
Comment on egusphere-2025-2564', Simon O'Meara, 15 Jul 2025:

Bezaatpour et al. present a digital tool (VaPOrS) for estimating pure component saturation

vapour pressures, and from this property, the enthalpy of vaporisation. The properties discussed

are fundamentally important to understanding aerosols, with significant implications for

climate, weather and health. And it is welcome that efforts are being made to further our

scientific understanding of this topic. I do hope the authors continue their important work in

this area despite my review.

I have a fundamental concern with the submitted paper, which is that it makes an insubstantial

contribution to modelling science, making its scientific significance too little to justify

publication. Specifically, the referenced UManSysProp tool (Topping et al. 2016) already

provides the vapour pressure estimation technique covered by VaPOrS. Then, we ask, do the

tools differ significantly in their method to provide these properties? The authors demonstrate

in their introduction that there is a variation in method, namely that whilst UManSysProp

depends on the OpenBabel package to convert SMILES to SMARTS, which are then parsed,

VaPOrS parses the SMILES directly. UManSysProp depends on a self-contained, human-

defined, library of SMARTS to identify contributing groups (as described in and around Figure.

3 of Topping et al. 2016), whilst VaPOrS depends on a self-contained, (as far as I understand

the paper, human-defined), library of SMILES to identify contributing groups. The

Introduction of the paper argues that the VaPOrS method could give better control over pattern-

matching logic than is possible in UManSysProp, however I can't see how this is true as both

methods rely on a human to provide comprehensive libraries of relevant patterns (SMILES or

SMARTS), and so the theoretical maximum degree of control is the same for both methods.

Because this issue of insubstantial modelling significance is so important (justifying my

rejection for publication) I do not provide further comments on other aspects of the paper at

this stage.

Response:

We appreciate the reviewer’s concern regarding the novelty and significance of our

contribution, particularly in relation to the existing UManSysProp tool. In our original

manuscript, we deliberately chose not to emphasize direct comparisons with established

methods in order to remain neutral and objective, aiming to allow users and modelers to

evaluate tools based on their specific needs. However, in light of the reviewer’s comment

challenging the merits of VaPOrS relative to UManSysPro, we find it necessary to clarify and

emphasize the methodological and practical strengths of our approach to defend its validity and

utility. We respectfully submit that VaPOrS provides important advancements that directly

address known limitations of UManSysPro, particularly in reading molecular structural

information from a complex, general SMILES representation with subsequent estimation of

condensational parameters that are critical for secondary organic aerosol (SOA) modeling.

1. Motivation from Practical Deficiencies in UManSysProp

While UManSysProp incorporates SMILES notations for vapor pressure estimation, our work

originated from repeated, verifiable failures of UManSysProp in correctly identifying

necessary functional groups in a wide range of organic species. These failures compromise the

integrity of vapor pressure estimation, especially for chemically complex molecules relevant

to atmospheric oxidation and SOA formation.

Specifically, we benchmarked UManSysProp and VaPOrS against the original compounds

listed in the SIMPOL development paper (Pankow and Asher 2008). We found that

UManSysProp failed to identify several functional groups essential for correct vapor pressure

computation in some of these molecules (see Table 1). In contrast, VaPOrS correctly computed

their vapor pressures in alignment with SIMPOL outputs.

Table 1. Benchmark of UManSysProp and VaPOrS against the original SIMPOL compounds from

Pankow and Asher (2008). Several functional groups critical for vapor pressure estimation were

missed by UManSysProp, resulting in deviations from SIMPOL values. VaPOrS accurately

reproduced SIMPOL predictions in all cases. All vapor pressure values are expressed as log p (in

atm).

Compound SMILES SIMPOL UManSysProp VaPOrS Experimental

formamide C(=O)N -2.6493 1.8307 -2.6493 -3.1778

ethyl-formamide CCNC=O -3.2014 1.1292 -3.2014 -3.0353

methyl-formamide CNC=O -2.8507 1.4799 -2.8507 -2.6507

diethyl-formamide CCN(CC)C=O -2.0970 0.4278 -2.0970 -1.8235

dimethyl-formamide CN(C)C=O -1.3956 1.1292 -1.3956 -1.4152

dimethyl-hydroxylamine CN(C)O -1.1686 1.4799 -1.1686 -0.7208

n-butyl-benzoate CCCCOC(=O)c1ccccc1 -3.3742 -2.2884 -3.3742 -3.4300

2-methyl-propyl-benzoate CC(C)COC(=O)c1ccccc1 -3.3742 -2.2884 -3.3742 -2.9881

n-propyl-benzoate CCCOC(=O)c1ccccc1 -3.0235 -1.9377 -3.0235 -2.7297

ethyl-benzoate CCOC(=O)c1ccccc1 -2.6728 -1.5870 -2.6728 -2.5309

methyl-benzoate COC(=O)c1ccccc1 -2.3220 -1.2363 -2.3220 -2.3216

acetic-acid,-phenyl-ester CC(=O)Oc1ccccc1 -2.3220 -2.1088 -2.3220 -2.2995

dimethyl-1,2-

benzenedicarboxylate COC(=O)c1ccccc1C(=O)OC

-4.1093 -1.9377 -4.1093 -4.2168

dimethyl-benzene-1,3-

dicarboxylate

COC(=O)c1cccc(c1)C(=O)O

C

-4.1093 -1.9377 -4.1093 -4.1260

dimethyl-benzene-1,4-

dicarboxylate

COC(=O)c1ccc(cc1)C(=O)O

C

-4.1093 -1.9377 -4.1093 -4.0839

di-n-butyl-

ethanedicarboxylate

CCCCOC(=O)C(=O)OCCC

C

-3.4973 -1.3257 -3.4973 -3.3166

diethyl-ethanedicarboxylate CCOC(=O)C=CC(=O)OCC

-2.7959

-0.7558 -2.7959 -2.5070

ethyl-2-nitropropionate

CCOC(=O)C(C)[N+](=O)[O

-]

-3.3118 -2.4828 -3.3118 -2.6618

methyl-2-nitro-propionate CC(C(=O)OC)[N+](=O)[O-] -2.9611 -2.1320 -2.9611 -2.6133

In a broader evaluation, we assessed 126 primary VOCs provided by the Master Chemical

Mechanism (MCM). UManSysProp produced incorrect vapor pressure estimates for at least

four compounds (formaldehyde, formic acid, methyl ester, and BCARY) due to inaccurate

group detection, while VaPOrS consistently matched the SIMPOL-based expectations (see

Table 2).

Table 2. Evaluation of four primary VOCs from the MCM database. UManSysProp produced

incorrect vapor pressure values due to the misidentification of functional groups, while VaPOrS

matched SIMPOL outputs precisely. All vapor pressure values are expressed as log p (in atm).

Compound SMILES SIMPOL UManSysProp VaPOrS

formaldehyde C=O 0.6863 1.8307 0.6863

formic acid OC=O -1.2397 1.8307 -1.2397

methyl ester COC=O 0.3942 1.4799 0.3942

BCARY C/C1=C/CCC(=C)C2CC(C)(C)C2CC\1 -3.5640 -3.4531 -3.5640

The implications become even more pronounced when analyzing oxidation products of major

VOCs like benzene and α-pinene. For instance, UManSysProp failed to compute correct vapor

pressures for at least 20 α-pinene oxidation products (see Table 3) and 20 benzene oxidation

products (see Table 4) due to missed functional groups. VaPOrS, on the other hand, successfully

identified these groups and produced accurate results for all cases.

Table 3. Comparison of predicted vapor pressures for 20 α-pinene oxidation products. UManSysProp

failed to recognize various multifunctional and peroxide-containing groups, leading to considerable

errors. VaPOrS correctly identified all functional groups and reproduced the SIMPOL values. All

vapor pressure values are expressed as log p (in atm).

SMILES SIMPOL UManSysProp VaPOrS

 [O]OC(=O)CC(=O)C=O -2.2520 -1.3089 -2.2520

 [O]OC(=O)C1CC(C(=O)O)C1(C)C -4.7488 -3.8057 -4.7488

 [O]OC(=O)CC1CC(C(=O)O)C1(C)C -5.0995 -4.1564 -5.0995

 [O]OC(=O)C1CC(C(=O)C)C1(C)C -2.9721 -2.0290 -2.9721

 O=CCC1CC(C(=O)[O])C1(C)C -3.1733 -2.2302 -3.1733

 O=CCC1CC(C(=O)O[O])C1(C)C -3.1733 -2.2302 -3.1733

 [O]OC(=O)CC1CC(C(=O)CO)C1(C)C -5.1871 -4.2440 -5.1871

 [O]OC(=O)CC1CC(C(=O)C)C1(C)C -3.3229 -2.3797 -3.3229

 CC(=O)O[O] 0.5368 1.4799 0.5368

 [O]OC(=O)CC(=O)CC=O -2.6027 -1.6596 -2.6027

 [O]OC(=O)CC(=O)CC(=O)C(=O)C -4.0461 -3.1030 -4.0461

 [O]OC(=O)CC(=O)C(=O)C -2.4015 -1.4584 -2.4015

 CC(=O)C(O)C(=O)O[O] -2.972 -2.0288 -2.972

 [O]OC(=O)CC(=O)C(=O)CO -4.2658 -3.3227 -4.2658

 [O]OC(=O)CC(=O)CC(O)C(=O)C -4.9673 -4.0241 -4.9673

 CC(=O)C(O)CC(=O)O[O] -3.3227 -2.3795 -3.3227

 [O]OC(=O)CC=O -0.9581 -0.0150 -0.9581

 [O]OC(=O)C=O -0.6074 0.3356 -0.6074

 OCC(=O)O[O] -1.3274 -0.3842 -1.3274

 O=CC(=O)CC(=O)C(C)(ON(=O)=O)C(=O)O[O] -6.1581 -5.2149 -6.1581

Table 4. Predicted vapor pressures of 20 benzene oxidation products. UManSysProp produced

erroneous outputs due to functional group detection errors, particularly in conjugated and peroxide-

bearing species. VaPOrS successfully identified all necessary groups and aligned with SIMPOL

calculations. All vapor pressure values are expressed as log p (in atm).

SMILES SIMPOL UManSysProp VaPOrS

 [O]OC(=O)C1OC1C=CC=O -2.7960 -1.8529 -2.7960

 OC1COC(=O)C1=O -3.2255 -2.1397 -3.2255

 C1OC(=O)C=C1 -0.9785 0.1072 -0.9785

 [O]OC(=O)C=CC(=O)C=O -2.7342 -1.7911 -2.7342

 OC(C=O)C(=O)C=CC(=O)O[O] -4.9492 -4.0061 -4.9492

 O=CCOC(=O)C=O -2.5958 -1.5100 -2.5958

 O=CCOC(=O)C(=O)O -4.5220 -3.4362 -4.5220

 [O]OC(=O)C1OC1C=O -1.9631 -1.0200 -1.9631

 [O]OC(=O)C=O -0.6074 0.3356 -0.6074

 OC(C=O)C(=O)O[O] -2.8224 -1.8793 -2.8224

 OCC(=O)O[O] -1.3274 -0.3842 -1.3274

 O=CC=CC(=O)[O] -1.4403 -0.4972 -1.4403

 [O]OC(=O)C=CC=O -1.4403 -0.4972 -1.4403

 O=CC(=CC(=O)[O])N(=O)=O -3.2652 -2.3220 -3.2652

 O=N(=O)C12OOC(C2O)C(O)([O])C(=C1)O -8.2564 -6.3921 -8.2564

 [O]OC1(O)C(=CC2(OOC1C2O)N(=O)=O)O -8.2564 -6.3921 -8.2564

 OOC1(O)C(=CC2(OOC1C2O)N(=O)=O)O -10.3826 -8.5183 -10.3826

 O=N(=O)OC1C2OOC1(C=C(O)C2([O])O)N(=O)=O -8.3029 -6.4386 -8.3029

 [O]OC1(O)C(=CC2(OOC1C2ON(=O)=O)N(=O)=O)O -8.3029 -6.4386 -8.3029

OOC1(O)C(=CC2(OOC1C2ON(=O)=O)N(=O)=O)O -10.4291 -8.5648 -10.4291

We further validated this in autooxidation studies. From recent high-resolution mass

spectrometry data on the OH-initiated autooxidation of three aromatic carbonyls under high-

and low-NOx conditions (Shawon et al.), we analyzed 180 identified oxidation products.

UManSysProp failed to provide correct vapor pressure values for 67 of these compounds.

VaPOrS, with direct SMILES-based group recognition, correctly handled every case (see Table

5).

Table 5. Analysis of oxidation products from OH-initiated autooxidation of aromatic carbonyls under

different NOx conditions (from Shawon et al.). UManSysProp failed in 67 cases due to group

detection limitations. VaPOrS handled all compounds correctly via explicit SMILES-based pattern

recognition. All vapor pressure values are expressed as log p (in atm).

SMILES SIMPOL UManSysProp VaPOrS

 CC(=O)C(=O)C(O)=CC(=O)C(O)C=O -8.4581 -6.5938 -8.4581

 CC(=O)C(=O)C(O)=CC(=O)C(OO)C=O -8.7200 -6.8557 -8.7200

 CC(=O)C(=O)C(O)=CC(OO)C(=O)C=O -8.7200 -6.8557 -8.7200

 CC(=O)C(=O)C(O)=CC(O[O])C(O)C=O -7.5149 -5.6506 -7.5149

 CC(=O)C(=O)C(O)=CC(ON(=O)=O)C(O)C=O -9.4257 -7.5614 -9.4257

 CC(=O)C(=O)C(O)=CC(OO)C(O)C=O -9.6411 -7.7768 -9.6411

 CC(=O)C(=O)C(O)=CC(O)C(OO)C=O -9.6411 -7.7768 -9.6411

 CC(=O)C(=O)C(O)=CC(=O)C(O)C(=O)OO -9.4298 -7.5655 -9.4298

 CC(=O)C(=O)C(O)=CC(O[O])C(OO)C=O -7.7768 -5.9126 -7.7768

 CC(=O)C(=O)C(O)C(OO)C=CC(O[O])=O -7.5756 -6.6325 -7.5756

 CC(=O)C(=O)C(O)=CC(ON(=O)=O)C(OO)C=O -9.6876 -7.8233 -9.6876

 CC(=O)C(=O)C(O)=CC(O)C(O)C(=O)OO -10.351 -8.4866 -10.351

 CC(=O)C(=O)C(O)=CC(=O)C(OO)C(=O)OO -9.6917 -7.8274 -9.6917

 CC(=O)C(=O)C(O)=CC(O[O])C(O)C(=O)OO -8.4866 -6.6223 -8.4866

 CC(=O)C(=O)C(O)=CC(ON(=O)=O)C(O)C(=O)OO -10.397 -8.5331 -10.397

 CC(=O)C(=O)C(O)=CC(OO)C(OO)C(=O)O[O] -9.7018 -6.8944 -9.7018

 CC(=O)C(=O)C(O)=CC(O[O])C(OO)C(=O)OO -8.7485 -6.8843 -8.7485

 CC(=O)C(=O)C(O)=CC(OO)C(OO)C(=O)ON(=O)=O -10.669 -8.8052 -10.669

 CC(=O)C(=O)C(O)=CC(ON(=O)=O)C(OO)C(=O)OO -10.659 -8.7950 -10.659

 CC(=O)C(=O)C(O)=CC(OO)C(OO)C(=O)OO -10.874 -9.0105 -10.874

 [O]OCC(=O)C(=O)C(O)=CC(OO)C(O)C(OO)=O -10.612 -8.7485 -10.612

 O=N(=O)OCC(=O)C(=O)C(O)=CC(OO)C(O)C(OO)=O -12.523 -10.659 -12.523

 O=C(C=O)C(O)=CC(=O)C(O)C=O -8.3085 -6.4442 -8.3085

 O=C(C=O)C(O)=CC(=O)C(OO)C=O -8.5704 -6.7062 -8.5704

 O=C(C=O)C(O)=CC(OO)C(=O)C=O -8.5704 -6.7062 -8.5704

 O=C(C=O)C(O)=CC(O[O])C(O)C=O -7.3654 -5.5011 -7.3654

 O=C(C=O)C(O)=CC(O)C(OO)C=O -9.4916 -7.6273 -9.4916

 O=C(C=O)C(O)=CC(=O)C(O)OO -8.9397 -7.0754 -8.9397

 O=C(C=O)C(O)=CC(=O)C(O)C(=O)OO -9.2802 -7.4159 -9.2802

 O=C(C=O)C(O)=CC(O[O])C(OO)C=O -7.6273 -5.7630 -7.6273

 O=C(C=O)C(O)=CC(OO)C(OO)C=O -9.7535 -7.8892 -9.7535

 O=C(C=O)C(O)=CC(=O)C(OO)C(=O)OO -9.5421 -7.6779 -9.5421

 O=C(C=O)C(O)=CC(O[O])C(O)C(=O)OO -8.3371 -6.4728 -8.3371

 O=C(C=O)C(O)=CC(O[O])C(OO)C(=O)OO -8.5990 -6.7347 -8.5990

 O=C(C=O)C(O)=CC(OO)C(OO)C(=O)OO -10.725 -8.8609 -10.725

 O=CCC(=O)C(O)=CC(=O)C(O)C=O -8.659 -6.7950 -8.659

 O=CCC(=O)C(O)=CC(=O)C(OO)C=O -8.9212 -7.0569 -8.9212

 O=CCC(=O)C(O)=CC(OO)C(=O)C=O -8.9212 -7.0569 -8.9212

 O=CCC(=O)C(O)=CC(O[O])C(O)C=O -7.7161 -5.8518 -7.7161

 O=CCC(=O)C(O)=CC(ON(=O)=O)C(O)C=O -9.6269 -7.7626 -9.6269

 O=CCC(=O)C(O)=CC(O)C(OO)C=O -9.8423 -7.9780 -9.8423

 O=CCC(=O)C(O)=CC(=O)C(O)C(=O)OO -9.631 -7.7667 -9.631

 O=CCC(=O)C(O)=CC(O[O])C(OO)C=O -7.9780 -6.1137 -7.9780

 O=CCC(=O)C(O)=CC(ON(=O)=O)C(OO)C=O -9.8888 -8.0245 -9.8888

 O=CCC(=O)C(O)=CC(OO)C(OO)C=O -10.104 -8.2399 -10.104

 O=CCC(=O)C(O)=CC(O[O])C(O)C(=O)OO -8.6878 -6.8235 -8.6878

 O=CCC(=O)C(O)=CC(ON(=O)=O)C(O)C(=O)OO -10.598 -8.7343 -10.598

 O=CC(=O)C(=O)C(O)=CC(OO)C(O)C(=O)OO -11.757 -9.8929 -11.757

 O=CCC(=O)C(O)=CC(OO)C(OO)C(=O)O[O] -9.9030 -7.0956 -9.9030

 [O]OC(C=O)C(=O)C(O)=CC(OO)C(OO)C=O -10.104 -8.2399 -10.104

 O=CCC(=O)C(O)=CC(O[O])C(OO)C(OO)=O -8.9497 -7.0854 -8.9497

 O=CCC(=O)C(O)=CC(OO)C(OO)C(=O)ON(=O)=O -10.870 -9.0064 -10.870

 O=N(=O)OC(C=O)C(=O)C(O)=CC(OO)C(OO)C=O -12.015 -10.150 -12.015

 O=CCC(=O)C(O)=CC(ON(=O)=O)C(OO)C(OO)=O -10.860 -8.9962 -10.860

 O=CCC(=O)C(O)=CC(OO)C(OO)C(=O)OO -11.076 -9.2116 -11.076

 O=CC(OO)C(=O)C(O)=CC(OO)C(OO)C=O -12.230 -10.366 -12.230

 O=CC(O[O])C(=O)C(O)=CC(OO)C(O)C(=O)OO -10.814 -8.9497 -10.814

 O=CCC(=O)C(=O)C(OO)C(OO)C(O)C(=O)O[O] -10.714 -9.7716 -10.714

 O=CC(ON(=O)=O)C(=O)C(O)=CC(OO)C(O)C(=O)OO -12.724 -10.860 -12.724

 [O]OC(=O)C(OO)C(=O)C(O)=CC(OO)C(OO)C=O -12.029 -9.2218 -12.029

 O=CCC(=O)C(=O)C(OO)C(OO)C(OO)C(=O)O[O] -10.976 -10.033 -10.976

 O=N(=O)OC(=O)C(OO)C(=O)C(O)=CC(OO)C(OO)C=O -12.996 -11.132 -12.996

 OOC(=O)C(OO)C(=O)C(O)=CC(OO)C(OO)C=O -13.202 -11.337 -13.202

 O=CCC(=O)C(O)=CC(C(O)C=O)OOOC(C=O)C=CC(O)C(=O)CC=O -15.749 -13.885 -15.749

 O=CCC(=O)C(O)=CC(C(O)C=O)OOOC1C=CC2OOC1C2(O)CC=O -14.446 -12.582 -14.446

 O=CCC(=O)C(O)=CC(C(O)C=O)OOC(C(O)C=O)C=C(O)C(=O)CC=O -18.176 -14.447 -18.176

 O=CCC(=O)C(O)=CC(C(OO)C=O)OOC(C(OO)C=O)C=C(O)C(=O)CC=O -18.700 -14.971 -18.700

The challenges identified above are not isolated cases but represent systemic limitations of the

existing tool when applied to chemically diverse and rapidly growing databases of atmospheric

oxidation products. With new high-resolution mass spectrometry findings continually

introducing thousands of new molecules into atmospheric models, a tool like VaPOrS that

offers reliable, transparent, scalable, and portable group detection and vapor pressure

estimation becomes a valuable contribution to the field.

2. Methodological Differences and Computational Efficiency

VaPOrS provides full control and transparency over the patterns and matching logic used for

functional group identification and vapor pressure calculation directly from SMILES strings,

making the process fully auditable and easily modifiable. In contrast, the internal operations of

Open Babel used by UManSysPro via its Python wrapper Pybel, are less transparent.

Modifying behavior within Open Babel typically requires deep expertise in C++ and SWIG

(Simplified Wrapper and Interface Generator), which imposes a steep learning curve on non-

core developers to extend or troubleshoot functional group detection [1-3]. Users of

UManSysPro have limited visibility into or control over these pattern definitions, complicating

diagnosis of missed functional groups or extending detection logic without advanced

knowledge of the underlying cheminformatics library.

The reliance on third-party libraries (Open Babel and Pybel) also introduces computational

overhead in UManSysPro because Pybel converts SMILES strings into internal molecular

graph objects before querying functional groups. This step is heavier computationally

compared to direct pattern matching on SMILES strings. In large-scale atmospheric secondary

organic aerosol modeling scenarios, where thousands of species are processed across thousands

of time steps and spatial grid cells, this overhead multiplies substantially, leading to significant

decreases in performance. By bypassing the need for Open Babel and Pybel, VaPOrS can

reduce runtime dramatically at atmospheric modeling scales. For example, with 100

compounds, 10,000 spatial grid cells, and 10,000 time steps, equating to approximately 10¹⁰

vapor pressure calculations, even saving as little as 1 millisecond per call yields an overall

runtime reduction on the order of days to weeks of CPU time. This order-of-magnitude speedup

exemplifies the practical computational advancement that direct SMILES parsing and pattern

matching, as implemented in VaPOrS, can provide over UManSysPro’s Pybel-dependent

approach.

Even though VaPOrS’s Pybel-free Python code performs much faster than UManSysPro’s

Pybel-based implementation, it remains subject to Python interpreter overhead and

suboptimal scaling compared to compiled languages. Fortran, for example, is the language of

choice for most leading-edge high-performance simulation codes such as PALM [4] and

ADCHEM [5], due to its superior efficiency in large-scale numerical computations and direct

memory management [6]. Direct comparisons show Fortran can be hundreds of times faster

than pure Python for the same algorithm. For example, a realistic computational task took 66

seconds in Fortran versus 33,900 seconds (9.5 hours) in Python, a factor of 500 difference [7].

Fortran manages memory more efficiently, reducing runtime and minimizing memory

exhaustion risks compared to Python’s dynamic and object-heavy environment. Modern

Fortran, with support for OpenMP and MPI, is well suited for parallelizing across multi-core

CPUs and HPC (high-performance computing) clusters, ideal for the demanding grids and time

steps of atmospheric SOA modeling. Compiled Fortran code runs consistently across

platforms, avoiding variability caused by the Python interpreter and dynamic dependency

issues. Regarding this, UManSysPro’s dependency on Open Babel/Pybel creates challenges for

portability and maintainability. Open Babel is a large C++ library with Python bindings, and

porting its entire dependency chain to other programming languages, especially Fortran,

is impractical and cumbersome. The typical solution, such as writing complex wrappers or

using foreign function interfaces, is technically challenging and fragile. Fortran’s limited

interoperability with C++ libraries without extensive tooling contrasts sharply with VaPOrS’s

algorithmic approach, which is based solely on standard string operations and pattern matching,

making it straightforward to port to Fortran. Furthermore, calling UManSysPro, which uses

Python, from the above-mentioned Fortran-based models for vapor pressure calculations at

every time step and grid cell for many compounds introduces a mixed-language dependency

that can incur significant runtime overhead. This overhead arises from interpreter

invocation and data marshalling between Fortran and Python, cumulatively adding up to the

slowdown already caused by Pybel.

If the vapor pressure calculation code is ported natively into Fortran, as VaPOrS’s algorithmic

simplicity allows straightforward translation to Fortran, these penalties vanish. Fortran’s

compiled nature allows massively faster execution, seamless integration, and optimized

parallelism, critical for atmospheric scale modeling. Pure numerical and string logic

implemented in Fortran will maximize CPU throughput and scale smoothly across large model

domains without bottlenecks imposed by language design. Therefore, VaPOrS’s practical and

potential advantages in reducing runtime can be summarized as follows:

• Avoiding unnecessary computations by bypassing Pybel’s SMILES-to-graph

conversion and using direct pattern matching.

• Eliminating Python–Fortran interface overhead by avoiding mixed-language calls

during large-scale simulations.

• Allowing pure Fortran translation, enabling much faster native execution compared

to Python.

3. Execution Conveniency

Running UManSysPro on supercomputers (high-performance computing, HPC) can lead to

several complainable problems, especially in large-scale modeling workloads typical of

atmospheric science. Supercomputers frequently run custom or stripped-down Linux

environments. Installing complex dependencies like Open Babel and its Python wrappers

(Pybel, SWIG bindings) is often problematic. Users may need special compilation steps,

manual resolution of C++/Python/Swig compatibility, or may encounter issues with missing or

incompatible shared libraries. Open Babel/Pybel and all dependent Python packages must be

installed and maintained across all compute nodes. Minor discrepancies in versions or build

environments between nodes can cause errors that are very hard to track in distributed jobs,

leading to wasted supercomputing allocations. Furthermore, some supercomputer

environments restrict the installation of non-standard libraries or require jobs to run only using

centrally installed software. Getting approval or support for Open Babel/Pybel can be

challenging, especially when the core libraries are actively developed with potentially breaking

changes [8-10]. These factors are widely acknowledged as major barriers to deploying Python-

based, C++-linked scientific tools like UManSysPro on supercomputers compared to simpler,

compiled, single-language scientific code. These issues often motivate writing more portable,

lightweight, and easily compilable tools for large HPC applications, or at least favoring

solutions that can be run natively in Fortran on all target architectures without Python or

complex bindings.

Conclusion

While both UManSysProp and VaPOrS nominally implement the SIMPOL method, the

pathway to functional group identification and vapor pressure computation is substantially

different. VaPOrS's direct SMILES parsing avoids known limitations of Pybel-based systems,

offers a more flexible and extensible framework, and has demonstrably outperformed

UManSysProp across multiple atmospheric datasets, including benchmark compounds, MCM

species, oxidation products, and autooxidation products.

We hope this detailed explanation addresses the reviewer’s concern regarding the significance

and novelty of our approach and demonstrates that VaPOrS represents a robust advancement

in modeling vapor pressure for atmospheric applications.

References

1. Write software using the Open Babel library - Read the Docs.

2. Open Babel - Docs CSC.

3. Python wrapper for the OpenBabel cheminformatics toolkit - PMC.

4. Overview of the PALM model system 6.0 - GMD.

5. ADCHEM | Multi-Scale Modelling | University of Helsinki

6. The counter-intuitive rise of Python in scientific computing.

7. A python vs. fortran smackdown - Guy Worthey.

8. https://bugs.archlinux.org/task/21708.

9. https://stackoverflow.com/questions/77224942/installing-openbabel-for-python-isnt-

working.

10. https://sourceforge.net/p/openbabel/mailman/openbabel-discuss.

https://open-babel.readthedocs.io/en/latest/UseTheLibrary/intro.html
https://docs.csc.fi/apps/openbabel/
https://pmc.ncbi.nlm.nih.gov/articles/PMC2270842/
https://gmd.copernicus.org/articles/13/1335/2020/
https://www.helsinki.fi/en/researchgroups/multi-scale-modelling/adchem
https://cerfacs.fr/coop/fortran-vs-python
https://guyworthey.net/2022/01/03/a-python-vs-fortran-smackdown/
https://bugs.archlinux.org/task/21708
https://stackoverflow.com/questions/77224942/installing-openbabel-for-python-isnt-working
https://stackoverflow.com/questions/77224942/installing-openbabel-for-python-isnt-working
https://sourceforge.net/p/openbabel/mailman/openbabel-discuss

