
Comment on egusphere-2025-2564', Simon O'Meara, 15 Jul 2025: 

Bezaatpour et al. present a digital tool (VaPOrS) for estimating pure component saturation 

vapour pressures, and from this property, the enthalpy of vaporisation. The properties discussed 

are fundamentally important to understanding aerosols, with significant implications for 

climate, weather and health. And it is welcome that efforts are being made to further our 

scientific understanding of this topic. I do hope the authors continue their important work in 

this area despite my review. 

I have a fundamental concern with the submitted paper, which is that it makes an insubstantial 

contribution to modelling science, making its scientific significance too little to justify 

publication. Specifically, the referenced UManSysProp tool (Topping et al. 2016) already 

provides the vapour pressure estimation technique covered by VaPOrS. Then, we ask, do the 

tools differ significantly in their method to provide these properties? The authors demonstrate 

in their introduction that there is a variation in method, namely that whilst UManSysProp 

depends on the OpenBabel package to convert SMILES to SMARTS, which are then parsed, 

VaPOrS parses the SMILES directly. UManSysProp depends on a self-contained, human-

defined, library of SMARTS to identify contributing groups (as described in and around Figure. 

3 of Topping et al. 2016), whilst VaPOrS depends on a self-contained, (as far as I understand 

the paper, human-defined), library of SMILES to identify contributing groups. The 

Introduction of the paper argues that the VaPOrS method could give better control over pattern-

matching logic than is possible in UManSysProp, however I can't see how this is true as both 

methods rely on a human to provide comprehensive libraries of relevant patterns (SMILES or 

SMARTS), and so the theoretical maximum degree of control is the same for both methods. 

Because this issue of insubstantial modelling significance is so important (justifying my 

rejection for publication) I do not provide further comments on other aspects of the paper at 

this stage. 

 

Response: 

We appreciate the reviewer’s concern regarding the novelty and significance of our 

contribution, particularly in relation to the existing UManSysProp tool. In our original 

manuscript, we deliberately chose not to emphasize direct comparisons with established 

methods in order to remain neutral and objective, aiming to allow users and modelers to 

evaluate tools based on their specific needs. However, in light of the reviewer’s comment 



challenging the merits of VaPOrS relative to UManSysPro, we find it necessary to clarify and 

emphasize the methodological and practical strengths of our approach to defend its validity and 

utility. We respectfully submit that VaPOrS provides important advancements that directly 

address known limitations of UManSysPro, particularly in reading molecular structural 

information from a complex, general SMILES representation with subsequent estimation of 

condensational parameters that are critical for secondary organic aerosol (SOA) modeling. 

 

1. Motivation from Practical Deficiencies in UManSysProp 

While UManSysProp incorporates SMILES notations for vapor pressure estimation, our work 

originated from repeated, verifiable failures of UManSysProp in correctly identifying 

necessary functional groups in a wide range of organic species. These failures compromise the 

integrity of vapor pressure estimation, especially for chemically complex molecules relevant 

to atmospheric oxidation and SOA formation. 

Specifically, we benchmarked UManSysProp and VaPOrS against the original compounds 

listed in the SIMPOL development paper (Pankow and Asher 2008). We found that 

UManSysProp failed to identify several functional groups essential for correct vapor pressure 

computation in some of these molecules (see Table 1). In contrast, VaPOrS correctly computed 

their vapor pressures in alignment with SIMPOL outputs. 

 

Table 1. Benchmark of UManSysProp and VaPOrS against the original SIMPOL compounds from 

Pankow and Asher (2008). Several functional groups critical for vapor pressure estimation were 

missed by UManSysProp, resulting in deviations from SIMPOL values. VaPOrS accurately 

reproduced SIMPOL predictions in all cases. All vapor pressure values are expressed as log p (in 

atm). 

Compound SMILES SIMPOL UManSysProp VaPOrS Experimental 

formamide C(=O)N -2.6493 1.8307 -2.6493 -3.1778 

ethyl-formamide CCNC=O   -3.2014 1.1292 -3.2014 -3.0353 

methyl-formamide CNC=O -2.8507 1.4799 -2.8507 -2.6507 

diethyl-formamide CCN(CC)C=O -2.0970 0.4278 -2.0970 -1.8235 

dimethyl-formamide CN(C)C=O -1.3956 1.1292 -1.3956 -1.4152 

dimethyl-hydroxylamine CN(C)O -1.1686 1.4799 -1.1686 -0.7208 

n-butyl-benzoate CCCCOC(=O)c1ccccc1 -3.3742 -2.2884 -3.3742 -3.4300 

2-methyl-propyl-benzoate CC(C)COC(=O)c1ccccc1 -3.3742 -2.2884 -3.3742 -2.9881 



n-propyl-benzoate CCCOC(=O)c1ccccc1 -3.0235 -1.9377 -3.0235 -2.7297 

ethyl-benzoate CCOC(=O)c1ccccc1 -2.6728 -1.5870 -2.6728 -2.5309 

methyl-benzoate COC(=O)c1ccccc1 -2.3220 -1.2363 -2.3220 -2.3216 

acetic-acid,-phenyl-ester CC(=O)Oc1ccccc1 -2.3220 -2.1088 -2.3220 -2.2995 

dimethyl-1,2-

benzenedicarboxylate COC(=O)c1ccccc1C(=O)OC 

-4.1093 -1.9377 -4.1093 -4.2168 

dimethyl-benzene-1,3-

dicarboxylate 

COC(=O)c1cccc(c1)C(=O)O

C 

-4.1093 -1.9377 -4.1093 -4.1260 

dimethyl-benzene-1,4-

dicarboxylate 

COC(=O)c1ccc(cc1)C(=O)O

C 

-4.1093 -1.9377 -4.1093 -4.0839 

di-n-butyl-

ethanedicarboxylate 

CCCCOC(=O)C(=O)OCCC

C 

-3.4973 -1.3257 -3.4973 -3.3166 

diethyl-ethanedicarboxylate CCOC(=O)C=CC(=O)OCC 

-2.7959 

 

-0.7558 -2.7959 -2.5070 

ethyl-2-nitropropionate 

CCOC(=O)C(C)[N+](=O)[O

-] 

-3.3118 -2.4828 -3.3118 -2.6618 

methyl-2-nitro-propionate CC(C(=O)OC)[N+](=O)[O-] -2.9611 -2.1320 -2.9611 -2.6133 

 

 

In a broader evaluation, we assessed 126 primary VOCs provided by the Master Chemical 

Mechanism (MCM). UManSysProp produced incorrect vapor pressure estimates for at least 

four compounds (formaldehyde, formic acid, methyl ester, and BCARY) due to inaccurate 

group detection, while VaPOrS consistently matched the SIMPOL-based expectations (see 

Table 2). 

 

Table 2. Evaluation of four primary VOCs from the MCM database. UManSysProp produced 

incorrect vapor pressure values due to the misidentification of functional groups, while VaPOrS 

matched SIMPOL outputs precisely. All vapor pressure values are expressed as log p (in atm). 

Compound SMILES SIMPOL UManSysProp VaPOrS 

formaldehyde C=O 0.6863 1.8307 0.6863 

formic acid OC=O -1.2397 1.8307 -1.2397 

methyl ester COC=O 0.3942 1.4799 0.3942 

BCARY C/C1=C/CCC(=C)C2CC(C)(C)C2CC\1 -3.5640 -3.4531 -3.5640 

 

 

The implications become even more pronounced when analyzing oxidation products of major 

VOCs like benzene and α-pinene. For instance, UManSysProp failed to compute correct vapor 



pressures for at least 20 α-pinene oxidation products (see Table 3) and 20 benzene oxidation 

products (see Table 4) due to missed functional groups. VaPOrS, on the other hand, successfully 

identified these groups and produced accurate results for all cases. 

 

Table 3. Comparison of predicted vapor pressures for 20 α-pinene oxidation products. UManSysProp 

failed to recognize various multifunctional and peroxide-containing groups, leading to considerable 

errors. VaPOrS correctly identified all functional groups and reproduced the SIMPOL values. All 

vapor pressure values are expressed as log p (in atm). 

SMILES SIMPOL UManSysProp VaPOrS 

 [O]OC(=O)CC(=O)C=O -2.2520 -1.3089 -2.2520 

 [O]OC(=O)C1CC(C(=O)O)C1(C)C -4.7488 -3.8057 -4.7488 

 [O]OC(=O)CC1CC(C(=O)O)C1(C)C -5.0995 -4.1564 -5.0995 

 [O]OC(=O)C1CC(C(=O)C)C1(C)C -2.9721 -2.0290 -2.9721 

 O=CCC1CC(C(=O)[O])C1(C)C -3.1733 -2.2302 -3.1733 

 O=CCC1CC(C(=O)O[O])C1(C)C -3.1733 -2.2302 -3.1733 

 [O]OC(=O)CC1CC(C(=O)CO)C1(C)C -5.1871 -4.2440 -5.1871 

 [O]OC(=O)CC1CC(C(=O)C)C1(C)C -3.3229 -2.3797 -3.3229 

 CC(=O)O[O] 0.5368 1.4799 0.5368 

 [O]OC(=O)CC(=O)CC=O -2.6027 -1.6596 -2.6027 

 [O]OC(=O)CC(=O)CC(=O)C(=O)C -4.0461 -3.1030 -4.0461 

 [O]OC(=O)CC(=O)C(=O)C -2.4015 -1.4584 -2.4015 

 CC(=O)C(O)C(=O)O[O] -2.972 -2.0288 -2.972 

 [O]OC(=O)CC(=O)C(=O)CO -4.2658 -3.3227 -4.2658 

 [O]OC(=O)CC(=O)CC(O)C(=O)C -4.9673 -4.0241 -4.9673 

 CC(=O)C(O)CC(=O)O[O] -3.3227 -2.3795 -3.3227 

 [O]OC(=O)CC=O -0.9581 -0.0150 -0.9581 

 [O]OC(=O)C=O -0.6074 0.3356 -0.6074 

 OCC(=O)O[O] -1.3274 -0.3842 -1.3274 

 O=CC(=O)CC(=O)C(C)(ON(=O)=O)C(=O)O[O] -6.1581 -5.2149 -6.1581 

 

 

Table 4. Predicted vapor pressures of 20 benzene oxidation products. UManSysProp produced 

erroneous outputs due to functional group detection errors, particularly in conjugated and peroxide-

bearing species. VaPOrS successfully identified all necessary groups and aligned with SIMPOL 

calculations. All vapor pressure values are expressed as log p (in atm). 

SMILES SIMPOL UManSysProp VaPOrS 

 [O]OC(=O)C1OC1C=CC=O -2.7960 -1.8529 -2.7960 



 OC1COC(=O)C1=O -3.2255 -2.1397 -3.2255 

 C1OC(=O)C=C1 -0.9785 0.1072 -0.9785 

 [O]OC(=O)C=CC(=O)C=O -2.7342 -1.7911 -2.7342 

 OC(C=O)C(=O)C=CC(=O)O[O] -4.9492 -4.0061 -4.9492 

 O=CCOC(=O)C=O -2.5958 -1.5100 -2.5958 

 O=CCOC(=O)C(=O)O -4.5220 -3.4362 -4.5220 

 [O]OC(=O)C1OC1C=O -1.9631 -1.0200 -1.9631 

 [O]OC(=O)C=O -0.6074 0.3356 -0.6074 

 OC(C=O)C(=O)O[O] -2.8224 -1.8793 -2.8224 

 OCC(=O)O[O] -1.3274 -0.3842 -1.3274 

 O=CC=CC(=O)[O] -1.4403 -0.4972 -1.4403 

 [O]OC(=O)C=CC=O -1.4403 -0.4972 -1.4403 

 O=CC(=CC(=O)[O])N(=O)=O -3.2652 -2.3220 -3.2652 

 O=N(=O)C12OOC(C2O)C(O)([O])C(=C1)O -8.2564 -6.3921 -8.2564 

 [O]OC1(O)C(=CC2(OOC1C2O)N(=O)=O)O -8.2564 -6.3921 -8.2564 

 OOC1(O)C(=CC2(OOC1C2O)N(=O)=O)O -10.3826 -8.5183 -10.3826 

 O=N(=O)OC1C2OOC1(C=C(O)C2([O])O)N(=O)=O -8.3029 -6.4386 -8.3029 

 [O]OC1(O)C(=CC2(OOC1C2ON(=O)=O)N(=O)=O)O -8.3029 -6.4386 -8.3029 

OOC1(O)C(=CC2(OOC1C2ON(=O)=O)N(=O)=O)O -10.4291 -8.5648 -10.4291 

 

 

We further validated this in autooxidation studies. From recent high-resolution mass 

spectrometry data on the OH-initiated autooxidation of three aromatic carbonyls under high- 

and low-NOx conditions (Shawon et al.), we analyzed 180 identified oxidation products. 

UManSysProp failed to provide correct vapor pressure values for 67 of these compounds. 

VaPOrS, with direct SMILES-based group recognition, correctly handled every case (see Table 

5). 

 

Table 5. Analysis of oxidation products from OH-initiated autooxidation of aromatic carbonyls under 

different NOx conditions (from Shawon et al.). UManSysProp failed in 67 cases due to group 

detection limitations. VaPOrS handled all compounds correctly via explicit SMILES-based pattern 

recognition. All vapor pressure values are expressed as log p (in atm). 

SMILES SIMPOL UManSysProp VaPOrS 

 CC(=O)C(=O)C(O)=CC(=O)C(O)C=O -8.4581 -6.5938 -8.4581 

 CC(=O)C(=O)C(O)=CC(=O)C(OO)C=O -8.7200 -6.8557 -8.7200 

 CC(=O)C(=O)C(O)=CC(OO)C(=O)C=O -8.7200 -6.8557 -8.7200 

 CC(=O)C(=O)C(O)=CC(O[O])C(O)C=O -7.5149 -5.6506 -7.5149 



 CC(=O)C(=O)C(O)=CC(ON(=O)=O)C(O)C=O -9.4257 -7.5614 -9.4257 

 CC(=O)C(=O)C(O)=CC(OO)C(O)C=O -9.6411 -7.7768 -9.6411 

 CC(=O)C(=O)C(O)=CC(O)C(OO)C=O -9.6411 -7.7768 -9.6411 

 CC(=O)C(=O)C(O)=CC(=O)C(O)C(=O)OO -9.4298 -7.5655 -9.4298 

 CC(=O)C(=O)C(O)=CC(O[O])C(OO)C=O -7.7768 -5.9126 -7.7768 

 CC(=O)C(=O)C(O)C(OO)C=CC(O[O])=O -7.5756 -6.6325 -7.5756 

 CC(=O)C(=O)C(O)=CC(ON(=O)=O)C(OO)C=O -9.6876 -7.8233 -9.6876 

 CC(=O)C(=O)C(O)=CC(O)C(O)C(=O)OO -10.351 -8.4866 -10.351 

 CC(=O)C(=O)C(O)=CC(=O)C(OO)C(=O)OO -9.6917 -7.8274 -9.6917 

 CC(=O)C(=O)C(O)=CC(O[O])C(O)C(=O)OO -8.4866 -6.6223 -8.4866 

 CC(=O)C(=O)C(O)=CC(ON(=O)=O)C(O)C(=O)OO -10.397 -8.5331 -10.397 

 CC(=O)C(=O)C(O)=CC(OO)C(OO)C(=O)O[O] -9.7018 -6.8944 -9.7018 

 CC(=O)C(=O)C(O)=CC(O[O])C(OO)C(=O)OO -8.7485 -6.8843 -8.7485 

 CC(=O)C(=O)C(O)=CC(OO)C(OO)C(=O)ON(=O)=O -10.669 -8.8052 -10.669 

 CC(=O)C(=O)C(O)=CC(ON(=O)=O)C(OO)C(=O)OO -10.659 -8.7950 -10.659 

 CC(=O)C(=O)C(O)=CC(OO)C(OO)C(=O)OO -10.874 -9.0105 -10.874 

 [O]OCC(=O)C(=O)C(O)=CC(OO)C(O)C(OO)=O -10.612 -8.7485 -10.612 

 O=N(=O)OCC(=O)C(=O)C(O)=CC(OO)C(O)C(OO)=O -12.523 -10.659 -12.523 

 O=C(C=O)C(O)=CC(=O)C(O)C=O -8.3085 -6.4442 -8.3085 

 O=C(C=O)C(O)=CC(=O)C(OO)C=O -8.5704 -6.7062 -8.5704 

 O=C(C=O)C(O)=CC(OO)C(=O)C=O -8.5704 -6.7062 -8.5704 

 O=C(C=O)C(O)=CC(O[O])C(O)C=O -7.3654 -5.5011 -7.3654 

 O=C(C=O)C(O)=CC(O)C(OO)C=O -9.4916 -7.6273 -9.4916 

 O=C(C=O)C(O)=CC(=O)C(O)OO -8.9397 -7.0754 -8.9397 

 O=C(C=O)C(O)=CC(=O)C(O)C(=O)OO -9.2802 -7.4159 -9.2802 

 O=C(C=O)C(O)=CC(O[O])C(OO)C=O -7.6273 -5.7630 -7.6273 

 O=C(C=O)C(O)=CC(OO)C(OO)C=O -9.7535 -7.8892 -9.7535 

 O=C(C=O)C(O)=CC(=O)C(OO)C(=O)OO -9.5421 -7.6779 -9.5421 

 O=C(C=O)C(O)=CC(O[O])C(O)C(=O)OO -8.3371 -6.4728 -8.3371 

 O=C(C=O)C(O)=CC(O[O])C(OO)C(=O)OO -8.5990 -6.7347 -8.5990 

 O=C(C=O)C(O)=CC(OO)C(OO)C(=O)OO -10.725 -8.8609 -10.725 

 O=CCC(=O)C(O)=CC(=O)C(O)C=O -8.659 -6.7950 -8.659 

 O=CCC(=O)C(O)=CC(=O)C(OO)C=O -8.9212 -7.0569 -8.9212 

 O=CCC(=O)C(O)=CC(OO)C(=O)C=O -8.9212 -7.0569 -8.9212 

 O=CCC(=O)C(O)=CC(O[O])C(O)C=O -7.7161 -5.8518 -7.7161 

 O=CCC(=O)C(O)=CC(ON(=O)=O)C(O)C=O -9.6269 -7.7626 -9.6269 

 O=CCC(=O)C(O)=CC(O)C(OO)C=O -9.8423 -7.9780 -9.8423 

 O=CCC(=O)C(O)=CC(=O)C(O)C(=O)OO -9.631 -7.7667 -9.631 

 O=CCC(=O)C(O)=CC(O[O])C(OO)C=O -7.9780 -6.1137 -7.9780 

 O=CCC(=O)C(O)=CC(ON(=O)=O)C(OO)C=O -9.8888 -8.0245 -9.8888 

 O=CCC(=O)C(O)=CC(OO)C(OO)C=O -10.104 -8.2399 -10.104 

 O=CCC(=O)C(O)=CC(O[O])C(O)C(=O)OO -8.6878 -6.8235 -8.6878 

 O=CCC(=O)C(O)=CC(ON(=O)=O)C(O)C(=O)OO -10.598 -8.7343 -10.598 



 O=CC(=O)C(=O)C(O)=CC(OO)C(O)C(=O)OO -11.757 -9.8929 -11.757 

 O=CCC(=O)C(O)=CC(OO)C(OO)C(=O)O[O] -9.9030 -7.0956 -9.9030 

 [O]OC(C=O)C(=O)C(O)=CC(OO)C(OO)C=O -10.104 -8.2399 -10.104 

 O=CCC(=O)C(O)=CC(O[O])C(OO)C(OO)=O -8.9497 -7.0854 -8.9497 

 O=CCC(=O)C(O)=CC(OO)C(OO)C(=O)ON(=O)=O -10.870 -9.0064 -10.870 

 O=N(=O)OC(C=O)C(=O)C(O)=CC(OO)C(OO)C=O -12.015 -10.150 -12.015 

 O=CCC(=O)C(O)=CC(ON(=O)=O)C(OO)C(OO)=O -10.860 -8.9962 -10.860 

 O=CCC(=O)C(O)=CC(OO)C(OO)C(=O)OO -11.076 -9.2116 -11.076 

 O=CC(OO)C(=O)C(O)=CC(OO)C(OO)C=O -12.230 -10.366 -12.230 

 O=CC(O[O])C(=O)C(O)=CC(OO)C(O)C(=O)OO -10.814 -8.9497 -10.814 

 O=CCC(=O)C(=O)C(OO)C(OO)C(O)C(=O)O[O] -10.714 -9.7716 -10.714 

 O=CC(ON(=O)=O)C(=O)C(O)=CC(OO)C(O)C(=O)OO -12.724 -10.860 -12.724 

 [O]OC(=O)C(OO)C(=O)C(O)=CC(OO)C(OO)C=O -12.029 -9.2218 -12.029 

 O=CCC(=O)C(=O)C(OO)C(OO)C(OO)C(=O)O[O] -10.976 -10.033 -10.976 

 O=N(=O)OC(=O)C(OO)C(=O)C(O)=CC(OO)C(OO)C=O -12.996 -11.132 -12.996 

 OOC(=O)C(OO)C(=O)C(O)=CC(OO)C(OO)C=O -13.202 -11.337 -13.202 

 O=CCC(=O)C(O)=CC(C(O)C=O)OOOC(C=O)C=CC(O)C(=O)CC=O -15.749 -13.885 -15.749 

 O=CCC(=O)C(O)=CC(C(O)C=O)OOOC1C=CC2OOC1C2(O)CC=O -14.446 -12.582 -14.446 

 O=CCC(=O)C(O)=CC(C(O)C=O)OOC(C(O)C=O)C=C(O)C(=O)CC=O -18.176 -14.447 -18.176 

 O=CCC(=O)C(O)=CC(C(OO)C=O)OOC(C(OO)C=O)C=C(O)C(=O)CC=O -18.700 -14.971 -18.700 

 

 

The challenges identified above are not isolated cases but represent systemic limitations of the 

existing tool when applied to chemically diverse and rapidly growing databases of atmospheric 

oxidation products. With new high-resolution mass spectrometry findings continually 

introducing thousands of new molecules into atmospheric models, a tool like VaPOrS that 

offers reliable, transparent, scalable, and portable group detection and vapor pressure 

estimation becomes a valuable contribution to the field. 

 

2. Methodological Differences and Computational Efficiency 

VaPOrS provides full control and transparency over the patterns and matching logic used for 

functional group identification and vapor pressure calculation directly from SMILES strings, 

making the process fully auditable and easily modifiable. In contrast, the internal operations of 

Open Babel used by UManSysPro via its Python wrapper Pybel, are less transparent. 

Modifying behavior within Open Babel typically requires deep expertise in C++ and SWIG 

(Simplified Wrapper and Interface Generator), which imposes a steep learning curve on non-



core developers to extend or troubleshoot functional group detection [1-3]. Users of 

UManSysPro have limited visibility into or control over these pattern definitions, complicating 

diagnosis of missed functional groups or extending detection logic without advanced 

knowledge of the underlying cheminformatics library. 

The reliance on third-party libraries (Open Babel and Pybel) also introduces computational 

overhead in UManSysPro because Pybel converts SMILES strings into internal molecular 

graph objects before querying functional groups. This step is heavier computationally 

compared to direct pattern matching on SMILES strings. In large-scale atmospheric secondary 

organic aerosol modeling scenarios, where thousands of species are processed across thousands 

of time steps and spatial grid cells, this overhead multiplies substantially, leading to significant 

decreases in performance. By bypassing the need for Open Babel and Pybel, VaPOrS can 

reduce runtime dramatically at atmospheric modeling scales. For example, with 100 

compounds, 10,000 spatial grid cells, and 10,000 time steps, equating to approximately 10¹⁰ 

vapor pressure calculations, even saving as little as 1 millisecond per call yields an overall 

runtime reduction on the order of days to weeks of CPU time. This order-of-magnitude speedup 

exemplifies the practical computational advancement that direct SMILES parsing and pattern 

matching, as implemented in VaPOrS, can provide over UManSysPro’s Pybel-dependent 

approach. 

Even though VaPOrS’s Pybel-free Python code performs much faster than UManSysPro’s 

Pybel-based implementation, it remains subject to Python interpreter overhead and 

suboptimal scaling compared to compiled languages. Fortran, for example, is the language of 

choice for most leading-edge high-performance simulation codes such as PALM [4] and 

ADCHEM [5], due to its superior efficiency in large-scale numerical computations and direct 

memory management [6]. Direct comparisons show Fortran can be hundreds of times faster 

than pure Python for the same algorithm. For example, a realistic computational task took 66 

seconds in Fortran versus 33,900 seconds (9.5 hours) in Python, a factor of 500 difference [7]. 

Fortran manages memory more efficiently, reducing runtime and minimizing memory 

exhaustion risks compared to Python’s dynamic and object-heavy environment. Modern 

Fortran, with support for OpenMP and MPI, is well suited for parallelizing across multi-core 

CPUs and HPC (high-performance computing) clusters, ideal for the demanding grids and time 

steps of atmospheric SOA modeling. Compiled Fortran code runs consistently across 

platforms, avoiding variability caused by the Python interpreter and dynamic dependency 

issues. Regarding this, UManSysPro’s dependency on Open Babel/Pybel creates challenges for 



portability and maintainability. Open Babel is a large C++ library with Python bindings, and 

porting its entire dependency chain to other programming languages, especially Fortran, 

is impractical and cumbersome. The typical solution, such as writing complex wrappers or 

using foreign function interfaces, is technically challenging and fragile. Fortran’s limited 

interoperability with C++ libraries without extensive tooling contrasts sharply with VaPOrS’s 

algorithmic approach, which is based solely on standard string operations and pattern matching, 

making it straightforward to port to Fortran. Furthermore, calling UManSysPro, which uses 

Python, from the above-mentioned Fortran-based models for vapor pressure calculations at 

every time step and grid cell for many compounds introduces a mixed-language dependency 

that can incur significant runtime overhead. This overhead arises from interpreter 

invocation and data marshalling between Fortran and Python, cumulatively adding up to the 

slowdown already caused by Pybel. 

If the vapor pressure calculation code is ported natively into Fortran, as VaPOrS’s algorithmic 

simplicity allows straightforward translation to Fortran, these penalties vanish. Fortran’s 

compiled nature allows massively faster execution, seamless integration, and optimized 

parallelism, critical for atmospheric scale modeling. Pure numerical and string logic 

implemented in Fortran will maximize CPU throughput and scale smoothly across large model 

domains without bottlenecks imposed by language design. Therefore, VaPOrS’s practical and 

potential advantages in reducing runtime can be summarized as follows: 

• Avoiding unnecessary computations by bypassing Pybel’s SMILES-to-graph 

conversion and using direct pattern matching. 

• Eliminating Python–Fortran interface overhead by avoiding mixed-language calls 

during large-scale simulations. 

• Allowing pure Fortran translation, enabling much faster native execution compared 

to Python. 

 

3. Execution Conveniency 

Running UManSysPro on supercomputers (high-performance computing, HPC) can lead to 

several complainable problems, especially in large-scale modeling workloads typical of 

atmospheric science. Supercomputers frequently run custom or stripped-down Linux 

environments. Installing complex dependencies like Open Babel and its Python wrappers 



(Pybel, SWIG bindings) is often problematic. Users may need special compilation steps, 

manual resolution of C++/Python/Swig compatibility, or may encounter issues with missing or 

incompatible shared libraries. Open Babel/Pybel and all dependent Python packages must be 

installed and maintained across all compute nodes. Minor discrepancies in versions or build 

environments between nodes can cause errors that are very hard to track in distributed jobs, 

leading to wasted supercomputing allocations. Furthermore, some supercomputer 

environments restrict the installation of non-standard libraries or require jobs to run only using 

centrally installed software. Getting approval or support for Open Babel/Pybel can be 

challenging, especially when the core libraries are actively developed with potentially breaking 

changes [8-10]. These factors are widely acknowledged as major barriers to deploying Python-

based, C++-linked scientific tools like UManSysPro on supercomputers compared to simpler, 

compiled, single-language scientific code. These issues often motivate writing more portable, 

lightweight, and easily compilable tools for large HPC applications, or at least favoring 

solutions that can be run natively in Fortran on all target architectures without Python or 

complex bindings. 

 

Conclusion 

While both UManSysProp and VaPOrS nominally implement the SIMPOL method, the 

pathway to functional group identification and vapor pressure computation is substantially 

different. VaPOrS's direct SMILES parsing avoids known limitations of Pybel-based systems, 

offers a more flexible and extensible framework, and has demonstrably outperformed 

UManSysProp across multiple atmospheric datasets, including benchmark compounds, MCM 

species, oxidation products, and autooxidation products. 

 

We hope this detailed explanation addresses the reviewer’s concern regarding the significance 

and novelty of our approach and demonstrates that VaPOrS represents a robust advancement 

in modeling vapor pressure for atmospheric applications. 
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