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Dear Editor and Reviewers:

This is a response letter and an updated version of our manuscript to GMD. The original version
was submitted in July, 2025 and used a CNN for the hybrid approach training. In the submitted
manuscript, we pointed out some existing problems to be solved, and the reviewers also showed
much concern about them. During the revision process, we made a major breakthrough, solved
most of the obstacles, and successfully improved our results by training with a new autoencoder
(AE) model, and a newly designed loss function. Thus, this revised manuscript has been almostly
substantially rewritten to present our up-to-date research progress.

An AE model has replaced the initial CNN model to be coupled with the LEX model for training. The
AE model has less model parameters, enabling faster computing speed and more look-ahead steps
duringtraining than theinitial CNN. By using the newly designed loss function which containsan L2
loss, a Laplacian loss, and a term to penalize the negative values of water vapor produced by the DL
model, the trained model shows more steady training process without any manual intervention,
like clipping the negative values of watervapor, and better application results. Now the forecast
results of the hybrid model are strictly symmetric without any background noise caused by the DL
model for the moist case, and the time step is further extended to 15 seconds. Moreover, single
precision can be applied to the entire hybrid model for validations now. Thus, the related part of
the dry case has been deleted. Data and analyses regarding the computational cost comparisons
have also been re-tested and rewritten.

Thanks to the reviewers, the SGS corrections have also been plotted out and analyzed, bringing
some physical insights to this manuscript. We have also revised other parts of the manuscript in
response to the reviewers’ comments, which has significantly improved its overall quality. Our
detailed responses to the comments are provided in the following pages.

We sincerely thank the editor and reviewers for their thoughtful feedback and for considering our
revised manuscript.

Sincerely,
Xingyu Zhu, Yongquan Qu, and Xiaoming Shi

Division of Environment and Sustainability
The Hong Kong University of Science and Technology



1 Response to Reviewer 1

Comment 1.1

Line 57: There is a listing of the advantages of the hybrid machine learning approach to at-
mospheric sciences, but weather forecast accuracy is in my opinion not one of them. Purely
data-driven DL models, such as Google’s graphcast and ECMWF’s AIFS nowadays exceed
forecast accuracy of both physical and hybrid-ML models. So | would recommend to remove
the ’accurate weather predictions’ from this line.

Response:

Thanks a lot for this suggestion. We realize this description is not very rigorous and have re-
moved it.

Manuscript text (Lines 56-58):

“ By integrating the physics-based core directly into the training loop, these hybrid approaches
tend to yield more reliable and interpretable weather and climate predictions than purely data-
driven DL models.”

In line 195 the authors explain that the accumulated MSE forms the basis of the loss calcu-
lation for training the SGS. Are the authors concerned with a 'smearing’ effect of the SGS
tendency, could this be observed?

Response:

Thank you for this insightful question. To deal with the ’smearing effect’, we have now up-
dated our loss functions used for the training of the hybrid model. The updated loss functions
mainly contain three terms: the L2 loss, the term used to penalize the negative values of water
vapor produced by the DL model, and a Laplacian loss. The Laplacian loss, which is written as:
Liap = [IVPM*xy, — V2x,, ||2, helps prevent over smoothing and enhance details with the second-
order differential operator. With these loss terms applied, now the trained model can give quite
good performance with the predicted rotor structure being strictly symmetric (see Figure 5 and
Figure S5). The updated loss function, related explanations, and figures are shown below.
Reference:

Li, S., Xu, X., Nie, L., and Chua, T.-S.: Laplacian-steered neural style transfer, in: Proceedings of
the 25th ACM international conference on Multimedia, p. 1716-1724,https://doi.org/10.1145/
3123266.3123425, 2017.

Didwania, K., Gakhar, I., Arya, P., and Labroo, S.: LapLoss: laplacian pyramid-based multiscale loss
forimage translation, https://doi.org/2503.05974, 2025.


https://doi.org/10.1145/3123266.3123425
https://doi.org/10.1145/3123266.3123425
https://doi.org/2503.05974
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Figure 5: Snapshots of simulated potential temperature perturbations (6’) att=0, 5, 10, 15, and 20 min, with 6, = 2.6K
(the first to the third columns), and 8. = 5.0K (the fourth to the sixth columns), where the first and fourth columns
are the ‘Coarsened Truth’ simulations with a coarse resolution of 600 x 600 x 300m, the second and fifth columns are
the ‘LowRes-Smag’ simulations with the Smagorinsky scheme to deal with the SGS turbulence, and the third and sixth
columns are ‘LowRes-DL’ simulations with the trained AE model to serve as the turbulence parameterization scheme.
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Figure S 5: Snapshots of simulated water vapor mixing ratio (g,) att=0, 5, 10, 15, and 20 min for moist cases, with 6, =
2.6K (thefirsttothe third columns),and 8, = 5.0K (the fourth to the sixth columns), where the first and fourth columns
are the ‘Coarsened Truth’ simulations with a coarse resolution of 600 x 600 x 300m, the second and fifth columns are
the ‘LowRes-Smag’ simulations with the Smagorinsky scheme to deal with the SGS turbulence, and the third and sixth
columns are ‘LowRes-DL’ simulations with the trained AE model to serve as the turbulence parameterization scheme.

Manuscript text (Lines 205-238):

“At each step, the L, loss, Laplacian loss, as well as an extra loss term which is used to penal-
ized unreasonable model outputs are employed and accumulated to be the total loss of the current
training step, with which we use the Adam (Kingma and Ba, 2017) optimizer to adjust the DL model
parameters. In this study N = 12. To mitigate the influence of the potential rounding errors, double-
precision (float64) is employed throughout the training process.

The L, loss is written as:

£, = 2IM g~ xi I

where x is the tensor of the general physical state consisting of density potential temperature per-
turbation (6’), mixing ratio of water vapor perturbation (qv’), horizontal and vertical velocity (u, v,
w). M represents the LEX model (dynamical core and the SGS model, if any), x., is the initial state of
x, and x, is the truth state of x at the k' look-ahead step during training.

When training, it is found that the DL model can not distinguish the physical meaning of the in-
put variables and will generate unreasonable outputs in the very beginning, such as negative values
for water vapor, and meaningless background noise, which are against the laws of physics and will
strongly impact the integrated results of the numerical simulation in the next time step during the
training loop.

Thus, firstly, to penalize such unreasonalbe negative values that may be caused by the DL model,
an extra loss term is added, which is:



-qy, ifg, <0,

Loenal—neg =
pensire {o, ifq, > 0.

To mitigate background noise, a Laplacian loss as well as scaling parameters are further em-
ployed. Laplacian loss, which utilizes a Laplacian operator or Laplacian pyramid, is known to ef-
fectively improve image qualities by enhanceing details and reducing noise (Li et al., 2017; Didwania
et al., 2025). In this case, laplacian of the density potential temperature and mixing ratio of water
vapor perturbations are added to loss terms, which can be written as:

Liop = V*M*xty = Vx4, |13

A scaling parameter is also applied to the outputs of the DL model and each loss term to reduce
the background noise. For the model outputs, they are min-max scaled to the range of [0, 1] with the
min-max values of each grid point throught the training dataset. Itis designed to make all the outputs
of different variables keep the same order, and avoid adding unnecessary corrections to points that
have no variations in the training dataset. For the loss terms, the scaling parameter is also employed
to avoid penalizing points that have no variation in the training dataset during training, which is:

max(x) — min(x)

([max(x)] = [min(x)])*’

where the square brackets indicate taking min and max values of each height level in the training
dataset, and in the numerator, max and min functions find the extreme at each grid point in the en-
tire training dataset.

Thus to summarize, the loss function employed in this paper is written as:

fsca/e(x) =

1 N
-Etot = N Z(f;‘ca/e(x) : _£/2(X) + fscale(qv) ’ -[«penal—neg(qv) + fscale(X) : LLap(X))a
k=1

where N is the number of the look-ahead steps. It should be mentioned here that the training process
is quite sensitive to the initialization of the DL model parameters. Thus it begins with three look-ahead
steps as a pre-training strategy, and gradually adds up to six and twelve look-ahead steps to keep
the model’s numerical stability. ”

In line 203 it is explained that water vapor is clipped to positive values after each correction
time step. Could this be resolved with an extra loss term?

Response:

Yes, by containing the loss term which is used to penalize the negative values of water vapor
(mentioned in our response to Comment 1.2), this manual clipping is no more necessary now.
Thanks a lot for this suggestion. As has mentioned above, in our updated work, we applied a new
autoencoder model for training, and also improved our loss function. Now the loss function con-
sists of three parts, an L2 loss, a Laplacian loss, and a term that penalizes negative values of water
vapor. Itis further scaled with a designed scaling parameter. These updates can be found in section
2.2.2 in the revised manuscript from Line 205 to Line 238. With these improvements, the training
can now be successfully conducted without any value clipping, and the trained model realizes an
almost strictly symmetric structure in validation forecasts.



| would drop the end of the first paragraph in section 5.2, "This can be further proven...". It
comes across as over-explanatory and the last sentence is not proper English.

Response:

Thanks a lot for this suggestion, we have deleted this sentence.

Comment 1.5

line 336: the statement that running LEX on 1 GPU is as fast as running CM1 on 600 cores does
not follow from the numbers presented, it would require a strong scaling study from CM1 to
verify this, and if that scaling is not ideal, CM1 will not reach the LEX performance at all on
600 cores. So please indicate whether this statement follows from separate performance
measurements of CM1.

Response:

Thanks a lot for this suggestion. We have conducted the strong scaling test and found that the
reviewer is totally correct that the scaling is not ideal at all. The speedup reaches the maximum
with 64 CPU cores and will decline after that. As a result, our statement is not correct. We have
deleted the related words and revised the paper by comparing 64 CPU cores and one GPU, which
is around nine times faster for LEX with one GPU compared to CM1 with 64 CPU cores, using the
time step of 12 seconds and two seconds, respectively. The revised section 5.1 now has been:

Manuscript text (Lines 340-356):

Table 1. Computational performance comparison of CM1 and LEX. The CM1 was run using 64 cores of an AMD Ryzen Threadripper
3990X. The LEX was run on NVIDIA RTX A6000 GPU. No SGS models were used in CM1 or LEX simulations.

Model Resolution Time Step Hardware Integration  IO/Setup  Computing
(m) (s) (CPU/GPU) Time (min)  Time (s) Time (s)
CM1  100x100x100 2 CPU (64 cores) 20 40.00 789.00
LEX 100x100x100 2 GPU 20 171.97 548.01
100x100x100 12 GPU 20 171.97 84.75
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Figure 9: Strong scaling performance of CM1 on the AMD Ryzen Threadripper 3990X.

Table 2. Computational speed comparison of DL-based SGS model and conventional Smagorinsky Scheme, with the resolution being

600 x 600 x 300 m, and the 15-second time step for a 20-minute simulation test for each.

Model Hardware Parameterization IO/Setup Compilation Execution Model Inference
Scheme (s) (s) Time (s) Time (s)

LEX GPU N/A ~5 ~31 0.89 N/A

LEX CPU Smagorinsky ~5 ~28 43.28 N/A

LEX GPU Smagorinsky ~5 ~28 1.91 1.02

LEX+DL (fp32) GPU DL ~5 ~ 60 1.48 0.59

LEX+DL (fp64) GPU DL ~5 ~ 60 6.18 N/A

“ The computational costs are compared in this section. As mentioned in Section 1, LEX has better
numerical stability and is expected to show faster computing speed with JAX acceleration techniques.
Using the conventional CM1 model as the benchmark model, Table 1 shows that employing the same
time step of two seconds to run a 20-minute simulation, the total computing time for LEX is 789 s using
64 cores, while the LEX run takes 548 s on one GPU. Furthermore, at the resolution of 100x100x 100 m,
the longest time step for CM1 to maintain numerical stability is two seconds, but for LEX, it can be up
to twelve seconds, thanks to its acoustic-wave-filtering equations and the strong stability integration
scheme SSPRK3. As a result, LEX’s running time can be further reduced by a factor of 1/6. Meanwhile,
according to the strong scaling test shown in Figure 9, the speed-up factor for the 20-minute simula-
tion of CM1 reaches the maximum with 64 processors. That means in this 20-miniute simulation for
the warm bubble case, compared to the optimal speed-up performance of CM1 with 64 CPU cores,
LEX on a single GPU is around nine times faster.

Because the 20-minute simulation is a relatively short integration period, leading to the LEX setup
and just-in-time compilation time accounting for a significant fraction of the total running time. How-
ever, if we run the LEX for a substantially longer time, the compilation and setup time probably can
be ignored. This demonstrate the great application potential of LEX to run for long simulations.

The effectiveness of GPU acceleration is also shown in Table 2. Calculating with the same resolu-
tion and a 15-second time step for a 20-minute integration time, LEX with the Smagorinsky scheme
runs around 21 times faster on the GPU than on the CPU, excluding the just-in-time compilation time.”



Reference: | believe a reference to "JAX-Fluids: A fully-differentiable high-
order computational fluid dynamics solver for compressible two-phase flows"
(https://doi.org/10.1016/j.cpc.2022.108527) should be added as it closely aligns with
this work.

Response:

Thanks a lot, the references have been added.
Manuscript text (Lines 68-70):

“Existing work includes JAX-Fluids, a Python-based end-to-end differentiable CFD framework which
is designed with JAX for compressible single and two-phase flows (Bezgin et al., 2023, 2025a), and en-
ables end-to-end training of DL-based implicit LES models (Bezgin et al., 2025b).”

| believe the manuscript lacks a proper explanation of the applied boundary conditions. |
suspectyou are using periodic lateral boundaries and a sponge layer at the top? Please elab-
orate in the theoretical section.

Response:

It’s the periodic lateral boundaries and a free-slip layer at the top that are used in this paper.
Thanks for this reminder and we have declared the applied boundary conditions to the section
2.1.3 from Line 142 to Line 143.

Manuscript text (Lines 142-143):

“... Periodic boundary conditions are applied to the four sides and rigid, free-slip wall boundary
conditions are specified at the top and bottom of the domain. ...”

Comment 1.8

I would love to see a short example of a more realisticemergent cumulus case, and especially
whether the trained SGS parameterization from the warm bubble can be transferred to a
cloudy atmosphere.section.

Response:

Thanks a lot for your interest in our work. We’d love to provide a related case for you in our
upcoming work for the next version of LEX, and the implementation and testing of a cloud mi-
crophysics scheme in LEX is ongoing. However, as for this paper, it is LEX v1.6.0, which does not
contain the microphysics part.



The manuscript lacks an outlook with respect to missing components in LAX: microphysics,
radiation, surface scheme. It should be mentioned in the article what the status of these
elements are and how this limits the applicability of LAX.

Response:

Thanks for this reminder. We have now added the model outlook part to the revised manuscript
in the conclusion, from Line 405 to Line 409.

Manuscript text (Lines 406-410):

“LEX v1.6.0 is the initial model which has completed the initial accuracy tests and been validated
for the hybrid model training. However, now it is still an idealized model which does not contain the
microphysics and radiation scheme. This LEX version has already included a surface flux scheme
following Neale et al. (2010), though it was not tested in this study. The implementation of P3 micro-
physics (Milbrandt et al., 2021) is ongoing and will be tested in cloudy boundary layer cases. We will
also add the Rapid Radiative Transfer Model (RRTMG) (lacono et al., 2008) to LEX in the future.”

Thereis no multi-GPU benchmarks in the paper. | believe JAX with XLA can scale across many
GPU’s, does LAX also scale beyond a single device? Please elaborate in the performance
section.

Response:

The reviewer is correct that the present study demonstrates the model’s performance on a sin-
gle GPU and does not include multi-GPU or large-scale parallel simulations. Our original inten-
tion was to highlight that the model is designed with inherent support for parallelism thanks to its
implementation using the JAX framework, which provides automatic parallelization capabilities
with the Single-Program Multi-Data (SPMD) codes (referenced from: https://docs. jax.dev/en/
latest/sharded-computation.html), as well as mpi4jax (Hafner et al., 2021). The SPMD paral-
lelism can no doubt be effectively applied at the batch level, and we have uploaded the codes to
realize batch-level parallelism for model training. However, SPMD parallelism across the spatial do-
main is not plausible due to the usage of ghost points when we simulate subdomains, and mpi4jax
is the appropriate tool for domain decomposition and parallel computing. Our current priority is
to develop other physics modules (microphysics, radication, etc.). To further explain these in the
manuscript, we have added related elaborations in the conclusion part.

Manuscript text (Lines 411-416):

“Moreover, the LEX model is designed with inherent support for parallelism thanks to its imple-
mentation using the JAX framework, which provides automatic parallelization capabilities with the
Single-Program Multi-Data (SPMD) codes (Bradbury et al., 2018), as well as mpidjax (Hdfner et al.,
2021). However, SPMD parallelism across the spatial domain is not plausible due to the usage of
ghost points when we simulate subdomains, and mpi4jax is the appropriate tool for domain decom-
position and parallel computing. Now the parallelism of LEX v1.6.0 can only be performed at the
batch level. Related codes are provided on Github. ”


https://docs.jax.dev/en/latest/sharded-computation.html
https://docs.jax.dev/en/latest/sharded-computation.html

There is no mentioning of hyperparameter choices or tuning thereof in the SGS training sec-
tion. It could be nice to add a small exploration of this.

Response:

The updated AE model is trained for 88 epochs in total. The training process is manually tuned
based on the observed loss. The look-ahead step starts at 3 and progressively increases to 6 and
12, while the learning rate is decayed from 1le-3 to 1le-6. This information has also been added in
section 2.2.2 and the loss plot has been added to supplement as Figure S1 for readers’ reference.

Manuscript text (Lines 239-241):

N=3, Ir=1e-3 N=6, Ir=1e-3

81 |——Train Loss
— = TestLoss

7
6
§51
a4
3
2
1

Epoch

Figure S 1: Strong scaling performance of CM1 on the AMD Ryzen Threadripper 3990X.

“In this paper, the AE model is trained for 88 epochs, with the training process being manually
fine-tuned based on the observed loss trajectory. The learning rate is decayed from an initial value
of 1e-3 to a final value of 1e-6, which can be seen in Figure S1.”
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2 Response to Reviewer 2

Major comments

Comment 2.1

There are statements throughout the manuscript which are scientifically imprecise or lack
supporting evidence. For example:

+ lines 5 & 6” "Thus, developing SGS turbulence models for the gray zone requires new
LES models, which ... enable new approaches to develop SGS models”. | do not un-
derstand what the authors mean by this? To my understanding, an LES model already
contains a SGS model. Therefore, how can a new LES model enable the development
of an SGS model?

« Line 8: "The new LES model is capable of adequate parallelism ...”. How is this claim
supported? To my understanding, the LEX model is only run on a single GPU, and par-
allel simulations are not discussed at all.

« 21 & 22: ”The capability of LESs to simulate small-scale turbulence motion...”. This
sentence feels scientifically imprecise. LES is supposed to resolve large-scale motions
while only modeling the effect of small-scale turbulence on aforementioned large ed-
dies.

+ Line40: "GPU codes are known to run much faster than conventional Fortran or C codes
on CPUs”. In my opinion, this statement is too generic and scientifically imprecise.
While GPUs leverage massive thread-level parallelism, achieving actual code speed up
is highly dependent on specific applications.

+ Lines 68 & 69: "Existing studies have also shown that JAX-GPU codes enable ... less
computational costs when the problem sizes become quite large”. What do the authors
mean by this? Surely, the computational cost can not decrease with increasing problem
size? What does "quite large” mean?

« Line 298: ”... float64 convolutions are not supported by XLA now,...”. In my opinion, this
is not true. float64 support is backened (i.e. hardware) specific. The NVIDIA A6000 GPU
does in fact not natively support float64. However, NVIDIA A100 or H100 GPUs provide
float64 support on the hardware side. Please correct this statement.

Response:

Thanks for these questions, our responses and revisions of the article are listed below:

 Line5&6:
The reviewer is correct that a standard LES framework inherently contains an SGS model.
We apologize for the lack of clarity in our original phrasing, which caused confusion. Our in-
tended meaning was not that a new LES model would contain or directly generate another
SGS model. Rather, we aimed to convey that developing new SGS models for the gray zone
first requires a novel type of computationally efficient LES framework. This platform must be
capable of rapid, large-domain simulations to facilitate the testing of the new SGS model, and
also, in this paper, enable a data-driven SGS model trained by the hybrid approach, which
needs it to allow automatic differentiation. In other words, a new, high-performance mod-
eling framework is a prerequisite that will enable the subsequent development of new SGS

11



models for gray-zone simulations. Following the reviewer’s suggestion, we have revised the
manuscript to clarify this point. The amended text now reads:

Manuscript text (Lines 5-6):

“Thus, a novel LES framework is required to enable the development of new SGS approaches for
the gray zone.”

+ Line 8:

It is correct that the present study demonstrates the model’s performance on a single GPU
and does not include multi-GPU or large-scale parallel simulations. Our intention was to
highlight that the model is designed with inherent support for parallelism thanks to its im-
plementation using the JAX framework, which provides automatic parallelization capabili-
tieswith the Single-Program Multi-Data (SPMD) codes (referenced from: https://docs. jax.
dev/en/latest/sharded-computation.html)aswellas mpi4jax (Hafneretal.,2021). How-
ever, we agree that the original phrasing ("is capable of adequate parallelism") could be mis-
interpreted as a claim that we have already tested and scaled it across multiple devices, which
was not the focus of this paper before, because we cared more about the novel parameteri-
zation model. Also, though the parallelism can be effectively applied at the batch level, and
the related codes have been provided on Github, now SPMD parallelism across the spatial
domain is not plausible due to the usage of ghost points when we simulate subdomains, and
mpi4jax is the appropriate tool for domain decomposition and parallel computing. Our cur-
rent priority is to develop other physics modules (microphysics, radication, etc.). To fix this
misunderstanding and further give explanations, we have deleted this sentence in the ab-
stract and added related elaborations in the conclusion part.

Manuscript text (Lines 411-416):

“Moreover, the LEX model is designed with inherent support for parallelism thanks to its imple-
mentation using the JAX framework, which provides automatic parallelization capabilities with the
Single-Program Multi-Data (SPMD) codes (Bradbury et al., 2018), as well as mpidjax (Hdfner et al.,
2021). However, SPMD parallelism across the spatial domain is not plausible due to the usage of
ghost points when we simulate subdomains, and mpidjax is the appropriate tool for domain decom-
position and parallel computing. Now the parallelism of LEX v1.6.0 can only be performed at the
batch level. Related codes are provided on Github.”

» Line 21 &22:
The reviewer is correct to point out this fundamental principle of LES. Our original phrasing
blurred the critical distinction between resolving large-scale motions and modeling the ef-
fects of sub-filter-scale (SGS) turbulence. We have revised the sentence to precisely reflect
the methodology of LES, acknowledging that it resolves the large-scale eddies and parame-
terizes the influence of the smaller, unresolved scales. The modified text now reads:

Manuscript text (Lines 19-22):

“... The capability of LES to resolve large, energy-containing turbulent eddies and model effects
of SGS processes on these resolved scales, as well as their interactions with other processes such as
clouds and radiation, makes it a unique and valuable tool in atmospheric science.”

12
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https://docs.jax.dev/en/latest/sharded-computation.html

+ Line 40:
We agree that the performance advantage of GPUs is not universal and is indeed highly con-
tingent upon the application’s suitability for massive parallelism and the quality of the imple-
mentation. Our original statement was overly broad. Our intention was to highlight the signif-
icantspeedup with GPU acceleration for atmospheric models. The cited references (Demeshko
etal.,2013; van Heerwaarden et al., 2017, etc.) specifically demonstrate significant speedups
for atmospheric modeling codes when ported to GPUs. There have also been much existed
work showing the outstanding performance of GPU codes, such as Sun et al, 2018; Sun et al,
2023, etc.
To reflect the reviewer’s valid point and provide a more precise and scientifically robust state-
ment, we have revised the text to include the necessary context and conditioning. The modi-
fied sentence now reads:

Manuscript text (Lines 39-41):

“For computationally intensive, highly parallelizable applications like atmospheric models, GPU-
accelerated codes have been demonstrated to run much faster than conventional CPU-based im-
plementations in Fortran or C (Demeshko et al., 2013; Price et al., 2014; Schalkwijk et al., 2015; van
Heerwaarden et al., 2017; Sun et al., 2018, 2023). ...”

+ Line 68 & 69:
The reviewer is correct that computational cost cannot be decreased as the problem size be-
comes larger, which is an imprecise expression here. The comparisons for computational
costs are contingent upon specific research problems. Upon careful consideration, we deleted
this sentence from the manuscript.

+ Line 298:
Yes, float64 is supported by some hardware side. However, it is XLA (Accelerated Linear Alge-
bra) that doesn’t support 64-bit convolutions, which is software or compiler side, and does not
conflict with the hardware side. This statement comes from JAX’s official documents, which
canbereferencedfromhttps://docs. jax.dev/en/latest/notebooks/Common_Gotchas_
in_JAX.html:
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= A N\ JAX-The... O X 20
import jax
import jax.numpy as jnp
' from jax import random
' jax.config.update("jax_enable_x64", True)
x = random.uniform(random.key(@), (1000,), dtype=jnp.float64)
Xx.dtype Y
Q Search * 4+ K
Getting started CaVeatS
Installation
1. XLA doesn't support 64-bit convolutions on all backends!
Quickstart: How to think in JAX
. JAX - The Sharp Bits .
LN . .
JAX 101 v . Miscellaneous divergences from NumPy
Resources, guides, and references While jax.numpy makes every attempt to replicate the behavior of numpy’s API, there do exist corner cases

R i where the behaviors differ. Many such cases are discussed in detail in the sections above; here we list
ey concepts .
several other known places where the APIs diverge.

Resources and Advanced Guides Vv

Developer notes v « For binary operations, JAX's type promotion rules differ somewhat from those used by NumPy. See Type
5 2 Promotion Semantics for more details.
Extension guides v —
Nt o + When performing unsafe type casts (i.e. casts in which the target dtype cannot represent the input
otes
value), JAX's behavior may be backend dependent, and in general may diverge from NumPy's behavior.
Public API: {Jax) package v Numpy allows control over the result in these scenarios via the casting argument (see
About the project np.ndarray.astype ); JAX does not provide any such configuration, instead directly inheriting the
Frequently asked questions (FAQ) behavior of XLA:ConvertElementType.

What is the motivation to choose the conventional Smagorinsky model as a baseline for com-
parison? It is well known that the dynamic Smagorinsky model outperforms the classical
model in many scenarios. This would be a much stronger baseline for benchmarking the
DL-based SGS model.

Response:

We thank the reviewer for this insightful suggestion. We fully agree that the dynamic Smagorin-
sky model (DSM) generally provides more accurate results than the standard model and represents
a more advanced baseline.

Our choice of the conventional Smagorinsky model was primarily motivated by the specific
scope and focus of this initial study. The primary objectives here are: (1) to introduce and validate
the new LEX model itself, and (2) to conduct the pretraining with the hybrid modeling approach.
The conventional Smagorinsky model, with its simplicity, numerical stability, and low computa-
tional cost, serves as a clear and stable benchmark for this purpose. It effectively illustrates the
performance level of a widely recognized, first-generation SGS parameterization, thereby clearly
highlighting the limitations we aim to address with our new method.

Implementing and thoroughly testing the DSM will be valuable, but it would introduce addi-
tional complexity, which is beyond the core focus of this paper. We envision the DSM as an excel-
lent benchmark for the future and thank the reviewer for this, which we may incorporate into our
future work.
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Comment 2.3

| have the following comments and questions regarding model training:

+ (@) What is the time step size of the coarse-grained simulation? The time step size of the
high-resolution simulation is 5s. While the spatial coarse-graining factors are explicitly
mentioned, the authors do not mention whether temporal coarse-graining is also ap-
plied.

+ (b) What is the rationale for choosing a 6x CG in the horizontal direction and a 3x CG in
vertical direction?

« (c) Please specify the loss functional explicitly. Specifically, the mean-squared error of
which quantities is used?

+ (d) Please provide more information regarding hyperparameters of the model training.
How many optimization steps are used during training? What is the final training loss
level? What is the stopping criterion? What is the learning rate? Is there a learning rate
scheduler?

+ (e) The authors mention, that the training for the dry case can "achieve asymptotic con-
vergence” while it "shows oscillatory convergence behavior” for the moist case. Please
add loss plots for both scenarios to the manuscript (e.g., to the appendix).

+ (f) Are the authors using custom implementations to propagate the AD gradients
through the BiCGSTAB solve?

Response:
Thanks for the comments. Here are our reply:

+ (a) Temporal coarse-grainingis not applied in the original submitted version of this work. The
time step for low-resolution training is still 5 seconds before. However, in the latest version,
we have applied temporal coarse-graining with a 15-second time step in the training and test-
ing processes, achieving faster simulation speed as well as good numerical stability. We have
added this temporal information in the revised manuscript.

Manuscript text (Lines 186-187):

“Temporal coarse-graining is employed in the training and testing processes, with a 15-second
time step for the numerical simulation.”

+ (b) This is because for the real atmosphere, the horizontal scale is typically much larger than
the vertical scale, therefore the vertical grid spacing is typically smaller. The chosen coarse-
graining factors (6x horizontal, 3x vertical) are intended to roughly reflect this common prac-
tice.

+ (c) In our updated code version, we added a loss term to penalize negative values of water
vapor generated by the DL model, and a Laplacian loss term to reduce background noise.
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Scaling parameters are also applied to the outputs of the DL model and the loss terms for fur-
therimprovement. Now the loss function contains three parts: the L2 loss, the Laplacian loss,
and the penal-neg loss. For the L2 loss, it is calculated with the density potential temperature
perturbation (8’), pressure perturbation (z’), mixing ratio of water vapor perturbation (g,),
horizontal and vertical velocity (u, v, w). For the Laplacian loss, it is calculated with 8" and g, .
And for the penalize-neg loss, it is only calculated with g, .

Related information has been provided in section 2.2.2.

Manuscript text (Lines 205-238):

“At each step, the L, loss, Laplacian loss, as well as an extra loss term which is used to penal-
ized unreasonable model outputs are employed and accumulated to be the total loss of the current
training step, with which we use the Adam (Kingma and Ba, 2017) optimizer to adjust the DL model
parameters. In this study N = 12. To mitigate the influence of the potential rounding errors, double-
precision (float64) is employed throughout the training process.

The L, loss is written as:

-Elz = 1fll/\/lkxl‘() — Xty ”%’

where x is the tensor of the general physical state consisting of density potential temperature per-
turbation (6’), mixing ratio of water vapor perturbation (qv’), horizontal and vertical velocity (u, v,
w). M represents the LEX model (dynamical core and the SGS model, if any), x., is the initial state of
x, and xi, is the truth state of x at the k' look-ahead step during training.

When training, it is found that the DL model can not distinguish the physical meaning of the in-
putvariables and will generate unreasonable outputs in the very beginning, such as negative values
for water vapor, and meaningless background noise, which are against the laws of physics and will
strongly impact the integrated results of the numerical simulation in the next time step during the
training loop.

Thus, firstly, to penalize such unreasonalbe negative values that may be caused by the DL model,
an extra loss term is added, which is:

{— qvijk» ifqvijx <0,
Lpena/—neg =
0, I'qu,"j,k > 0.

To mitigate background noise, a Laplacian loss as well as scaling parameters are further em-
ployed. Laplacian loss, which utilizes a Laplacian operator or Laplacian pyramid, is known to ef-
fectively improve image qualities by enhanceing details and reducing noise (Li et al., 2017; Didwania
et al., 2025). In this case, laplacian of the density potential temperature and mixing ratio of water
vapor perturbations are added to loss terms, which can be written as:

LLap = ||V2kato - sztk”%

A scaling parameter is also applied to the outputs of the DL model and each loss term to reduce
the background noise. For the model outputs, they are min-max scaled to the range of [0, 1] with the
min-max values of each grid point throught the training dataset. Itis designed to make all the outputs
of different variables keep the same order, and avoid adding unnecessary corrections to points that

have no variations in the training dataset. For the loss terms, the scaling parameter is also employed
to avoid penalizing points that have no variation in the training dataset during training, which is:
fscaled(X) = max(x)—miﬁ(x) 3>
([max(x)]-[min(x)])

where the square brackets indicate min-max values of each height level in the training dataset,
and the upper part is min-max values of each grid point in the training dataset.

Thus to summarize, the loss function employed in this paper is written as:
Liot = 1N Z/I(V:1 (fscated (X) L (X) + fscared(qy) - Lpena/—neg(qv) + fscaled (X) - LLap(X))’
where N is the number of the look-ahead steps. It should be mentioned here that the training process
is quite sensitive to the initialization of the DL model parameters. Thus it begins with three look-ahead

steps as a pre-training strategy, and gradually adds up to six and twelve look-ahead steps to keep
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the model’s numerical stability. ”

+ (d) Theupdated modelistrained for 88 epochsin total. The training process is manually tuned
based on the observed loss. The look-ahead step starts at 3 and progressively increases to 6
and 12, while the learning rate is decayed from 1e-3 to le-6. This information has also been
added in section 2.2.2 and the loss plot has been added to supplement as Figure S1.

Manuscript text (Lines 239-241):

81 |-——Train Loss N=3, Ir=1e-3 N=6, Ir=1e-3

= = TestLoss
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Figure S 1: Strong scaling performance of CM1 on the AMD Ryzen Threadripper 3990X.

“In this paper, the AE model is trained for 88 epochs, with the training process being manually
fine-tuned based on the observed loss trajectory. The learning rate is decayed from an initial value
of 1e-3 to a final value of 1e-6, which can be seen in Figure S1.”

+ (e) The loss plot has been shown and been added to the supplement.

+ (f) Not really. We did not use a custom implementation. The gradients through the BiCGSTAB
solver are handled entirely by the high-level interface provided by the JAX framework, the
jax.scipy.sparse.linalg.bicgstab function, which can be referenced from: https://docs. jax.
dev/en/latest/_autosummary/jax.scipy.sparse.linalg.bicgstab.html. Leveraging
this built-in functionality ensures both the correctness of the gradient computation and the
numerical stability of the adjoint method, which might be challenging to achieve with a cus-
tom implementation.
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jax.scipy.sparse.linalg.bicgstab

jax.scipy.sparse.linalg.bicgstab(A, b, x0=None, *, tol=le-05, atol=0.0,
maxiter=None, M=None) [source]

Use Bi-Conjugate Gradient Stable iteration to solve Ax = b.

The numerics of JAX's bicgstab should exact match SciPy's bicgstab (up to numerical precision), but
note that the interface is slightly different: you need to supply the linear operator A as a function

instead of a sparse matrix or LinearOperator .

As with cg , derivatives of bicgstab are implemented via implicit differentiation with another
bicgstab solve, rather than by differentiating through the solver. They will be accurate only if both

solves converge.

Comment 2.4

| have the following comments and questions regarding the chosen parameterization and
DL model:

» The standard WENO3- and WENO5-JS schemes are known to be overly dissipative.
What is the motivation to choose this parameterization?

+ The DL-SGS model output is applied to 6, u, v, w and qv. Does the same hold true for
the Smagorinsky model? Is the mixing ratio of water vaport qv a transported quantity
oris it post-processed?

Response:

Thanks a lot for the comments. Here are our reply:

« Our primary motivation was numerical robustness and stability, especially for long-time inte-
gration of turbulent flows in the atmospheric boundary layer, which can develop sharp gra-
dients and discontinuities. The WENO-JS scheme provides a proven and computationally ef-
ficient mechanism to eliminate spurious numerical oscillations. We deemed the guaranteed
stability of WENO-JS to be a critical advantage. Thanks for this question and we have added
this explanation to the manuscript in section 2.1.2.

Manuscript text (Lines 134-135):

“... The WENO scheme provides a proven and computationally efficient mechanism to eliminate
spurious numerical oscillations. ...
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+ Yes, it’s the same for the Smagorinsky model, although the viscosity for momentum differs
from the diffussivity for scalars. qv is a transported quantity.

Comment 2.5

Validation of the LEX solver with CM1 results are purely qualitative. Please add quantita-
tive comparisons if possible. The authors mention that "results of the LEX are identical with
those of CM1”. This is an overstatement in my opinion, as Fig. 2 shows visible discrepancies
between the two simulations. For example, the lower parts of the thermal are clearly differ-
ent at later times and the structure of the rotors show differences. The authors should tone

down this claim or provide quantitative evidence for it.

Response:
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Figure 3: The correlation coefficient (R), mean squared error (MSE), and multi-scale structural similarity (MS-SSIM) for
CM1 and LEX simulation results of density potential temperature (a, c, ), and water vapor mixing ratio (b, d, f).

Thanks a lot forthe comment. We have added Figure 3in the revised manuscript, which presents
the correlation coefficient (R), mean squared error (MSE), and multi-scale structural similarity (MS-
SSIM) between CM1 and LEX. Results show that the simulations of LEX are highly identical with CM1
before the warm bubble reaches the top boundary, with R and MS-SSIM being above 0.99, and MSE
keeping being almost zero. After that, as has been mentioned in the manuscript, because LEX cal-
culates pressure based on the pseudo-compressible approximation, subtle differences appear af-
ter the thermal reaches the upper boundary of the domain in pressure simulations. Thus, the last
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figures look a little bit different, and the evaluation metrics also present an obvious change after
the time the bubble reaches the upper boundary. Now the related words have been:

Manuscript text (Lines 247-255):

“ Comparing the two pairs in Figure 2, it is evident that the simulation results of the LEX model
demonstrate excellent agreement with those of CM1, regardless of the initial potential tempera-
ture perturbations, indicating the reliability and accuracy of the LEX model code in JAX. Also, results
shown in Figure 3 demonstrate excellent performance metrics of LEX. The correlation coefficient (R)
and multi-scale structural similarity (MS-SSIM) maintain high values and mean squared error (MSE)
maintains low levels throughout the simulation period for two tested cases. Figure S2 and Figure S3
further confirm the robustness of the LEX model by presenting the simulated results for the mixing
ratio of water vapor and pressure perturbations with 6. = 1K and 6. = 5K. However, because LEX
calculates pressure based on the pseudo-compressible approximation, subtle differences appear af-
ter the thermal reaches the upper boundary of the domain in pressure simulations.

| would encourage the authors to verify the implementation of the AD gradients with finite-
difference analogs. A simple test case can be chosen in which only a single parameter of
the DL-based model is optimized with AD and with FD. The error between the two should
converge as the step size in the FD approximation approaches zero.

Response:

Thank you for this suggestion. However, after careful consideration, we think the chosen JAX
framework can already provide mathematical guarantees. Firstly, the AD implementation in this
paper used jax.grad to realize. Thisis not a numerical approximation butis a method for comput-
ing analytical gradients based on the chain rule. More information about JAX’s AD can be accessed
fromhttps://docs. jax.dev/en/latest/automatic-differentiation.html. Also, JAX hasbeen
developing for several years till now, and has been widely used and examined by numbers of sci-
entific projects. Its developers have also verified its mathematical correctness strictly. Therefore,
using JAX’s AD is considered a reliable and standard practice in the machine learning field, and its
validity does not typically require re-verification by end-users for each specific application. What’s
more, though we does not provide the direct AD-FD test, the successfull convergence of the up-
dated AE model can be another form of validation.

The authors mention the trained DL model can "develop the proper symmetric structure of
the thermal”. This statement is not true. Figs. 4 and 6 clearly show that the DL model breaks
symmetry. The authors themselves acknowledge this fact later in Section 4.2.2.

Response:

We agree with the reviewer that in the initial submitted article, the predicted structure of the
hybrid model was not perfectly symmetric. We have now updated our DL model with an autoen-
coder (AE) model (see Figure 1), whose model structure is attached below and also updated in the
manuscript. The loss functions (detailed in the response to Comment 2.3 above) have also been
revised to improve the hybrid model’s performance. The updated AE model runs faster and is val-
idated to keep the bubble’s structure almostly strictly symmetric for the moist case (Figure 5 and
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Figure S5).
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Figure 1: Model Architecture for the three-dimensional autoencoder neural network, where a X b X ¢ X d means
widthxlengthxheightxchannel. The inputs include the density potential temperature perturbation (6”), pressure per-
turbation (z’), mixing ratio of water vapor perturbation (g, ), horizontal and vertical velocity (u, v, w), and the outputs
are SGS corrections for the density potential temperature (8), mixing ratio of water vapor (g, ), horizontal and vertical
velocity (u, v, w).
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Figure 5: Snapshots of simulated potential temperature perturbations (6’) att=0, 5, 10, 15, and 20 min, with 6, = 2.6K
(the first to the third columns), and 8. = 5.0K (the fourth to the sixth columns), where the first and fourth columns
are the ‘Coarsened Truth’ simulations with a coarse resolution of 600 x 600 x 300m, the second and fifth columns are
the ‘LowRes-Smag’ simulations with the Smagorinsky scheme to deal with the SGS turbulence, and the third and sixth
columns are ‘LowRes-DL’ simulations with the trained AE model to serve as the turbulence parameterization scheme.
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Figure S 5: Snapshots of simulated water vapor mixing ratio (g,) att=0, 5, 10, 15, and 20 min for moist cases, with 6, =
2.6K (thefirsttothe third columns),and 8, = 5.0K (the fourth to the sixth columns), where the first and fourth columns
are the ‘Coarsened Truth’ simulations with a coarse resolution of 600 x 600 x 300m, the second and fifth columns are
the ‘LowRes-Smag’ simulations with the Smagorinsky scheme to deal with the SGS turbulence, and the third and sixth
columns are ‘LowRes-DL’ simulations with the trained AE model to serve as the turbulence parameterization scheme.

Comment 2.8

Itis mentioned that the mixing ratio of water vapor has to be clipped after application of the
DL model (Section 2.2.2). | am interested how often this occurs for the trained model over
the course of a simulation.

Response:

Before for each correcting step the clipping procedure should be done, but with the updated
AE model and loss function (see details in the response to Comment 2.3 above and Figure 5 and
Figure S5 in the manuscript), now there’s no need to clip water vapor during the training process
as well as the validation simulations any more.

Comment 2.9

| agree with the authors that the DL-based SGS model outperforms the conventional
Smagorinsky model for the thermal test case. To my understanding, the DL model is applied
after a full integration step while the Smagorinsky model is applied per stage (i.e., thrice per
integration step). Can the authors elaborate on this? It would be very interesting to visual-
ize the output of the DL model to try to understand its improved SGS modeling capabilities.
Have the authors done such analyses? Is the model output interpretable? What conclusions
can be drawn from it?
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Response:

This is not exact for the Smagorinsky model. We only calculate the Smagorinsky tendencies
once, and then they are kept as constant and applied in sub-steps of the SSPRK3 integration.

We sincerely thank the reviewer for this constructive suggestion. We have visualized the SGS
corrections generated by the classic Smagorinsky and the DL model. Updated comparisons and
analyses have been added to a new Section ‘4.3 Comparisons and Potential Physical Insights’.
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Figure 7: The simulated potential temperature perturbation (8’) at t =5, 10, and 15 min, with 8, = 2.6K. The first and
the second columns are the forecasts of conventioanl Smagorinsky and DL-based SGS model. The third and the fourth
columns are the differences between parameterized and non-parameterized simulation results of the conventional
Smagorinsky and the DL-based SGS model. The fifth column is the SGS corrections generated by the DL model.
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Figure 8: The simulated vertical velocity (w) at t =5, 10, and 15 min, with 6. = 2.6K. The first and the second columns
are the forecasts of conventioanl Smagorinsky and DL-based SGS model. The third and the fourth columns are the
differences between parameterized and non-parameterized simulation results of the conventional Smagorinsky and
the DL-based SGS model. The fifth column is the SGS corrections generated by the DL model.

Manuscript text (Lines 304-337):

“In this section, the differences between the parameterized and non-parameterized simulations
of the conventional Smagorinsky scheme and the AE model are compared, and the SGS corrections
generated by the AE model are analyzed, aiming to find the potential reasons that the conventional
Smagorinsky scheme fails to develop the correct rotor structure, and the difference that the hybrid
model has brought. Through this way, we hope to give some physical insights from the DL-based SGS
model and make some contributions to the development of the interpretable DL.

The warm bubble case is set with an initial temperature perturbation, which causes an upward
buoyancy and thus gives the bubble a vertical acceleration. When the bubble rises, the cold air on
each side needs to descend for compensation, which will then cause vertical velocity gradients and
further form strong velocity shear layers at the bubble boundaries. In the shear layers, according
to the vorticity equation, vorticity will thus be generated due to the spatial gradients of potential
temperature, which is V6. But when the resolution becomes coarse, small-scale processes and some
key physics information, such as temperature gradients, cannot be appropriately resolved, and this
causes the LowRes simulations to be unable to generate the rotor structure.

Figure 7 and Figure 8 present the forecasted potential temperature perturbation and vertical ve-
locity from the conventional Smagorinsky scheme and the AE model, respectively. The forecast dif-
ferences induced by each scheme, and the corresponding SGS corrections generated by the DL model
are also shown. Results for the additional physical quantities (u, v, and q,) are provided in the sup-
plement (Figure S6, S7, and S8).

As evidenced by Figure 7 and Figure 8, the Smagorinsky scheme and the AE model exhibit obvi-
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ously different impact on the development of the warm bubble at the very beginning. The Smagorin-
sky mainly imposes a cooling effect to the warm bubble, and weakens its upward motion. But the
AE model sustains warming and the upward motion in regions that are to further develop the rotor
structure. This significant difference is key to the later development of the warm bubble.

As the conventional Smagorinsky is a diffusion model, it naturally diffuse warm temperature anomaly
to surrounding regions. However, the diffusivity of the Smagorinsky model is larger when the flow de-
formation is strong, so the diffusion mainly happens below the warm bubbles’ top, where wind shears
exist. It produced a cooling effect near the top of the rising thermal and warming effect below. This
can explain Figure 4, where the classic Smagorinsky helps correct the warm bubble’s rising speed
compared to the LowRes results, as the Smagorinsky scheme greatly lowers down the temperature
at the top. Furthermore, it aligns with Figure 6 and Figure 8, where the Smag forecast has the same
energy and vertical velocity peak with the hybrid model, but it presents smaller values, even smaller
energy than the LowRes simulation in Figure 6.

However, the classic Smagorinsky tends to produce overly diffusive corrections, which limits it to
resolve fine-scale structures and maintain the necessary energy for the warm bubble to develop the
rotor structure. The corrections generated by the AE model are much more detailed and accurate. As
is illustrated in Figure 7, SGS corrections of the AE model always help maintain the strength of the
potential temperature at the critical part of the warm bubble in a very fine way, such as the rising
top at the key beginning, and the rotors on the sides after they have been maturely developed. This
makes the hybrid model keep the energy for rising and developing the rotors. These detailed struc-
tures are probably essential to enable the model to model the small-scale physics information which
is unresolvable by the coarse grid. Similarly, Figure 8 shows that the AE model’s corrections exhibit
detailed structures and help keep the upward motion.

Comment 2.10

| have the following comments and questions regarding the computing time comparison:

+ The performance comparison in Section 5 is somewhat misleading. The authors claim
that they achieve a 92:1 speed up when comparing the LEX code run on an A6000 GPU
with the CM1 code run on a single CPU core. | think the authors are aware that such a
comparison is not meaningful at all. Can the authors comment on this?

« In Section 5.2, the wall-clock time of the DL-based SGS model is compared with the
Smagorinsky model. Given the short simulation time, the wall-clock time measure-
ments are strongly influenced by the duration of the just-in-time compilation. | would
encourage the authors to simply evaluate the Smagorinsky model and the DL-based
SGS model on their own to provide more meaningful WCT measurments or to exclude
the duration of the jit-compilation from the performance measurements.

Response:

Thanks a lot for the suggestions. Here are our reply:

« We thank the reviewer for this important comment, which rightly challenges the meaningful-
ness of our original performance comparison. We admit that it is rare to use only one CPU core
to run CM1. In Table 1, we also provided the benchmark simulation result with 64 cores. Our
initial goal was to provide a conceptual baseline by adding the comparison for one GPU and
one CPU, and to illustrate the equivalent number of CPU cores compared to one GPU when
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applying different time steps, like 12 seconds for LEX and 2 seconds for CM1, as we don’t have
so many computational resources to conduct a real test. However, we recognize that com-
paring one GPU to a single core of a CPU is not a fair representation of this concept. Also, by
conducting the strong scaling test (the newly added Figure 9), we find that 64 cores will not
bring a linear speedup over one core, which means 92 is also not the right number. Further-
more, the statement in Line 337, which claims ‘running LEX on one GPU is as fast as running
CM10on 600 CPU cores’,isalso not real, because the speedup is found to achieve the maximum
with 64 cores. As a result, we have deleted these two comparisons and the revised paper by
comparing 64 CPU cores and one GPU, which is around nine times faster for LEX with one GPU
compared to CM1 with 64 CPU cores, using the time step of 12 seconds and two seconds, re-
spectively. Our revised manuscript regarding the computational cost comparison for LEX and
CM1 has been shown below.
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Figure 9: Strong scaling performance of CM1 on the AMD Ryzen Threadripper 3990X.

Manuscript text (Lines 340-356):

“The computational costs are compared in this section. As mentioned in Section 1, LEX has better
numerical stability and is expected to show faster computing speed with JAX acceleration techniques.
Using the conventional CM1 model as the benchmark model, Table 1 shows that employing the same
time step of two seconds to run a 20-minute simulation, the total computing time for LEX is 789 s using
64 cores, while the LEX run takes 548 s on one GPU. Furthermore, at the resolution of 100x100x 100 m,
the longest time step for CM1 to maintain numerical stability is two seconds, but for LEX, it can be up
to twelve seconds, thanks to its acoustic-wave-filtering equations and the strong stability integration
scheme SSPRK3. As a result, LEX’s running time can be further reduced by a factor of 1/6. Meanwhile,
according to the strong scaling test shown in Figure 9, the speed-up factor for the 20-minute simula-
tion of CM1 reaches the maximum with 64 processors. That means in this 20-miniute simulation for
the warm bubble case, compared to the optimal speed-up performance of CM1 with 64 CPU cores,
LEX on a single GPU is around nine times faster.

Because the 20-minute simulation is a relatively short integration period, leading to the LEX setup
and just-in-time compilation time accounting for a significant fraction of the total running time. How-
ever, if we run the LEX for a substantially longer time, the compilation and setup time probably can
be ignored. This demonstrate the great application potential of LEX to run for long simulations.

The effectiveness of GPU acceleration is also shown in Table 2. Calculating with the same resolu-
tion and a 15-second time step for a 20-minute integration time, LEX with the Smagorinsky scheme
runs around 21 times faster on the GPU than on the CPU, excluding the just-in-time compilation time.”

27



+ Thanks a lot for this suggestion. We have now updated Table 2 with the 10/Setup time, com-
pilation time, and computing time listed separately. As the newly used AE model allows a
15-second time step, now in this revised version, all the computing time is tested with this
time step. Related analyses have also been updated in section 5.2. Moreover, as it is found
that the newly trained model with the AE model and the updated loss function can conduct
forecasts with the single precision of float32, comparisons and analyses for the mixed preci-
sion mode has been deleted. But we still includes the double precision result for the hybrid
model as a note for the reader that float64 convolutions are not supported by XLA now.

Table 2. Computational speed comparison of DL-based SGS model and conventional Smagorinsky Scheme, with the resolution being

600 x 600 x 300 m, and the 15-second time step for a 20-minute simulation test for each.

Model Hardware Parameterization I0/Setup Compilation Execution Model Inference
Scheme (s) (s) Time (s) Time (s)

LEX GPU N/A ~5 ~31 0.89 N/A

LEX CPU Smagorinsky ~5 ~28 43.28 N/A

LEX GPU Smagorinsky ~5 ~28 1.91 1.02

LEX+DL (fp32) GPU DL ~5 ~ 60 1.48 0.59

LEX+DL (fp64) GPU DL ~5 ~ 60 6.18 N/A

Manuscript text (Lines 357-375):

“LEX can be trained with a DL-based SGS model and succeed in numerical predictions in the gray
zone, but whether such physics-DL hybrid models can be applied in real weather forecasts also relies
on their computational costs. The parameterizations for SGS processes are only one part of the entire
numerical weather predictions, thus, they are expected to run at a fast speed. Since the DL model is
trained with the double-precision float64, its computing time is first evaluated with the same preci-
sion to run the hybrid model. Table 2 shows that when running with float64, the LEX-DL model with
a 15-second time step takes around three times of the computing time of the LEX-Smag model using
float32 with a same time step after compilation, and meanwhile its compilation time is two times
slower, which is not satisfying performance. One reason for this is float64 needs more computational
resources than float32, and the other is float64 convolutions are not supported by XLA now, which
further increases its computational costs.

However, though the double precision is necessary for the training of the LEX-DL model, a single-
precision of float32 is found to be applicable for the evaluations, as the model parameters have al-
ready been sufficiently trained and the DL model will not cause some tiny noise towards the stable
thermal structure. Thus, the computing efficiency of the DL-based SGS model is further enhanced. As
is shown in Table 2, using the same time step of 15 seconds, the LEX-DL model with a single precision
can achieve 76% computing time reduction than that with the double precision, which only needs
1.48s to complete the integration task after the compilation.

A further comparison is also conducted and it is found that though the compilation time is two
times slower, the fastest speed the hybrid model can achieve now after compilation is faster than
that of the LEX-Smag model with the single precision, which means the DL model can enable a lower
computational expense for prolonged forecasts.”
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The authors should consider citing JAX-Fluids [1, 2] and [3]. JAX-Fluids is a JAX-based fully-
differentiable CFD solver for compressible single- and two-phase flows, which is closely con-
nected with the present research. Specifically, JAX-Fluids implements functionality for LES
and has been used for end-to-end training of implicit LES models [3].

Response:

Thanks a lot, the references have been added.
Manuscript text (Lines 68-70):

“Existing work includes JAX-Fluids, a Python-based end-to-end differentiable CFD framework which
is designed with JAX for compressible single and two-phase flows (Bezgin et al., 2023, 2025a), and en-
ables end-to-end training of DL-based implicit LES models (Bezgin et al., 2025b).”

Minor comments

What is the reason for v1.4 in the title of the manuscript? Maybe | have missed it, but it is
not mentioned in the remainder of the paper. Is the present work building upon a previous
release of the LEX solver?

Response:

LEX v1.4 was the first released version for public use. Before it was published, which was also
during the DL training process, we had fixed some initial errors found during this period. When
writing this paper, we called it v1 at first. However, the version in GitHub was already v1.4 at that
time, and the editor required us to use the same version number for the paper. Thisis why itisv1.4
in the title. Moreover, as we have updated our work, the code version has also been updated to
v1.6.0 now. In our next paper, when we complete some other sections like microphysics, radiation,
etc, maybe we will use LEX v2.x as the title.

Insection 2.1.1, some variables are not defined, including e, cp, cv, w, g, ps, R. While | assume
that many of these quantities are well known (presumably, cp is the heat capacity at constant
pressure), it would improve clarity to specify their definition once.

Response:

Thanks a lot for this comment. It is our ignorance. To enable more readers, especially those
who may lack some professional background, to get a better understanding, we have now defined
all the listed variables (e, cp, cv, w, g, ps, R) upon their first appearance in Section 2.1.1 to ensure
the paper is accessible to a broader audience.

Manuscript text (Lines 95):
“...wheree = R4/R,, Rgand R, are gas constants for dry air and water vapor, respectively. ...”

Manuscript text (Lines 100):
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“... cp is the specific heat of air at constant pressure, ...”
Manuscript text (Lines 109):

“... wis the vertical velocity, ...”
Manuscript text (Lines 113):

“...and g is the gravitational acceleration. ...”
Manuscript text (Lines 117):

“... where R is the gas constant for dry air, ¢, is the specific heat of air at constant volume, and p;
is the pressure at the referenced level. ...”

Please define the correlation coefficient R and the kinetic energy KE in Section 4.2.

Response:

Thanks a lot for this reminder. Definitions of R and KE have been added.
Manuscript text (Lines 288-295):

“The quantitative assessments of the DL model’s forecast performance are also conducted with
the correlation coefficient (R) and the kinetic energy (KE) profile, which are defined as:
R = 3 % T (Xije=X) (Yije=Y)
V&%) S X=X (5 5, Se (Yige=7)2)
KE =} (uuf),.
where X represents the simulated results, Y represents the truth states, and the overline denotes
the spatial average over all grid points for different variables. {-); represents the time average, and

u'u’ follows the Einstein summation convention, which equals u™? + v'% + w'2.”

Comment 2.15

Technical Correction 1:

Please proofread and type-check the manuscript carefully. A couple of typos:
(a) In the gray zone, turbulence and convection ... in line 30.

(b) the acoustic-wave-filtered equations ... are adopted in line 84.

(c) for validation simulations. in lines 178 & 179.

(d) I think the abbreviation LESs is not commonly used.

Response:

Thank you so much. All the sentences have been corrected accordingly.
Manuscript text (Lines 29):

“... Inthe gray zone, turbulence and convections can only be partially resolved ...
Manuscript text (Lines 85):

“To develop LEX, the acoustic-wave-filtered equations for compressible stratified flow developed
by Durran (2008) are adopted as the governing equations, ...
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Manuscript text (Lines 188-189):

“ To validate the trained model, two additional cases with 8. = 2.6 K and 5.0K are chosen to
generate initial conditions for validation simulations. ...

All the ‘LESs’ have been revised to LES.
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