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Abstract. Large-eddy simulations (LES) are essential tools for studies on atmospheric turbulence and clouds and play critical

roles in the development of turbulence and convection parameterizations. Current numerical weather models have approached

kilometer-scale resolution as supercomputing facilities advance. However, this resolution range is in the so-called gray zone,

where subgrid-scale (SGS) turbulence actively interacts with resolved motion and significantly influences the large-scale char-

acteristics of simulated weather systems. Thus, a novel LES framework is required to enable the development of new SGS5

approaches for the gray zone. Here we used the Python library JAX to develop a new LES model. It is based on the generalized

pseudo-incompressible equations formulated by Durran (2008). For a classic warm bubble case, the traditional Smagorinsky

model fails to reproduce the correct structure evolution of the warm bubble, though it can modestly correct the rising speed

in gray-zone resolution simulations. Utilizing the capability of JAX for automatic differentiation, we trained a deep learning-

based SGS turbulence model for the same case. The trained deep learning SGS model, based on a simple autoencoder (AE),10

enables this physics-deep learning hybrid model to accurately simulate the expansion of the thermal bubble and the develop-

ment of rotors surrounding the center of the bubble at a gray-zone resolution. The gray-zone simulation results are comparable

to those of the benchmark LES resolution.

1 Introduction

Large-eddy simulation (LES) has been widely used in the atmospheric science community as a benchmark for the development15

of subgrid-scale (SGS) turbulence parameterizations in numerical weather prediction (NWP) and climate models (Teixeira and

Cheinet, 2004; Sullivan and Patton, 2011; Verrelle et al., 2017; Wu et al., 2020; Jadhav and Chandy, 2021). LES has also

helped the community to achieve a better understanding of cloud feedback, which interacts with boundary layer turbulence and

contributes to climate sensitivity (Bretherton, 2015; Blossey et al., 2016; Tan et al., 2017; Shen et al., 2022). The capability

of LES to resolve large, energy-containing turbulent eddies and model effects of SGS processes on these resolved scales, as20

well as their interactions with other processes such as clouds and radiation, makes it a unique and valuable tool in atmospheric

science.
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Although supercomputing platforms continue to advance, LES on a large domain for operational NWP is still not reachable.

Current-generation regional NWP models and some regional climate simulations are often run at kilometer-scale resolution

(Prein et al., 2017; Schär et al., 2020). Global simulations with kilometer-scale resolution have also been recently demonstrated25

for a four-month-long integration (Wedi et al., 2020).

The new challenge in kilometer-scale resolution resides in the gray zone for turbulence and convection. Gray zone (or terra

incognita) is defined when the filter length scale has the same order as the dominant turbulence length scale (Wyngaard, 2004).

In the gray zone, turbulence and convection can only be partially resolved and thus SGS motions interact actively with resolved

motions in all three spatial dimensions and are not in statistical equilibrium, which contrasts with the assumptions used in the30

conventional planetary boundary layer (PBL) turbulence and cumulus convection schemes, such as horizontal homogeneity and

quasi-equilibrium. As a result, the conventional parameterization schemes cannot be directly applied with such grid spacings

(Chow et al., 2019; Honnert et al., 2020). Meanwhile, LES-type turbulence schemes cannot be applied to the gray zone either

because they often assume isotropic turbulence and downscale energy transfer. In contrast, gray-zone turbulence is anisotropic

and allows energy backscatter (Shi et al., 2019).35

Therefore, LES is becoming an increasingly valuable tool for further advancement of SGS turbulence representation in gray-

zone simulations and new LES codes which can run faster than before are needed to enable simulations covering large domains

to capture the potential influence of SGS turbulence on the organization of convection and clouds (Shi and Fan, 2021).

For computationally intensive, highly parallelizable applications like atmospheric models, GPU-accelerated codes have been

demonstrated to run much faster than conventional CPU-based implementations in Fortran or C (Demeshko et al., 2013; Price40

et al., 2014; Schalkwijk et al., 2015; van Heerwaarden et al., 2017; Sun et al., 2018, 2023). Recent years have seen many

research efforts focused on GPU model development. Donahue et al. (2024) rewrote a GPU architecture for the Simple Cloud-

Resolving Energy Exascale Earth System Atmosphere Model (SCREAM) with C(++) and found an averaged 6× acceleration

compared to the CPU codes. Sridhar et al. (2022) developed Climate Machine (CliMA) with Julia and provided an architecture-

portable framework for heterogeneous CPU/GPU computing for atmospheric modeling. An ocean dynamical core that can be45

operated on GPUs was also implemented with Julia in the newly developed ocean model, Oceananigans, and made significant

achievements in model efficiency (Silvestri et al., 2024, 2025). For LES, Sauer and Muñoz-Esparza (2020) developed FastEddy,

a CUDA C(++) based model, and achieved a 6× acceleration on one GPU over state-of-the-art LES using 64 CPUs.

Meanwhile, except for GPU acceleration, differentiability of LES codes is crucial for advancing next-generation deep learn-

ing (DL) based SGS parameterizations, but till now few GPU-based LES have mentioned differentiability. Differentiable LES50

exposes every step of the dynamical core as differentiable operations, enabling end-to-end gradient propagation through the

simulation. This capability supports a more powerful training paradigm for DL parameterizations: the neural SGS module is

optimized via differentiable roll-outs, adjusting its parameters based on how errors accumulate through the evolving flow dy-

namics. Recent years have seen a surge in the application of such coupled frameworks to physical parameterization problems

(Kochkov et al., 2021; Qu and Shi, 2023; Watt-Meyer et al., 2024; Qu et al., 2024). Models trained in this way demonstrate55

superior forecast stability compared to both traditional schemes and offline-trained neural parameterizations. By integrating

the physics-based core directly into the training loop, these hybrid approaches tend to yield more reliable and interpretable
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weather and climate predictions than purely data-driven DL models. Commonly, hybrid models rely on high-fidelity numerical

simulation data for training, but recent study also shows that they are available to include observational knowledge into the

training process, further indicating the great potential of hybrid models to be applied for realistic simulations. For example,60

NeuralGCM (Kochkov et al., 2024) matches or outperforms state-of-the-art DL forecasting models across both short and long

lead times, while also reducing computational cost relative to conventional general circulation models. It further improves

the model performance and gives more accurate forecasts for precipitation by jointly using ERA-5 and satellite observational

data (Yuval et al., 2024). These results underscore the promising application of differentiable LES for next-generation SGS

parameterizations.65

In this paper, a new fast and differentiable LES code that runs on GPUs is implemented with a newly developed Python

library, JAX (Bradbury et al., 2018). Different from Fortran or C, numerical models written in Python codes are easier to

be coupled with DL models for training. Existing work includes JAX-Fluids, a Python-based end-to-end differentiable CFD

framework which is designed with JAX for compressible single and two-phase flows (Bezgin et al., 2023, 2025a), and enables

end-to-end training of DL-based implicit LES models (Bezgin et al., 2025b). The new LES code is named LEX. LEX has the70

following distinct advantages: (1) it is numerically stable with its acoustic-wave-filtered governing equations and advanced

integration schemes, (2) it computes quite fast by using XLA (accelerated linear algebra), a domain-specific compiler that

accelerates code via many techniques and enables the compiled codes to run on TPUs or GPUs, (3) it is platform-agnostic,

where the same code can be compiled and run on CPUs, GPUs, or TPUs, (4) it is auto-differentiable so that it enables DL-

base parameterization to be trained with a coupled online training strategy (Rasp, 2020) in a physics-DL hybrid structure (von75

Rueden et al., 2020).

The structure of this paper is mainly organized as follows. Section 2 introduces the setup of LEX and the thermal testing

case, and also the training flow of the hybrid ML-based SGS model. Validation results for LEX are shown in Section 3. Testing

results for the ML model are presented in Section 4. In Section 5, the computational costs are compared to investigate to what

extent LEX is faster than the conventional LES model and also the feasibility of the DL-based SGS model. Section 6 contains80

the summary and discussions.

2 Method and Experiment Design

2.1 LEX

2.1.1 Governing Equations

To develop LEX, the acoustic-wave-filtered equations for compressible stratified flow developed by Durran (2008) are adopted85

as the governing equations, where a pseudo-density ρ∗ is defined to eliminate sound waves and enforce the mass conservation

equation:

1

ρ∗
Dρ∗

Dt
+∇ ·u= 0, (1)
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and the pseudo-density is defined as:

ρ∗ =
ρ̃(x,y,z, t)θ̃ρ(x,y,z, t)

θρ
, (2)90

where˜denotes a spatially varying reference state. The potential temperature is used in the definition of (Durran, 2008) for the

dry air. Here the density potential temperature θρ is used as a replacement to include the effect of water variables for a moist

situation. It is defined and approximated as:

θρ = θ

(
1+ qv/ε

1+ qv + ql + qi

)
≈ θ

[
1+

(
1

ε
− 1

)
qv − ql − qi

]
, (3)

where ε=Rd/Rv , Rd and Rv are gas constants for dry air and water vapor, respectively. qv , ql, qi are mixing ratios of water95

vapor, liquid water, and cloud ice. In the reference state, ql and qi can be assumed to be zero, thus θ̃ρ is the reference state

virtual potential temperature.

With this definition, and further with some approximation, the mass (pseudo-density) conservation equation becomes:

∂ρ̃θ̃ρ
∂t

+∇ · (ρ̃θ̃ρu) =
ρ̃Hm

cpπ̃
, (4)

where Hm is the heating rate per unit mass, u is velocity, cp is the specific heat of air at constant pressure, and π is the Exner100

function. Perturbations with respect to the reference state are defined such that θ′ = θ− θ̃ and π′ = π−π̃. Durran (2008) further

separated π̃ into a large horizontally uniform component π̃v(z, t) and a remainder π̃h(x,y,z, t) for computational accuracy and

notational convenience. Then the momentum and thermodynamics equations are the following,

Duh

Dt
+ fk×uh + cpθρ∇h(π̃h +π′) = 0 (5)

105

Dw

Dt
+ cpθρ

∂π′

∂z
=B (6)

Dθ

Dt
=

Hm

cpπ̃
, (7)

where uh is the horizontal velocity vector, w is the vertical velocity, ∇h is the horizontal gradient operator, and f is the Coriolis

parameter. B is the linearized buoyancy,110

B = g

[
θ′

θ̃
+

(
1

ϵ
− 1

)
(qv − q̃v)− ql − qi

]
, (8)

in which, q̃v is the reference state mixing ratio of water vapor, and g is the gravitational acceleration. The reference state

satisfies the equation of state and the hydrostatic balance equation:

π̃ =

(
R

ps
ρ̃θ̃ρ

)R/cv

(9)
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115

cpθ̃ρ
∂π̃

∂z
=−g, (10)

where R is the gas constant for dry air, cv is the specific heat of air at constant volume, and ps is the pressure at the referenced

level.

The last unknown variable needed for integration is the pressure perturbation π′, which needs to be solved diagnostically

to enforce Equation (4). The diagnostic relationship is obtained by multiplying the momentum equation by ρ̃θ̃ρ, taking the120

divergence of the result and subtracting ∂/∂t of Equation (4). The resulting diagnostic equation is provided by Durran (2008)

as his Equation (5.2):

cp∇ · (ρ̃θ̃ρθρ∇π′) =−∇ · (ρ̃θ̃ρu · ∇)u− f∇h · (k× ρ̃θ̃ρuh)+
∂ ρ̃θ̃ρB

∂z

− cp∇h · (ρ̃θ̃ρθρ∇hπ̃h)−
∂

∂t

(
ρ̃Hm

cpπ̃

)
+∇ ·

(
∂ ρ̃θ̃ρ
∂t

u

)
+

∂2ρ̃θ̃ρ
∂t2

.

(11)

Assuming the tendency in the reference state is small, the last few terms involving time derivative can be ignored in the equation

above, then the diagnostic relation for π′ is:125

cp∇ · (ρ̃θ̃ρθρ∇π′) =−∇ · (ρ̃θ̃ρu · ∇)u− f∇h · (k× ρ̃θ̃ρuh)+
∂ ρ̃θ̃ρB

∂z

− cp∇h · (ρ̃θ̃ρθρ∇hπ̃h) =R.

(12)

The model has no microphysics scheme yet, so water vapor is included just like a tracer, though it affects buoyancy.

2.1.2 Numerical Techniques

For time integration, the four-stage third-order Strong-stability-preserving Runge-Kutta (SSPRK3) scheme (Durran, 2010)

is used to ensure better numerical stability. To keep numerical robustness and stability, especially for long-time integration130

of turbulent flows in the atmospheric boundary layer, which can develop sharp gradients and discontinuities, the weighted

essentially non-oscillatory (WENO) schemes (Jiang and Shu, 1996; Shu, 1998) are employed to solve the advection tendencies

for the momentum equations, with a fifth-order scheme for the horizontal direction and a third-order scheme for the vertical

direction. The WENO scheme provides a proven and computationally efficient mechanism to eliminate spurious numerical

oscillations. Three layers of ghost points are used in each side of x and y directions to employ the fifth-order WENO scheme135

for the horizontal fluxes. The discretization adopts the staggered Arakawa C-grid. The pressure equation (12) is solved with

the biconjugate gradient stabilized method (BiCGSTAB).

2.1.3 Testing Simulation Configurations

The three-dimensional numerical simulation of a rising thermal (Wicker and Skamarock, 1998; Bryan and Fritsch, 2002) is

applied to validate the accuracy of LEX. The employed grid spacing is 100 m in both x, y, and z directions. The entire domain is140
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24 km by 24 km horizontally and 12 km vertically. The initial reference state has a constant potential temperature of 300 K, and

features motionless air, hydrostatic equilibrium, and lapse rates corresponding to neutral stability. Periodic boundary conditions

are applied to the four sides and rigid, free-slip wall boundary conditions are specified at the top and bottom of the domain.

Water vapor is included for moist cases with a constant relative humidity of 10% everywhere in the initial condition. The

thermal is set at the central part of the domain at the bottom, with the initial potential temperature perturbation being:145

θ′ =

θc cos
2(πLb

2 ) if Lb ≤ 1,

0 otherwise,

where θc is used to adjust the maximum value of the potential temperature perturbation at the centre of the thermal to simulate

different thermal rising speeds, and Lb is the radial normalized distance between any point in the domain and the centre of the

thermal, which is defined as:

Lb =

√
(
x−xc

xr
)2 +(

y− yc
yr

)2 +(
z− zc
zr

)2, (13)150

where Xc is the coordinates of the thermal centre, with xc = yc = 12 km, zc = 2 km, and Xr is the initial radius of the thermal,

with xr = yr = zr = 2 km.

The initial potential temperature perturbation will induce an upward buoyancy force and initiate the vertical acceleration of

the bubble in the very beginning. The buoyancy will then cause the thermal to rise and evolve. During rising, the upper part

of the thermal will elongate. Two rotors will also be developed on each side of the bubble in this process. The structure of the155

thermal maintains strictly symmetric as it evolves.

2.2 Deep Learning SGS Model

2.2.1 SGS Correction

Written with JAX, DL models can be coupled with the LES model for training. This paper tested the hybrid model’s capability

to use a DL-based SGS parameterization.160

The SGS process refers to the unresolved part of the numerical simulations due to the relatively coarse grid size. Taking the

potential temperature equation (7) for example, it can be written as the following on a numerical grid:

Dθ̄

Dt
=

Hm

cpπ̃
+ τ, (14)

where θ̄ is the LES grid filtered potential temperature and τ is the SGS tendency.

To improve the stability of the numerical integration, in this paper, the DL model is used to represent an SGS correction term165

instead of the tendency term (Um et al., 2021; Kochkov et al., 2021; Qu and Shi, 2023), which is defined as:

Tθ =

t0+∆t∫
t0

τdt, (15)
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where T is the SGS correction term and the integration is for one time step of the dynamical core. T can be obtained from the

DL model, which is:

Tθ =M(ˆ̄θ′t0+∆t, ˆ̄q
′
v,t0+∆t, ˆ̄ut0+∆t, ˆ̄vt0+∆t, ˆ̄wt0+∆t, ˆ̄π

′
t0+∆t). (16)170

M is the DL model, t0 +∆t denotes that those are the variables after one time step integration of the dynamical core, andˆ

denotes that those have not been corrected by the DL model. Thus for each DL model correcting step, the forecast status of the

potential temperature (θ) is updated as:

θ̄t0+∆t =
ˆ̄θt0+∆t +Tθ, (17)

and similarly, such SGS correction terms are applied to the mixing ratio of water vapor (qv), the horizontal and vertical velocity175

(u= u,v,w):

ūt0+∆t =
ˆ̄Ut0+∆t +TU, (18)

q̄v,t0+∆t = ˆ̄qv,t0+∆t +Tqv . (19)

2.2.2 Data, Model Structure and Training Configurations180
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40×40×40×5

40×40×40×64 20×20×20×32

10×10×10×32

5×5×5×64

3×3×3×128

2×2×2×256

Encoder

Latent Space

1×512

40×40×40×5

40×40×40×6420×20×20×32

10×10×10×32

5×5×5×64

3×3×3×128

2×2×2×256

Decoder

input output

Figure 1. Model Architecture for the three-dimensional autoencoder neural network, where a× b× c× d means

width×length×height×channel. The inputs include the density potential temperature perturbation (θ′), pressure perturbation (π′),

mixing ratio of water vapor perturbation (q′v), horizontal and vertical velocity (u,v,w), and the outputs are SGS corrections for the density

potential temperature (θ), mixing ratio of water vapor (qv), horizontal and vertical velocity (u,v,w).
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The training dataset is based on high-resolution ‘truth’ simulations (HighRes), which have a grid spacing of 100 m in both

horizontal and vertical directions. Six distinct warm bubble cases are included in the dataset. Each is initialized with different

potential temperature perturbations prescribed with θc at 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0K. The dataset only contains data before

the warm bubble’s complete interaction with the upper boundary. Accordingly, simulation durations are set to 30, 25, and 20

minutes for Case pairs 0.5–1.0 K, 1.5–2.0 K, and 2.5–3.0 K, respectively. A time step of 5 s is used for all simulations. Then by185

spatially coarse-graining the HighRes data, the training dataset is generated, with a grid spacing of 600 m in the horizontal and

300 m in the vertical. 90% of the generated dataset is used for training, and 10% is used for testing. Temporal coarse-graining

is employed in the training and testing processes, with a 15-second time step for the numerical simulation.

To validate the trained model, two additional cases with θc = 2.6K and 5.0 K are chosen to generate initial conditions

for validation simulations. These two initial conditions are chosen to be within the training dataset potential temperature190

perturbation range as well as outside that range to evaluate the capability and generalizability of the trained DL SGS model.

A three-dimensional autoencoder (3-D AE) is designed as the structure of the DL SGS, shown in Figure 1. The architecture

employs 3D convolutional filters with a kernel size of 3×3×3 and ‘same’ padding throughout its encoder and decoder hidden

layers, utilizing the GELU activation function (Hendrycks and Gimpel, 2023). The model contains approximately 7.09 million

trainable parameters.195

A moist warm bubble case is trained in this paper. The density potential temperature perturbation (θ′), pressure perturbation(π′),

mixing ratio of water vapor perturbation(q′v), horizontal and vertical velocity (u,v,w) are used as inputs for the AE model, with

ghost points reserved to preserve the physical information at the boundaries. The outputs are SGS corrections for the density

potential temperature (θρ), mixing ratio of water vapor (qv), horizontal and vertical velocity (u,v,w). It should be noticed here

that the outputs with ghost points are then stripped of their boundary extensions and repadded with new ghost points to maintain200

numerical stability. Moreover, all the physical quantities are min-max normalized, with min-max values of each height level

throughout the training dataset, to a unified range of [0,1] before being input to the AE model to avoid unit-induced disparities

in data distribution. The height-dependent min-max normalization for model inputs can be written as:

Φ̃ =
Φ− [min(Φ)]

[max(Φ)]− [min(Φ)]
, (20)

where Φ is the tensor of the general physical state consisting of density potential temperature perturbation (θ′), mixing ratio of205

water vapor perturbation (q′v), horizontal and vertical velocity (u, v, w). Φ̃ means the normalized physical state. The max and

min functions find the extreme at each grid point in the entire training dataset, and the square brackets indicate further taking

the min and max values of each height level. The motivation of the height-dependent min-max normalization is to ensure the

trained model has optimized performance at all levels, as the atmosphere is a stratified fluid and different height levels tend to

have different amplitudes of variability, especially for thermodynamic variables.210

The outputs of the DL model are multiplied by max−min values of each grid point throughout the training dataset before

they are added back to the direct integration results, which is:

T̃Φtk
= TΦtk

× (max(Φ)−min(Φ)), (21)
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where TΦtk
is the correction term of each variable, T̃Φtk

is the scaled correction term, and the max and min functions are the

extremes at each grid point in the entire training dataset. This is designed to make all the DL model’s outputs suitable with the215

order of the direct integration results for each variable, and can also help avoid adding unnecessary corrections to points that

have no variations in the training dataset.

The overall training flow can be summarized as follows. At the beginning of each training step, a numerical integration step

is performed for the dynamical core from given initial states, which are coarse-grained from the high-resolution benchmark

simulations. Then the integration results are used as inputs to the DL model to yield the SGS correction terms, which are220

applied to the direct integration results to get the new physical states. Such new physics states serve as the initial states for the

next numerical integration step. This loop is iterated for N look-ahead steps.

At each step, the L2 loss, Laplacian loss, as well as an extra loss term which is used to penalize unreasonable model outputs,

are employed and accumulated to be the total loss of the current training step, with which we use the Adam (Kingma and Ba,

2017) optimizer to adjust the DL model parameters. In this study N = 12. To mitigate the influence of the potential rounding225

errors, double-precision (float64) is employed throughout the training process.

The L2 loss is written as:

Lk
l2(Φt0 ,Φtk) =

1

2
∥MkΦt0 −Φtk∥22, (22)

where M represents the hybrid model (dynamical core and the SGS model), Φt0 is the initial state of Φ, and Φtk is the truth

state of Φ at the kth look-ahead step during training.230

When training, it is found that the DL model can not distinguish the physical meaning of the input variables and will generate

unreasonable outputs in the very beginning, such as negative values for water vapor, and meaningless background noise, which

are against the laws of physics and will strongly impact the integrated results of the numerical simulation in the next time step

during the training loop.

Thus, firstly, to penalize such unreasonable negative values that may be caused by the DL model, an extra loss term is added,235

which is:

Lk
penal−neg(qv,tk) =


−qv,tk , if qv,tk < 0,

0, if qv,tk ≥ 0.

(23)

To mitigate background noise, a Laplacian loss as well as scaling parameters are further employed. Laplacian loss, which

utilizes a Laplacian operator or Laplacian pyramid, is known to effectively improve image qualities by enhancing details and

reducing noise (Li et al., 2017; Didwania et al., 2025). In this case, the Laplacian of the density potential temperature and240

mixing ratio of water vapor perturbations are added to loss terms, which can be written as:

Lk
Lap(Φt0 ,Φtk) = ∥∇2MkΦt0 −∇2Φtk∥22 (24)

A scaling parameter is also applied to each loss term, which is:

10



fscale(Φ) =
max(Φ)−min(Φ)

([max(Φ)]− [min(Φ)])3
. (25)

The design of this custom scaling factor is intended to introduce spatially varying normalization. Firstly, the loss terms245

are also height-dependently normalized, so the squared error should be divided by ([max]−min)2. Secondly, as horizontal

variability is non-uniform for all variables, and near-zero perturbations occur in regions far from the thermal bubble, it does not

make sense to require the deep learning SGS model to emphasize these regions — an aspect we have accounted for by scaling

the SGS correction terms derived from the DL model. This scaling approach is also meaningful for real atmospheric modeling.

For small simulation domains, the horizontal heterogeneity may be caused by complex terrain or land-sea contrast.250

Thus to summarize, the loss function employed in this paper is written as:

Ltot =
1

N

N∑
k=1

(fscale(Φ) · Lk
l2(Φt0 ,Φtk)+ fscale(qv) · Lk

penal−neg(qv,tk)+ fscale(∇2Φ) · Lk
Lap(Φt0 ,Φtk)), (26)

where N is the number of the look-ahead steps, and Φtk is ˆ̄Φtk + T̃Φtk
. It should be mentioned here that the training process

is quite sensitive to the initialization of the DL model parameters. Thus it begins with three look-ahead steps as a pre-training

strategy, and gradually adds up to six and twelve look-ahead steps to keep the model’s numerical stability.255

In this paper, the AE model is trained for 88 epochs, with the training process being manually fine-tuned based on the

observed loss trajectory. The learning rate is decayed from an initial value of 1e-3 to a final value of 1e-6, which can be seen

in Figure S1.

3 LEX Validation
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Figure 2. Snapshots of simulated potential temperature perturbations (θ′) in CM1 and LEX under different initial central perturbations: 1 K

at t = 0, 10, 15, 20, and 28 min (the first and second columns) and 5 K at t = 0, 5, 7, 10, and 14 min (the third and fourth columns).
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Figure 3. The correlation coefficient (R), mean squared error (MSE), and multi-scale structural similarity (MS-SSIM) for CM1 and LEX

simulation results of density potential temperature (a, c, e), and water vapor mixing ratio (b, d, f).
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The accuracy of LEX is validated against high-fidelity simulation results obtained from the fully compressible Cloud Model260

1 (CM1) (Bryan and Fritsch, 2002). Two moist cases with different initial central potential temperature perturbations are

tested. The first and second columns of Figure 2 show the snapshots of the simulated potential temperature perturbations

in CM1 and LEX with θc = 1K at t= 0,10,15 and 20 min. The third and fourth columns of Figure 2 show the simulated

results with θc = 5K at t= 0,5,7,10 and 14 min. Comparing the two pairs in Figure 2, it is evident that the simulation results

of LEX demonstrate excellent agreement with those of CM1, regardless of the initial potential temperature perturbations,265

indicating the reliability and accuracy of the LEX’s code in JAX. Also, the results shown in Figure 3 demonstrate excellent

performance metrics of LEX. The correlation coefficient (R) and the multi-scale structural similarity (MS-SSIM) maintain

high values, and the mean squared error (MSE) maintains low levels throughout the simulation period for two tested cases.

Figure S2 and Figure S3 further confirm the robustness of LEX by presenting the simulated results for the mixing ratio of

water vapor and pressure perturbations with θc = 1K and θc = 5K. However, because LEX calculates pressure based on the270

pseudo-compressible approximation, subtle differences appear after the thermal reaches the upper boundary of the domain in

pressure simulations.

Furthermore, the figure shows that different initial potential temperature perturbations make the thermal rise at different

speeds. A higher temperature brings the thermal a faster rising speed. The bubble with θc = 5K takes around half of the

simulated time to rise to a similar height as the bubble with θc = 1K. The acceleration of the rising speed due to a warmer275

initial potential temperature perturbation makes an evident difference for the simulated physical states of the numerical model in

each integration time step. Therefore, though the evolution patterns are quite similar in the five training cases, they still provide

rich and complex variation in the training dataset, sufficient for the training and testing of the DL SGS model below. The

additional validation case initiated with θc = 5K is far outside of the training dataset range, further proving the generalizability

of the trained DL model.280

4 Preliminary Testing for Deep Learning-based Parameterizations

4.1 Conventional SGS Model
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Figure 4. Snapshots of simulated potential temperature perturbations (θ′) at t = 0, 5, 7, 10, and 14 min, with θc = 2.6K, where the first

column is the ‘Truth’ simulation with a high resolution of 100×100×100m, the second column is coarse-grained from the Truth simulation

with a coarse resolution of 600×600×300m, the third column is the numerical simulation results with the coarse grids, and the forth column

is the LowRes simulation with the Smagorinsky scheme to deal with the SGS turbulence.
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This section first tests the reliability of the classic Smagorinsky scheme in the gray zone. The following testing simulations

are run with LEX for comparisons: (1) a ‘Truth’ simulation with a high resolution of 100× 100× 100m as the referenced

ground truth; (2) the ‘Coarsened Truth’, which is coarse-grained from the ‘Truth’ simulations, to serve as the baseline on the285

coarse grids; (3) a ‘LowRes’ simulation which is run on the coarse grids with the resolution of 600× 600× 300m; and (4) the

‘LowRes-Smag’ simulation in which the conventional Smagorinsky scheme (Smagorinsky, 1963; Shi et al., 2018) is used to

solve the SGS turbulence on the coarse grids.

Figure 4 and Figure S4 clearly illustrate that the LowRes simulation tends to have a faster rising speed than the baseline

simulation and it fails to resolve the correct symmetric rotor structure at the warm bubble edges due to the relatively large grid290

spacing. Using the Smagorinsky scheme to solve the SGS motions can slightly help correct the rising speed of the LowRes

simulation. The rising speed of the thermal is lowered and is adjusted to be similar to the referenced truth state with the

Smagorinsky scheme. However, the expected symmetric rotor structure cannot be simulated properly, and the intensity of the

large-scale motion is also wrongly estimated, underestimation in this case. This shows that the conventional parameterization

schemes still have limitations in approximating the appropriate physical dynamics and providing reliable numerical predic-295

tions in the gray zone. Therefore, improved parameterization schemes need to be developed to handle the SGS motions more

precisely in such grid spacings.

4.2 Deep Learning-based SGS Model
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Figure 5. Snapshots of simulated potential temperature perturbations (θ′) at t = 0, 5, 10, 15, and 20 min, with θc = 2.6K (the first to the third

columns), and θc = 5.0K (the fourth to the sixth columns), where the first and fourth columns are the ‘Coarsened Truth’ simulations with

a coarse resolution of 600× 600× 300m, the second and fifth columns are the ‘LowRes-Smag’ simulations with the Smagorinsky scheme

to deal with the SGS turbulence, and the third and sixth columns are ‘LowRes-DL’ simulations with the trained AE model to serve as the

turbulence parameterization scheme.
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Figure 6. The correlation coefficient (R) and energy profile of the Coarsened Truth, LowRes, LowRes-Smag and LowRes-DL simulations,

with θc = 2.6K (a), and θc = 5.0K (b).
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The training for the DL-based SGS model is conducted with a moist warm bubble case. The online testing results are shown

in Figure 5 and Figure S5. The LowRes-DL is the result of the coarse simulation with the trained AE model’s correction for300

SGS tendencies. Compared to the conventional Smagorinsky scheme, the trained DL model is able to simulate the right rising

speed, and can further develop the proper symmetric structure of the thermal, showing its superiority for turbulence predictions

in the gray zone. Moreover, results are similar no matter whether the initial potential temperature is within the range of the

training dataset or out of that, indicating the good generalization capability of this AE model.

The quantitative assessments of the DL model’s forecast performance are also conducted with the correlation coefficient (R)305

and the kinetic energy (KE) profile, which are defined as:

R=

∑
i

∑
j

∑
k(Xijk −X)(Yijk −Y )√

(
∑

i

∑
j

∑
k(Xijk −X)2)(

∑
i

∑
j

∑
k(Yijk −Y )2)

, (27)

KE=
1

2
⟨u′

iu
′
i⟩t , (28)

where X represents the simulated results, Y represents the truth states, and the overline denotes the spatial average over all310

grid points for different variables. ⟨·⟩t represents the time average, and u′
iu

′
i follows the Einstein summation convention, which

equals u′2 + v′2 +w′2.

As is seen in Figure 6, the numerical simulation with the DL-based SGS model can maintain a high level of correlation with

the baseline (Coarsened Truth) during the applicable testing period. What’s more, compared to the LowRes and LowRes-Smag

prediction results, LowRes-DL can better forecast the small-scale turbulence motions, which is proved by the highly aligned315

maximum peak height of the kinetic energy and the corresponding magnitude with those of the baseline.

In this section, the experiment of the moist warm bubble case proved the capability of LEX to be used for training a DL SGS

model in a physics-DL hybrid framework. The newly developed DL model can well represent SGS motions in the gray zone,

offering a promising alternative to conventional parameterization schemes.

4.3 Comparisons and Potential Physical Insights320
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Figure 7. The simulated potential temperature perturbation (θ′) at t = 5, 10, and 15 min, with θc = 2.6K. The first and second columns

are the forecasts of the conventional Smagorinsky and DL-based SGS model. The third and fourth columns are the differences between

parameterized and non-parameterized simulation results of the conventional Smagorinsky and the DL-based SGS model. The fifth column is

the SGS tendency due to the Smagorinsky model, and the sixth column is the SGS correction due to the DL model.
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Figure 8. The simulated vertical velocity (w) at t = 5, 10, and 15 min, with θc = 2.6K. The first and second columns are the forecasts

of the conventional Smagorinsky and DL-based SGS model. The third and fourth columns are the differences between parameterized and

non-parameterized simulation results of the conventional Smagorinsky and the DL-based SGS model. The fifth column is the SGS tendency

due to the Smagorinsky model, and the sixth column is the SGS correction due to the DL model.
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In this section, the predictions using the Smagorinsky scheme and those using the AE model against the same benchmark:

the coarse-grained, high-fidelity simulation, which is the non-parameterized reference, are compared. Also the SGS tendency

due to the Smagorinsky model and SGS corrections generated by the AE model are analyzed, aiming to find the potential

reasons that the conventional Smagorinsky scheme fails to develop the correct rotor structure, and the difference that the

hybrid model has brought. Through this way, we hope to give some physical insights from the DL-based SGS model and make325

some contributions to the development of the interpretable DL.

The warm bubble case is set with an initial temperature perturbation, which causes an upward buoyancy and thus gives the

bubble a vertical acceleration. When the bubble rises, the cold air on each side needs to descend for compensation, which will

then cause vertical velocity gradients and further form strong velocity shear layers at the bubble boundaries. In the shear layers,

according to the vorticity equation, vorticity will thus be generated due to the spatial gradients of potential temperature, which330

is ∇θ. But when the resolution becomes coarse, small-scale processes and some key physics information, such as temperature

gradients, cannot be appropriately resolved, and this causes the LowRes simulations to be unable to generate the rotor structure.

Figure 7 and Figure 8 present the forecasted potential temperature perturbation and vertical velocity from the conventional

Smagorinsky scheme and the AE model, respectively. The forecast differences induced by each scheme, and the corresponding

SGS tendency generated by the calssic Smagorinsky and SGS corrections generated by the AE model are also shown. Results335

for the additional physical quantities (u, v, and qv) are provided in the supplement (Figure S6, S7, and S8).

As evidenced by Figure 7 and Figure 8, the Smagorinsky scheme and the AE model exhibit obviously different impacts on

the development of the warm bubble at the very beginning. Compared with the coarse-grained high fidelity simulations (the

third and fourth column in Figure 7 and Figure 8), the Smagorinsky mainly imposes a cooling effect on the warm bubble, and

weakens its upward motion. But the AE model sustains warming and the upward motion in regions that are to further develop340

the rotor structure. This significant difference is key to the later development of the warm bubble.

A comparative analysis of the SGS tendency due to the Smagorinsky model and the corrections due to the AE model provides

further explanations (see the fifth and sixth columns in Figure 7). As the conventional Smagorinsky is a diffusion model, it

naturally diffuses warm temperature anomaly to surrounding regions. Accordingly, it produces a warming tendency near the

top of the rising thermal, a cooling tendency below, but almost no extra effect at the rising centre, which leads to the dissipation345

of the thermal’s original energy without any replenishment. However, the trained AE model can accurately produce a warming

correction at the thermal centre, and thus help maintain the buoyancy force that drives the bubble’s sustaining development.

The above findings can explain Figure 4, where the classic Smagorinsky helps correct the warm bubble’s rising speed

compared to the LowRes results, as the Smagorinsky scheme greatly lowers down the temperature at the top with its energy

diffused at the thermal centre. Furthermore, they align with Figure 6, where the Smagorinsky forecast has the same energy and350

vertical velocity peak with the hybrid model, but it presents smaller values, even smaller energy than the LowRes simulation.

The classic Smagorinsky tends to produce overly diffusive corrections, which limits it to resolve fine-scale structures and

maintain the necessary energy for the warm bubble to develop the rotor structure. The corrections generated by the AE model

are much more detailed and accurate. As is illustrated in Figure 7, SGS corrections of the AE model always help maintain

the strength of the potential temperature at the critical part of the warm bubble in a very fine way, such as the rising centre355
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Table 1. Computational performance comparison of CM1 and LEX. The CM1 was run using 64 cores of an AMD Ryzen Threadripper

3990X. The LEX was run on NVIDIA RTX A6000 GPU. No SGS models were used in CM1 or LEX simulations.

Model Resolution Time Step Hardware Integration IO/Setup and Execution

(m) (s) (CPU/GPU) Time (min) Compilation Time (s) Time (s)

CM1 100×100×100 2 CPU (64 cores) 20 40.00 789.00

LEX
100×100×100 2 GPU 20 171.97 548.01

100×100×100 12 GPU 20 171.97 84.75

14 8 16 32 64 128 256
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Figure 9. Strong scaling performance of CM1 on the AMD Ryzen Threadripper 3990X.

at the key beginning, and the rotors on the sides after they have been maturely developed. This makes the hybrid model keep

the energy for rising and developing the rotors. These detailed structures are probably essential to enable the model to model

the small-scale physics information which is unresolvable by the coarse grid. Similarly, Figure 8 shows that the AE model’s

corrections exhibit detailed structures and help keep the upward motion.

5 Computing Time Comparisons360

5.1 LEX Compared to CM1

The computational costs are compared in this section. As mentioned in Section 1, LEX has better numerical stability and

is expected to show faster computing speed with JAX acceleration techniques. Using the conventional CM1 model as the

benchmark model, Table 1 shows that employing the same time step of two seconds to run a 20-minute simulation, the total

computing time for CM1 is 789 s using 64 cores, while the LEX run takes 548 s on one GPU. Furthermore, at the resolution365

of 100× 100× 100m, the longest time step for CM1 to maintain numerical stability is two seconds, but for LEX, it can be
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Table 2. Computational speed comparison of DL-based SGS model and conventional Smagorinsky Scheme, with the resolution being

600× 600× 300m, and the 15-second time step for a 20-minute simulation test for each.

Model Hardware Precision Parameterization IO/Setup and Execution Model Inference

Scheme Compilation Time(s) Time (s) Time (s)

LEX GPU fp32 N/A ∼36 0.89 N/A

LEX+Smag CPU fp32 Smagorinsky ∼33 43.28 N/A

LEX+Smag GPU fp32 Smagorinsky ∼33 1.91 1.02

LEX+DL GPU fp32 DL ∼ 65 1.48 0.59

LEX+DL GPU fp64 DL ∼ 65 6.18 N/A

up to twelve seconds, thanks to its acoustic-wave-filtering equations and the strong stability integration scheme SSPRK3. As

a result, LEX’s running time can be further reduced by a factor of 1/6. Meanwhile, according to the strong scaling test shown

in Figure 9, the speed-up factor for the 20-minute simulation of CM1 reaches the maximum with 64 processors. That means

in this 20-minute simulation for the warm bubble case, compared to the optimal speed-up performance of CM1 with 64 CPU370

cores, LEX on a single GPU is around nine times faster.

Because the 20-minute simulation is a relatively short integration period, leading to the LEX setup and just-in-time compila-

tion time accounting for a significant fraction of the total running time. However, if we run the LEX for a substantially longer

time, the compilation and setup time probably can be ignored. This demonstrates the great application potential of LEX to run

for long simulations.375

The effectiveness of GPU acceleration is also shown in Table 2. Calculating with the same resolution and a 15-second time

step for a 20-minute integration time, LEX with the Smagorinsky scheme runs around 21 times faster on the GPU than on the

CPU, excluding the just-in-time compilation time.

5.2 DL-based SGS Model Compared to Conventional Smagorinsky Scheme

LEX can be trained with a DL-based SGS model and succeed in numerical predictions in the gray zone, but whether such380

physics-DL hybrid models can be applied in real weather forecasts also relies on their computational costs. The parameter-

izations for SGS processes are only one part of the entire numerical weather predictions, thus, they are expected to run at

a fast speed. Since the DL model is trained with the double-precision float64, its computing time is first evaluated with the

same precision to run the hybrid model. Table 2 shows that when running with float64, the LEX-DL model with a 15-second

time step takes around three times of the computing time of the LEX-Smag model using float32 with a same time step after385

compilation, and meanwhile its compilation time is two times slower, which is not satisfying performance. One reason for this

is that float64 needs more computational resources than float32, and the other is the hardware limitation that further increases

the computational costs, as float64 convolutions are not supported by XLA on the NVIDIA RTX A6000 GPU now, which is

used in the model evaluations for this paper.
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However, though the double precision is necessary for the training of the LEX-DL model, a single-precision of float32 is390

found to be applicable for the evaluations, as the model parameters have already been sufficiently trained and the DL model will

not cause any tiny noise towards the stable thermal structure. Thus, the computing efficiency of the DL-based SGS model is

further enhanced. As shown in Table 2, using the same time step of 15 seconds, the LEX-DL model with a single precision can

achieve 76% computing time reduction than that with the double precision, which only needs 1.48s to complete the integration

task after the compilation.395

We also test the Smagorinsky model and the AE model on CPUs and it turns out that the Smagorinsky model will be around

30% faster. But if we conduct the test on GPUs, it is found that though the compilation time is two times slower, the fastest

speed the hybrid model can achieve using GPUs now after compilation is comparable to that of the LEX-Smag model with the

single precision, which means the DL model can enable a lower computational expense for prolonged forecasts.

6 Conclusions400

As the model resolutions are entering the kilometer-scale range, parameterizations for SGS motions in the gray zone remain

key obstacles in today’s numerical weather forecasts, because turbulence and convection can only be partially resolved and

conventional parameterization schemes are no longer applicable in the gray zone. LES models are always valuable and im-

portant tools for studying small-scale turbulence motions in the field of atmospheric science. They are used to compare the

different SGS parameterization schemes and help develop improved SGS models for different flows (Remmler and Hickel,405

2013; Khani and Waite, 2015). However, LES that is available for large domains is still lacking to date. In this background,

the new LES model written with JAX, LEX, is developed in this paper. By validating its simulation results with those of the

traditional CM1 model using different initial conditions for a simple thermal case, LEX is proven to be a reliable and robust

LES model.

Moreover, LEX can be applied for simulations on large domains with its fast computation speed. With GPU acceleration,410

the acceleration tools from JAX, and good numerical stability that allows larger time steps, running LEX on one GPU is as fast

as running CM1 on 600 CPU cores. One disadvantage of LEX is that the just-in-time compilation takes much time. Therefore,

LEX is better used for long-period simulations. As the integration time increases, the advantage of LEX’s fast computational

speed will become increasingly apparent, compared to the other traditional LES models.

The newly developed LEX code is also auto-differentiable. To report its differentiability, based on LEX, a DL-based SGS415

model is further trained for SGS parameterization in the gray zone for the thermal bubble case. A simple AE model is applied

to produce correction terms for the prognostic variables. The coupled online training of the physics-DL hybrid model integrates

the dynamics in the loops every epoch. The trained model exhibits excellent capability to correct the dynamical core integration

and simulate the symmetric rotor structure of the rising thermal in the gray zone. The traditional Smagorinsky scheme is also

tested and exhibits poorer performance, with the thermal perturbation wrongly estimated and failing to produce the rotor420

structure.
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The DL model is not only more reliable in representing the SGS turbulence in the gray zone, but its inference time can also

be comparable to that of the conventional parameterization scheme. The preliminary results show that although the training

process requires double precision which will lead to great computational costs, the trained model is able to be run with single

precision, enabling even faster computing speed than the classic Smagorinsky after compilation. However, the hybrid model425

needs longer compilation time, and makes its total computing time twice that of the classic Smagorinsky for the 20-minute

simulation in this case. These indicate that hybrid models are promising tools to be applied for SGS representations for real

atmospheric forecasts, especially for prolonged simulations which can significantly reduce the proportion of compilation time.

LEX v1.6.0 is the initial model that has completed the initial accuracy tests and been validated for the hybrid model training.

However, now it is still an idealized model which does not contain the microphysics and radiation scheme. This LEX version430

has already included a surface flux scheme following Neale et al. (2010), though it was not tested in this study. The implemen-

tation of P3 microphysics (Milbrandt et al., 2021) is ongoing and will be tested in cloudy boundary layer cases. We will also

add the Rapid Radiative Transfer Model (RRTMG) (Iacono et al., 2008) to LEX in the future.

Moreover, LEX is designed with inherent support for parallelism thanks to its implementation using the JAX framework,

which provides automatic parallelization capabilities with the Single-Program Multi-Data (SPMD) codes (Bradbury et al.,435

2018), as well as mpi4jax (Häfner et al., 2021). However, LEX v1.6.0 applies the BiCGSTAB algorithm as the pressure solver,

which introduces per-iteration global synchronization points that are conflict with the subdomain-level synchronization needed

for ghost-point exchanges. Considering the problem scale and hardware setup, the SPMD parallelism across the spatial domain

is considered not plausible now, and mpi4jax is the appropriate tool for domain decomposition and parallel computing. Now

the parallelism of LEX v1.6.0 can only be performed at the batch level. Related codes are provided on GitHub.440

Overall, LEX v1.6.0 can now be utilized with accuracy and fast-computing speed. It is auto-differentiable so that corre-

sponding DL-based SGS models can be trained to provide high-fidelity parameterizations for SGS motions in the gray zone.

The development of LEX is expected to help deepen knowledge of the small-scale turbulence processes and enable the future

development of more reliable parameterization schemes in the gray zone.

Code availability. The current version of LEX is publicly available on Github at https://github.com/MetLab-HKUST/LEX under the MIT445

license. LEX codes, and scripts for producing figures are archived on Zenodo under https://doi.org/10.5281/zenodo.15486687 (Zhu et al.,

2025a). Related data used in this study can be accessed from Zenodo under https://doi.org/10.5281/zenodo.15730773 (Zhu et al., 2025b).

CM1 version cm1r21.1 is used in this study, which can be accessed from https://github.com/NCAR/CM1.
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