict (1.13) thresholds to calculate
534 critical thresholds for Sangqu Glacier. The resulting thresholds were determined as –
535 1,278 mm w.e. (strict) and –1,252 mm w.e. (relaxed). For the 2021/2022 mass balance

536 year, the calculated value ($-1,251$ mm w.e.) approached the relaxed threshold ($-1,252$
537 mm w.e.) with a 0.08% deviation ($\Delta=1$ mm w.e.), but was 27 mm w.e. less negative
538 than the strict threshold ($-1,278$ mm w.e.). However, considering the uncertainty
539 bounds (± 222.9 mm w.e.), the 2021–2022 mass loss was definitively classified as an
540 extreme event. This conclusion is further supported by two independent datasets:
541 satellite-derived annual averages (2000–2019, [Figure. S2](#)) and global 0.5° -resolution
542 glacier mass balance data (1976–2022, [Figure. S3](#)), both indicating unprecedented
543 severity. This extreme loss was twice the satellite-derived annual average observed
544 during 2000–2019 ([Figure. S2](#)). Furthermore, global 0.5° -resolution glacier mass
545 balance data (1976–2022) indicate that the 2021–2022 values are 600–700 mm w.e.
546 lower than the 1975–2021 mean ([Figure. S3](#)).

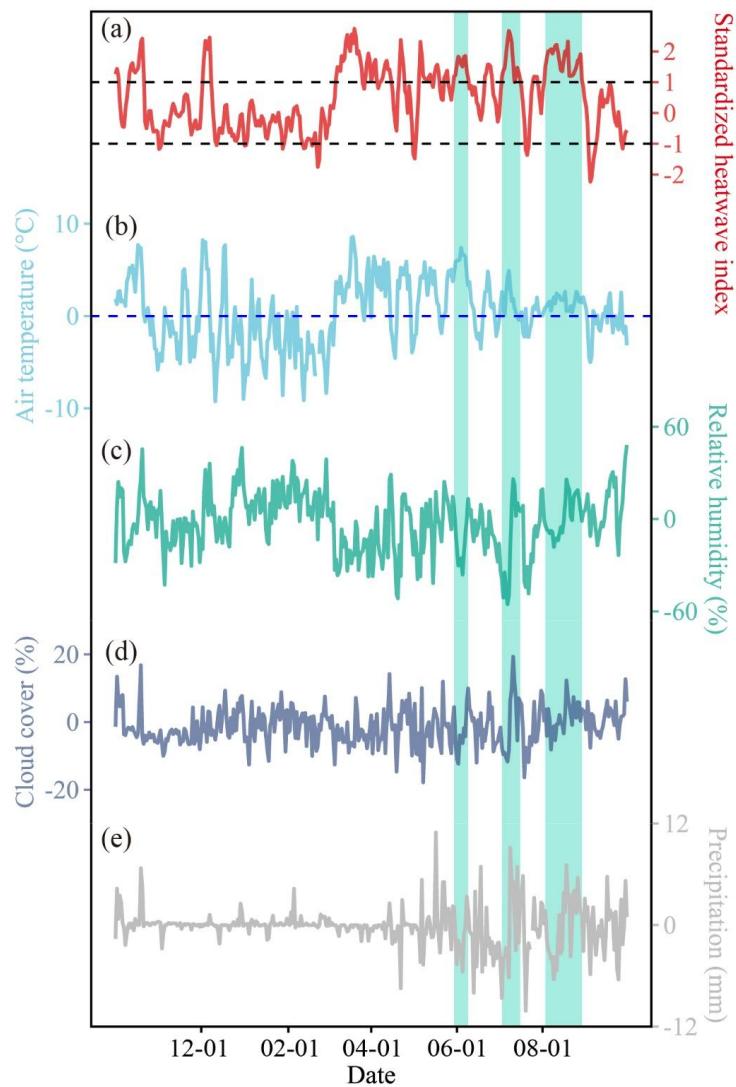
547

548 Figure 6. Annual mass balance time series and extreme mass loss events for (a) Xiao dongkemadi
549 Glacier, (b) Qiyi Glacier, and (c) Guliya Glacier. The data were sourced from Yao et al. (2012),
550 Wei et al. (2025) and Zhu et al. (2022a, 2022b). The red dashed line represents the critical value of
551 k .

552 **5.2.2 Detection and Analysis of Extreme Melting Events in the 2022 Summer on
553 Sangqu Glacier**

554 In Section 5.2.1, we identified the 2021–2022 period as an extreme mass loss
555 year. Building on this finding, we further investigated whether summer melt on
556 Sangqu Glacier reached extreme levels during the 2021–2022 mass balance year.

557 As presented in Section 5.1, our calculations revealed that the melt magnitude for


558 the Sangqu Glacier during 2021–2022 (−1,736.91 mm w.e.) was more negative
559 compared to the 2019–2020 (−1,464.17 mm w.e.) and 2020–2021 (−1,311.98 mm
560 w.e.) periods. The strict and relaxed melt thresholds (Xiao dongkemadi) calculated
561 using the methodology in Section 4.3 were −1,747.64 mm w.e. and −1,732.57 mm
562 w.e., respectively. Following our classification criteria (Section 4.3), melt values
563 exceeding either the strict or relaxed threshold are considered extreme. Since the
564 2021–2022 melt value fell between these thresholds (i.e., less negative than the strict
565 threshold (−1,747.64 mm w.e.) but more negative than the relaxed threshold
566 (−1,732.57 mm w.e.)), it was classified as an extreme melt event.

567 Air temperature variability is a direct driver of glacier melt, exhibiting a positive
568 correlation with melt intensity. To evaluate whether melt during heatwaves was
569 extreme, we utilized the S_{HI} defined in Section 4.1. The S_{HI} , calculated from long-
570 term daily mean air temperature records (1960–2022) at Tuotuohe National Weather
571 Station, was used to characterize extreme heat events. Based on our criteria ($S_{HI} > 1$
572 for ≥ 3 consecutive days), three heatwave periods were identified: 30 May–9 June, 3–
573 16 July, and 3–29 August 2022 (Figure. 7). The associated meteorological anomalies
574 during the heatwave period are shown in Figure 7. The AWS, located at 5,700 m on
575 Sangqu Glacier, exhibited a 2.4 °C positive temperature anomaly alongside a 6.5%
576 reduction in relative humidity during the 2022 summer heatwave events, relative to
577 the 2019–2021 (Figure. 7b and 7c). The cloud fraction was reduced by 26 (50%)
578 during the 52 day of extreme heat waves, with an average reduction of 5.4% (Figure.
579 7d). Precipitation was reduced by an average of 0.3 mm during extreme heat waves
580 (Figure. 7e). Additionally, compared to the 2019–2021 average melt, a 572 mm w.e.
581 increase in mass loss was observed during the 2022 summer heatwaves. Melt during
582 summer heatwaves exhibited significantly higher frequency and intensity than melt
583 during spring heatwaves (Zhu et al., 2024b), with 52 cumulative summer heatwave
584 days producing 1,135 mm w.e. of melt—accounting for 65.2% of the total 2021–2022
585 melt (Figure. 7f). From this perspective, glacier melt during the heatwave period may
586 be extreme.

587 To empirically validate this hypothesis, we applied the methodology outlined in
588 Section 4.3. Our analysis conclusively demonstrated that the 2022 summer heatwaves
589 directly triggered melt conditions that surpassed all documented extremes. The strict
590 and relaxed thresholds for extreme melt during this period were $-1,134.47$ mm w.e.
591 and $-1,110$ mm w.e., respectively. The total melt during the 2022 summer heatwaves
592 ($-1,134.68$ mm w.e.) was more negative than the strict threshold ($-1,134.47$ mm
593 w.e.), confirming its classification as an extreme event.

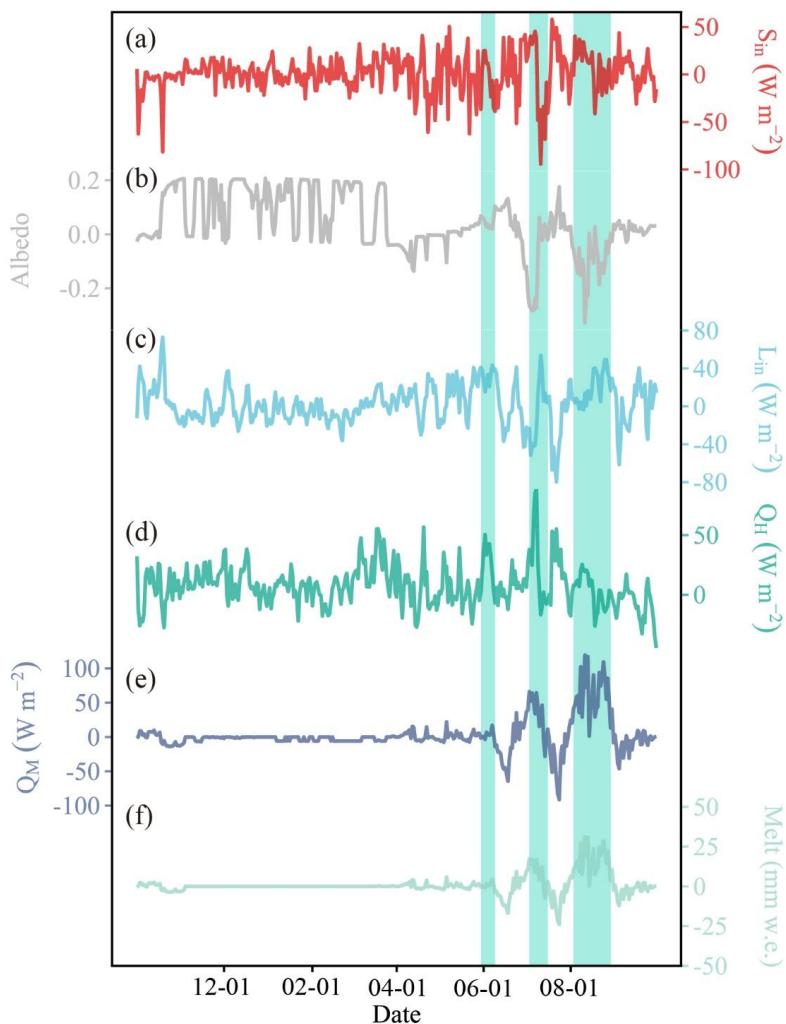
594 Our analysis demonstrated that the 2021–2022 annual mass balance, annual melt
595 magnitude, and melt driven by summer heatwaves were all classified as extreme
596 events. These results validate the broad applicability of the methodology proposed in
597 Section 4.3 for detecting extreme mass or melt events across diverse temporal and
598 climatic contexts.

599

600 Figure 7. Anomalous meteorological conditions on Sangqu Glacier at 5,700 m during extreme heat
601 waves. (a) standardized heatwave index (SHI). (b) Air temperature (°C), (c) Relative humidity (%),
602 (d) Cloud fraction (%), and (e) Precipitation (mm) anomalies from October 2021 to September
603 2022 (reference period is October 2019 to September 2021). Color shading represents extreme
604 heat waves.

605 **5.3 Surface Energy Balance Responsible for Extreme Melt during summer 2022 606 heatwave**

607 The glacier-wide energy balance during heatwave-induced extreme melt events
608 was rigorously analyzed. Our analysis revealed distinct energy balance anomalies in


609 Sangqu Glacier during extreme heatwaves and melt events, as illustrated in [Figure 8](#)
610 and [A2](#). Compared to the reference period (October 2019–September 2021), the
611 extreme melt period showed a 0.4 W m^{-2} average increase in S_{in} ([Figure. 8a](#)) and a
612 27.9 W m^{-2} decrease in S_{out} ([Figure. A2a](#)), collectively enhancing S_{net} by 28.3 W m^{-2}
613 ([Figure. A2e](#)). Longwave radiation components exhibited concurrent changes: L_{in}
614 increased by 15.5 W m^{-2} ([Figure. 8c](#)) while L_{out} rose by 4.7 W m^{-2} ([Figure. A2b](#)),
615 yielding a L_{net} reduction of 10.8 W m^{-2} ([Figure. A2f](#)). The combined S_{out} and L_{net}
616 anomalies produced a 17.5 W m^{-2} increase in net radiative flux. Turbulent heat fluxes
617 demonstrated contrasting trends: Q_{H} increased by 13.5 W m^{-2} ([Figure. 8d](#)), whereas
618 Q_{L} decreased by 7.4 W m^{-2} ([Figure. A2c](#)). Q_{G} showed a 3.3 W m^{-2} reduction ([Figure.](#)
619 [A2d](#)). These energy budget perturbations - particularly elevated S_{in} , enhanced L_{in} , and
620 amplified Q_{H} combined with diminished S_{out} , Q_{L} , and Q_{G} - significantly increased
621 melt energy availability ([Figure. 8e](#)). The observed 10% albedo reduction ([Figure. 8b](#))
622 suppressed surface reflectance, trapping additional shortwave radiation that
623 synergized with enhanced longwave input and Q_{H} to drive extreme melt during
624 heatwaves.

625 Current research increasingly identifies energy balance anomalies as the principal
626 driver of extreme glacial melt. [Zhu et al. \(2024b\)](#) demonstrated that early 2022
627 springtime climatic extremes interacting with anomalous S_{in} and Q_{H} triggered
628 exceptional melting on Sangqu Glacier. [Thibert et al. \(2018\)](#) reported record melt on
629 Sarennes Glacier (French Alps) controlled by three factors: S_{in} anomalies, Q_{L}
630 variations, and preseason snowpack conditions. [Tian et al. \(2023\)](#) further established
631 that large-scale circulation patterns modulating cloud cover diurnal cycles induced
632 extreme temperature anomalies in the eastern TP.

633 Our findings corroborate that energy balance anomalies - characterized by L_{in}
634 enhancement, Q_{H} amplification, and albedo reduction - primarily drove the 2022
635 summer heatwave-induced glacier melt. The observed energy partitioning pattern,
636 featuring synergistic radiative-turbulent flux interactions during these summer
637 extreme events, aligns with documented mechanisms in both Alpine and TP glaciers

638 (Thibert et al., 2018; Zhu et al., 2024b).

639

640 Figure 8. Energy balance components associated with the extreme glacier melt events in glacier-
641 wide scale. Anomalous (a) incoming shortwave radiation, (b) albedo, (c) incoming longwave
642 radiation, (d) sensible heat fluxes, (e) melting energy, and (f) melt from October 2021 to October
643 2022 (reference period is October 2019–September 2021). Color shading represents extreme heat
644 waves.

645 6. Discussion

646 6.1 Effects of Atmospheric Circulation on Extreme Glacier Melt and heat waves

647 An increasing body of research has demonstrated that large-scale circulation
648 anomalies govern variations in glacier mass balance across TP and adjacent regions

649 through their modulation of both air temperature and precipitation patterns (Yao et al.,
650 2012). In this study, we provide evidence that atmospheric circulation anomalies
651 constituted the primary driver of the unprecedented glacier melt observed during the
652 2022 summer heatwave events.

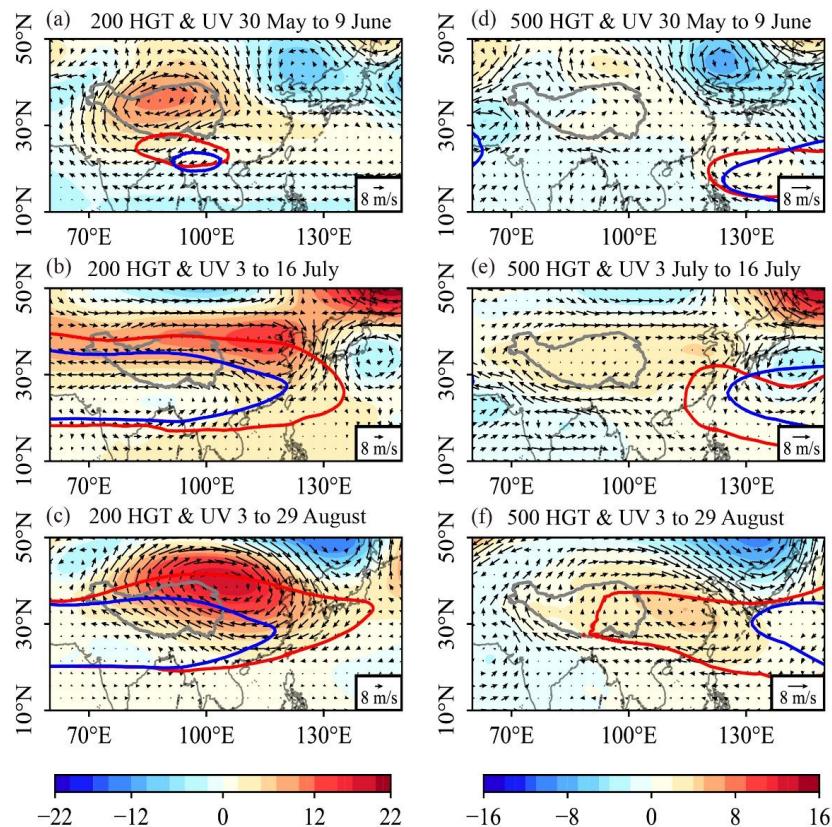
653 During the initial phase of extreme melting (30 May to 9 June 2022; Figure. 9a
654 and 9d), a vertically stacked anticyclonic anomaly system prevailed over the Sangqu
655 Glacier region. At 200 hPa, the glacier was positioned directly under the core of a TP-
656 centered anticyclonic anomaly. Concurrently at 500 hPa, Mongolian and western
657 Pacific anticyclonic anomalies emerged northeast and east of the glacier, respectively.
658 This multi-level atmospheric configuration generated anomalously intensified
659 easterlies penetrating into the central TP compared to climatological norms. Crucially,
660 the combined effects of these anticyclonic systems - including the northward-
661 displaced SAH and westward-extended WPSH - synergistically induced extreme air
662 temperature anomalies while amplifying glacier melt through enhanced diabatic
663 heating.

664 The second phase (3-16 July 2022) was characterized by contrasting positional
665 anomalies of the SAH and WPSH relative to climatological baselines (Figure. 9b and
666 9e). Although anticyclonic anomalies persisted over TP, the SAH exhibited eastward
667 displacement while the WPSH underwent significant westward expansion. This dipole
668 configuration enhanced moisture convergence and intensified subsidence-driven
669 radiative heating over the glacier surface. The synergistic interaction between these
670 atmospheric systems amplified diabatic heating processes, leading to accelerated
671 surface melt rates during this phase.

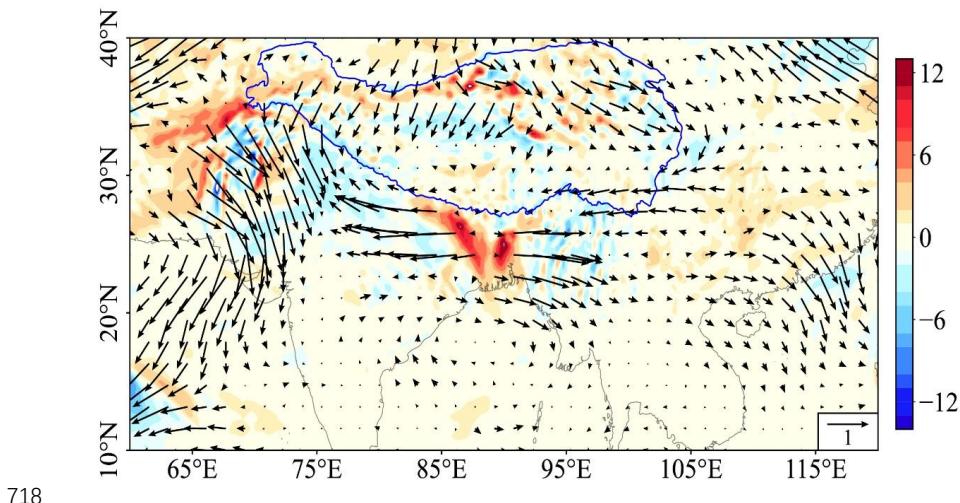
672 During the third phase (3-29 August 2022; Figure. 9c and 9f), a vertically
673 stratified anticyclonic anomaly system developed with three-dimensional coherence.
674 At 200 hPa, the anticyclonic anomaly center migrated northeast of Sangqu Glacier,
675 coinciding with an exceptionally eastward-extended SAH spanning from TP to eastern
676 China. Concurrently at 500 hPa, the westward-expanded WPSH stretched from the
677 western Pacific to eastern China and the central TP, establishing a stable anticyclonic

678 regime east of the glacier. This multi-layered configuration enhanced persistent warm
679 advection thermodynamically while suppressing cloud cover, collectively contributing
680 to the seasonally prolonged and thermally extreme melt episode.

681 Convergent evidence from recent studies confirms that large-scale circulation
682 anomalies critically drove the 2022 summer heatwaves across TP and eastern China.
683 Previous work has identified that quasi-stationary high-pressure anomalies, combined
684 with anomalous descending motions and enhanced shortwave radiation, were key
685 drivers of both: (1) the extreme summer 2022 heatwave in central China ([Hua et al., 2023; Chen & Li, 2023](#)), and (2) the early spring 2022 glacier melt and heatwave in
686 the central TP ([Zhu et al., 2024b](#)).


688 The 2022 summer saw an intensified and westward-extended WPSH coupled
689 with an eastward-extended SAH, which jointly maintained persistent high-pressure
690 anomalies over central-eastern TP ([Zhou et al., 2024](#)). Vertical overlap between the
691 WPSH and SAH further reinforced these anomalies, prolonging heatwaves in the
692 region ([Li et al., 2021](#)). These circulation patterns corresponded to elevated air
693 temperatures alongside reduced precipitation and cloud cover across central-eastern
694 TP during June-September 2022. The associated descending motions reduced
695 cloudiness, allowing intensified surface shortwave radiation that heated the land ([Hua
696 et al., 2023](#)). This warming triggered local soil-atmosphere feedbacks, with enhanced
697 sensible heat flux and longwave radiation further energizing the atmospheric column
698 ([Jiang et al., 2023](#)). The synergy of these thermodynamic processes culminated in
699 extreme air temperatures and accelerated glacier melt throughout the 2022 summer in
700 central-eastern TP.

701 The persistent TP anticyclone elevated air temperatures while suppressing
702 precipitation across the central-western TP. The vertical overlap of the WPSH and
703 SAH critically disrupted water vapor transport toward the central TP. This high-
704 pressure regime further suppressed convective activity spanning from the Himalayas
705 to southeastern and central TP, exacerbating regional precipitation deficits.


706 Under these sustained anticyclonic conditions, a distinct moisture circulation

707 anomaly with anticyclonic flow developed over the southwestern TP (Figure. 10).
708 Weakened northwestward and northeastward moisture transport from the Indian
709 Ocean and Arabian Sea induced pronounced moisture divergence over the central-
710 western TP. Coupled with persistent anticyclonic forcing, these circulation dynamics
711 collectively drove the observed precipitation reduction in the central TP during the
712 2022 heatwave.

713
714 Figure 9. Spatial distribution of the geopotential height (shading) and horizontal wind (vector) at
715 (a-c) (200 hPa) and (e-f) (500 hPa). The blue solid (dashed) contour in (a), (c) and (e) represents
716 the 1250-gpm isopleth at the 200 hPa. The blue solid (dashed) contour in (b), (d) and (f) represents
717 the 5880-gpm isopleth at the 500 hPa.

718

719 Figure 10. Spatial distribution of the vertically integrated water vapour flux ($\text{kg m}^{-1} \text{s}^{-1}$) and its
720 divergence (shading; $10^{-5} \text{kg} \cdot \text{m}^{-2} \text{s}^{-1}$) anomalies during the three summer 2022 heatwave events.

721 Current studies have also examined drivers of the 2022 summer precipitation
722 deficit over TP and eastern China from alternative perspectives. For instance,
723 anomalous spring TP warming, associated with reduced snow cover, has been linked
724 to the northeastward displacement of the SAH and northwestward migration of the
725 WPSH (Li et al., 2023). Concurrently, this preseason warming weakened the
726 southwest monsoon originating from the Bay of Bengal, enhanced the east–west sea
727 surface temperature gradient in the Indian Ocean, and generated anomalous easterly
728 winds along Indonesia’s western coast (Cai et al., 2023).

729 Additionally, Antarctic warm anomalies shifted the Asian monsoon circulation
730 southward, promoting water vapor convergence over Pakistan (Zhang et al., 2024).
731 Jeong et al. (2023) further demonstrated that the co-occurrence of a negative Indian
732 Ocean Dipole and La Niña during summer 2022 amplified rainfall in the northwestern
733 Indian subcontinent and Pakistan while suppressing precipitation in southern China
734 and the central TP. Collectively, interactions between large-scale circulation patterns
735 and regional atmospheric anomalies drove the prolonged high temperatures, low
736 precipitation and extreme melt events observed across the central TP from June to
737 September 2022.

738 Recent studies have further investigated contributing factors to the 2022 summer
739 precipitation deficit across TP and eastern China through complementary approaches.
740 Spring TP warming anomalies - associated with diminished snow cover - have been
741 shown to displace the SAH northeastward and shift the WPSH northwestward ([Li et](#)
742 al., 2023). This preseason thermal anomaly concurrently weakened the Bay of
743 Bengal-originating southwest monsoon, intensified the Indian Ocean's zonal sea
744 surface temperature gradient, and generated anomalous easterlies along Indonesia's
745 western coast ([Cai et al., 2023](#)). Antarctic thermal anomalies induced a southward
746 meridional shift in Asian monsoon circulation, enhancing water vapor convergence
747 over Pakistan ([Zhang et al., 2024a](#)). [Jeong et al. \(2023\)](#) established that the concurrent
748 2022 summer negative Indian Ocean Dipole and La Niña conditions amplified rainfall
749 across the northwestern Indian subcontinent and Pakistan, while strongly suppressing
750 precipitation in southern China and central TP.

751 The synergistic interplay between hemispheric-scale circulation patterns and
752 regional atmospheric anomalies ultimately drove the extended period of elevated air
753 temperatures, precipitation deficits, and extreme melt events observed across central
754 TP from June to September 2022.

755 **6.2 Hydrological Effects of Extreme Heatwaves and Glacial Melt Events**

756 Extreme heatwaves and associated melting events significantly alter hydrological
757 regimes in glacier-fed basins, triggering anomalous runoff surges and flood risks such
758 as increased flood hazards. The seasonal occurrence of heatwaves influences ice-snow
759 melting intensity and regulates meltwater contributions to total runoff through albedo-
760 melt feedback mechanisms. Hydrological analyses reveal that glacial meltwater
761 contributions to total runoff during 2022 heatwaves substantially exceeded baseline
762 summer levels observed from 2019 to 2021 ([Zhu et al., 2024a](#)). The early-season
763 heatwave (May 30 to June 9) initiated crucial cryosphere transformations: rapid
764 snowpack depletion exposed underlying glacier ice, which lowered surface albedo
765 and increased radiative energy absorption. These surface alterations prolonged
766 albedo-melt feedback processes that interacted synergistically with subsequent July-

767 August heatwaves, resulting in cumulative melt amplification effects. Furthermore,
768 the early-season heatwave accelerated the timing of snowmelt, diminishing the
769 snowpack's capacity to sustain total runoff while potentially leading to seasonal
770 drought conditions (Anderson et al., 2023). This dual impact - combining intensified
771 glacier melt with reduced non-glacier snowpack contributions - fundamentally
772 transformed basin-scale water budgets throughout June to September in the summer
773 of 2022.

774 **7. Conclusion**

775 In this study, we combined multi-source data (October 2019 to September 2022)
776 with a surface energy-mass balance model and a novel dual-threshold framework to
777 identify extreme mass loss events in short-term glacier mass balance records on
778 Sangqu Glacier, enabling a three-year analysis of energy-mass balance characteristics
779 and melt mechanisms during heatwave events in the Geladandong region of the
780 central Tibetan Plateau.

781 The EBFM can better capture the energy and mass balance processes of Sangqu
782 Glacier. Measured and simulated values of albedo, incoming shortwave radiation,
783 incoming/outgoing longwave radiation, point mass balance, and glacier-wide mass
784 balance across elevations were in strong agreement. The energy and mass balances on
785 the glacier surface are characterized by significant seasonal and interannual
786 variations. Net shortwave and longwave radiation are the most important components
787 of energy balance. Glacier surface energy and mass balances exhibit pronounced
788 seasonal and interannual variability. Annual surface mass balance values for 2019–
789 2020 (−540 mm w.e.) and 2020–2021 (−831 mm w.e.) contrast sharply with the
790 extreme deficit of −1251 mm w.e. in 2021–2022, marking the most severe mass loss
791 in the study period. Our dual-threshold detection method conclusively identified the
792 extreme mass loss event at Sangqu Glacier, demonstrating its robustness in short-
793 record contexts.

794 Compared to the 2019–2021 average melt, a 572 mm w.e. increase in mass loss
795 was observed during the 2022 summer heatwaves. Melt during summer heatwaves

796 exhibited significantly higher frequency and intensity than melt during spring
797 heatwaves ([Zhu et al., 2024b](#)), with 52 cumulative summer heatwave days producing
798 1,135 mm w.e. of melt—accounting for 65.2% of the total 2021–2022 melt. These
799 melt events are associated with anomalously low albedo, high incoming longwave
800 radiation, and sensible heat fluxes. Such anomalies in the energy balance were driven
801 by large-scale atmospheric circulation anomalies—specifically, the concurrent
802 intensification and westward expansion of the Western Pacific Subtropical High
803 (WPSH) and the eastward extension of the South Asian High (SAH). This
804 atmospheric circulation anomaly pattern induced high air temperatures via
805 anticyclonic subsidence while causing reduced precipitation through suppressed
806 moisture transport. Future research should extend the dual-threshold framework to
807 other TP glaciers to evaluate its efficacy in detecting extreme melt events across
808 diverse climatic regimes, while also prioritizing mechanistic analyses of how
809 compound heatwave-drought interactions exacerbate glacier mass loss under
810 projected climate warming.

811 **Acknowledgements** We thank the editor and anonymous reviewers for their
812 constructive feedback on the manuscript, which led to substantial improvements
813 during the review process.

814 **Code and Data Availability Statement** Meteorological data from the Tuotuohe
815 meteorological station was obtained from the China Meteorological Administration's
816 website (<http://data.cma.cn/>). ERA5 is available for download at <https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset>. The EBFM model is available
817 via <https://github.com/wardvp/EBFM-glacier>. The Dual-Threshold Framework can
818 be found at https://github.com/zhuzhufeifei/detect_extreme_events. Data supporting
819 the findings of this study are available from the corresponding author upon reasonable
820 request.

822 **Author contribution** All authors contributed to the study conception and design.
823 Data collection was performed by F. Z. Analysis was performed by F. Z, M. Z and L.
824 A. The first draft of the manuscript was written by F. Z and all authors commented on

825 previous versions of the manuscript. All authors read and approved the final
826 manuscript.

827 **Competing interests:** The authors declare that they have no conflict of interest.

828 **Financial support** This study was jointly funded by the National Key R&D Program
829 of China (Grant No. 2024YFF0808302, 2024YFF0808601), the Science and
830 Technology Projects of Xizang Autonomous Region, China (Grant No.
831 XZ202501JD0025), and Second TP Scientific Expedition and Research Program
832 (Grant No. 2019QZKK0201).

833 **References**

834 Anderson, S., & Radic, V. (2023). Modeling the Streamflow Response to Heatwaves Across
835 Glaciated Basins in Southwestern Canada. *WATER RESOURCES RESEARCH*, 59(12).
836 <https://doi.org/10.1029/2023WR035428>

837 Beckmann J, Winkelmann R (2023) Effects of extreme melt events on ice flow and sea level rise
838 of the Greenland Ice Sheet. *The Cryosphere* 17:3083–3099. <https://doi.org/10.5194/tc-17-3083-2023>

839 Bolch T, Kulkarni A, Kääb A, et al (2012) The State and Fate of Himalayan Glaciers. *Science*
840 336:310–314. <https://doi.org/10.1126/science.1215828>

841 Bougamont M, Bamber JL, Greuell W (2005) A surface mass balance model for the Greenland Ice
842 Sheet. *J Geophys Res* 110:2005JF000348. <https://doi.org/10.1029/2005JF000348>

843 Brun F, Berthier E, Wagnon P, et al (2017) A spatially resolved estimate of High Mountain Asia
844 glacier mass balances from 2000 to 2016. *Nature Geosci* 10:668–673.
845 <https://doi.org/10.1038/ngeo2999>

846 Brunt D (1932) Notes on radiation in the atmosphere. I. *Quart J Royal Meteoro Soc* 58:389–420.
847 <https://doi.org/10.1002/qj.49705824704>

848 Chen J, Xue X, Du W (2024) Short communication: Extreme glacier mass loss triggered by high
849 temperature and drought during hydrological year 2022 / 2023 in Qilian Mountains. *Research*
850 in Cold and Arid Regions

851 16:1–4. <https://doi.org/10.1016/j.rcar.2024.01.002>

852 Chen R, Li X (2023) Causes of the persistent merging of the western North Pacific subtropical
853 high and the Iran high during late July 2022. *Clim Dyn* 61:2285–2297.
854 <https://doi.org/10.1007/s00382-023-06678-x>

855 Duan J, Zhang H, Jian D, et al (2024) Influences of Anthropogenic Forcing on the Exceptionally
856 Warm August 2022 over the Eastern Tibetan Plateau. *Bulletin of the American*
857 *Meteorological Society* 105:E1068–E1073. <https://doi.org/10.1175/BAMS-D-23-0179.1>

858 Favier V, Wagnon P, Chazarin J, et al (2004) One-year measurements of surface heat budget on
859 the ablation zone of Antizana Glacier 15, Ecuadorian Andes. *J Geophys Res*
860 109:2003JD004359. <https://doi.org/10.1029/2003JD004359>

861 Guo S, Chen R, Li H (2022) Surface Sublimation/Evaporation and Condensation/Deposition and
862 Their Links to Westerlies During 2020 on the August-One Glacier, the Semi-Arid Qilian

863 Mountains of Northeast Tibetan Plateau. *JGR Atmospheres* 127:e2022JD036494.
864 <https://doi.org/10.1029/2022JD036494>

865 Guo W, Liu S, Xu J, et al (2015) The second Chinese glacier inventory: data, methods and results.
866 *J Glaciol* 61:357–372. <https://doi.org/10.3189/2015JoG14J209>

867 Hock R, Holmgren B (2005) A distributed surface energy-balance model for complex topography
868 and its application to Storglaciären, Sweden. *J Glaciol* 51:25–36.
869 <https://doi.org/10.3189/172756505781829566>

870 Hoffmann L, Günther G, Li D, et al (2019) From ERA-Interim to ERA5: the considerable impact
871 of ECMWF's next-generation reanalysis on Lagrangian transport simulations. *Atmos Chem
872 Phys* 19:3097–3124. <https://doi.org/10.5194/acp-19-3097-2019>

873 Hua W, Dai A, Qin M, et al (2023) How Unexpected Was the 2022 Summertime Heat Extremes
874 in the Middle Reaches of the Yangtze River? *Geophysical Research Letters*
875 50:e2023GL104269. <https://doi.org/10.1029/2023GL104269>

876 Hugonnet R, McNabb R, Berthier E, et al (2021) Accelerated global glacier mass loss in the early
877 twenty-first century. *Nature* 592:726–731. <https://doi.org/10.1038/s41586-021-03436-z>

878 Immerzeel WW, Lutz AF, Andrade M, et al (2020) Importance and vulnerability of the world's
879 water towers. *Nature* 577:364–369. <https://doi.org/10.1038/s41586-019-1822-y>

880 Jeong H, Park H-S, Chowdary JS, Xie S-P (2023) Triple-Dip La Niña Contributes to Pakistan
881 Flooding and Southern China Drought in Summer 2022. *Bulletin of the American
882 Meteorological Society* 104:E1570–E1586. <https://doi.org/10.1175/BAMS-D-23-0002.1>

883 Kang S, Wang F, Morgenstern U, et al (2015) Dramatic loss of glacier accumulation area on the
884 Tibetan Plateau revealed by ice core tritium and mercury records. *The Cryosphere* 9:1213–
885 1222. <https://doi.org/10.5194/tc-9-1213-2015>

886 King O, Ghaffar S, Bhattacharya A, et al (2023) Glaciological and climatological drivers of
887 heterogeneous glacier mass loss in the Tanggula Shan (Central-Eastern Tibetan Plateau),
888 since the 1960s. *J Glaciol* 69:1149–1166. <https://doi.org/10.1017/jog.2023.5>

889 Kronenberg M, Van Pelt W, Machguth H, et al (2022) Long-term firn and mass balance modelling
890 for Abramov Glacier in the data-scarce Pamir Alay. *The Cryosphere* 16:5001–5022.
891 <https://doi.org/10.5194/tc-16-5001-2022>

892 Li N, Xiao Z, Zhao L (2021) A Recent Increase in Long-Lived Heatwaves in China Under the
893 Joint Influence of South Asia and Western North Pacific Subtropical Highs. *Journal of
894 Climate* 1–42. <https://doi.org/10.1175/JCLI-D-21-0014.1>

895 Li S, Yao T, Yang W, et al (2018) Glacier Energy and Mass Balance in the Inland Tibetan Plateau:
896 Seasonal and Interannual Variability in Relation to Atmospheric Changes. *JGR Atmospheres*
897 123:6390–6409. <https://doi.org/10.1029/2017JD028120>

898 Li Z, Xiao Z, Ling J (2023) Impact of extremely warm Tibetan Plateau in spring on the rare
899 rainfall anomaly pattern in the regions west and east to Plateau in late summer 2022.
900 *Atmospheric Research* 290:106797. <https://doi.org/10.1016/j.atmosres.2023.106797>

901 Liang L, Cuo L, Liu Q (2019) Mass Balance Variation and Associative Climate Drivers for the
902 Dongkemadi Glacier in the Central Tibetan Plateau. *JGR Atmospheres* 124:10814–10825.
903 <https://doi.org/10.1029/2019JD030615>

904 (Lisette) Klok EJ, Oerlemans J (2002) Model study of the spatial distribution of the energy and
905 mass balance of Morteratschgletscher, Switzerland. *J Glaciol* 48:505–518.
906 <https://doi.org/10.3189/172756502781831133>

907 Liu W, Zhang D, Qin X, et al (2021) Monsoon Clouds Control the Summer Surface Energy
908 Balance on East Rongbuk Glacier (6,523 m Above Sea Level), the Northern of Mt.
909 Qomolangma (Everest). *JGR Atmospheres* 126:e2020JD033998.
910 <https://doi.org/10.1029/2020JD033998>

911 Mölg T, Cullen NJ, Hardy DR, et al (2008) Mass balance of a slope glacier on Kilimanjaro and its
912 sensitivity to climate. *Intl Journal of Climatology* 28:881–892.
913 <https://doi.org/10.1002/joc.1589>

914 Oerlemans J, Knap WH (1998) A 1 year record of global radiation and albedo in the ablation zone
915 of Morteratschgletscher, Switzerland. *J Glaciol* 44:231–238.
916 <https://doi.org/10.3189/S0022143000002574>

917 Potocki M, Mayewski PA, Matthews T, et al (2022) Mt. Everest's highest glacier is a sentinel for
918 accelerating ice loss. *npj Clim Atmos Sci* 5:7. <https://doi.org/10.1038/s41612-022-00230-0>

919 Pu J, Yao T, Yang M, et al (2008) Rapid decrease of mass balance observed in the Xiao (Lesser)
920 Dongkemadi Glacier, in the central Tibetan Plateau. *Hydrological Processes* 22:2953–2958.
921 <https://doi.org/10.1002/hyp.6865>

922 Raei E, Nikoo MR, AghaKouchak A, et al (2018) GHWR, a multi-method global heatwave and
923 warm-spell record and toolbox. *Sci Data* 5:180206. <https://doi.org/10.1038/sdata.2018.206>

924 Reijmer CH, Hock R (2008) Internal accumulation on Storglaciären, Sweden, in a multi-layer
925 snow model coupled to a distributed energy- and mass-balance model. *J Glaciol* 54:61–72.
926 <https://doi.org/10.3189/002214308784409161>

927 Shan B, Verhoest NEC, De Baets B (2024) Identification of compound drought and heatwave
928 events on a daily scale and across four seasons. *Hydrol Earth Syst Sci* 28:2065–2080.
929 <https://doi.org/10.5194/hess-28-2065-2024>

930 Thibert E, Dkengne Sielenou P, Vionnet V, et al (2018) Causes of Glacier Melt Extremes in the
931 Alps Since 1949. *Geophysical Research Letters* 45:817–825.
932 <https://doi.org/10.1002/2017GL076333>

933 Tian L, Masson-Delmotte V, Stevenard M, et al (2001) Tibetan Plateau summer monsoon
934 northward extent revealed by measurements of water stable isotopes. *J Geophys Res*
935 106:28081–28088. <https://doi.org/10.1029/2001JD900186>

936 Tian Y, Ghausi SA, Zhang Y, et al (2023) Radiation as the dominant cause of high-temperature
937 extremes on the eastern Tibetan Plateau. *Environ Res Lett* 18:074007.
938 <https://doi.org/10.1088/1748-9326/acd805>

939 Van Pelt W, Pohjola V, Pettersson R, et al (2019) A long-term dataset of climatic mass balance,
940 snow conditions, and runoff in Svalbard (1957–2018). *The Cryosphere* 13:2259–2280.
941 <https://doi.org/10.5194/tc-13-2259-2019>

942 Van Pelt WJJ, Oerlemans J, Reijmer CH, et al (2012) Simulating melt, runoff and refreezing on
943 Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model. *The
944 Cryosphere* 6:641–659. <https://doi.org/10.5194/tc-6-641-2012>

945 Vargo, L. J., Anderson, B. M., Dadić, R., Horgan, H. J., Mackintosh, A. N., King, A. D., & Lorrey,
946 A. M. (2020). Anthropogenic warming forces extreme annual glacier mass loss. *Nature
947 Climate Change*, 10(9), 856–861. <https://doi.org/10.1038/s41558-020-0849-2>

948 Wei Lele, He Xiaobo, Xue Yu'ang, Wang Shaoyong, Guo Haonan, Ding Yongjian, & Yao
949 Tandong. (2025). Analysis of the characteristics of Xiao Dongkemadi Glacier mass balance

950 changes in Tanggula Mountains from 2005 to 2023. *Journal of Glaciology and Geocryology*,
951 47(2), 317–329.

952 Xu C, Li H, Wang F, et al (2024) Heatwaves in summer 2022 forces substantial mass loss for
953 Urumqi Glacier No. 1, China. *Journal of Glaciology* 70:e77.
954 <https://doi.org/10.1017/jog.2024.4>

955 Yan R, Wang X, Wang J, et al (2024) Warm Early Summer Compensated Reduction in
956 Photosynthesis Caused by 2022 Late Summer Extreme Drought Over the Tibetan Plateau.
957 *Journal of Geophysical Research: Biogeosciences* 129:e2023JG007859.
958 <https://doi.org/10.1029/2023JG007859>

959 Yang W, Yao T, Guo X, et al (2013) Mass balance of a maritime glacier on the southeast Tibetan
960 Plateau and its climatic sensitivity. *JGR Atmospheres* 118:9579–9594.
961 <https://doi.org/10.1002/jgrd.50760>

962 Yao T, Bolch T, Chen D, et al (2022) The imbalance of the Asian water tower. *Nat Rev Earth*
963 *Environ* 3:618–632. <https://doi.org/10.1038/s43017-022-00299-4>

964 Yao T, Masson-Delmotte V, Gao J, et al (2013) A review of climatic controls on $\delta^{18}\text{O}$ in
965 precipitation over the Tibetan Plateau: Observations and simulations. *Reviews of Geophysics*
966 51:525–548. <https://doi.org/10.1002/rog.20023>

967 Yao T, Thompson L, Yang W, et al (2012) Different glacier status with atmospheric circulations
968 in Tibetan Plateau and surroundings. *Nature Clim Change* 2:663–667.
969 <https://doi.org/10.1038/nclimate1580>

970 You Q, Wu F, Shen L, et al (2020) Tibetan Plateau amplification of climate extremes under global
971 warming of 1.5 °C, 2 °C and 3 °C. *Global and Planetary Change* 192:103261.
972 <https://doi.org/10.1016/j.gloplacha.2020.103261>

973 Zhang T, Deng Y, Chen J, et al (2023a) An energetics tale of the 2022 mega-heatwave over
974 central-eastern China. *npj Clim Atmos Sci* 6:162. <https://doi.org/10.1038/s41612-023-00490-4>

975 Zhang T, Wang W, An B, Wei L (2023b) Enhanced glacial lake activity threatens numerous
976 communities and infrastructure in the Third Pole. *Nat Commun* 14:8250.
977 <https://doi.org/10.1038/s41467-023-44123-z>

978 Zhang J, Chen H, Fang X, et al (2024) Warming-induced hydrothermal anomaly over the Earth's
979 three Poles amplifies concurrent extremes in 2022. *npj Clim Atmos Sci* 7:8.
980 <https://doi.org/10.1038/s41612-023-00553-6>

981 Zhou B, Zhai P, Liao Z (2024) Bivariate attribution of the compound hot and dry summer of 2022
982 on the Tibetan Plateau. *Sci China Earth Sci* 67:2122–2136. <https://doi.org/10.1007/s11430-023-1320-y>

983 Zhu F, Zhu M, Guo Y, Yao T (2024a) Observation and Simulation of Runoff During an Extreme
984 Heatwave in a Glacial Basin on the Central Tibetan Plateau. *Hydrological Processes*
985 38:e70014. <https://doi.org/10.1002/hyp.70014>

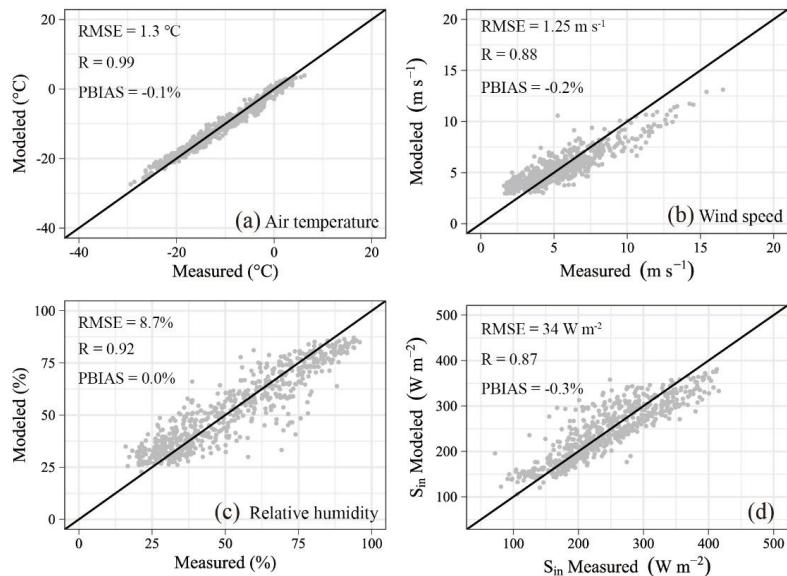
986 Zhu F, Zhu M, Yang W, et al (2024b) Drivers of the Extreme Early Spring Glacier Melt of 2022
987 on the Central Tibetan Plateau. *Earth and Space Science* 11:e2023EA003297.
988 <https://doi.org/10.1029/2023EA003297>

989 Zhu M, Thompson LG, Yao T, et al (2023) Opposite mass balance variations between glaciers in
990 western Tibet and the western Tien Shan. *Global and Planetary Change* 220:103997.
991 <https://doi.org/10.1016/j.gloplacha.2022.103997>

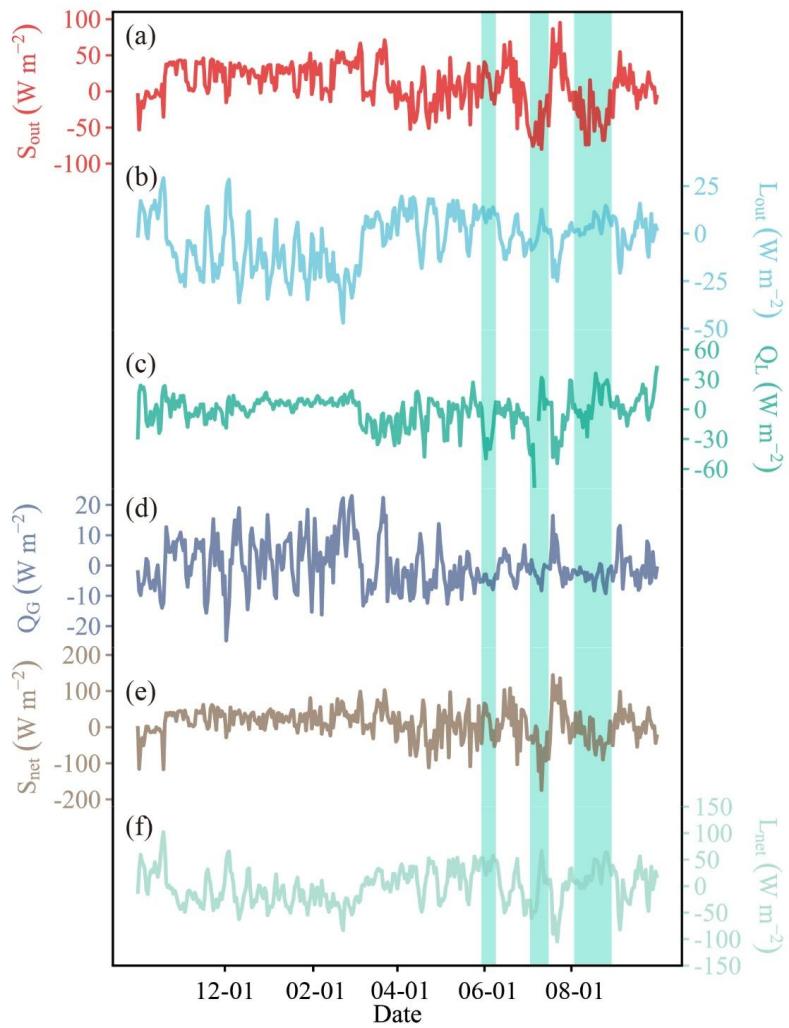
992

993

994 Zhu M, Thompson LG, Zhao H, et al (2021) Influence of atmospheric circulation on glacier mass
995 balance in western Tibet: an analysis based on observations and modeling. *Journal of Climate*
996 1–55. <https://doi.org/10.1175/JCLI-D-20-0988.1>


997 Zhu M, Yao T, Xie Y, et al (2020) Mass balance of Muji Glacier, northeastern Pamir, and its
998 controlling climate factors. *Journal of Hydrology* 590:125447.
999 <https://doi.org/10.1016/j.jhydrol.2020.125447>

1000 Zhu M, Yao T, Yang W, et al (2018) Differences in mass balance behavior for three glaciers from
1001 different climatic regions on the Tibetan Plateau. *Clim Dyn* 50:3457–3484.
1002 <https://doi.org/10.1007/s00382-017-3817-4>


1003 Zhu, M., Yao, T., Thompson, L. G., Wang, S., Yang, W., & Zhao, H. (2022a). What induces the
1004 spatiotemporal variability of glacier mass balance across the Qilian Mountains. *Climate
1005 Dynamics*, 59(11–12), 3555–3577. <https://doi.org/10.1007/s00382-022-06283-4>

1006 Zhu M, Yao T, Yang W, et al (2022b) Possible Causes of Anomalous Glacier Mass Balance in the
1007 Western Kunlun Mountains. *JGR Atmospheres* 127:e2021JD035705.
1008 <https://doi.org/10.1029/2021JD035705>

1009 Appendix

1010
1011 Figure A1. Comparison of observed and ERA5 downscaled (a) Air temperature, (b) Relative
1012 humidity, (c) Wind speed, and (d) Incoming shortwave radiation at the daily scale.
1013

1014

1015 Figure A2. Energy balance components associated with the glacier melt events in summer 2022.

1016 Anomalous (a) Outgoing shortwave radiation, (b) Outgoing longwave radiation, (c) Latent heat

1017 fluxes, (d) Snow and ice heat flux, (e) Net shortwave radiation, and (f) Net longwave radiation

1018 from October 2021 to October 2022 (reference period is October 2019–September 2021). Color

1019 shading represents extreme heat waves.