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Abstract. This paper proposes an innovative geostatistical model based on self-exciting Hawkes processes for modeling the

Rnnmm-type extreme climate index, representing a novel contribution to the literature on climate extremes. The proposed ap-

proach generalizes non-homogeneous spatio-temporal Poisson models by incorporating temporal dependence between events

through excitation functions, enabling the capture of clustering patterns commonly observed in precipitation time series. The

model is formulated within a Bayesian framework, with parameter estimation performed via Markov Chain Monte Carlo5

(MCMC) methods. Spatial dependence is introduced through hierarchical Gaussian processes, allowing for interpolation in lo-

cations without observed data. The model is applied to the R20mm index (annual number of days with precipitation exceeding

20 mm) using data from northern Maranhão (Brazil) for the period 2013–2022. Cross-validation results demonstrate that the

proposed model outperforms non-homogeneous Poisson models with and without seasonality in terms of predictive accuracy.

Furthermore, the excitation parameters provide additional insights into the persistence and intensity of extreme events, reveal-10

ing patterns not captured by conventional models. These findings highlight the model’s potential to enhance the analysis of

climate extremes in regions with high spatio-temporal variability in precipitation.

1 Introduction

The occurrence of extreme climate events, such as intense and prolonged rainfall, poses significant challenges in vulnerable15

regions, particularly in areas characterized by high climate variability. In the state of Maranhão, Brazil, for instance, the

rainfall regime exhibits pronounced seasonality. During the rainy season, precipitation events exceeding 20 mm tend to occur

frequently, with short intervals between them. As the dry season approaches, these intervals gradually increase until such events
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cease to be recorded. Capturing this dynamic and irregular behavior is essential for a more accurate understanding of climate

extremes and for supporting mitigation and adaptation strategies in local contexts.20

In this regard, climate indices developed by the Expert Team on Climate Change Detection and Indices (ETCCDI), such

as the Rnnmm index, have proven to be valuable tools for measuring and monitoring climate extremes. The Rnnmm index

is defined as the annual number of days in which daily precipitation exceeds nn mm, where nn is a user-defined threshold.

Despite its usefulness, the statistical modeling of these indices still faces limitations, especially in regions affected by large-

scale phenomena such as El Niño and La Niña, which irregularly influence seasonal precipitation cycles.25

Recent studies, such as Morales and Vicini (2020) and Morales and Rodrigues (2023), have investigated the behavior of

extreme rainfall frequencies using the Rnnmm index. Morales and Vicini (2020) incorporated anisotropy into the spatial co-

variance structure of a spatiotemporal model based on inhomogeneous Poisson processes, originally proposed by Morales et

al. (2017), thereby enhancing the model’s ability to represent complex spatial patterns. Subsequently, Morales and Rodrigues

(2023) developed a more comprehensive model that accounts for the high spatial and temporal variability of precipitation and30

captures regular seasonal rainfall cycles by incorporating a cyclic function into the intensity function. However, despite these

advances, the approach proposed by Morales and Rodrigues (2023) has limitations in capturing temporal factors that influ-

ence the index, particularly in regions such as northeastern Brazil, where precipitation cycles are strongly affected by irregular

large-scale climate phenomena, such as El Niño and La Niña, leading to significant deviations from expected seasonal patterns.

To address these limitations, Morales (2023) proposed an alternative approach based on partitioning the analysis period,35

allowing different intensity functions to be defined for each partition of the inhomogeneous Poisson process. This method em-

ploys a priori specification of the intensity function parameters using state-space models (West and Harrison, 1997), providing

greater flexibility in the modeling process. Additionally, the proposed approach incorporates anisotropy in the spatial covari-

ance structure, further improving the representation of complex spatial patterns. By explicitly considering temporal variability,

this strategy enhances the model’s ability to capture fluctuations driven by global climate phenomena, resulting in a more40

refined understanding of extreme precipitation events over time.

Moreover, one of the major challenges in developing studies in this field is the limited spatial and temporal coverage of

historical data, particularly in developing countries such as Brazil, where the density of rain gauges is below the threshold

recommended by the World Meteorological Organization (Curtarelli et al., 2014). To overcome this limitation, researchers

have increasingly relied on remote sensing estimates, such as those provided by satellite products. However, studies indicate45

that these estimates often underestimate extreme precipitation events. For example, Rodrigues et al. (2020) found that the

3B42V7 product from the Tropical Rainfall Measuring Mission satellite underestimated extreme events between 2000 and

2015 in northeastern Brazil. Similarly, dos Santos et al. (2022) analyzed the IMERG product from the Global Precipitation

Measurement (GPM) mission and demonstrated that the quality of climate index estimates, including Rnnmm, depends on

factors such as location and time period. Comparable findings were reported by Batista et al. (2024), who evaluated eight50

extreme precipitation indices estimated by IMERG in the Parnaíba basin.

Although the models proposed by Morales and Vicini (2020); Morales and Rodrigues (2023) and Morales (2023) have

advanced the modeling of the Rnnmm index, several aspects remain unexplored. For instance, the specific seasonal patterns of
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the rainfall regime in Maranhão have not yet been thoroughly examined. To bridge this gap, this study proposes an innovative

geostatistical model based on self-exciting Hawkes processes, which enables a more accurate representation of the temporal55

and spatial dynamics of climate extremes, particularly in regional contexts such as Maranhão. This approach is crucial for

improving the understanding of the frequency and intensity of extreme events, thereby contributing to the development of

effective mitigation and adaptation strategies for climate change.

2 The Model

We now formally define the geostatistical model considered in this article. Let A⊂Rd denote the spatial domain of interest,60

with n fixed observation sites located at s1, . . . ,sn ∈ A. These sites represent the locations where data are collected over time.

The data are assumed to originate from an underlying stochastic process, evolving as follows.

At each site sj , for j = 1, . . . ,n, we observe a continuous-time counting process Nj(t), which keeps track of the number of

events that have occurred at location sj up to time t. The history of each process is denoted by HΦj
= {HΦj

(t), t≥ 0}, and

it depends on a set of unknown parameters Φj = (φj ,ϱj), where φj and ϱj are vectors whose specific roles will be defined65

later. The collection of all such parameters across sites is denoted by Φ = (Φj)n
j=1.

Conditional on a realization of Φ, we assume that the counting processes {Nj(t)}n
j=1 evolve independently according to

self-exciting point processes, meaning that the occurrence of an event at any given time increases the likelihood of subsequent

events occurring in the near future. This characteristic makes the model particularly suitable for representing extreme weather

events, where an intense occurrence at a given location tends to trigger additional events within a short period. Specifically,70

each Nj(t) follows a Hawkes process, a model designed to capture clustering patterns in the event occurrences.

The likelihood of an event occurring at site sj at time t is governed by the conditional intensity function λj(t |Φ), which is

defined as:

λj(t |Φ) = gj(t |Φ) +
∑

tj,k<t

µj(t− tj,k |Φ). (1)

Here, the function gj(t |Φ) represents a baseline rate of events, independent of past occurrences. This can be interpreted as the75

background intensity, describing how frequently events would occur if there were no interactions between them. The second

term,
∑

tj,k<t µj(t− tj,k |Φ), accounts for the influence of past events.

The quantity tj,k denotes the occurrence time of the k-th event observed at site sj , with all such events forming the ordered

sequence {tj,1, tj,2, . . .}. Each past event at time tj,k contributes an additional increase to the intensity at time t, according

to the function µj(t− tj,k |Φ). This function, often called the excitation kernel, controls how strongly and for how long past80

events influence the likelihood of future occurrences.

To precisely characterize this excitation mechanism, we assume that the function µj(τ |Φ) follows an exponential decay:

µj(τ |Φ) = µ(τ | ϱj) = αje
−βjτ , τ ≥ 0, (2)

where ϱj = (αj ,βj), with αj > 0, βj > 0, and αj < βj . This formulation ensures that the influence of past events diminishes

over time, capturing the natural decay in their impact on future occurrences.85
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Simultaneously, the background intensity function gj(t |Φ) is assumed to follow the parametric form:

gj(τ |Φ) = g(τ |φj) = γjηjτ
ηj−1, τ ≥ 0, (3)

where φj = (γj ,ηj) are site-specific parameters that control the baseline occurrence of events independently of past observa-

tions. This parametric form provides flexibility in capturing different temporal patterns of extreme events.

The model specified by the excitation function in (2) and the background rate in (3) will be referred to as the Weibull-Hawkes90

model, reflecting the Weibull-distributed baseline hazard function and the Hawkes process governing self-exciting dynamics.

2.1 Model’s Prior Distributions

To fully specify the Weibull-Hawkes model in a Bayesian framework, we must assign prior distributions to its parameters.

These priors reflect our initial beliefs about the parameter values before incorporating observed data and play a fundamental

role in the inference process. A well-chosen prior structure not only provides regularization, but also ensures that the model95

remains flexible enough to capture the underlying patterns in the data.

In this work, we assign prior distributions to the parameters βj , αj , γj , and ηj for j = 1, . . . ,n. The choice of these priors is

guided by both computational considerations and prior knowledge about their plausible values.

The excitation parameter βj is particularly relevant, as it controls the decay rate of the self-excitation function and influ-

ences the temporal clustering of events. The selection of its prior is crucial for the stability and convergence of the estimation100

algorithm. Some studies suggest using a uniform prior U(0,a) for a suitable choice of constant a > 0 (citation needed). How-

ever, in this work, we opt for a hierarchical formulation that introduces additional flexibility while preserving interpretability.

Specifically, we assume that βj follows the hierarchical structure:

βj = aZj , where (4)
105

Zj ∼ Beta(ντ,(1− τ)ν),

τ ∼ Beta(aτ , bτ ),
(5)

where Beta(·, ·) denotes the Beta distribution, and a, ν, aτ , and bτ are known constants. This hierarchical formulation allows

for variability across locations while maintaining control over the range of βj values.

For the background rate γj and the excitation parameter αj , we assign priors to their logarithmic transformations to ensure

positivity and improve numerical stability. Specifically, we define:110

Wj = log(γj), Uj = log(αj), Mj = log(ηj), (6)
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for each j = 1, . . . ,n. Instead of assuming independent priors for these transformed parameters, we introduce a spatial depen-

dency structure by modeling them as realizations of Gaussian processes:

W (·)∼ GP(xW (·)′ΨW ,σ2
W ρϕW

(·, ·)),

U(·)∼ GP(xU (·)′ΨU ,σ2
UρϕU

(·, ·)),

M(·)∼ GP(xM (·)′ΨM ,σ2
MρϕM

(·, ·)),

(7)

where xk represents a vector of covariates, Ψk is a vector of unknown regression coefficients, σ2
k is a scale parameter, and115

ρϕk
(·, ·) is a spatial correlation function depending on the parameter ϕk, for k ∈ {W,U,M}. This formulation ensures that sites

closer to each other exhibit more similar parameter values, allowing spatial smoothing.

By standard properties of Gaussian processes, the prior distributions of the transformed parameters are given by:

W ∼N(XW ΨW ,ΣW ),

U∼N(XUΨU ,ΣU ),

M∼N(XMΨM ,ΣM ),

(8)

where Xk is a matrix of covariates, and Σk is the covariance matrix with entries:120

Σk[i, j] = σ2
kρϕk

(si,sj). (9)

To model spatial dependencies, we assume an exponential correlation function for all processes W , U , and M , such that:

ρϕk
(si,sj) = exp(−ϕk|si− sj |), (10)

where | · | denotes the Euclidean distance between locations si and sj . This choice ensures that correlation decays smoothly as

the distance between sites increases.125

To complete the prior specification, we assign hyperpriors to the unknown parameters governing the Gaussian process

structure. Specifically, for each k ∈ {W,U,M}, we assume:

Ψk ∼N(mk,Ck),

σ2
k ∼ Gamma(aσk

, bσk
),

ϕk ∼ Gamma(aϕk
, bϕk

),

(11)

where mk, Ck, aσk
, bσk

, aϕk
, and bϕk

are known hyperparameters that control the mean, variance, and spatial correlation

range of each Gaussian process.130

To formally describe the full prior distribution of the Weibull-Hawkes model, let:

Θ = (β,W,U,M,ΨW ,ΨU ,ΨM ,σ2
W ,σ2

U ,σ2
M ,ϕW ,ϕU ,ϕM ). (12)

The joint prior distribution factorizes as:

p(Θ) = p(β)p(W)p(U)p(M)
∏

k=W,U,M

p(Ψk)p(σ2
k)p(ϕk). (13)
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This factorization assumes that the priors for the excitation parameter vector β, the transformed background and excitation135

parameters W, U, and M, and the hyperparameters governing the Gaussian processes are mutually independent. That is, we

assume that knowledge about one group of parameters does not inform or constrain the prior distribution of another.

Although the assumption of prior independence simplifies computations and facilitates inference, it may not always be

strictly valid in practical applications. In some cases, incorporating dependencies between priors through hierarchical structures

or copula models could improve the model’s flexibility. However, for the purposes of this work, we adopt the independence140

assumption to maintain tractability while still allowing for spatial dependencies to be captured through the Gaussian process

priors on W, U, and M.

This completes the prior specification for the Weibull-Hawkes model, establishing a structured Bayesian framework that

integrates parameter uncertainty while accounting for spatial dependencies.

3 Bayesian Inference145

In this section, we outline the Bayesian inference procedure used to estimate the parameters of the Weibull-Hawkes model.

Our objective is to derive the posterior distribution of the parameter set Θ, given the observed event times t.

Let L(Θ | t) denote the likelihood function of Θ, conditional on the observed data t. Due to the model’s construction, the

likelihood factorizes across the n observation sites as:

L(Θ | t) =
n∏

j=1

Lj(Θ | tj), (14)150

where Lj(Θ | tj) represents the likelihood contribution from site sj . The likelihood at each site is given by:

Lj(Θ | tj) =

[
mj∏

i=1

λj(tj,i |Θ)

]
exp(−Λj(Tj |Θ)), (15)

where λj(t |Θ) denotes the conditional intensity function of the process at site sj , evaluated at time t, and Λj(T |Θ) represents

the integrated intensity over the observation window [0,T ], corresponding to the expected number of events up to time T .

For the Weibull-Hawkes model, the conditional intensity function is given by:155

λj(t |Θ) = γjηjt
ηj−1 +

∑

tj,i<t

αje
−βj(t−tj,i), (16)

where the first term corresponds to the background Weibull rate, while the second term captures the influence of past events at

site sj . The integrated intensity is expressed as:

Λj(Tj |Θ) = γjT
ηj

j +
αj

βj

nj(Tj)∑

k=1

(
1− e−βj(Tj−tj,k)

)
, (17)

where nj(Tj) denotes the number of observed events at site sj up to time Tj .160
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Bayesian inference is conducted by combining the likelihood function with the prior distribution to obtain the posterior

distribution of the parameters. Using Bayes’ theorem, the posterior is proportional to:

p(Θ | t)∝ L(Θ | t)p(Θ), (18)

where p(Θ) is the prior distribution specified in the previous section.

Given the complexity of the likelihood function and the hierarchical structure of the model, exact analytical inference is165

intractable. Therefore, we employ Markov chain Monte Carlo (MCMC) methods to sample from the posterior distribution.

Specifically, a Metropolis-Hastings algorithm or a Gibbs sampler can be used to efficiently explore the high-dimensional

posterior space. These methods not only provide point estimates for the parameters but also allow for uncertainty quantification,

yielding credible intervals for key parameters such as βj , αj , γj , and ηj in the Weibull-Hawkes model.

3.1 Estimation Scheme170

We employ a Markov Chain Monte Carlo (MCMC) algorithm to estimate the model parameters. The estimation process

iteratively updates the parameters by sampling from their respective full conditional distributions. To ensure reliable posterior

inference, we discard the initial samples (burn-in period) and retain only the post-convergence samples for posterior estimation.

The full estimation scheme is detailed in Algorithm 1.
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Algorithm 1 MCMC Sampling Scheme for Parameter Estimation

Input: Initial values Θ(0), total number of iterations K, burn-in period B

1 for k = 1 to K (total iterations) do

/* Step 1: Sample the regression coefficients */

2 for X ∈ {W,U,M} do

3 Sample Ψ(k)
X from:

4 Ψ(k)
X ∼N(AX ,BX), where AX = (mXC−1

X +X′Σ−1
X X)BX BX = (C−1

X +X′Σ−1
X X)−1

/* Step 2: Sample the variance parameters */

5 for X ∈ {W,U,M} do

6 Sample σ2
X

(k) from:

7 σ2
X

(k) ∼ GI
(

n
2 + aσX

, 1
2 (X−XXΨ(k)

X )′R−1
X (X−XXΨ(k)

X ) + bσX

)

/* Step 3: Sample the spatial dependence parameters */

8 for X ∈ {W,U,M} do

9 Sample ϕ
(k)
X from:

10 P (ϕX |Θ(k)
−ϕX

)∝ ϕ
aϕX

−1

X |ΣX |−
1
2 ×exp

[
− 1

2 (X−XXΨ(k)
X )′Σ−1

X (X−XXΨ(k)
X )− bϕX

ϕX

]

/* Step 4: Sample the latent variables */

11 for X ∈ {W,U,M} do

12 Sample X(k) from:

13 p(X |Θ(k)
−X)∝ Lk(Θk | t)exp

[
− 1

2 (X−XXΨ(k)
X )′Σ−1

X (X−XXΨ(k)
X )

]

/* Step 5: Sample the auxiliary parameter */

14 for j = 1, . . . ,n do

15 Sample β
(k)
j from:

16 p(βj |Θ(k)
−βj

)∝ Lk
j (Θk | tj)βντ

j (a−βj)(1−τ)ν

/* Step 6: Remove burn-in period */

17 Discard initial B samples (Θ(1), . . . ,Θ(B))

18 Retain samples {Θ(B+1), . . . ,Θ(K)} for posterior estimation

Output: Posterior samples {Θ(B+1), . . . ,Θ(K)} after burn-in

8
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4 Interpolation175

In this section, we address the problem of estimating the conditional intensity function, λ∗(t), at a new location s∗, where no

events have been previously recorded. Since the model assumes that event occurrences are spatially correlated, we can leverage

information from the observed locations {s1,s2, . . . ,sn} to make predictions at unobserved sites. This is achieved by applying

spatial interpolation techniques to the components of the intensity function.

Specifically, we consider interpolation for the background intensity function g(τ |φ) and the excitation function µ(τ | ϱ). In180

Section 4.1, we outline the procedure for interpolating g(τ |φ) at the new location; in Section 4.2, we extend the interpolation

framework to µ(τ | ϱ), ensuring that excitation dynamics are spatially consistent; finally, in Section 4.3, we describe how these

interpolated components are combined to estimate the full conditional intensity function λ∗(t) over continuous time.

4.1 Interpolation of the function g(τ |φ)

At the new location s∗, the background intensity function is given by g(τ |φ∗) = γ∗η∗τη∗−1, where the parameter vector185

φ∗ = (γ∗,η∗) must be inferred from the observed locations {φ1,φ2, . . . ,φn}.

Recall that we defined Wj = log(γj) and Mj = log(ηj) as the logarithmic transformations of γj and ηj . Since these trans-

formed parameters follow Gaussian process priors, the joint distribution of the observed values W1,W2, . . . ,Wn and the unob-

served value W∗ at s∗ is Gaussian. The same holds for M∗.

The posterior predictive distribution for W∗ is given by:190

W∗ |W1, . . . ,Wn ∼ N (µ∗,Σ∗) , where (19)

µ∗ = xW (s∗)′ΨW + ΣW (s∗,s1:n)Σ−1
W (W−xW (s1:n)′ΨW ), (20)

Σ∗ = ΣW (s∗,s∗)−ΣW (s∗,s1:n)Σ−1
W ΣW (s∗,s1:n)′. (21)

A similar expression holds for M∗, where ΣM and xM replace ΣW and xW , respectively.

At each iteration of the MCMC algorithm, after drawing samples of W∗ and M∗, we obtain the interpolated parameters195

γ∗ = exp(W∗) and η∗ = exp(M∗) at the new location s∗, conditioned on the observed values W and M. Consequently, in

each iteration, we compute the estimated background intensity function g(t |φ∗) at s∗, allowing us to extend the model to

locations where no events have been previously recorded.

4.2 Interpolation of the function µ(τ | ϱ)

Interpolating the excitation function µ(τ | ϱ) presents a unique challenge compared to the background intensity function g(τ |200

φ). Unlike g(τ |φ), which depends on continuous parameters that can be directly interpolated using Gaussian processes,

µ(τ | ϱ) is event-driven. It depends on the discrete event times at each location, making it more sensitive to local temporal

clustering patterns. As a result, standard interpolation techniques are not directly applicable, since neighboring locations may

exhibit different past event histories, affecting the excitation dynamics.
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To address this issue, we introduce a spatially weighted sampling method that probabilistically selects nearby locations,205

ensuring that the interpolated excitation function at an unobserved site reflects the rainfall dynamics of its surroundings. The

key idea is that locations close to each other tend to share similar excitation structures. Therefore, by borrowing information

from neighboring sites while incorporating spatial variability, we can construct a reasonable estimate of µ(τ | ϱ) at unobserved

locations.

The method consists of two main steps, which are detailed in Algorithm 2: 1. Spatially weighted selection of reference loca-210

tions: A location is chosen from the set of observed sites, with a probability that decreases with distance from the interpolation

site s∗. This ensures that closer locations contribute more to the estimate of µ(τ | ϱ) at s∗, while more distant locations have a

lower influence. 2. Reconstruction of the excitation function: Once a reference location is selected, its event times are used to

reconstruct the excitation function at s∗, incorporating the sampled parameters from the MCMC iterations.

To formalize the procedure, let S be an n× 2 matrix representing the spatial coordinates of the n monitoring stations, and215

let An = {1, . . . ,n} be the set of indices corresponding to the rows of S. Given a new location s∗ where we wish to interpolate

µ∗(τ | ϱ), we proceed as follows at each iteration of the MCMC algorithm:

Algorithm 2 Sampling from µ∗(τ | ϱ(k)) at an interpolation location s∗

Input: Set of monitoring stations S, distance threshold R, weighting parameter q

/* Step 1: Spatially weighted selection of a reference location */

19 Define the set of candidate reference locations:

A∗n = {j ∈An;∥s∗−S[j, ]∥ ≤R}.

Assign weights to each candidate location based on inverse distance weighting:

Pj =
∥s∗−S[j, ]∥−q

∑
i∈A∗

n
∥s∗−S[i, ]∥−q

.

Sample a reference location sj from A∗n with probability proportional to Pj .

/* Step 2: Estimation of the excitation function µ∗ */

20 Let {tj,k}nj

k=1 be the set of observed event times at the sampled reference location sj . Compute the excitation function at s∗

using:

µ∗(τ | ϱ(k)
j ) =

nj∑

k=1

α
(k)
j e−β

(k)
j (τ−tj,k),

for τ > tj,k.

Output: Updated value of µ∗(τ | ϱ(k)) for interpolation at s∗

10
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As outlined in Algorithm 2, this approach ensures that the interpolated excitation function preserves both spatial and temporal

structure in rainfall events. The weighting scheme favors closer locations, capturing local variability while preventing excessive

influence from distant sites. Additionally, the exponential decay function naturally reflects the temporal influence of past events,220

maintaining consistency in excitation dynamics across space.

4.3 Interpolation of the function λ∗(t)

With the interpolated background intensity function g∗(τ |φ∗) and excitation function µ∗(τ | ϱ∗) at the new location s∗, we

now estimate the full conditional intensity function λ∗(t). Since λ∗(t) governs the occurrence rate of events at s∗ over time,

its interpolation must reflect both the spatial structure of the background intensity and the temporal clustering effects captured225

by the excitation function.

Following the model specification, the conditional intensity function at s∗ is given by:

λ∗(t |φ∗,ϱ∗) = g∗(t |φ∗) +
n∗∑

k=1

µ∗(t− t∗,k | ϱ∗), (22)

where:

– g∗(t |φ∗) = γ∗η∗tη∗−1 is the interpolated background intensity function at s∗.230

– {t∗,k}n∗
k=1 represents the set of inferred past event times at s∗.

– µ∗(t− t∗,k | ϱ∗) = α∗e−β∗(t−t∗,k) is the interpolated excitation function, incorporating the influence of past events at

s∗.

Since no direct event observations exist at s∗, we must infer the event history {t∗,k}n∗
k=1. A natural approach is to simulate

event times from the interpolated intensity function itself. At each iteration of the MCMC algorithm, we follow these steps:235

1. Draw samples of the background and excitation parameters: Using the previously computed interpolations, obtain φ∗ and

ϱ∗ for the new location s∗.

2. Simulate event times at s∗: Generate a set of candidate event times {t∗,k}n∗
k=1 from a Poisson process with intensity

λ∗(t |φ∗,ϱ∗).
3. Compute λ∗(t) at each sampled time: Using Equation (22), evaluate the interpolated conditional intensity function at each240

time step.

By iterating over this procedure during the MCMC sampling process, we obtain a probabilistic estimate of λ∗(t) at the

unobserved location, allowing us to characterize the expected occurrence rate of extreme events in regions without direct

observations.

This framework ensures that λ∗(t) maintains consistency with the spatiotemporal structure of the observed data. The back-245

ground intensity function preserves large-scale spatial patterns, while the excitation function captures local clustering behavior,

ensuring that interpolated event dynamics remain realistic.
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5 Modeling Extreme Precipitation Events (R20mm) in the Northern Region of Maranhão State

Understanding the occurrence and intensity of extreme precipitation events is crucial for hydrological planning and disaster

mitigation. In this study, we model the frequency and spatial distribution of extreme daily precipitation events, defined as days250

with rainfall exceeding 20 mm (R20mm), in the northern region of Maranhão State, Brazil.

To achieve this, we analyze daily accumulated precipitation data (mm) over a 10-year period, from January 1, 2013, to

December 31, 2022. These data were obtained from 20 rain gauges located at national meteorological stations, managed by

the National Institute of Meteorology (INMET) and the National Water and Basic Sanitation Agency (ANA). The datasets are

publicly available through the INMET meteorological database (https://bdmep.inmet.gov.br) and the ANA open data portal255

(https://dadosabertos.ana.gov.br).

Figure 1 presents the spatial distribution of the rain gauges (P) used in this study. The study area spans parts of the states

of Maranhão and Piauí, in northeastern Brazil, a region marked by significant climatic and geographical diversity (Moura and

Shukla, 1981; Vale et al., 2024) and persistent socio-economic challenges (IBGE, 2024). Covering approximately 145,611 km2,

it extends between latitudes 3.2ºS and 6.5ºS and longitudes 41.9ºW and 45.5ºW. The region’s topography varies considerably,260

with elevations ranging from below 25 meters to over 275 meters, influencing local precipitation patterns. According to the

National Institute of Meteorology, annual rainfall in this area ranges from 1000 to 1800 mm (INMET, 2025), with extreme

daily events occasionally exceeding 100 mm (Rodrigues et al., 2020).

Precipitation in the region is governed by multiple atmospheric systems throughout the year. The primary driver of rainfall

is the Intertropical Convergence Zone (ITCZ), which migrates towards northern and northeastern Brazil during summer and265

autumn, generating intense precipitation between February and May (Uvo, 1989; Utida et al., 2019). Additionally, the Upper

Tropospheric Cyclonic Vortex (UTCV) plays a significant role, particularly during the summer months from December to

February, further shaping the regional precipitation regime (Kousky and Alonso Gan, 1981; Lyra et al., 2020).

5.1 Application and Predictive Performance Analysis

The proposed model is applied to analyze the spatiotemporal dynamics of extreme precipitation events in the northern region270

of Maranhão. By estimating its parameters, we aim to characterize the frequency, intensity, and clustering patterns of these

events, providing insights into their underlying drivers. This analysis allows us to better understand the precipitation regime in

the region and assess how extreme rainfall events are distributed over time and space. To ensure the robustness of our approach,

we compare its performance with alternative models commonly used in the literature, evaluating their ability to capture the

observed precipitation dynamics.275

The following models are considered for comparison:

– Model A: The proposed Hawkes process model.

– Model B: A Poisson model with a seasonal component.

– Model C: A standard Poisson model without seasonality.
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Figure 1. Study area and location of rainfall stations.

All three models employ a Weibull intensity function. The processes W , M , and U incorporate the covariates XW =280

(1,Latitude,Longitude), with XM = XU = XW . The variance parameters σ2
W , σ2

M , and σ2
U follow an Inverse-Gamma prior

distribution, IG(0.001,0.001), while the scale parameters ϕW , ϕM , and ϕU follow a Gamma prior distribution, G(0.001,0.001).

In the case of the Hawkes process model, the excitation decay parameter β is defined as β = aZ, where a = 2 and Z ∼
Beta(2τ,(1− τ) · 2), allowing for flexibility in capturing self-excitation effects.

Finally, for models incorporating seasonal effects, the prior distributions for the seasonal component parameters δ and f are285

given by:

p(δ) =
1√

δ(100− δ)
, p(f) =

1√(
f − 1

365+10

)(
1

365−10 − f
) .

This comparative analysis enables us to evaluate how well the proposed model represents precipitation extremes in Maranhão

and how it performs relative to other modeling strategies. By contrasting its predictive capabilities with existing methodologies,

we assess its effectiveness in capturing the temporal and spatial structure of extreme rainfall events, ensuring a comprehensive290

understanding of the region’s precipitation patterns.

5.1.1 Sensitivity Analysis of the Interpolation Method

Before comparing the predictive performance of the models, we conduct a sensitivity analysis to evaluate the impact of key

parameters in the interpolation process for the function Λ. Specifically, we assess the influence of the radius R used to define

neighboring stations and the weight vector P assigned to each neighbor.295

To analyze the effect of R, we consider three different definitions:
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– R1: The maximum distance between the observed stations.

– R2: The midpoint between the maximum and average distances.

– R3: The average distance between stations.

Similarly, we test three different weight functions for the neighboring stations:300

– P1i = |si−sk|−1∑
k|si−sk|−1

– P2i = |si−sk|−3∑
k|si−sk|−3

– P3i = |si−sk|−6∑
k|si−sk|−6

where si represents the location where the function Λ(si, t) is being predicted, and sk are the neighboring stations within the

selected radius Rj , for j = 1,2,3.305

Tables 1, 2, and 3 present the MAD and MSE values obtained in the cross-validation study for each excluded station (sj ,

with j = 1, . . . ,20), considering Model A applied to each radius (R1, R2, and R3) and the different weight vectors (P1, P2,

P3). The results indicate that the combination of R3 with P1 yielded the lowest MAD and MSE values in most cases, leading

to its selection for use in the interpolation method of Model A.
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Table 1. MAD and MSE values obtained in the cross-validation study for each excluded station (sj , with j = 1, . . . ,20), generated by Model

A with radius R1 and different weight vectors (P1, P2, P3).

R1

P1 P2 P3

Station MAD MSE MAD MSE MAD MSE

s1 17 316 21 487 21 498

s2 2 7 3 12 3 10

s3 5 51 4 22 4 29

s4 5 34 6 53 6 53

s5 5 31 10 120 14 227

s6 18 493 12 212 16 304

s7 22 624 13 207 9 107

s8 7 60 10 114 10 114

s9 18 346 17 319 17 317

s10 20 535 16 339 14 251

s11 6 58 7 64 12 251

s12 19 461 7 64 11 149

s13 11 164 21 473 23 599

s14 28 949 18 374 13 203

s15 11 154 4 21 4 21

s16 3 12 2 9 2 9

s17 6 59 2 8 2 9

s18 6 41 5 39 5 38

s19 15 252 9 90 8 79

s20 43 2370 49 3176 54 3843
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Table 2. MAD and MSE values obtained in the cross-validation study for each excluded station (sj , with j = 1, . . . ,20), generated by Model

A with radius R2 and different weight vectors (P1, P2, P3).

R2

P1 P2 P3

Station MSA MSE MSA MSE MSA MSE

s1 18 343 21 487 21 498

s2 3 11 3 12 3 10

s3 4 32 4 21 4 29

s4 4 31 6 54 6 53

s5 5 32 10 119 14 227

s6 13 258 12 193 16 304

s7 18 405 12 191 9 107

s8 7 60 10 114 10 114

s9 18 346 17 319 17 317

s10 20 535 16 339 14 251

s11 6 61 7 65 12 252

s12 19 469 13 223 11 149

s13 11 181 21 482 23 599

s14 26 813 17 359 13 204

s15 12 164 4 21 4 21

s16 2 9 2 9 2 9

s17 3 16 2 8 2 9

s18 5 37 5 39 5 38

s19 12 171 8 87 8 79

s20 52 3531 53 3695 55 3938
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Table 3. MAD and MSE values obtained in the cross-validation study for each excluded station (sj , with j = 1, . . . ,20), generated by Model

A with radius R3 and different weight vectors (P1, P2, P3).

R3

P1 P2 P3

Station MSA MSE MSA MSE MSA MSE

s1 19 391 21 487 21 498

s2 4 22 3 12 3 10

s3 4 26 4 21 4 29

s4 5 36 6 56 6 54

s5 6 50 10 123 14 227

s6 11 205 12 197 16 305

s7 16 338 12 185 9 106

s8 6 49 10 114 10 114

s9 19 384 17 318 17 317

s10 17 394 16 330 14 251

s11 7 72 7 63 12 252

s12 16 338 13 218 11 146

s13 15 282 21 498 23 600

s14 17 357 15 269 13 193

s15 5 34 3 19 4 21

s16 3 12 2 9 2 9

s17 2 8 2 8 2 9

s18 5 38 5 39 5 38

s19 9 103 8 85 8 79

s20 60 4748 60 4748 60 4748

5.1.2 Cross-Validation for Predictive Performance310

To assess the predictive performance of the models in interpolating the R20mm index, we conduct a leave-one-out cross-

validation study. The procedure consists of systematically removing data from one station si at a time and fitting the models

using the remaining stations. This process is repeated for all 20 stations in the dataset.

After fitting each model under these 20 different configurations, we apply interpolation methods to estimate the integrated

intensity function Λj(t) at the removed station sj . The quality of these predictions is then evaluated using the following error315
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metrics:

MADj =
1
nj

∑

t∈Aj

∣∣∣nj,t− Λ̂j(t)
∣∣∣

and

MSEj =
1
nj

∑

t∈Aj

(
nj,t− Λ̂j(t)

)2

,

where nj,t is the observed number of extreme precipitation events in the interval (0, t] at location sj , and Aj = {t1,j , . . . , tnj ,j}320

is the set of observed event times at that location.

By combining the sensitivity analysis and the cross-validation study, we aim to ensure that the proposed model not only

accurately captures the spatiotemporal structure of extreme precipitation events but also demonstrates superior predictive per-

formance compared to alternative approaches.

In Table 4, we observe that Model A generally exhibited the lowest MAD and MSE values compared to the other mod-325

els, indicating its superior predictive performance. These results suggest that Model A is the most suitable for capturing the

observed data patterns, providing more accurate forecasts. Figure 2 displays the predictions of the function Λ3(t) generated

by each model, along with their respective 95% credibility intervals. It is evident from this figure that Model A yields the

most consistent predictions, with lower uncertainty and a better fit to the observed data, confirming its superior predictive

performance.330

Table 4 also shows that Model A outperforms Model B in terms of predictive accuracy. Model A achieved lower MAD and

MSE values in 85% of cases compared to Model B. Additionally, Model A also demonstrated superior performance compared

to Model C, achieving lower MAD values in 50% of cases, tying in 20%, and showing higher values in only 30% of instances.

These results indicate that, overall, Model A provides better predictive performance than Model C.
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Table 4. MAD and MSE results in the cross-validation study for each excluded station sj , j = 1, . . . ,20, generated by each model.

Model A Model B Model C

Station MAD MSE MAD MSE MAD MSE

s1 19 391 11 172 20 498

s2 4 22 17 476 7 78

s3 4 26 21 717 8 98

s4 5 36 18 560 11 169

s5 6 50 12 281 9 113

s6 11 205 15 392 8 114

s7 16 338 32 1289 6 60

s8 6 49 3 13 8 86

s9 19 384 12 162 11 165

s10 17 394 29 1114 18 421

s11 7 72 8 102 8 88

s12 16 338 33 1422 12 205

s13 15 282 12 221 15 337

s14 17 357 50 3126 10 142

s15 5 34 29 1061 5 34

s16 3 12 31 1288 3 16

s17 2 8 36 1831 5 38

s18 5 38 41 2117 5 36

s19 9 103 45 2418 14 231

s20 60 4748 16 309 31 1163

Table 5 summarizes the estimated values of the parameters ϕ, σ2, ΨW , ΨM , ΨU , δ, θ, and f for Models A, B, and C. The335

results indicate notable differences in parameter estimates across models, particularly in the spatial dependence parameters

(ϕW , ϕM , ϕU ) and the variance components (σ2
W , σ2

M , σ2
U ). Table 6 presents the estimates of the shape parameter ηj of the

Weibull intensity function for each station, showing that Model C generally yields higher mean estimates compared to Models

A and B, with relatively narrow credibility intervals across all stations. Table 7 presents the estimates of the scale parameter

γj of the Weibull intensity function for each station, showing that Model B generally yields higher mean estimates compared340

to Models A and C, with relatively narrow credibility intervals across all stations. Finally, Table 8 reports the estimates of the

parameters αj and βj governing the excitation function µ in the Hawkes process, specifically for Model A. In our application

context, the parameter αj reflects the instantaneous increase in the intensity function following the occurrence of a new event,
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Figure 2. Estimated function Λ3(t) (solid red line) with a 95% credibility interval (shaded area) and the observed number of event occur-

rences in the interval (0, t], nj,t (black dashed line), for each of the analyzed models.

while the parameter βj describes the rate at which the intensity decays back to its baseline level. That is, the occurrence of a

precipitation event exceeding 20 mm in a single day increases the probability of a subsequent similar event by an increment of345

0.049 in the intensity, as observed at location s1 (Table 8). This influence decays at a rate of 0.064 (Table 8).

The results suggest some variability in the excitation intensity (αj) and decay rate (βj) across different stations, reflecting

the spatial heterogeneity in extreme precipitation events. Higher values of αj and βj are concentrated in the northern part of

the study area, whereas the lowest values are observed at the southernmost stations (s15, s16, s17, s18, and s19), where αj

ranges from 0.035 to 0.037, and βj from 0.053 to 0.058 (Table 8). These variations in αj and βj between the northern and350

southern regions may be partly attributed to differences in elevation and rainfall regimes influenced by proximity to the coast

and the activity of the Intertropical Convergence Zone (ITCZ). Northern regions, characterized by lower elevation and higher

atmospheric humidity, tend to exhibit greater intensity and persistence of extreme rainfall events, while southern, more elevated

and inland areas experience lower frequency and weaker clustering of such events.
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Table 5. Summary of parameter estimates for ϕ, σ2, ΨW , ΨM , ΨU , δ, θ, and f for Models A, B, and C.

Model A Model B Model C

Parameter mean 2.5 97.5 mean 2.5 97.5 mean 2.5 97.5

ϕW 0.076 0.005 0.496 0.009 0.005 0.023 0.043 0.005 0.299

σ2
W 0.773 0.038 4.716 0.304 0.117 0.733 0.557 0.150 1.641

ϕM 0.007 0.005 0.015 0.006 0.005 0.008 0.006 0.005 0.011

σM 0.322 0.131 0.734 0.115 0.061 0.217 0.165 0.082 0.320

ϕU 0.029 0.005 0.155

σ2
U 1.079 0.205 4.082

ΨW0 6.436 -6.158 20.275 -13.780 -17.245 -10.183 -1.280 -11.875 9.808

ΨW1 0.223 -0.066 0.539 -0.289 -0.364 -0.211 -0.005 -0.232 0.235

ΨW2 -0.141 -0.393 0.088 0.170 0.093 0.249 0.399 0.166 0.647

ΨM0 -1.501 -5.328 2.405 1.381 -0.411 3.153 -0.478 -3.072 2.044

ΨM1 -0.033 -0.120 0.052 0.036 -0.002 0.074 -0.008 -0.063 0.046

ΨM2 0.024 -0.057 0.110 -0.020 -0.060 0.019 -0.024 -0.076 0.028

ΨU0 -1.256 -10.517 7.155

ΨU1 0.033 -0.165 0.227

ΨU2 0.106 -0.137 0.315

δ 3.168 3.110 3.215

θ 3.505 3.415 3.590

f 0.00276 0.00275 0.00277
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Table 6. Summary of the shape parameter estimates ηj of the Weibull intensity function, for j = 1, . . . ,20, obtained by Models A, B, and C.

Model A Model B Model C

Station mean 2.5 97.5 mean 2.5 97.5 mean 2.5 97.5

s1 0.838 0.782 0.891 0.876 0.874 0.881 0.989 0.960 1.028

s2 0.838 0.781 0.890 0.875 0.873 0.879 0.989 0.959 1.028

s3 0.830 0.774 0.888 0.887 0.886 0.893 0.994 0.966 1.036

s4 0.848 0.787 0.903 0.862 0.861 0.869 0.998 0.972 1.030

s5 0.828 0.772 0.885 0.876 0.873 0.882 1.012 0.984 1.046

s6 0.882 0.811 0.955 0.826 0.824 0.831 1.001 0.967 1.028

s7 0.871 0.804 0.934 0.839 0.836 0.848 0.989 0.958 1.015

s8 0.815 0.764 0.882 0.890 0.889 0.894 1.014 0.991 1.047

s9 0.812 0.763 0.876 0.887 0.886 0.891 1.012 0.986 1.046

s10 0.825 0.772 0.887 0.871 0.869 0.878 1.025 1.000 1.058

s11 0.820 0.764 0.875 0.865 0.863 0.869 1.018 0.987 1.045

s12 0.832 0.770 0.886 0.863 0.861 0.871 1.007 0.978 1.038

s13 0.868 0.801 0.929 0.837 0.833 0.844 1.010 0.973 1.043

s14 0.777 0.705 0.867 0.921 0.920 0.925 1.040 1.005 1.076

s15 0.834 0.778 0.894 0.876 0.873 0.883 1.024 0.992 1.059

s16 0.807 0.756 0.887 0.908 0.906 0.913 1.045 1.023 1.073

s17 0.803 0.744 0.889 0.913 0.911 0.921 1.053 1.018 1.089

s18 0.812 0.763 0.896 0.906 0.903 0.911 1.046 1.021 1.075

s19 0.822 0.769 0.901 0.894 0.893 0.898 1.043 1.009 1.086

s20 0.798 0.703 0.874 0.936 0.934 0.939 0.969 0.894 1.049
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Table 7. Summary of the scale parameter estimates γj of the Weibull intensity function, for j = 1, . . . ,20, obtained by Models A, B, and C.

Model A Model B Model C

Station mean 2.5 97.5 mean 2.5 97.5 mean 2.5 97.5

s1 0.062 0.042 0.085 0.178 0.173 0.182 0.081 0.061 0.098

s2 0.061 0.041 0.084 0.181 0.175 0.187 0.085 0.062 0.108

s3 0.065 0.043 0.091 0.168 0.163 0.175 0.082 0.059 0.100

s4 0.056 0.040 0.076 0.201 0.190 0.209 0.076 0.061 0.091

s5 0.061 0.042 0.082 0.178 0.172 0.184 0.068 0.055 0.081

s6 0.042 0.026 0.065 0.283 0.270 0.298 0.078 0.063 0.103

s7 0.044 0.028 0.062 0.254 0.242 0.264 0.089 0.073 0.112

s8 0.069 0.044 0.092 0.156 0.150 0.161 0.055 0.043 0.066

s9 0.068 0.044 0.090 0.159 0.154 0.163 0.055 0.043 0.065

s10 0.061 0.042 0.080 0.184 0.176 0.193 0.063 0.050 0.074

s11 0.060 0.042 0.090 0.195 0.187 0.202 0.054 0.044 0.068

s12 0.058 0.041 0.087 0.197 0.186 0.208 0.046 0.037 0.056

s13 0.045 0.032 0.066 0.257 0.242 0.273 0.065 0.050 0.085

s14 0.088 0.050 0.138 0.115 0.111 0.119 0.032 0.023 0.040

s15 0.062 0.042 0.089 0.175 0.162 0.185 0.039 0.030 0.048

s16 0.079 0.047 0.108 0.131 0.123 0.137 0.032 0.026 0.038

s17 0.080 0.047 0.114 0.125 0.117 0.132 0.028 0.021 0.036

s18 0.077 0.046 0.103 0.134 0.129 0.140 0.033 0.026 0.038

s19 0.071 0.043 0.098 0.148 0.143 0.154 0.032 0.023 0.042

s20 0.098 0.053 0.173 0.103 0.098 0.106 0.075 0.039 0.130

23

https://doi.org/10.5194/egusphere-2025-2542
Preprint. Discussion started: 23 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Table 8. Summary of the estimates for the parameters αj and βj of the function µ in the Hawkes process, for j = 1, . . . ,20, obtained for

Model A.

α β

Station mean 2.5 97.5 mean 2.5 97.5

s1 0.049 0.042 0.057 0.064 0.053 0.078

s2 0.049 0.042 0.057 0.062 0.051 0.074

s3 0.049 0.042 0.057 0.063 0.052 0.075

s4 0.049 0.042 0.057 0.064 0.053 0.078

s5 0.048 0.041 0.056 0.060 0.050 0.073

s6 0.046 0.038 0.054 0.057 0.047 0.069

s7 0.048 0.039 0.057 0.059 0.048 0.071

s8 0.044 0.037 0.053 0.057 0.047 0.072

s9 0.045 0.037 0.053 0.058 0.047 0.073

s10 0.048 0.041 0.058 0.060 0.050 0.073

s11 0.049 0.040 0.064 0.067 0.054 0.085

s12 0.040 0.033 0.048 0.056 0.045 0.071

s13 0.045 0.037 0.053 0.057 0.046 0.070

s14 0.040 0.032 0.050 0.059 0.045 0.077

s15 0.037 0.028 0.045 0.053 0.040 0.069

s16 0.037 0.030 0.046 0.057 0.044 0.074

s17 0.035 0.028 0.044 0.055 0.041 0.074

s18 0.037 0.030 0.045 0.058 0.045 0.078

s19 0.035 0.028 0.044 0.053 0.040 0.071

s20 0.046 0.034 0.060 0.067 0.048 0.092
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This study proposed a novel geostatistical model based on self-exciting Hawkes processes for modeling the R20mm climate355

index, representing an innovative extension of the class of non-homogeneous spatio-temporal Poisson models. The main mo-

tivation for developing the model stems from the empirical observation that extreme rainfall events in northern Maranhão tend

to occur in clusters, especially during the rainy season, suggesting temporal dependence between events.

The proposed model incorporates temporal dependence through an excitation function and spatial dependence via hierar-

chical Gaussian processes, allowing for interpolation at locations with no observed data. Parameter estimation was conducted360

under a Bayesian framework using Markov Chain Monte Carlo (MCMC) methods. The model’s predictive performance was

assessed through an extensive cross-validation study, comparing the results to those obtained from Poisson models with and

without seasonality.

The results indicate that the Hawkes-based model outperformed the competing models in terms of predictive accuracy,

particularly in regions with pronounced rainfall seasonality. Additionally, the excitation function parameters provided further365

insights into the intensity and persistence of extreme events, revealing spatio-temporal patterns not adequately captured by

conventional models.

We conclude that the proposed model is promising for applications in climatology, especially in regions with high spatio-

temporal rainfall variability. It contributes to the improvement of climate extremes analysis and forecasting, with potential

applications in the planning of climate change adaptation strategies and natural disaster mitigation.370

6 Conclusions

This study proposed a novel geostatistical model based on self-exciting Hawkes processes for modeling the R20mm climate

index, representing an innovative extension of the class of non-homogeneous spatio-temporal Poisson models. The main mo-

tivation for developing the model stems from the empirical observation that extreme rainfall events in northern Maranhão tend

to occur in clusters, especially during the rainy season, suggesting temporal dependence between events.375

The proposed model incorporates temporal dependence through an excitation function and spatial dependence via hierar-

chical Gaussian processes, allowing for interpolation at locations with no observed data. Parameter estimation was conducted

under a Bayesian framework using Markov Chain Monte Carlo (MCMC) methods. The model’s predictive performance was

assessed through an extensive cross-validation study, comparing the results to those obtained from Poisson models with and

without seasonality.380

The results indicate that the Hawkes-based model outperformed the competing models in terms of predictive accuracy,

particularly in regions with pronounced rainfall seasonality. Additionally, the excitation function parameters provided further

insights into the intensity and persistence of extreme events, revealing spatio-temporal patterns not adequately captured by

conventional models.

We conclude that the proposed model is promising for applications in climatology, especially in regions with high spatio-385

temporal rainfall variability. It contributes to the improvement of climate extremes analysis and forecasting, with potential

applications in the planning of climate change adaptation strategies and natural disaster mitigation.
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Code availability. The spatio-temporal non-homogeneous Poisson models are implemented in the STprocpoisson R package

(https://doi.org/10.5281/zenodo.15651335 Projeto-CNPq-Clima, 2024b), while the proposed Hawkes-based models are implemented in the

STprocHawkes R package (https://doi.org/10.5281/zenodo.15652279 Projeto-CNPq-Clima, 2024a).390

Data availability. The data utilized in this article are freely accessible. Specifically, we analysed data collected from the SISDAGRO (Agri-

cultural Decision Support System) platform, developed by INMET (the National Institute of Meteorology, Brazil) and the National Wa-

ter and Basic Sanitation Agency (ANA). To ensure full reproducibility, the dataset is provided in both the STprocHawkes R package

(https://doi.org/10.5281/zenodo.15652279 Projeto-CNPq-Clima, 2024a) and the STprocpoisson R package

(https://doi.org/10.5281/zenodo.15651335 Projeto-CNPq-Clima, 2024b).395

Author contributions. FECM conceptualized the proposed model and coordinated the team in developing and implementing it in the R soft-

ware environment. AMBN and MSP developed the statistical properties of the model and assisted in constructing the interpolation method,

as well as conducting the literature review on statistical models relevant to the study. DTR contributed to the preprocessing of precipitation

data for the state of Maranhão, Brazil, supported the conceptual development of the model by advising on appropriate assumptions for ex-

treme event analysis based on her expertise in climate extremes, and helped interpret the results from a climate science perspective. CMA400

implemented the model code in R and organized it into an R package format.

Competing interests. No competing interest is declared.

Acknowledgements. We deeply thank the National Council for Scientific and Technological Development (CNPq) and the Ministry of Sci-

ence, Technology and Innovation (MCTI) for the generous funding granted to the project, identified by process number 405750/2022-6,

included in the so-called Call 59/2022 - Line 1 - Modelling the Global Climate System, Impacts, Vulnerability and Adaptation to Climate405

Change and Monitoring and Forecasting Natural Disasters. The trust and investment of these agencies were fundamental to the success of

this work.

We express our gratitude to the LABEST and BME laboratories of the Statistics Department of the Federal University of Rio Grande do

Norte. We thank you for generously granting access to and for permission to use your computer laboratories to implement the computational

part of this project. The collaboration and support of these laboratories were essential for the successful completion of this research.410

26

https://doi.org/10.5194/egusphere-2025-2542
Preprint. Discussion started: 23 September 2025
c© Author(s) 2025. CC BY 4.0 License.



References

Batista, F. F., Rodrigues, D. T., and e Silva, C. M. S.: Analysis of climatic extremes in the Parnaíba River Basin, Northeast Brazil, using GPM

IMERG-V6 products, Weather and Climate Extremes, 43, 100 646, 2024.

Curtarelli, M. P., Rennó, C. D., and Alcântara, E. H.: Evaluation of the Tropical Rainfall Measuring Mission 3B43 product over an inland

area in Brazil and the effects of satellite boost on rainfall estimates, Journal of Applied Remote Sensing, 8, 083 589–083 589, 2014.415

dos Santos, A. L. M., Gonçalves, W. A., Rodrigues, D. T., Andrade, L. d. M. B., and e Silva, C. M. S.: Evaluation of extreme precipitation

indices in Brazil’s Semiarid region from Satellite Data, Atmosphere, 13, 1598, 2022.

IBGE: Síntese de indicadores sociais : uma análise das condições de vida da população brasileira : 2024 / IBGE, Coordenação de População

e Indicadores Sociais, IBGE, 2024.

INMET: Banco de dados meteorológicos para ensino e pesquisa, BDMEP, 2025.420

Kousky, V. E. and Alonso Gan, M.: Upper tropospheric cyclonic vortices in the tropical South Atlantic, Tellus, 33, 538–551, 1981.

Lyra, M. J. A., Fedorova, N., Levit, V., and Freitas, I. G. F. d.: Características dos complexos convectivos de mesoescala no Nordeste

Brasileiro, Revista Brasileira de Meteorologia, 35, 727–734, 2020.

Morales, F. E. C.: State-space prior distribution for parameter of nonhomogeneous Poisson spatiotemporal models, Biometrical Journal, 65,

2200 125, 2023.425

Morales, F. E. C. and Rodrigues, D. T.: Spatiotemporal nonhomogeneous poisson model with a seasonal component applied to the analysis

of extreme rainfall, Journal of Applied Statistics, 50, 2108–2126, 2023.

Morales, F. E. C. and Vicini, L.: A non-homogeneous Poisson process geostatistical model with spatial deformation, AStA Advances in

Statistical Analysis, 104, 503–527, 2020.

Moura, A. D. and Shukla, J.: On the dynamics of droughts in northeast Brazil: Observations, theory and numerical experiments with a general430

circulation model, Journal of Atmospheric Sciences, 38, 2653–2675, 1981.

Projeto-CNPq-Clima: STprocHawkes: Repository for Spatio-Temporal Hawkes Process Models, https://doi.org/10.5281/zenodo.15652279,

zenodo repository, accessed November 15, 2024, 2024a.

Projeto-CNPq-Clima: STprocPoisson: Spatio-Temporal Non-homogeneous Poisson Process Models,

https://doi.org/10.5281/zenodo.15651335, dOI represents all versions; resolves to the most recent by default, accessed 15 Novem-435

ber 2024, 2024b.

Rodrigues, D. T., Gonçalves, W. A., Spyrides, M. H. C., and Santos e Silva, C. M.: Spatial and temporal assessment of the extreme and

daily precipitation of the Tropical Rainfall Measuring Mission satellite in Northeast Brazil, International Journal of Remote Sensing, 41,

549–572, 2020.

Utida, G., Cruz, F. W., Etourneau, J., Bouloubassi, I., Schefuß, E., Vuille, M., Novello, V. F., Prado, L. F., Sifeddine, A., Klein, V., et al.:440

Tropical South Atlantic influence on Northeastern Brazil precipitation and ITCZ displacement during the past 2300 years, Scientific

reports, 9, 1698, 2019.

Uvo, C. R. B.: A Zona de Convergência Intertropical (ZCIT) e sua relação com a precipitação da Região Norte do Nordeste Brasileiro, 1989.

Vale, T. M. C. d., Spyrides, M. H. C., Cabral Júnior, J. B., Andrade, L. d. M. B., Bezerra, B. G., Rodrigues, D. T., and Mutti, P. R.: Climate

and water balance influence on agricultural productivity over the Northeast Brazil, Theoretical and Applied Climatology, 155, 879–900,445

2024.

West, M. and Harrison, J.: Bayesian Forecasting and Dynamic Models, Springer Series in Statistics, Springer, 2 edn., 1997.

27

https://doi.org/10.5194/egusphere-2025-2542
Preprint. Discussion started: 23 September 2025
c© Author(s) 2025. CC BY 4.0 License.


