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Abstract. We conducted a perfect model experiment using Icepack, a one-dimensional single-column sea ice model, to

assess the potential of data assimilation (DA) to improve predictions of the mean sea ice state through the incorporation of

sea ice albedo (SIAL) observations. One ensemble member is designated as the TRUTH, and synthetic observations drawn

from it are assimilated into the remaining ensemble members. DA is carried out using the Data Assimilation Research Testbed

(DART) with a bounded Quantile Conserving Ensemble Filtering Framework (QCEFF), which accounts for the bounded5

nature of sea ice variables. Icepack ensembles were spun-up for four Arctic locations based on small perturbations to

atmospheric forcing. Results show that assimilating SIAL yields comparable or superior performance to more commonly

assimilated observables such as sea ice concentration (SIC) and thickness (SIT) in three-quarters of the Arctic regions studied,

and across all regions when observational uncertainty in SIAL is reduced below estimates from the current literature. These

findings underscore the value of leveraging existing SIAL observations and expanding their temporal and spatial coverage in the10

Arctic. Furthermore, the study highlights the critical need to better constrain the observational uncertainty of SIAL. Enhanced

observational networks would provide the necessary validation data, enabling more accurate uncertainty characterization and

improved sea ice forecasts in a rapidly evolving polar climate.

1 Introduction

Arctic amplification (AA) refers to the phenomenon in which the Arctic experiences accelerated warming compared to the15

global average. This enhanced warming has been consistently observed over recent decades (Rantanen et al., 2022). The accel-

erated warming is partially attributed to the ice-albedo feedback mechanism, in which the melting of snow and sea ice exposes

darker underlying surfaces, enhancing the absorption of short-wave radiation and further amplifying ice loss (Perovich and Po-

lashenski, 2012; Serreze and Barry, 2011). Despite the critical role of this feedback in the dynamics of Arctic climate, global

climate models (GCMs) exhibit persistent limitations in accurately simulating Arctic sea ice. These deficiencies contribute to20

significant uncertainties in the projection of key sea ice variables, including sea ice concentration (SIC), sea ice thickness (SIT),

and surface albedo (Donohoe et al., 2020; Pithan and Mauritsen, 2014).

Sea ice albedo (SIAL), defined as the fraction of incoming solar radiation reflected back into the atmosphere over the ice-

covered portion of a grid cell, is a critical component of the polar climate system’s energy budget. Unlike broadband surface
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albedo, SIAL in climate models is calculated independently of sea ice concentration (SIC), in that it excludes contributions25

from open water and characterizes only the reflectivity of sea ice itself. However, in practice, SIAL and SIC often co-vary in

response to shared surface processes such as melt ponding, snow loss, and sea ice retreat. Bare sea ice exhibits a relatively

high albedo, typically reflecting 50–70% of incident short-wave radiation, in stark contrast to the open ocean, which only

reflects about 10%, absorbing most of the incoming short-wave radiation due to its much lower albedo. Snow-covered sea ice

can reflect 90% of incoming short-wave radiation, whereas melt ponds, which form on the ice surface during the melt season,30

exhibit highly variable albedo values. These values depend on factors such as pond depth and water clarity, often resulting

in significantly lower albedos relative to bare ice (Grenfell and Perovich, 2004; Perovich, 1996). The spatial and temporal

variability of SIAL–driven by changes in surface conditions on the sea ice, such as snow cover, bare ice, and melt ponding–

modulates the amount of solar radiation reflected within ice–covered regions. SIAL is typically derived from satellite remote

sensing, which enables spatially extensive, long-term observations, but it is also measured directly via in-situ instruments35

deployed on the ice, offering higher-resolution insights into local surface conditions (Karlsson et al., 2023; Calmer et al., 2023).

While the primary ice–albedo feedback arises from the strong contrast between sea ice and open ocean albedos, variability in

SIAL governs the intensity and spatial distribution of this feedback over ice-covered areas. Accordingly, SIAL serves as an

important regulator of the Arctic shortwave radiative balance, particularly during the summer melt season (Seong et al., 2022;

Arndt and Nicolaus, 2014).40

The reduction in surface albedo from melting sea ice is complicated by secondary processes, such as increased cloud cover

and rising ocean temperatures, which compound disruptions to the energy balance and either intensify or dampen the cycle of

Arctic warming (Sledd and L’Ecuyer, 2021; Taylor et al., 2015). As a result, capturing these intricate dynamics within coupled

sea ice simulations is vital for projecting both seasonal and long-term sea ice trends and for understanding their broader

implications on Arctic and global climate systems. The authors leave this as an open area of study for future research based on45

improved representation of Arctic sea ice.

The primary aim of this study is to improve the accuracy of sea ice simulations by integrating idealized albedo observa-

tions within an ensemble data assimilation (DA) framework using synthetic (perfect model) experiments. Assimilating albedo

observations offers a pathway to refine the representation of modeled energy exchange processes, reducing uncertainties in

simulations of Arctic sea ice. While this study serves as a proof-of-concept demonstration under idealized conditions, such50

an approach has the potential to inform future improvements in model parameterizations related to melt thermodynamics, ice

growth, and ice thickness distributions (Hunke et al., 2010; Lindsay, 2001; Barry, 1996).

The inclusion of SIAL in the DA framework is expected to improve the ability of the model to capture interannual variability

and very rapid sea ice loss events (VRILEs), which are essential to understand the rapid sea ice transformations that occur in

the Arctic (Cavallo et al., 2025; Pistone et al., 2014; Schröder et al., 2014; Perovich et al., 2008). By addressing deficiencies55

in SIAL representation through idealized DA experiments, this study aims to lay the groundwork for future improvements in

subseasonal-to-decadal sea ice forecasting skill and projections of Arctic sea ice trends. The integration of SIAL observations

enhances the accuracy of model state estimates–helping to better constrain simulations without altering the model’s physical
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formulation. While this study does not directly assess ecosystem or climate impacts, improving the representation of albedo

may ultimately support broader efforts to reduce uncertainty in Arctic climate variability and its global feedbacks.60

2 Methods

To quantify the impact of SIAL DA, we conducted a series of perfect-model experiments using the Icepack sea ice model

(v1.4.0; (Hunke et al., 2023)), the thermodynamic module of the widely used Community Ice CodE (CICE). Icepack is

a one-dimensional, column-based model that simulates vertical thermodynamic processes in sea ice but does not include

horizontal ice dynamics such as advection. For this study, Icepack was spun up from 2000 to 2010 to establish realistic local65

ice conditions in four key Arctic regions: the Barents Sea (75° N, 40° E), the Central Arctic (88° N, 0° E), Coastal Canada

(81° N, 2° W), and the Siberian–Chukchi Sea (76° N, 174° E). This 11-year spin-up period allows the model to equilibrate

to prescribed atmospheric and oceanic forcing, eliminating artifacts from idealized initial conditions and ensuring that all

subsequent simulations begin from physically consistent and realistic ice states. The early 2000s were selected as a critical

transition period in Arctic sea ice history, during which the region began shifting from a predominantly multi-year ice cover70

to one dominated by first-year ice (Sumata et al., 2023). Each Icepack simulation was forced with prescribed atmospheric

conditions from the Japanese 55-year Reanalysis for driving ocean–sea-ice models (JRA-55-do) and coupled to a slab ocean

following Tsujino et al. (2018). Initial conditions for the slab ocean were derived from the ocean component output of a fully

coupled historical simulation using the Community Earth System Model (CESM2). For each region, we generated an ensemble

of 30 Icepack simulations to capture internal variability and provide a basis for subsequent DA experiments.75

Icepack parameterizes the ice thickness distribution (ITD) by discretizing the continuous range of sea ice thicknesses

into n distinct thickness categories (with n = 5 in our integrations). The model state variables–aicen (ice area), vicen (ice

volume), and vsnon (snow volume)–are each defined per thickness category. This categorization allows the model to capture

the heterogeneous and nonlinear behavior of sea ice processes across the thickness spectrum, enabling physically consistent

thermodynamics and parameterized mechanical interactions (e.g., ridging and rafting) for thin versus thick ice.80

We selected geographic locations (Figure 1) to assess how SIAL assimilation influences the modeled sea ice behavior in

different Arctic regions, with a particular focus on how local atmospheric forcings shape ice evolution in areas with varying

sea ice climatologies (Tschudi et al., 2020; Serreze and Barry, 2011). We overlay mean annual SIC (2000-2015) from the

National Snow and Ice Data Center (NSIDC) Climate Data Record (CDR) for a greater understanding of typical ice conditions

at these four locations (Meier et al., 2024).85

The spun-up ensembles were then integrated forward for a 5-year period (2011–2015) without any DA. The 5-year period

following spin-up was selected to balance two goals: ensuring a long enough time window to evaluate the cumulative impact

of DA on sea ice state evolution, while remaining short enough to minimize the influence of structural model drift and changes

in climate forcing not represented by the perfect-model framework. This period also aligns with the availability of well-

characterized reanalysis inputs and avoids strong interannual anomalies that could dominate the signal. Additionally, using a90

relatively short post-spin-up period helps isolate the effects of initial condition uncertainty and DA rather than external forcing
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Figure 1. Geographic locations of the atmospheric and oceanic forcing selected for analysis. Atmospheric forcings used to spin up the sea

ice ensemble include downwelling shortwave (FSW ) and longwave (FLW ) radiation (W m−2), 10-meter zonal (U ) and meridional (V ) wind

speeds (m s−1), specific humidity (Q, kg kg−1), and precipitation (P , kg m−2 s−1). Oceanic (slab) forcings include temperature (T , K),

salinity (S, PSU), mixed layer depth (hblt, m), surface zonal and meridional currents (U , V , m s−1), ocean surface tilt (∂h/∂x, ∂h/∂y;

unitless), and vertical convergence of heat transport (∂q/∂p, W m−3).

trends. This free run serves as a control case against which assimilation experiments can be evaluated. For each assimilation

experiment–defined as the set of simulations conducted for one of the four Arctic locations–a randomly selected ensemble

member was designated as the reference TRUTH state, from which synthetic observations were derived for assimilation.

To account for sensitivity to the choice of TRUTH, we repeated the assimilation experiments using ten different ensemble95

members as TRUTH states (ensemble members 3, 5, 10, 12, 14, 16, 19, 21, 25, and 28). Synthetic observations of SIAL,

SIC, and SIT were generated from each of these TRUTH realizations for assimilation into the remaining ensemble members.

Using synthetic observations is advantageous as they share the same spatial and temporal scales as the model. Moreover,

in a one-dimensional framework, these observations can be assimilated and tested for significance with substantially lower

computational cost compared to assimilating real observations that are not co-located with the model column.100

Figure 2 presents the ensemble mean (µ) SIC in the free run at each selected location for 2011–2015, along with the ensemble

spread indicated by ensemble standard deviation (±2σ). The Barents Sea location exhibits the highest variability in SIC across
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the study period and does not reach full ice coverage in the ensemble mean. The Siberian–Chukchi Sea also displays a highly

seasonal SIC cycle, achieving near-complete coverage during winter but retreating substantially in summer. Both regions lie

within the marginal ice zone (MIZ), where sea ice frequently transitions between open water and partial coverage. To represent105

these dynamic conditions, we configure these sites in Icepack using the fluxing open water boundary condition. In standalone

Icepack simulations, this functionality is required to approximate the exchange of energy and mass between sea ice and the

surrounding ocean, particularly in regions with seasonally variable ice cover. Without a dynamic coupling to an ocean model,

Icepack must either assume uniformly ice-covered conditions (fluxing uniform ice) or allow for partially open water that

can receive and exchange fluxes at the ice edge. The fluxing open water option provides a more realistic treatment of MIZ110

dynamics in these seasonally ice-covered regions.

The Coastal Canada region exhibits a pronounced seasonal signal, but remains partially ice covered even during the summer

minimum. Because Icepack does not include coastlines or ice advection, it cannot capture the coastal ice buildup that

is well-represented in observations and full three-dimensional sea ice models. As a result, SIC values in this region are likely

underestimated. In contrast, the Central Arctic is dominated by perennial, multi-year ice and shows minimal seasonal variability115

in SIC, making it a stable reference point for comparison. These two sites are therefore configured to represent fluxing uniform

ice—locations where sea ice dynamics are primarily governed by internal redistribution and deformation within a contiguous

ice pack, rather than interactions with open water or ice edge processes.

Figure 2. Mean (µ) and standard deviation (±2σ) of SIC across ensemble members and region of the Icepack free-run for 2011-2015.

2.1 Data Assimilation Setup

One of the most challenging aspects of sea ice DA is the inherent boundedness of the modeled variables. Quantities such120

as SIAL (bounded between 0 and 1), SIC (modeled as a fraction from 0 to 1, reported here as 0–100%), and SIT (≥ 0 m)

pose limitations on the potential ensemble spread, especially during periods when these variables approach their physical
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bounds—typically in winter (near-maximum values for SIC) and summer (near-minimum values for SIC and SIT). During

transition seasons, SIAL and SIC can also exhibit rapid nonlinear changes due to melt pond formation, refreezing, snowfall,

and other surface processes. In such cases, the model ensemble may lack sufficient variability to adequately represent fast125

seasonal transitions, making it difficult for traditional DA methods, many of which rely on unbounded Gaussian assumptions,

to optimally update the model state. These limitations necessitate alternative assimilation frameworks that explicitly account

for physical bounds and distribution asymmetries.

To address these challenges, we employed the Quantile Conserving Ensemble Filtering Framework (QCEFF; (Anderson,

2022, 2023; Anderson et al., 2024)), implemented within the Data Assimilation Research Testbed (DART; Anderson et al.,130

2009). DART is a community DA system developed by the Data Assimilation Research Section (DAReS) of the National

Center for Atmospheric Research (NCAR) with the support of the National Science Foundation (NSF). Specifically, we used

the bounded normal variant of the Rank Histogram Filter (RHF), which combines the statistical rigor of Gaussian-based

assimilation with the physical realism of bounded state variables. The filter works by fitting a truncated normal distribution to

the ensemble, conserving rank-based quantiles during the update step while ensuring that the resulting values remain within135

physically plausible limits. This approach has been shown to improve the performance of DA systems when dealing with

constrained geophysical variables, as it prevents unphysical ensemble updates (e.g., SIAL > 1 or negative SIT; (Wieringa et al.,

2024; Anderson et al., 2024; Riedel et al., 2025)).

SIAL assimilation, in particular, benefits substantially from this bounded framework. Unlike SIC and SIT, which frequently

approach their lower or upper physical limits, SIAL values typically remain within a central range–rarely falling below 0.1 or140

exceeding 0.9–even during extreme seasonal transitions. This characteristic makes SIAL an ideal candidate for assimilation

within a truncated Gaussian filter, as the ensemble spread is more likely to encompass the true state without frequently en-

countering hard boundaries. As a result, the bounded RHF can fully leverage its quantile-conserving properties without being

regularly constrained by the extremes of the distribution.

While this bounded formulation has recently been applied to SIC and SIT (e.g., Riedel et al., 2025; Wieringa et al., 2024), its145

implementation for SIAL assimilation is novel. Assimilating in Icepackwith the QCEFF method allows for a more consistent

and physically grounded incorporation of SIAL and other bounded observations, underscoring the potential of bounded DA

algorithms to advance the prediction capabilities of sea ice systems.

2.2 Observations

Synthetic observations assimilated by DART are generated by applying random noise drawn from a non-Gaussian bounded150

distribution with a standard deviation of 2σ, centered on the TRUTH value. A sensitivity test examining the influence of random

observational noise realizations on assimilation performance is included in the Supplement (Figure S1). This process accounts

for uncertainties that would affect real-world observations of the selected variables (Anderson et al., 2024). The synthetic

observations are calculated as aggregates of modeled quantities categorized by thickness in Icepack (e.g., aicen, vicen) over

these thickness categories. Most in-situ observations, by contrast, are point measurements of single variables such as SIT or155

SIC, which are typically treated as diagnostic quantities in sea ice models. In one experiment, we depart from this aggregate
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framework and instead assimilate synthetic SIAL observations separately within each thickness category–that is, we provide

the DA system with SIAL values corresponding to each modeled category, SIALn. This allows us to investigate the role of

modeled SIAL across the thickness categories in assimilation performance, particularly in the Siberian–Chukchi Sea region,

where the standard approach underperforms.160

The synthetic observation types used in our DA experiments include SIC, SIT, and four SIAL components derived from

Icepack’s narrow-band albedo scheme: direct visible (αDirVis), direct infrared (αDirIR), indirect visible (αIndVis), and

indirect infrared (αIndIR). These observations are calculated as aggregates over the model’s thickness categories based on

quantities such as aicen and vicen. In our configuration, which uses Icepack’s 3-band Delta-Eddington radiative transfer

scheme (shortwave = ‘dEdd’), direct and indirect shortwave radiation are treated equivalently, and so albedo observa-165

tions are grouped into two spectral bands—visible (αVis) and infrared (αIR)—for analysis. While Icepack supports a more

spectrally resolved 5-band scheme, it was not used in this study. The simplification is consistent with both the 3-band scheme’s

structure and the high correlation observed between direct and indirect albedos in version 1.4.0 (CICE Consortium, 2025).

The prescribed observational uncertainty distributions for each synthetic observation are summarized in Table 1 and vi-

sualized in Appendix Figure A1. The synthetic observational uncertainties listed in Table 1 were specified based on values170

reported in previous literature. For the narrow-band aggregate SIAL observations (αDirVis, αDirIR, αIndVis, and αIndIR), three

levels of observational uncertainty were adopted, informed by estimates from Riihelä et al. (2024) and Xiong et al. (2002).

These three uncertainty levels—±5%, ±14%, and ±25%—reflect the limited validation data available for satellite-derived

SIAL observations and are intended to represent low, medium, and high uncertainty scenarios, respectively. The few existing

in-situ validation studies suggest that actual satellite observational retrieval uncertainties are likely closer to the low-to-medium175

uncertainty range (Riihelä et al., 2010; Xiong et al., 2002).

The observational uncertainty for aggregate SIC is modeled as a negative parabola (Table 1), with the greatest uncertainty

occurring within the MIZ, where SIC ranges between 15% and 85%. This formulation reflects current understanding that satel-

lite retrievals of very low or very high SIC are generally more accurate than those within the MIZ, where spatial heterogeneity

and measurement limitations introduce greater uncertainty (Wernecke et al., 2024; Han et al., 2021; Brucker et al., 2014). It180

is important to note that this uncertainty parameterization can also depend on surface conditions such as snow cover and the

presence of polynyas, which are not explicitly included in our uncertainty calculations, but are instead solely dependent on

SIC.

Similarly, the observational retrieval uncertainty for aggregate SIT is informed by satellite observation campaigns such as

ICESat-2 and CryoSat-2. For simplicity, the SIT uncertainty is approximated as 10% of the observed value (Table 1), which185

likely underestimates the true observational uncertainty and should be interpreted as a lower bound, consistent with prior

estimates (Zhang et al., 2023; Stonebridge et al., 2018). It should be noted that this relationship may not hold at very low

SIT values, where sea ice freeboard becomes small or even negative, introducing greater observational challenges (Rösel

et al., 2018). Additionally, this somewhat arbitrary choice of uncertainty is likely optimistic–uncertainties from older SIT

observational datasets are considerably larger (e.g., Schweiger et al. 2011).190
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Observation Type Symbol Forward Operator (Aggregate Equation) Prescribed Observational Uncer-

tainty (2σ)

Sea Ice Concentration SIC SICagg =
ncat∑
n=1

aicen − 1
2
(SIC2−SIC)

Sea Ice Thickness SIT SITagg =

ncat∑
n=1

vicen

SICagg

valid only where SICagg > 0

0.1× SIT

Direct Visible SIAL αDirVis αDirVis,agg =

ncat∑
n=1

(αDirVis,n · aicen)

SICagg

0.05×α (low)

0.14×α (medium)

0.25×α (high)

Direct Infrared SIAL αDirIR αDirIR,agg =

ncat∑
n=1

(αDirIR,n · aicen)

SICagg

0.05×α (low)

0.14×α (medium)

0.25×α (high)

Indirect Visible SIAL αIndVis αIndVis,agg =

ncat∑
n=1

(αIndVis,n · aicen)

SICagg

0.05×α (low)

0.14×α (medium)

0.25×α (high)

Indirect Infrared SIAL αIndIR αIndIR,agg =

ncat∑
n=1

(αIndIR,n · aicen)

SICagg

0.05×α (low)

0.14×α (medium)

0.25×α (high)
Table 1. Observation types, forward operators, and prescribed observational uncertainty assumptions. SIAL aggregates are weighted by sea

ice area and normalized by SIC, making them representative of ice-covered portions of each grid cell (i.e., valid only where SIC > 0).

2.3 Assimilation Temporal Selection

The DA methodology involved assimilating daily synthetic observations from April 1 to October 15, 2011. The temporal range–

from spring through early autumn–was selected to align with the period during which satellite-derived SIAL observations

are available and solar radiation effectively reaches the high Arctic, enabling reliable SIAL retrievals. This also coincides

with the season when SIAL plays a key radiative role; during winter, limited solar insolation renders SIAL variations largely195

inconsequential to the surface energy budget.

Daily observational SIAL products are available from the Polar Pathfinder (APP-x) dataset, which uses data from the Ad-

vanced Very High Resolution Radiometer (AVHRR) sensor (Tschudi et al., 2019). Consequently, the temporal sampling fre-

quency for synthetic observations in the assimilation was matched to this daily resolution to enable future comparisons with

APP-x. However, it should be noted that other operational products, such as the CLARA-A3 dataset from the EUMETSAT200

CM SAF, provide SIAL estimates at a pentad (5-day) resolution. This coarser temporal frequency reflects the need to com-

bine observations in order to mitigate the effects of low solar elevation and oblique satellite viewing angles, which amplify

bidirectional reflectance distribution function (BRDF) related uncertainties and complicate the feasibility of truly daily SIAL

retrievals, particularly in polar regions (Riihelä et al., 2024).
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While daily assimilation of variables like SIAL and SIT is useful for idealized benchmarking, assuming the availability of205

fully gridded daily observations may not align with current satellite capabilities. SIAL retrievals depend on favorable surface

illumination and low cloud cover, while SIT estimates–though available along satellite tracks at daily resolution–require radar

or lidar altimetry, which have limited spatial coverage and higher uncertainty during melt conditions or over thin ice (Karlsson

et al., 2023; Petty et al., 2023). Future work should explore the impacts of more realistic observational sampling frequencies to

better reflect operational constraints.210

2.4 Error Metrics

The primary metric used to evaluate assimilation performance is the Root Mean Square Error (RMSE), chosen for its robustness

and interpretability. RMSE is particularly effective because it is sensitive to large errors, thereby highlighting substantial

discrepancies between µ and the designated TRUTH member. It has also been widely adopted in previous sea ice DA studies

(Williams et al., 2023; Zhang et al., 2021). Additionally, RMSE yields a single scalar value that captures the overall magnitude215

of error, facilitating direct comparisons across different assimilation configurations.

For completeness, the mean absolute error (MAE) was also calculated, which yielded results that were qualitatively similar

to those from RMSE (not shown). However, RMSE is prioritized here because large deviations, specifically, cases where µ

strays≥ 2σ from the synthetic observational TRUTH, can indicate observation rejection. This effectively results in a secondary

ensemble free-run, which may diverge even further from the TRUTH than the control simulation.220

Importantly, RMSE accounts for both systematic errors (bias) and random errors (variance), offering a comprehensive mea-

sure of model performance. This holistic evaluation ensures that consistent and unpredictable errors are reflected in the metric.

The RMSE is computed as follows:

RMSE =

√√√√ 1
N

N∑

i=1

(yi− ŷi)
2
, (1)

where N is the total number of data points, yi is the observed value at time i, and ŷi is the corresponding predicted or modeled225

value.

To assess the robustness of assimilation performance, RMSE was computed across ten distinct ensemble members, each

randomly selected to serve as a synthetic TRUTH in separate experiments. These ten TRUTH realizations were drawn from

the same prior ensemble used in the assimilation cycles, ensuring internal consistency. By evaluating RMSE across multiple

TRUTHs, we account for natural variability in the system and avoid overfitting our results to a single realization. The reported230

RMSE values therefore reflect the mean performance across these ten cases, with 95% confidence intervals derived via boot-

strap resampling. This multi-TRUTH framework supports a more generalized evaluation of each assimilation configuration.

To evaluate the relative benefit of assimilating SIAL observations compared to SIC or SIT, we additionally compute a percent

RMSE difference metric. This metric quantifies how much more (or less) effective SIAL assimilation is at reducing RMSE

relative to SIC or SIT assimilation, with all differences referenced to a free-running control simulation (Figure 2). The metric235

is defined as:
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∆% DiffSIC, SIT =
(

RMSESIAL−RMSEfree run

|RMSEfree run|

)
× 100

−
(

RMSESIC, SIT−RMSEfree run

|RMSEfree run|

)
× 100 (2)

A negative value of this metric indicates that SIAL assimilation resulted in greater RMSE reductions than SIC or SIT

assimilation, whereas a positive value indicates poorer performance. This approach allows a direct comparison of the added240

value of SIAL assimilation across experiments, observational uncertainty levels, and regions.

3 Icepack Variable Relationships

We begin by examining the relationships among all Icepack aggregate variables of interest to assess their uniqueness and

find where there is overlap (Figure 3). We find that many variables are strongly correlated with each other. In particular, SIAL

is well correlated with SIC but not with SIT.245

Due to the high correlation among the narrow-band components of SIAL in Icepack, we have consolidated these com-

ponents into a single broadband SIAL for analysis. This simplification enables direct comparison of SIAL with SIC and SIT

without reducing the overall complexity of the SIAL output. While all four narrow-band components are assimilated within

the DA framework, our analysis focuses on this derived broadband component of the model output, defined as

αbroadband(SIAL) = (0.00318×αDirVis + 0.00182×αDirIR250

+ 0.63282×αIndVis + 0.36218×αIndIR). (3)

From this point on, all references to “SIAL” refer to the broadband albedo component. The weighting for each of the broadband

components is provided in the CICE Consortium (2025).

4 Results

4.1 RMSE Calculation and Statistical Significance255

We calculate the ensemble mean (µ) RMSEs for SIC and SIT relative to ten distinct TRUTH simulations, each based on a

different randomly selected ensemble TRUTH member, for multiple assimilation experiments: SIC-only, SIAL-only (at low,

medium, and high uncertainty levels; see the Methods section), SIT-only, all-variable assimilation (with medium SIAL uncer-

tainty), and a control free-run (Figure 4). Error bars represent 95% confidence intervals around the mean RMSE, calculated

across 10 TRUTH simulations (ensemble members 3, 5, 10, 12, 14, 16, 19, 21, 25, and 28) using bootstrap resampling.260

Figure 5 summarizes which 2011 assimilation experiments result in significantly different RMSE (relative to the TRUTH)

outcomes (p < 0.05), grouped by region and RMSE type (SIC or SIT). For each pair of experiments, we first apply the

Shapiro–Wilk test to assess the normality of the RMSE distributions. If both distributions are approximately normal, we use
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Figure 3. Correlation matrix (R) of Icepack main aggregate variables of interest averaged across all four regions specified in this study.

Note that hsnow represents the snow depth averaged across the grid cell.

Welch’s t-test; otherwise, we employ the non-parametric paired Wilcoxon test. In the upper triangular matrix of each panel,

arrows denote statistically significant differences, pointing from the higher to the lower mean RMSE relative to the TRUTH.265

Arrow thickness reflects the strength of the statistical evidence, with thicker arrows corresponding to smaller p-values. Com-

parisons that do not meet the significance threshold are labeled as “ns” (not significant). We provide the full set of p-values

in Supplement Table S1. We obtain similar results when analyzing other free-run years, suggesting that the findings are not

year-specific (not shown).
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Figure 4. Panels (a) and (b) show the ensemble mean RMSEs relative to the TRUTH for 2011 SIC and SIT, respectively, across four key

Arctic regions (Barents Sea, Central Arctic, Coastal Canada, and Siberian-Chukchi Sea), averaged over 10 TRUTH simulations. Error bars

represent 95% confidence intervals computed via bootstrap resampling across the 10 TRUTH cases.

The statistical significance of the improvements in RMSE (relative to the TRUTH) varies substantially by region (Figure 5).270

As expected, no statistically significant differences are found in SIC or SIT RMSE within the Central Arctic. This is attributable

to the presence of thick perennial ice with consistently high SIC, resulting in uniformly low SIC RMSE and high SIT RMSE

that are not easily reduced by DA due to our prescribed SIT uncertainty (see Table 1).

We observe the largest RMSE improvements relative to the TRUTH within the Barents Sea region. In particular, there is

no statistically significant difference in SIC RMSE between assimilating only SIAL (with low observational uncertainty) and275

assimilating all variables. However, this equivalence breaks down when the SIAL observational uncertainty increases; medium

and high uncertainty cases yield significantly different outcomes. Additionally, SIAL assimilation–under both low and medium

uncertainty–significantly outperform SIC assimilation. Across all uncertainty levels, SIAL assimilation also outperforms SIT

assimilation and the free run in terms of SIC RMSE, and is on par with SIT assimilation in terms of SIT RMSE. Regardless

of the assumed observational uncertainty, SIAL assimilation consistently improved the sea ice forecast relative to the free280

run–an improvement that we do not observe with SIT assimilation. SIAL assimilation also significantly reduces SIT RMSE in

the Barents region compared to the free run. Notably, for SIT RMSE, assimilating any single variable performed statistically

worse than assimilating all variables (assuming medium SIAL uncertainty).

In Coastal Canada, SIT RMSE results relative to the TRUTH are largely insignificant, except that SIAL assimilation per-

forms better than the free run, unlike SIC or SIT assimilation. For SIC RMSE, SIAL assimilation–regardless of observational285

uncertainty–significantly outperforms the free run. This is not the case for SIT assimilation alone, which shows no statistically

significant improvement over the free run.

Despite the consistent benefits of SIAL assimilation in the Barents and Coastal Canada regions, results from the Siberian-

Chukchi Sea are more nuanced. For SIC RMSE relative to the TRUTH, the observational uncertainty associated with SIAL

plays a critical role. Only SIAL assimilation with low observational uncertainty produces statistically significant improvements290
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Figure 5. Pairwise statistical comparison of RMSEs (relative to the TRUTH) for different assimilation experiments across four regions for

SIC (a–d) and SIT (e–h). Arrows indicate statistically significant differences (p < 0.05), pointing toward the assimilation experiment with

lower RMSE; arrow thickness increases with statistical confidence (smaller p-values). The label “ns” denotes non-significant comparisons.

As an example, the top left tan square of panel (a) compares SIC assimilation with low-uncertainty SIAL assimilation in the Barents Sea. The

arrow points toward SIAL, indicating that low-uncertainty SIAL assimilation yields significantly lower SIC RMSE compared to the TRUTH

than SIC assimilation alone. Assimilation cases include SIC, SIAL (low, medium, and high uncertainty), SIT, all variables (with medium

SIAL uncertainty), and a free-run control. Exact p-values are provided in Table S1.

over the free run and SIT assimilation. When the SIAL uncertainty cannot be constrained to a low value, SIC assimilation

statistically outperforms SIAL assimilation in this region. This finding underscores the importance of accurate SIAL uncertainty

quantification to ensure robust and meaningful assimilation outcomes. Figure 4 further illustrates that the ensemble mean SIC

and SIT RMSEs in the Siberian–Chukchi region are higher for SIAL assimilation with medium or high uncertainty than even

the free run.295

4.2 Percent Difference Metrics to Compare Assimilation Experiments

Figure 6 shows that the added value of SIAL assimilation over SIC or SIT assimilation varies substantially by region and

uncertainty level. In general, low-uncertainty SIAL assimilation often outperforms SIC or SIT assimilation (blue shading),

particularly in regions with intermediate ice conditions, while high-uncertainty SIAL assimilation frequently results in worse
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performance (red shading). This underscores the importance of accurately characterizing observational uncertainty when in-300

corporating albedo information into sea ice assimilation.

Figure 6 also provides insight into the internal consistency of each assimilation experiment across ensemble members.

Within each panel, the horizontal arrangement of ensemble TRUTH members (along the x-axis) allows for direct comparison

of RMSE outcomes under different regions and uncertainty levels. When a given row (i.e., region) is dominated by a single

color or shade, this indicates that the impact of SIAL assimilation relative to SIC or SIT assimilation is consistent across the305

ensemble. For example, the Barents and Coastal Canada regions exhibit predominantly blue shading for SIC RMSE under low

SIAL observational uncertainty, suggesting robust improvements from SIAL assimilation relative to SIC or SIT assimilation

across nearly all ensemble members. In contrast, rows with a mixture of red and blue shading–such as the Central Arctic

and Siberian–Chukchi regions under medium and high SIAL uncertainty–reflect less agreement among ensemble members,

implying greater sensitivity to initial conditions or synthetic observational noise.310

This spatial and ensemble-level agreement underscores the reliability of conclusions drawn from regions with consistent

shading and highlights the importance of ensemble spread in evaluating assimilation performance. Notably, trends appear to

be more consistent across regions for SIC RMSE than for SIT RMSE when comparing SIAL to either SIC or SIT assimilation.

This observation is consistent with results shown in Figure 5, where few single-variable assimilation experiments (e.g., SIAL

with low observational uncertainty) statistically outperformed others for SIT RMSE.315

4.3 Uncovering Model Deficiencies via Category-Wise SIAL Assimilation in the Siberian–Chukchi Sea

From Figures 5-6, it is evident that SIAL assimilation, when not constrained to a low observational uncertainty, performs

poorly compared to other commonly assimilated sea ice variables within the Siberian-Chukchi Sea. To further investigate these

disadvantages, category-wise DA was conducted specifically for SIAL in this region. Category-wise DA refers to the assimila-

tion of a variable independently within each category of the ice thickness distribution represented in Icepack. Although this320

approach is not applicable in real-world settings–since current observational systems cannot resolve sub-grid-scale ITDs–it is

particularly valuable in perfect model experiments. Such an approach helps identify underlying causes for unexpected assimi-

lation outcomes, such as cases where assimilation leads to an increase in ensemble mean RMSE relative to the TRUTH in our

model configuration.

Figure 7 illustrates the impact of assimilating category-specific SIAL observations at the medium uncertainty level (±14%).325

To represent uncertainty in broadband albedo as a function of ice thickness category, we applied a skewed uncertainty dis-

tribution in which thinner ice categories were assigned greater albedo uncertainty than thicker categories. This reflects the

assumption that observational and modeling challenges in characterizing surface conditions (e.g., open water, melt ponds) are

more prevalent over thin or newly formed ice (Nicolaus et al., 2012; Perovich et al., 2002). While this remains a broad approx-

imation, the objective of this assimilation experiment is not to rigorously quantify category-wise SIAL uncertainty, but rather330

to diagnose potential deficiencies in the model’s aggregate assimilation behavior.
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Each thickness category was associated with a representative albedo range, and uncertainties were distributed using a phys-

ically informed, inverse-weighted scheme:

σn =

√(
wn · εtotal∑

wn

)
· (∆an)2

12
, (4)

where σn is the standard deviation of albedo assigned to the nth thickness category, ∆an is the width of the representative335

albedo interval, and wn = 1/(an,right + 1) is an inverse function of the upper bound of the interval. This weighting scheme

places greater uncertainty on low-albedo, thin-ice categories. The quantity εtotal = 0.142 represents the total variance implied

by a non-Guassian 2σ range of 14% (i.e., 2σtotal = 0.14). Division by 12 assumes a uniform distribution of uncertainty within

each albedo bin. This formulation concentrates uncertainty in the lower-albedo, thin-ice regime, where albedo retrievals and

surface classification are likely least reliable.340

Applying this category-specific assimilation results in significant improvements in reducing SIC and SIT RMSE within the

Siberian-Chukchi Sea compared to most aggregate assimilation experiments. While this methodology was also applied to other

regions, results there were either insignificant or showed worsened performance, motivating a focused analysis on the Siberian-

Chukchi region for this portion of the study. The top row of Figure 7 demonstrates that assimilating SIAL by category–assuming

the medium skewed uncertainty distribution described in Eq. 4–outperformed all other assimilation strategies for SIT RMSE,345

including experiments that assimilated all aggregate variables. For SIC RMSE, SIAL by category assimilation also performed

on par with, or better than, all other assimilation configurations.

What causes this significant RMSE improvement relative to the TRUTH that is missed in the aggregate synthetic obser-

vations? The bottom-left panel of Figure 7 offers some insight. This plot shows the SIAL by category, averaged over ten

different ensemble TRUTH members. Notably, SIAL evolves differently across categories: in particular, SIAL in the thinnest350

ice category (n = 1) decreases rapidly in early April, while the remaining categories exhibit relatively stagnant behavior. This

decoupled, category-specific SIAL trend is unique to the Siberian-Chukchi Sea and is not observed in other regions, helping

explain why aggregate SIAL assimilation generally performs well or comparably in other areas—even under higher observa-

tional uncertainty. In contrast, within the Siberian-Chukchi Sea, Icepack does not evenly distribute the decrease in SIAL

across thickness categories. This introduces significant deficiencies in aggregate assimilation when SIAL uncertainty is uncon-355

strained. In effect, the aggregate SIAL diverges from the true category-level dynamics, leading to an improper DA adjustment

of model state variables aicen and vicen. When uncertainty is high, this results in larger SIC and SIT RMSE relative to the

TRUTH than even the free-running control simulation (see Figures 4-5).

The issue originates within Icepack: as SICn+1 decreases and SICn increases, SIALn+1 decreases, but SIALn does

not increase correspondingly to account for the influx of ice transitioning from thicker to thinner categories (see bottom row of360

Figure 7). This SIAL adjustment is likely (partially) incorrect and influences the formation of melt ponds within the thermo-

dynamics module. Recent developments in CICE have aimed to improve the parameterization of the classification of the level

ice melt pond; however, as of the time of this publication, these improvements have not yet been incorporated into operational

Icepack. We acknowledge that aggregate SIAL observations in the real world can further complicate this discrepancy–
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SIALn may behave differently across categories in the model, and such a variation would not be accurately updated using a365

coarse aggregate SIAL observation.

5 Discussion

5.1 Mechanisms for RMSE Reduction and Benefits of SIAL Assimilation

As highlighted above, SIAL DA represents a novel approach with numerous benefits to improve sea ice modeling. Currently,

SIT is widely considered a robust assimilation variable due to its high sensitivity to physical processes, long memory, and370

predictive power. For instance, studies have shown that assimilating SIT (especially in winter) in models significantly enhances

the accuracy of sea ice extent forecasts, underscoring its predictive value (Song et al., 2024; Williams et al., 2023; Ono et al.,

2020).

We propose three mechanisms to explain how real-world SIAL aggregate assimilation may complement or replace SIT

aggregate assimilation and contribute to the observed reduction in RMSE across SIC and SIT (Figs. 4-5), which are directly375

related to model state variables:

1. SIAL Observational Uncertainty vs. SIC and SIT Uncertainties. Relative to SIC and especially SIT, SIAL observa-

tional uncertainty is likely lower, particularly during the summer months. The known uncertainty for SIAL is between

0-14% (Karlsson et al., 2023). In contrast, SIC known observational uncertainty is likely on the order of 5-10% (Zhang

et al., 2021; Peng et al., 2013), but higher in the MIZ. SIT observational uncertainty varies, ranging from 10-100%380

depending on ice thickness. Therefore, during summer months when the ice is thin, the observational uncertainty may

approach or even exceed the SIT measurement (Song et al., 2024). Note that we assumed an optimistic SIT uncertainty

of ±10% in this study. The actual uncertainty is likely higher, especially when using older observational data such as

from CryoSat-2 (Chen et al., 2024). This suggests that SIAL and not SIT assimilation during summer months may be

beneficial, as SIAL leads to more constrained sea ice simulations when SIT observations are particularly sparse and385

uncertain.

2. SIAL Assimilation as an Early Melt Onset Indicator. SIAL assimilation provides an early indication of melt onset,

which can mitigate low inflation during the early melt season. SIAL, acting as a proxy for snow cover and melt ponds,

often exhibits a gradual decrease before SIC begins its rapid decline in the summer months. This early signal helps con-

strain the bounded assimilation of state variables aicen and vicen, effectively moderating inflation in the model during390

late summer. The mean incremental changes in SIAL data assimilation (with medium uncertainty) are substantially larger

during the early melt season compared to those from SIC or SIT assimilation, often resulting in improved agreement with

the TRUTH member in early summer (Figure A2).

Careful monitoring of the adaptive inflation scheme is crucial, as SIAL, SIC, and/or SIT assimilation may result in

insufficient model spread, particularly when observations are assigned a low observational uncertainty. Xiong et al.395

(2002) emphasized the importance of balancing observational uncertainty assignments to avoid introducing excessive
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bias or overconfidence in assimilation outcomes. This balance is especially significant during the early melt season,

where reduced spread from sea ice DA can impact the model’s responsiveness to rapidly changing ice conditions. See

the supplementary information for additional detail about the adaptive inflation used in this study.

3. SIAL Provides Contextual Clues for Sea Ice Fractional Coverage. SIAL is a critical variable in understanding the400

fractional coverage of different surface types within a grid cell, such as snow-covered ice, bare ice, and melting ice. The

assimilation of SIAL provides continuous insights into the energy balance of the sea ice surface, which is essential for

accurately predicting seasonal changes in sea ice extent and thickness. Springtime melt ponds, for instance, are strong

indicators of the September sea ice minimum (Schröder et al., 2014). Snow cover and late-season snowfall also influence

SIAL and, consequently, the rate of ice melt (Chapman-Dutton and Webster, 2024; Vérin et al., 2022; Perovich et al.,405

2017)

In Icepack, SIAL can be expressed as a weighted sum of the contributions from snow, melting ice, and bare ice

surfaces:

αbroadband = fsnowαsnow(T,age) + fmeltαmelt(T,hmelt)

+ ficeαice(T,hice) (5)410

where:

– fsnow, fmelt, and fice are the fractional area weights for snow-covered ice, melt ponds, and bare ice, respectively,

– αsnow, αmelt, and αice are the albedo values for each surface type,

– T represents temperature,

– age is the snow age,415

– hmelt and hice are the melt pond depth and ice thickness, respectively.

This formulation highlights how SIAL serves as a diagnostic variable that encapsulates the physical processes driving

seasonal surface transitions in the Arctic. As we have seen from our results, by assimilating SIAL, the model is better

equipped to constrain observed variables like SIC and SIT, as SIAL (aggregate) acts as an integrative measure of surface

state changes during the melt season. This contextual information has been shown above to help reduce biases and420

improve forecasts of Arctic sea ice behavior.

SIAL is more than a simple proxy for fractional coverage; it encapsulates key information about the radiative and thermo-

dynamic state of the sea ice surface. By capturing both spatial and spectral variations in ice and snow reflectivity, SIAL helps

constrain the energy balance of the ice–ocean–atmosphere system and offers insight into melt processes, pond evolution, and

snow metamorphism. This richness of information allows SIAL to provide a form of memory for the ice system–similar to425
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ice age, which has been shown to be a robust indicator of sea ice state (Zhang et al., 2018). However, unlike ice age, which

may lose relevance as the Arctic transitions to a primarily first-year ice regime (Sumata et al., 2023; Meier et al., 2023), SIAL

is expected to remain an important variable. Its demonstrated utility in highly seasonal regions like the marginal ice zone

(e.g., Barents Sea) underscores its value, and its importance may further grow as Arctic precipitation shifts from snow to rain

(McCrystall et al., 2021), altering surface albedo and melt dynamics in ways that SIAL can continue to capture.430

6 Conclusions

The results of this study suggest that SIAL assimilation is a robust alternative to assimilating traditional sea ice variables, such

as SIC and SIT. SIAL assimilation performs well due to its relatively low observational uncertainty, its ability to better predict

the melt onset, and its intrinsic relationship to snow, bare ice, and melt pond fractional coverage. In this one-dimensional

Icepack experiment, SIAL assimilation performs on par with or significantly better than SIC and SIT assimilation in all435

studied regions except the Siberian-Chukchi Sea. Within the Siberian-Chukchi Sea, SIAL assimilation performs well assuming

low uncertainty, but model physics and higher observational uncertainty pushes SIAL assimilation to perform worse than SIC

and SIT assimilation.

We acknowledge that this study was conducted in a one-dimensional idealized environment and emphasize the need for

further experimentation using a fully coupled global climate model to comprehensively assess the impact of SIAL assimilation440

on the mean sea ice state in a multi-dimensional framework. In particular, future research should investigate the performance

of satellite-derived SIAL assimilation within a three-dimensional QCEFF to better quantify the advantages and limitations

identified in this study.

A key challenge is the limited understanding and quantification of uncertainties associated with satellite SIAL retrievals.

This remains an underexplored area, and our study encountered difficulties in establishing a consensus on how best to represent445

these uncertainties. We advocate for additional field campaigns that measure SIAL across different spectral bands and seasons

to support more robust cross-validation of satellite products. A long-term, in-situ observational record is also essential to better

constrain satellite SIAL uncertainty estimates, which would enhance their utility in data assimilation frameworks.

Despite these challenges, we remain optimistic about the potential of SIAL assimilation, particularly given the extensive

availability of high-resolution satellite SIAL products spanning the satellite era. Notably, the CLARA-A3 surface albedo prod-450

uct, produced by EUMETSAT, provides pentad SIAL estimates at 25 km resolution on the Equal-Area Scalable Earth (EASE)

grid across multiple narrow-band frameworks (Vid. Supp. 1). Similarly, APP-x, developed in collaboration with NOAA and

the University of Wisconsin, offers twice-daily narrow- and broadband SIAL composites at the same resolution (Vid. Supp.

2). These observational datasets offer a promising alternative to conventional SIC and SIT assimilation approaches and hold

considerable potential for improving sea ice reconstruction over the satellite observational period (1982–present). Continued455

investigation of these products and their incorporation into advanced data assimilation systems is critical for unlocking their

full potential.
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Code availability. https://github.com/jrotondo-uw/cice-scm-albedo-da. The repository contains all scripts, model modifications, and Jupyter

notebooks required to reproduce the assimilation experiments and final figures. The workflow includes preprocessing, data assimilation using

DART with Icepack, and post-processing for analysis and visualization. Instructions for modifying DART and Icepack to assimilate sea460

ice albedo are also provided.

Data availability. The final post-processed NetCDF files used to generate the figures in this study are available at: https://doi.org/10.5281/

zenodo.15571204. The raw model free runs, synthetic observations, and intermediate data are not included due to size constraints but can be

reproduced by following the workflow described in the Code Availability section.

Video supplement. https://github.com/jrotondo-uw/cice-scm-albedo-da/tree/main/Video_Supplements465

Appendix A

A1

Author contributions. JR led the project, performed the data assimilation experiments, and conducted the analysis. MW contributed signifi-

cantly to model development and implementation. CB supervised the project and provided ongoing guidance throughout. RC and SC offered

constructive feedback and oversight during the development and interpretation phases. All authors contributed to the final manuscript.470

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We thank several people for helpful conversations, such as Walt Meier, Edward Wrigglesworth-Blanchard, Gregory

Hakim, and Jeffery Anderson. This work was supported by the National Science Foundation under Awards PLR-2141538 and PLR-1936428,

the American Meteorological Society Graduate Fellowship supported by the National Oceanic and Atmospheric Administration (NOAA)

Climate Program Office (CPO), and from NASA ROSES Grant Number 80NSSC21K074.475

19

https://doi.org/10.5194/egusphere-2025-2540
Preprint. Discussion started: 8 August 2025
c© Author(s) 2025. CC BY 4.0 License.



References

Anderson, J., Riedel, C., Wieringa, M., Ishraque, F., Smith, M., and Kershaw, H.: A Quantile-Conserving Ensemble Filter Framework. Part

III: Data Assimilation for Mixed Distributions with Application to a Low-Order Tracer Advection Model, Monthly Weather Review, 152,

2111–2127, https://doi.org/10.1175/MWR-D-23-0255.1, publisher: American Meteorological Society Section: Monthly Weather Review,

2024.480

Anderson, J. L.: A Quantile-Conserving Ensemble Filter Framework. Part I: Updating an Observed Variable, Monthly Weather Review, 150,

1061–1074, https://doi.org/10.1175/MWR-D-21-0229.1, publisher: American Meteorological Society Section: Monthly Weather Review,

2022.

Anderson, J. L.: A Quantile-Conserving Ensemble Filter Framework. Part II: Regression of Observation Increments in a Probit and Prob-

ability Integral Transformed Space, Monthly Weather Review, 151, 2759–2777, https://doi.org/10.1175/MWR-D-23-0065.1, publisher:485

American Meteorological Society Section: Monthly Weather Review, 2023.

Arndt, S. and Nicolaus, M.: Seasonal cycle and long-term trend of solar energy fluxes through Arctic sea ice, The Cryosphere, 8, 2219–2233,

https://doi.org/10.5194/tc-8-2219-2014, publisher: Copernicus GmbH, 2014.

Barry, R. G.: The parameterization of surface albedo for sea ice and its snow cover, Progress in Physical Geography: Earth and Environment,

20, 63–79, https://doi.org/10.1177/030913339602000104, publisher: SAGE Publications Ltd, 1996.490

Brucker, L., Cavalieri, D. J., Markus, T., and Ivanoff, A.: NASA Team 2 Sea Ice Concentration Algorithm Retrieval Uncertainty, IEEE

Transactions on Geoscience and Remote Sensing, 52, 7336–7352, https://doi.org/10.1109/TGRS.2014.2311376, 2014.

Calmer, R., de Boer, G., Hamilton, J., Lawrence, D., Webster, M. A., Wright, N., Shupe, M. D., Cox, C. J., and Cassano, J. J.: Relationships

between summertime surface albedo and melt pond fraction in the central Arctic Ocean: The aggregate scale of albedo obtained on the

MOSAiC floe, Elementa: Science of the Anthropocene, 11, 00 001, https://doi.org/10.1525/elementa.2023.00001, 2023.495

Cavallo, S. M., Frank, M. C., and Bitz, C. M.: Sea ice loss in association with Arctic cyclones, Commun Earth Environ, 6, 1–9,

https://doi.org/10.1038/s43247-025-02022-9, publisher: Nature Publishing Group, 2025.

Chapman-Dutton, H. R. and Webster, M. A.: The Effects of Summer Snowfall on Arctic Sea Ice Radiative Forc-

ing, Journal of Geophysical Research: Atmospheres, 129, e2023JD040 667, https://doi.org/10.1029/2023JD040667, _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2023JD040667, 2024.500

Chen, F., Wang, D., Zhang, Y., Zhou, Y., and Chen, C.: Intercomparisons and Evaluations of Satellite-Derived Arctic Sea Ice Thickness Prod-

ucts, Remote Sensing, 16, 508, https://doi.org/10.3390/rs16030508, number: 3 Publisher: Multidisciplinary Digital Publishing Institute,

2024.

CICE Consortium: Icepack Documentation, Los Alamos National Laboratory, https://readthedocs.org/projects/apcraig-icepack/downloads/

pdf/latest/, accessed: 2025-05-29, 2025.505

Donohoe, A., Blanchard-Wrigglesworth, E., Schweiger, A., and Rasch, P. J.: The Effect of Atmospheric Transmissivity on Model and

Observational Estimates of the Sea Ice Albedo Feedback, Journal of Climate, 33, 5743–5765, https://doi.org/10.1175/JCLI-D-19-0674.1,

publisher: American Meteorological Society Section: Journal of Climate, 2020.

Grenfell, T. C. and Perovich, D. K.: Seasonal and spatial evolution of albedo in a snow-ice-land-ocean environment, Journal of Geophysical

Research: Oceans, 109, https://doi.org/10.1029/2003JC001866, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2003JC001866,510

2004.

20

https://doi.org/10.5194/egusphere-2025-2540
Preprint. Discussion started: 8 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Han, H., Lee, S., Kim, H.-C., and Kim, M.: Retrieval of Summer Sea Ice Concentration in the Pacific Arctic Ocean from AMSR2 Obser-

vations and Numerical Weather Data Using Random Forest Regression, Remote Sensing, 13, 2283, https://doi.org/10.3390/rs13122283,

number: 12 Publisher: Multidisciplinary Digital Publishing Institute, 2021.

Hunke, E., Allard, R., Bailey, D. A., Blain, P., Craig, A., Dupont, F., DuVivier, A., Grumbine, R., Hebert, D., Holland, M., Jef-515

fery, N., Lemieux, J.-F., Osinski, R., Rasmussen, T., Ribergaard, M., Roach, L., Roberts, A., Turner, M., and Winton, M.: CICE-

Consortium/Icepack: Icepack 1.4.0, https://doi.org/10.5281/zenodo.10056496, 2023.

Hunke, E. C., Lipscomb, W. H., and Turner, A. K.: Sea-ice models for climate study: retrospective and new directions, Journal of Glaciology,

56, 1162–1172, https://doi.org/10.3189/002214311796406095, 2010.

Karlsson, K.-G., Stengel, M., Meirink, J. F., Riihelä, A., Trentmann, J., Akkermans, T., Stein, D., Devasthale, A., Eliasson, S., Johansson, E.,520

Håkansson, N., Solodovnik, I., Benas, N., Clerbaux, N., Selbach, N., Schröder, M., and Hollmann, R.: CLARA-A3: The third edition of

the AVHRR-based CM SAF climate data record on clouds, radiation and surface albedo covering the period 1979 to 2023, Earth System

Science Data, 15, 4901–4926, https://doi.org/10.5194/essd-15-4901-2023, publisher: Copernicus GmbH, 2023.

Lindsay, R. W.: Arctic sea-ice albedo derived from RGPS-based ice-thickness estimates, Annals of Glaciology, 33, 225–229,

https://doi.org/10.3189/172756401781818103, 2001.525

McCrystall, M. R., Stroeve, J., Serreze, M., Forbes, B. C., and Screen, J. A.: New climate models reveal faster and larger increases in

Arctic precipitation than previously projected, Nat Commun, 12, 6765, https://doi.org/10.1038/s41467-021-27031-y, publisher: Nature

Publishing Group, 2021.

Meier, W., Fetterer, F., Windnagel, A., Stewart, J. S., and Stafford, T.: NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice

Concentration, Version 5, https://doi.org/10.7265/RJZB-PF78, 2024.530

Meier, W. N., Petty, A., Hendricks, S., Kaleschke, L., Divine, D., Farrell, S., Gerland, S., Perovich, D., Ricker, R., Tian-Kunze, X., and

Webster, M.: NOAA Arctic Report Card 2023 : Sea Ice, https://repository.library.noaa.gov/view/noaa/56616, 2023.

Nicolaus, M., Katlein, C., Maslanik, J., and Hendricks, S.: Changes in Arctic sea ice result in increasing light

transmittance and absorption, Geophysical Research Letters, 39, https://doi.org/10.1029/2012GL053738, _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2012GL053738, 2012.535

Ono, J., Komuro, Y., and Tatebe, H.: Impact of sea-ice thickness initialized in April on Arctic sea-ice extent predictability with the MIROC

climate model, Annals of Glaciology, 61, 97–105, https://doi.org/10.1017/aog.2020.13, 2020.

Peng, G., Meier, W. N., Scott, D. J., and Savoie, M. H.: A long-term and reproducible passive microwave sea ice concentration data record for

climate studies and monitoring, Earth System Science Data, 5, 311–318, https://doi.org/10.5194/essd-5-311-2013, publisher: Copernicus

GmbH, 2013.540

Perovich, D., Polashenski, C., Arntsen, A., and Stwertka, C.: Anatomy of a late spring snowfall on sea ice, Geophysical Research Letters,

44, 2802–2809, https://doi.org/10.1002/2016GL071470, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2016GL071470, 2017.

Perovich, D. K.: The Optical Properties of Sea Ice, Tech. Rep. Monograph 96-1, Cold Regions Research and Engineering Laboratory, U.S.

Army Corps of Engineers, https://apps.dtic.mil/sti/tr/pdf/ADA310586.pdf, accessed: 2025-05-29, 1996.

Perovich, D. K. and Polashenski, C.: Albedo evolution of seasonal Arctic sea ice, Geophysical Research Letters, 39,545

https://doi.org/10.1029/2012GL051432, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2012GL051432, 2012.

Perovich, D. K., Tucker III, W. B., and Ligett, K. A.: Aerial observations of the evolution of ice surface conditions during

summer, Journal of Geophysical Research: Oceans, 107, SHE 24–1–SHE 24–14, https://doi.org/10.1029/2000JC000449, _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2000JC000449, 2002.

21

https://doi.org/10.5194/egusphere-2025-2540
Preprint. Discussion started: 8 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Perovich, D. K., Richter-Menge, J. A., Jones, K. F., and Light, B.: Sunlight, water, and ice: Extreme Arctic sea ice550

melt during the summer of 2007, Geophysical Research Letters, 35, https://doi.org/10.1029/2008GL034007, _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2008GL034007, 2008.

Petty, A. A., Keeney, N., Cabaj, A., Kushner, P., and Bagnardi, M.: Winter Arctic sea ice thickness from ICESat-2: upgrades to free-

board and snow loading estimates and an assessment of the first three winters of data collection, The Cryosphere, 17, 127–156,

https://doi.org/10.5194/tc-17-127-2023, publisher: Copernicus GmbH, 2023.555

Pistone, K., Eisenman, I., and Ramanathan, V.: Observational determination of albedo decrease caused by vanishing Arctic sea ice, Pro-

ceedings of the National Academy of Sciences, 111, 3322–3326, https://doi.org/10.1073/pnas.1318201111, publisher: Proceedings of the

National Academy of Sciences, 2014.

Pithan, F. and Mauritsen, T.: Arctic amplification dominated by temperature feedbacks in contemporary climate models, Nature Geosci, 7,

181–184, https://doi.org/10.1038/ngeo2071, publisher: Nature Publishing Group, 2014.560

Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has

warmed nearly four times faster than the globe since 1979, Commun Earth Environ, 3, 1–10, https://doi.org/10.1038/s43247-022-00498-3,

publisher: Nature Publishing Group, 2022.

Riedel, C. P., Wieringa, M. M., and Anderson, J. L.: Exploring Bounded Nonparametric Ensemble Filter Impacts on Sea Ice Data Assimila-

tion, Monthly Weather Review, 153, 637–654, https://doi.org/10.1175/MWR-D-24-0096.1, publisher: American Meteorological Society565

Section: Monthly Weather Review, 2025.

Riihelä, A., Laine, V., Manninen, T., Palo, T., and Vihma, T.: Validation of the Climate-SAF surface broadband albedo product: Compar-

isons with in situ observations over Greenland and the ice-covered Arctic Ocean, Remote Sensing of Environment, 114, 2779–2790,

https://doi.org/10.1016/j.rse.2010.06.014, 2010.

Riihelä, A., Jääskeläinen, E., and Kallio-Myers, V.: Four decades of global surface albedo estimates in the third edition of the CM SAF cLoud,570

Albedo and surface Radiation (CLARA) climate data record, Earth System Science Data, 16, 1007–1028, https://doi.org/10.5194/essd-

16-1007-2024, publisher: Copernicus GmbH, 2024.

Rösel, A., Itkin, P., King, J., Divine, D., Wang, C., Granskog, M. A., Krumpen, T., and Gerland, S.: Thin Sea Ice, Thick Snow, and

Widespread Negative Freeboard Observed During N-ICE2015 North of Svalbard, Journal of Geophysical Research: Oceans, 123, 1156–

1176, https://doi.org/10.1002/2017JC012865, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JC012865, 2018.575

Schröder, D., Feltham, D. L., Flocco, D., and Tsamados, M.: September Arctic sea-ice minimum predicted by spring melt-pond fraction,

Nature Clim Change, 4, 353–357, https://doi.org/10.1038/nclimate2203, publisher: Nature Publishing Group, 2014.

Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R.: Uncertainty in modeled Arc-

tic sea ice volume, Journal of Geophysical Research: Oceans, 116, https://doi.org/10.1029/2011JC007084, _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JC007084, 2011.580

Seong, N.-H., Kim, H.-C., Choi, S., Jin, D., Jung, D., Sim, S., Woo, J., Kim, N., Seo, M., Lee, K.-S., and Han, K.-S.: Evaluation of Sea

Ice Radiative Forcing according to Surface Albedo and Skin Temperature over the Arctic from 1982–2015, Remote Sensing, 14, 2512,

https://doi.org/10.3390/rs14112512, number: 11 Publisher: Multidisciplinary Digital Publishing Institute, 2022.

Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification: A research synthesis, Global and Planetary Change, 77,

85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.585

Sledd, A. and L’Ecuyer, T. S.: A Cloudier Picture of Ice-Albedo Feedback in CMIP6 Models, Front. Earth Sci., 9,

https://doi.org/10.3389/feart.2021.769844, publisher: Frontiers, 2021.

22

https://doi.org/10.5194/egusphere-2025-2540
Preprint. Discussion started: 8 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Song, R., Mu, L., Loza, S. N., Kauker, F., and Chen, X.: Assimilating Summer Sea-Ice Thickness Observations Improves

Arctic Sea-Ice Forecast, Geophysical Research Letters, 51, e2024GL110 405, https://doi.org/10.1029/2024GL110405, _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2024GL110405, 2024.590

Stonebridge, G., Scott, K. A., and Buehner, M.: Impacts on sea ice analyses from the assumption of uncorrelated ice thickness observation

errors: Experiments using a 1D toy model, Tellus A: Dynamic Meteorology and Oceanography, 70, https://a.tellusjournals.se/articles/10.

1080/16000870.2018.1445379, 2018.

Sumata, H., de Steur, L., Divine, D. V., Granskog, M. A., and Gerland, S.: Regime shift in Arctic Ocean sea ice thickness, Nature, 615,

443–449, https://doi.org/10.1038/s41586-022-05686-x, publisher: Nature Publishing Group, 2023.595

Taylor, P. C., Kato, S., Xu, K.-M., and Cai, M.: Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satel-

lite footprint level, Journal of Geophysical Research: Atmospheres, 120, 12 656–12 678, https://doi.org/10.1002/2015JD023520, _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/2015JD023520, 2015.

Tschudi, M., Meier, W., Stewart, J., Fowler, C., and Maslanik, J.: Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version

4, https://doi.org/10.5067/INAWUWO7QH7B, 2019.600

Tschudi, M. A., Meier, W. N., and Stewart, J. S.: An enhancement to sea ice motion and age products at the National Snow and Ice Data

Center (NSIDC), The Cryosphere, 14, 1519–1536, https://doi.org/10.5194/tc-14-1519-2020, publisher: Copernicus GmbH, 2020.

Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G., Danabasoglu, G., Suzuki, T., Bamber, J. L., Bentsen, M.,

Böning, C. W., Bozec, A., Chassignet, E. P., Curchitser, E., Boeira Dias, F., Durack, P. J., Griffies, S. M., Harada, Y., Ilicak, M., Josey,

S. A., Kobayashi, C., Kobayashi, S., Komuro, Y., Large, W. G., Le Sommer, J., Marsland, S. J., Masina, S., Scheinert, M., Tomita, H.,605

Valdivieso, M., and Yamazaki, D.: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do), Ocean Modelling, 130,

79–139, https://doi.org/10.1016/j.ocemod.2018.07.002, 2018.

Vérin, G., Domine, F., Babin, M., Picard, G., and Arnaud, L.: Metamorphism of snow on Arctic sea ice during the melt season: impact on

spectral albedo and radiative fluxes through snow, The Cryosphere, 16, 3431–3449, https://doi.org/10.5194/tc-16-3431-2022, publisher:

Copernicus GmbH, 2022.610

Wernecke, A., Notz, D., Kern, S., and Lavergne, T.: Estimating the uncertainty of sea-ice area and sea-ice extent from satellite retrievals, The

Cryosphere, 18, 2473–2486, https://doi.org/10.5194/tc-18-2473-2024, publisher: Copernicus GmbH, 2024.

Wieringa, M. M., Riedel, C., Anderson, J. L., and Bitz, C. M.: Bounded and categorized: targeting data assimilation for sea ice

fractional coverage and nonnegative quantities in a single-column multi-category sea ice model, The Cryosphere, 18, 5365–5382,

https://doi.org/10.5194/tc-18-5365-2024, publisher: Copernicus GmbH, 2024.615

Williams, N., Byrne, N., Feltham, D., Van Leeuwen, P. J., Bannister, R., Schroeder, D., Ridout, A., and Nerger, L.: The effects of assimi-

lating a sub-grid-scale sea ice thickness distribution in a new Arctic sea ice data assimilation system, The Cryosphere, 17, 2509–2532,

https://doi.org/10.5194/tc-17-2509-2023, publisher: Copernicus GmbH, 2023.

Xiong, X., Stamnes, K., and Lubin, D.: Surface Albedo over the Arctic Ocean Derived from AVHRR and Its Validation with SHEBA Data,

Journal of Applied Meteorology and Climatology, 41, 413–425, https://doi.org/10.1175/1520-0450(2002)041<0413:SAOTAO>2.0.CO;2,620

publisher: American Meteorological Society Section: Journal of Applied Meteorology and Climatology, 2002.

Zhang, Y.-F., Bitz, C. M., Anderson, J. L., Collins, N., Hendricks, J., Hoar, T., Raeder, K., and Massonnet, F.: Insights on Sea Ice Data Assim-

ilation from Perfect Model Observing System Simulation Experiments, Journal of Climate, 31, 5911–5926, https://doi.org/10.1175/JCLI-

D-17-0904.1, publisher: American Meteorological Society Section: Journal of Climate, 2018.

23

https://doi.org/10.5194/egusphere-2025-2540
Preprint. Discussion started: 8 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Zhang, Y.-F., Bushuk, M., Winton, M., Hurlin, B., Yang, X., Delworth, T., and Jia, L.: Assimilation of Satellite-Retrieved Sea Ice Concentra-625

tion and Prospects for September Predictions of Arctic Sea Ice, Journal of Climate, 34, 2107–2126, https://doi.org/10.1175/JCLI-D-20-

0469.1, publisher: American Meteorological Society Section: Journal of Climate, 2021.

Zhang, Y.-F., Bushuk, M., Winton, M., Hurlin, B., Gregory, W., Landy, J., and Jia, L.: Improvements in September Arctic Sea Ice Pre-

dictions Via Assimilation of Summer CryoSat-2 Sea Ice Thickness Observations, Geophysical Research Letters, 50, e2023GL105 672,

https://doi.org/10.1029/2023GL105672, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2023GL105672, 2023.630

24

https://doi.org/10.5194/egusphere-2025-2540
Preprint. Discussion started: 8 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 6. Percent RMSE differences between SIAL assimilation and either SIC or SIT assimilation across Arctic regions. Each column shows

SIAL assimilation results under low, medium, and high observational uncertainty (left to right). Rows are grouped by RMSE metric relative

to the TRUTH and comparison type: SIC RMSE under SIC (a–c) and SIT (d–f) assimilation, and SIT RMSE under SIC (g–i) and SIT (j–l)

assimilation. Values are computed relative to the free-running control using Equation 2. Each cell shows the difference between the RMSE

percent reduction achieved by SIAL assimilation and that of SIC or SIT assimilation; negative values (blue) indicate better performance by

SIAL assimilation, while positive values (red) indicate worse performance. Darker shading reflects greater magnitude. Values are shown per

region and ensemble TRUTH member.
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Figure 7. Siberian-Chukchi Sea results for the SIAL category-wise assimilation experiment. Top-left (a): Pairwise statistical significance of

differences in mean RMSE for SIC among assimilation configurations. Black arrows indicate statistically significant differences in RMSE

between assimilation configurations (p < 0.05), pointing toward the experiment with lower RMSE relative to the TRUTH. “ns” denotes

differences that are not statistically significant. Red boxes highlight comparisons between SIALcategory and all other assimilated variables

and uncertainties. Top-right (b): As in the top-left but for SIT RMSE. Bottom-left (c): Time series of domain-averaged broadband albedo

(αbroadband) for various SIAL ensemble category members (n = 1 to 5). Bottom-right (d): Corresponding time series of SIC (%) for the same

ensemble members, including TRUTH, free run, and analysis under category members (n = 1 to 5).
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Figure A1. Observational uncertainty distributions for SIC (a), SIT (b), and SIAL (c). Note that there are three different uncertainty scenarios

for SIAL to account for unknowns in SIAL retrieval estimates. The normalized amount of uncertainty by variable (0-1) is included in the

bottom-right (d) for comparison.
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Figure A2. Mean magnitude of DA increments in SIC, expressed as absolute percent change from the prior state, averaged across 10

assimilation experiments. Each panel corresponds to a different assimilation configuration: SIAL (a; medium uncertainty), SIC (b), and

SIT (c). Data are smoothed using a 7-day rolling average. Regions with rare high-magnitude increments (>10%) are annotated with their

maximum value for clarity. Notably, the SIAL DA configuration shows pronounced early-season activity, particularly in the Barents Sea

region, while late-season peaks in Coastal Canada are prominent in all configurations.

28

https://doi.org/10.5194/egusphere-2025-2540
Preprint. Discussion started: 8 August 2025
c© Author(s) 2025. CC BY 4.0 License.


