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1 Adaptive Inflation for Sea Ice DA in QCEFF

The introduction of a bounded DA scheme complicates the use of classical inflation techniques. In traditional ensemble DA,
multiplicative inflation is often applied to artificially increase model spread, enhancing the ensemble’s ability to capture ob-
served variability (Anderson and Anderson, 1999). However, this approach becomes problematic when applied to bounded 10

variables, which must remain within strict physical limits. For example, during the melt season, SIC within a grid cell can
approach zero. When µ is near zero, inflating the spread by a factor intended for Gaussian distributions can produce ensemble
members that fall below zero–an unphysical state–or expand the distribution in a way that still fails to include nearby observed
values. If, after inflation, the observation still falls outside the ensemble’s acceptable range (here defined as within ±2σ of the
mean), the DA framework may reject it as inconsistent with the model prior. This mismatch highlights the challenge of using 15

symmetric inflation schemes for variables with hard physical bounds and skewed distributions near those bounds.
Observation rejections can also occur even when values are not near physical bounds. These rejections stem from insufficient

ensemble spread rather than model limitations, especially during rapid changes when µ diverges from the true model-generated
observation. This issue is especially common during the melt season, when fast transitions often associated with albedo feed-
back and driven by melt-ponding, refreezing, or snowfall introduce variability that bounded ensemble systems struggle to 20

accommodate.
To address these challenges, we apply a temporally varying adaptive inflation scheme available in DART, which enforces

a minimum model spread (El Gharamti, 2018). This scheme models inflation factors as inverse-gamma distributed random
variables. Inflation values evolve over time alongside the ensemble state, with their means and variances updated based on
observational input. In our implementation within the QCEFF (Quantile Conserving Ensemble Filter Framework), the adaptive 25

inflation diverges from its original formulation. Rather than enforcing strict bounds through priors or hard constraints–as
in traditional bounded inflation schemes–the QCEFF-compatible version emphasizes physical consistency and conservation
across the ensemble. This reformulation decouples inflation from rigid statistical boundaries and instead aligns it with the
QCEFF’s diagnostic balance principles (Anderson, 2022, 2023).

This adaptive inflation framework ensures stability and consistency by preserving the integrity of the initial ensemble spread 30

introduced during the spin-up phase. We fix the minimum inflation factor at 1.0, maintaining the original ensemble spread prior
to data assimilation. The upper bound is set at 50.0, although this limit is rarely approached due to the physical constraints
imposed by the bounded DA scheme. To regulate how inflation evolves over time, we constrain the standard deviation of the
inverse gamma distribution used to sample the inflation factor. Specifically, the distribution’s standard deviation must be no
smaller than 0.6, ensuring a minimum level of ensemble variability, and the distribution’s width is restricted such that the 35

inflation standard deviation cannot grow or shrink by more than a factor of 1.05 per time step. These constraints, informed by
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prior work (e.g., Wieringa et al., 2024), are designed to prevent overly abrupt changes in inflation while allowing sufficient
flexibility to respond to dynamic error growth.

2 Sensitivity to Observational Noise Realizations

While generating synthetic observations, we applied random perturbations drawn from a specified distribution around the
TRUTH state. This is standard practice in perfect-model assimilation experiments to simulate measurement uncertainty. In5

our case, observations were generated using the perfect_model_obs tool in DART, which employed the QCEFF with
bounded, non-Gaussian likelihoods. These were configured through the obs_error_info table by prescribing physical
bounds for each variable. As a result, the synthetic observations were sampled from piecewise-linear distributions consistent
with the bounded likelihoods, rather than simple Gaussians.

Because this approach represents a relatively novel method for generating synthetic observations—particularly in sea ice data10

assimilation–we assessed whether variability in specific realizations of random noise could influence assimilation performance.
We repeated a subset of six SIAL-only assimilation experiments under the medium uncertainty configuration, each using a
distinct random seed to produce three separate realizations of observational noise (with identical error magnitude and statistical
bounds). Root Mean Square Error (RMSE) was computed for SIC and SIT across all regions and ensemble truth members.

As shown in Figure S1, differences in RMSE across noise realizations were negligible, and the relative ordering of assim-15

ilation performance among experiments remained unchanged. This result is consistent with theoretical expectations: because
all realizations are drawn from the same bounded likelihood defined in obs_error_info, and the same table is used during
both observation generation and assimilation, the system remains statistically consistent. Moreover, the ensemble nature of the
assimilation—using 30 members—and the high spatial and temporal observation density act to dampen the influence of any
individual realization. Over many assimilation cycles, random fluctuations are averaged out, and the filter converges on similar20

solutions regardless of the specific noise pattern.
We further note that some minor variation could emerge during early cycles, when fewer observations have been assimilated

and their influence is more localized. However, in long-term (many month) perfect-model experiments such as this one, where
the system is well-observed and observations are generated in a self-consistent manner, the stochasticity of synthetic noise has
limited impact. These findings reinforce the robustness of DART’s QCEFF system for assimilating bounded, non-Gaussian25

observational errors in high-density sea ice observing systems.

Figure S1. Impact of random observational noise on SIAL assimilation (medium uncertainty case) for SIC (a) and SIT (b) RMSEs, averaged
across six ensemble truth members and all regions. Each of the three "Obs Noise" levels corresponds to a different random realization of
observational noise with the same magnitude (2σ error). Error bars show 95% confidence intervals based on ensemble–region combinations.
SIC cutoffs from Fig. S2 were utilized when calculating SIT RMSE. A one-way ANOVA was performed to test whether RMSE values
significantly differ between noise realizations. The resulting p-values near 1.0 indicate no statistically significant difference across noise
realizations, suggesting that the DA system effectively accounts for uncertainty generated from random noise. This result supports the
robustness of DART’s QCEFF to random perturbations when the observation error variance is correctly specified. The use of 30 ensemble
members in the assimilation step likely contributes to this robustness, as the effects of random noise are averaged out across the ensemble.
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3 SIAL P-Values for Comparison

Table S1: Statistical significance of SIAL RMSE comparisons (p < 0.05), based on Fig. 5. Comparisons not involving SIAL
(e.g., SIT vs. Free Run) are excluded. Regions not shown indicate cases where no SIAL assimilation configurations were
statistically distinguishable from other assimilation types.

Region Comparison p-value Better Performer
SIC RMSE – SIAL Comparisons

Barents SIAL (Low Error) vs SIAL (Medium Error) 0.0055 SIAL (Low Error)
SIAL (Low Error) vs SIAL (High Error) 0.0007 SIAL (Low Error)
SIAL (Medium Error) vs SIAL (High Error) 0.0406 SIAL (Medium Error)
SIAL (Low Error) vs SIC 0.0011 SIAL (Low Error)
SIAL (Low Error) vs. SIT 0.0000 SIAL (Low Error)
SIAL (Low Error) vs. Free Run 0.0000 SIAL (Low Error)
SIAL (Medium Error) vs SIC 0.0059 SIAL (Medium Error)
SIAL (Medium Error) vs. SIT 0.0000 SIAL (Medium Error)
SIAL (Medium Error) vs. Free Run 0.0000 SIAL (Medium Error)
SIAL (Medium Error) vs. All Variables 0.0091 All Variables
SIAL (High Error) vs. SIT 0.0007 SIAL (High Error)
SIAL (High Error) vs. Free Run 0.0000 SIAL (High Error)
SIAL (High Error) vs. All Variables 0.0007 All Variables

CoastalCanada SIAL (Low Error) vs SIT 0.0050 SIAL (Low Error)
SIAL (Low Error) vs Free Run 0.0044 SIAL (Low Error)
SIAL (Medium Error) vs SIT 0.0164 SIAL (Medium Error)
SIAL (Medium Error) vs Free Run 0.0139 SIAL (Medium Error)
SIAL (High Error) vs SIT 0.0231 SIAL (High Error)
SIAL (High Error) vs Free Run 0.0194 SIAL (High Error)

SibChuk SIAL (Low Error) vs SIAL (Medium Error) 0.0001 SIAL (Low Error)
SIAL (Low Error) vs SIAL (High Error) 0.0003 SIAL (Low Error)
SIAL (Low Error) vs SIT 0.0051 SIAL (Low Error)
SIAL (Low Error) vs Free Run 0.0002 SIAL (Low Error)
SIAL (Medium Error) vs SIC 0.0004 SIC
SIAL (Medium Error) vs SIT 0.0069 SIT
SIAL (Medium Error) vs All Variables 0.0001 All Variables
SIAL (High Error) vs SIC 0.0011 SIC
SIAL (High Error) vs SIT 0.0119 SIT
SIAL (High Error) vs All Variables 0.0003 All Variables

SIT RMSE – SIAL Comparisons
Barents SIAL (Low Error) vs Free Run 0.0002 SIAL (Low Error)

SIAL (Low Error) vs All Variables 0.0062 All Variables
SIAL (Medium Error) vs Free Run 0.0004 SIAL (Medium Error)
SIAL (Medium Error) vs All Variables 0.0030 All Variables
SIAL (High Error) vs Free Run 0.0056 SIAL (High Error)
SIAL (High Error) vs All Variables 0.0011 All Variables

SibChuk SIAL (Low Error) vs SIAL (Medium Error) 0.0060 SIAL (Low Error)
Continued on next page
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Table S1 (continued)
Region Comparison p-value Better Performer

SIAL (Low Error) vs SIAL (High Error) 0.0311 SIAL (Low Error)
SIAL (Medium Error) vs SIT 0.0149 SIT
SIAL (Medium Error) vs All Variables 0.0043 All Variables
SIAL (High Error) vs All Variables 0.0233 All Variables

4 SIT RMSE Calculation

When calculating SITagg =
∑ncat=5

n=1 vicen
SICagg

, a cutoff threshold on SIC is needed to prevent artificially inflated SIT uncertainties.
The SITagg estimate often exhibits non-Gaussian behavior, including a heavy upper tail due to elevated vicen values despite
low SICagg (Zhang et al., 2018).

To mitigate this issue, we iteratively examined the SIT RMSE distribution for each region under varying SIC cutoff thresh-5

olds. For each region, we selected the lowest SIC threshold at which the average RMSE slope across all assimilation experi-
ments dropped below 0.01 (m< 0.01), thereby avoiding artificial inflation of SIT error. The resulting region-specific SIC cutoff
values are summarized in Table S2. Corresponding SIT RMSE distribution plots for each threshold are provided in Figure S2.

Figure S2. Sensitivity of SIT RMSE to SIC cutoff thresholds across four Arctic regions: Barents Sea (a), Central Arctic (b), Coastal Canada
(c), and Siberian-Chukchi Sea (d). Each line represents a different assimilation experiment setup, including SIC-only, SIAL with varying
uncertainty levels, SIT-only, and all variables combined. The SIC cutoff is defined as the first SIC threshold at which the average slope (m)
of SIT RMSE with respect to increasing SIC cutoff is less than 0.01. Vertical dashed lines indicate these cutoff points, expressed as fractional
SIC values: 0.032 (Barents Sea), 0.000 (Central Arctic), 0.018 (Coastal Canada), and 0.173 (Siberian-Chukchi Sea).
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Table S2. SIC cutoff percentages by region, based on the first location where the average m< 0.01.

Region SIC Cutoff (%)
Barents Sea 3.2
Central Arctic 0.0
Coastal Canada 1.8
Siberian-Chukchi Sea 17.3


