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Abstract. This paper presents a new hybrid framework for digital terrain modeling that combines directional sector-based 

neighbor selection (DSNS), artificial neural networks (ANN), and gradient-based weighted blending. The framework 

addresses the spatial imbalance and ripple artifacts commonly seen in interpolation-based terrain models. In the first stage, 

12 sector-divided neighbors are selected around each query location to ensure directional balance. Next, ANN models are 

trained on reference terrains using either expert-adjusted or natural interpolated surfaces, depending on the test region. 10 

Finally, a gradient-based weighting mechanism blends ANN outputs with those of linear interpolation to create a coherent 

and smooth elevation surface. The proposed method is validated on three real-world terrains of varying size and complexity. 

Results show that the model significantly improves topographic continuity, numerical stability, and generalization across 

different landscapes. Compared to conventional interpolation methods, the proposed method reduces oscillations, maintains 

terrain flow, and eliminates the need for manual adjustments. The framework offers a scalable, automated, and accurate 15 

approach for terrain surface reconstruction in both regular and anisotropic datasets. 

1 Introduction 

Digital Terrain Models (DTMs) – often represented as gridded Digital Elevation Models (DEMs) – are fundamental in a 

wide range of engineering applications. They provide the basis for computing essential topographic attributes (e.g. slopes, 

watershed areas, volumes) that inform project planning and design (Çubukçu et al., 2022). In fields such as civil engineering, 20 

hydrology, and environmental management, accurate terrain models enable realistic simulations and analyses, from route 

alignment and earthwork calculations to flood risk assessment and drainage design (Mesa-Mingorance and Ariza-López, 

2020). Consequently, the quality and accuracy of a DTM directly affect the reliability of any downstream analysis or 

decision. Researchers have noted that the overall “quality of a DEM affects the results of its application”, with vertical 

accuracy and resolution being especially critical (Abdel-Aziz et al., 2020). If a terrain model fails to capture important 25 

features (for instance, a sharp ridge or a deep channel), it can lead to misestimations – slopes and aspects might be computed 

incorrectly and volumes miscalculated – ultimately causing misinterpretations or poor engineering decisions (Rana, 2006; 

Darnell et al., 2010). High-precision DTMs are therefore not just a nicety but a necessity for ensuring the safety and 

efficiency of engineering projects. 
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Traditional approaches to DTM generation typically rely on well-established interpolation and triangulation algorithms 30 

implemented in GIS/CAD software (e.g. ArcGIS, NetCAD) or numerical computing environments like MATLAB. These 

methods use surveyed elevation points (from ground surveys or LiDAR) to interpolate a continuous surface. Common 

techniques include Triangulated Irregular Networks (TIN) based on Delaunay triangulation and grid interpolation methods 

such as Inverse Distance Weighting (IDW) or kriging (Fritsch et al., 1995; Baudot, 1991). Most widely used software 

packages default to TIN or IDW algorithms for DEM creation (Van Kreveld, 1996; Jiang et al., 2006). TIN models are 35 

popular due to their efficiency and ability to conform to irregular point distributions; a Delaunay-based TIN produces planar 

facets that exactly pass through the data points, requiring no complex tuning parameters (Ali and Mehrabian, 2009). This 

makes TIN interpolation a fast and robust choice for surface modeling in many cases. Likewise, deterministic interpolators 

like IDW are straightforward, averaging nearby point elevations with weights decreasing by distance, while kriging provides 

a geostatistical optimal estimation considering spatial autocorrelation. These conventional methods are relatively easy to 40 

implement and have proven reliable for generating DTMs under moderate conditions. 

However, several limitations of the conventional DTM generation process are well recognized. Standard interpolation 

algorithms can struggle in complex terrain or heterogeneous land cover scenarios – for example, steep discontinuities (cliffs, 

embankments) or areas with non-ground objects (buildings, vegetation) often pose problems. Without additional constraints 

(such as breaklines) TIN models may oversimplify sharp features, and IDW or spline methods can introduce spurious 45 

“bumps” or depressions where data are sparse (Fan et al., 2014; Sakhaee and Entezari, 2015). Errors like overshoots, pits, 

and edge artifacts are common artifacts that require attention. In practice, it is often necessary for analysts to manually edit 

the generated surface to correct such issues: removing outlier points, enforcing known terrain breaklines, or locally re-

interpolating problematic areas. Indeed, existing algorithms frequently “fail in certain areas due to the complexity of scenes” 

and “extensive manual editing is required to obtain a clean representation of the ground surface in complex scenes” (Hu 50 

and Tao, 2005; Florinsky, 2002). In urban or densely vegetated regions, for instance, automated filters might misclassify 

ground points, leaving errors that only expert intervention can fix. This manual post-processing not only consumes 

considerable time but also introduces subjectivity and inconsistencies. As a result, there is strong motivation to improve 

DTM generation workflows such that they yield high-accuracy models with minimal human intervention. 

Improving the accuracy and automation of terrain modeling has been a focus of much recent research. On one hand, 55 

refinements to traditional techniques have been explored – for example, multi-resolution filtering and hierarchical algorithms 

can better distinguish ground terrain from off-terrain points (adapting to different terrain roughness levels) (Hu and Tao, 

2005), and enforcing structural constraints (like ridge or drainage line enforcement) can make interpolated surfaces more 

realistic (Lindsay, 2016; Li et al., 2013). On the other hand, there is a clear trend toward data-driven methods that move 

beyond purely geometric interpolation. Modern “distribution-free” modeling techniques are being applied to DEM 60 

generation, including machine learning approaches that learn elevation patterns from data (Bandara et al., 2011). Notably, 

Artificial Neural Networks (ANNs) and other AI models have started to appear in the DEM literature as a means to capture 

complex nonlinear relationships in terrain data (Mesa-Mingorance and Ariza-López, 2020). For example, Bandara et al. used 
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an ANN to effectively “project DSM data into DEM data” in forested areas, demonstrating the potential of learning-based 

approaches to handle cases where few ground points are directly available (Bandara et al., 2011; Jiao and Liu, 2005). 65 

Similarly, fusing multiple sources or methods has proven beneficial; by combining the strengths of different DEM 

generation techniques, one can offset their individual weaknesses. A pertinent example is the fusion of InSAR-derived 

DEMs with optical-photogrammetry DEMs – since each data source has inherent limitations, their combination using neural 

networks was shown to produce a higher-quality elevation model than either alone (Gui et al., 2024; Zhang et al., 2016). 

Comparative studies in the literature underscore the value of such innovations. Çubukçu et al. (2022), for instance, evaluated 70 

ANN-based surface modeling against classical interpolators (IDW and kriging) for a river basin and found that while the 

ANN approach was viable, the kriging method yielded slightly better accuracy in their tests. This suggests that further 

improvements and hybrid approaches (integrating intelligence into the interpolation process) are needed for machine 

learning models to surpass the performance of well-established algorithms (Didona and Romano, 2015). 

Given the importance of accuracy and the drawbacks of current methods, fully automating high-precision DTM generation 75 

remains an open challenge. As one study notes, generating a quality DTM still involves “many problems that have to be 

solved” with existing methods, and “manual editing needs a lot of time,” highlighting the need for more automated solutions 

(Bandara et al., 2011; Narendran et al., 2014). In this paper, we address this gap by presenting a novel terrain modeling 

approach that integrates a Directional Sector-Based Neighborhood Selection (DSNS) scheme with an artificial neural 

network for elevation estimation, followed by a weighted average blending of outputs. The proposed method is designed to 80 

reduce interpolation errors while minimizing manual intervention. In essence, the DSNS strategy divides the 360° 

surrounding of each interpolation location into angular sectors, ensuring that the algorithm selects representative reference 

points from all directions rather than relying solely on spatial proximity. These directionally-distributed neighbors (and 

combinations thereof) are then processed by an ANN which learns the relationship between local point configurations and 

the target elevation. Finally, a weighted averaging scheme blends the ANN outputs (potentially from multiple model 85 

realizations or sector combinations) to produce the final terrain elevation, lending additional stability and accuracy to the 

model. The key innovation of this approach is that it automates the neighbor selection and surface fitting process in an 

intelligent way, thereby greatly reducing the need for user tuning or corrections. The following sections of the paper detail 

the methodology and its implementation. We then compare the resulting DTM against surfaces generated by common 

software (NetCAD and MATLAB using standard interpolation algorithms) to evaluate performance gains. The results show 90 

that our method achieves higher accuracy with far less manual adjustment, underlining its potential as an efficient tool for 

digital terrain modeling in engineering projects. 
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2 Materials and Methods 95 

2.1 Study Areas and Data Collection 

In this study, three terrain regions located within the boundaries of Gümüşhane Province, Türkiye—namely Alemdar-1, 

Alemdar-2, and Hasanbey—were selected for experimental evaluation. These areas were chosen based on their varying 

topographic complexities and surface characteristics, which make them ideal candidates for testing terrain modeling 

accuracy and generalizability. 100 

Alemdar-1, covering approximately 2,480 m², is situated along a narrow streambed and exhibits abrupt slope variations. Its 

complex morphology makes accurate terrain modeling particularly difficult. Detailed (X, Y, Z) coordinate data for this area 

were collected using GPS-based surveying methods. An initial surface model was created using NetCAD’s Delaunay 

triangulation module, but it exhibited inconsistencies due to inappropriate triangle connections. As a result, expert-driven 

manual corrections were applied to refine the surface model. The revised model, visually validated against field conditions, 105 

was adopted as the internal reference surface for evaluating modeling performance at the Alemdar-1 site. 

Alemdar-2 spans an area of 6,790 m² and exhibits a moderately sloped terrain characterized by smooth elevation transitions 

and regular contour flow. Compared to Alemdar-1, Alemdar-2 has a wider spatial extent and a more structured topographic 

pattern with fewer abrupt changes. These properties make it a suitable candidate for testing how well the proposed method 

maintains contour coherence in organized terrain settings. Its relatively uniform slope gradients and minimal localized 110 

irregularities allow focused evaluation of the interpolation quality without excessive surface noise. The terrain surface was 

modeled using automated workflows, providing a basis for testing the method’s performance in cases where manual expert 

intervention is not present. 

Hasanbey, the largest study area at 31,630 m², features a topographically more complex landscape than both Alemdar-1 and 

Alemdar-2. It includes a combination of smooth slope regions, artificial grading structures, and abrupt elevation shifts, 115 

making it representative of terrain scenarios often encountered in real-world infrastructure planning. This site was selected to 

test the scalability and adaptability of the proposed method across diverse micro-topographic features and varying slope 

intensities. The natural and structural heterogeneity of the area supports a comprehensive assessment of the model’s ability 

to capture both gradual transitions and sharp terrain breaks without manual corrections. 

All three areas are shown in Fig. 1, with contour samples and elevation maps later detailed in the results section. The 120 

integration of both expert-adjusted and unadjusted terrain surfaces across multiple regions enables a comprehensive 

evaluation of the proposed modeling techniques under varied real-world conditions. The datasets used for these evaluations, 

including both raw GPS measurements and grid-based models, are openly available via Figshare at 

https://doi.org/10.6084/m9.figshare.29279729.v1 (Akgol and Kara, 2025b). 
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 125 
Figure 1: Study area overview: Alemdar-1, Alemdar-2, and Hasanbey sites (© Google Earth 2025). 

2.2 Proposed Three-Stage Terrain Modeling Framework 

This study proposes a novel terrain modeling framework composed of three interconnected stages: 

i. Directional Sector-Based Neighbor Selection (DSNS), 

ii. Artificial Neural Network (ANN)-based elevation estimation, and 130 

iii. Gradient-based Weighted Blending (GWB). 

The proposed method is designed to mitigate interpolation errors caused by uneven point distributions or triangulation 

artifacts, while also minimizing the need for manual intervention—a challenge commonly reported in existing digital terrain 

modeling practices. The core principle is to intelligently guide the neighborhood selection, optimize elevation estimation 

using machine learning, and enhance surface smoothness through gradient-sensitive fusion. This integrative approach aims 135 

to address the limitations observed in both TIN-based models, such as those generated in NetCAD, and classic interpolation 

methods implemented in platforms like MATLAB. 

A schematic overview of the proposed three-stage terrain modeling process is presented in Fig. 2, which outlines the data 

flow from raw (X, Y, Z) coordinates to the final digital terrain surface. First, the spatial domain around each grid point is 

divided into 30° angular sectors using the DSNS approach, and one representative point is selected from each sector. This 140 
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method ensures a directional balance in the selection of neighbor points, avoiding the pitfalls of proximity-only based 

selection seen in standard IDW or TIN implementations. 

 
Figure 2: Workflow diagram of the proposed three-stage terrain modeling framework. 

Next, ANN-based regression is used to estimate the elevation at the target grid point using geometric and altimetric features 145 

of the selected neighbors. While similar studies have explored ANN models for DEM post-processing or terrain prediction, 

their application has often been limited to fusing multi-source data or reclassifying elevation bands. In contrast, this study 

utilizes ANN directly for local, structure-aware surface generation. 

Finally, a gradient-sensitive weighted blending stage fuses the ANN-predicted elevation values with those computed via 

classical linear interpolation. This step compensates for the local smoothness deficiencies of ANN and helps reduce surface 150 

discontinuities in steep terrain zones. Such hybrid approaches, though previously attempted in kriging-ANN fusion models, 

rarely implement gradient-based adaptive weighting, which is a distinctive contribution of this method. 

Overall, the proposed methodology combines the geometrical coverage of sector-based neighbor selection, the non-linear 

learning capacity of neural networks, and the structural coherence of classical interpolators. As detailed in the following 
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subsections, this approach offers a promising balance between automation, accuracy, and surface continuity, particularly for 155 

terrain regions with complex topographic features. 

2.2.1 Directional Sector-Based Neighbor Selection (DSNS) 

In conventional interpolation methods, neighbor points are typically selected based solely on their Euclidean proximity to the 

query location. However, such approaches often result in spatial imbalance and fail to account for directional variability, 

especially in irregularly distributed terrain data. To overcome this limitation, we introduce the Directional Sector-Based 160 

Neighbor Selection (DSNS) strategy. This method partitions the 360° region surrounding a grid point into 12 equal angular 

sectors (30° each) and selects one representative reference point from each sector. This ensures a directionally balanced 

neighbor configuration. Figure 3 illustrates a practical example of the DSNS scheme, showing a grid layout with reference 

points, sector divisions, and selected neighbors. 

 165 
Figure 3: Directional Sector-Based Neighbor Selection (DSNS). 

The selected grid point (blue) is centered within 12 equally spaced angular sectors (30° each). One reference point (red) is 

selected per sector based on proximity. Light green dots represent surrounding grid points; orange lines indicate the selected 

neighbors (Figure 3). 
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For each grid location 𝑔𝑔 = (𝑥𝑥0,𝑦𝑦0), the azimuth angle 𝜃𝜃𝑖𝑖 between the grid point and a reference candidate 𝑝𝑝𝑖𝑖 = (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) is 170 

computed using the two-argument arctangent function (Eq. 1). 

  𝜃𝜃𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 (𝑦𝑦𝑖𝑖 −  𝑦𝑦0,   𝑥𝑥𝑖𝑖 −  𝑥𝑥0) (1) 

This angle, originally in radians, is converted to degrees and normalized to the [0°, 360°) interval (Eq. 2). 

 𝜃𝜃𝑖𝑖° =  𝜃𝜃𝑖𝑖 ∙  
180
𝜋𝜋

 + 180 (2) 

Based on the angular position, the corresponding sector index 𝑠𝑠𝑖𝑖 is calculated as (Eq. 3). 

 𝑠𝑠𝑖𝑖 =  �
𝜃𝜃𝑖𝑖°
30�

 + 1 (3) 

Within each sector, the closest point 𝑝𝑝𝑠𝑠 to the grid point is selected according to its Euclidean distance (Eq. 4). 

 𝑑𝑑𝑖𝑖 =  �(𝑥𝑥𝑖𝑖 − 𝑥𝑥0)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦0)2 (4) 

From the set of up to 12 selected points, all unique combinations of three points are considered. For each triplet �𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑗𝑗 ,𝑝𝑝𝑘𝑘�, a 175 

centroid is computed (Eq. 5). 

 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 =  
1
3 ��

𝑥𝑥𝑖𝑖 +  𝑥𝑥𝑗𝑗 +  𝑥𝑥𝑘𝑘�, �𝑦𝑦𝑖𝑖 + 𝑦𝑦𝑗𝑗 + 𝑦𝑦𝑘𝑘�, �𝑧𝑧𝑖𝑖 + 𝑧𝑧𝑗𝑗 + 𝑧𝑧𝑘𝑘�� 
(5) 

To evaluate the geometric stability of each triplet, a selection score is defined as (Eq. 6). 

 S(𝑖𝑖, 𝑗𝑗, 𝑘𝑘)  =  �𝑔𝑔 −  𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖� ∙ (‖𝑔𝑔 −  𝑝𝑝𝑖𝑖‖ +  ‖𝑔𝑔 −  𝑝𝑝𝑖𝑖‖ + ‖𝑔𝑔 −  𝑝𝑝𝑖𝑖‖) (6) 

The triplet with the minimum score is chosen as the optimal neighbor configuration for the grid location (Eq. 7). 

 (𝑖𝑖∗, 𝑗𝑗∗,𝑘𝑘∗) = arg min
𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑆𝑆 (𝑖𝑖, 𝑗𝑗,𝑘𝑘)  (7) 

To clarify the notation used above, the symbol 𝑔𝑔 = (𝑥𝑥0,𝑦𝑦0) refers to the interpolation or grid point at which the elevation is 

to be estimated. Each reference point is denoted as 𝑝𝑝𝑖𝑖 = (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖), containing both positional and altimetric information. 180 

The azimuth angle 𝜃𝜃𝑖𝑖 represents the angle between the horizontal axis and the vector from the grid point to 𝑝𝑝𝑖𝑖, while 𝑠𝑠𝑖𝑖 is the 

sector index that categorizes 𝑝𝑝𝑖𝑖 based on its direction relative to 𝑔𝑔. The distance between the grid point and a reference point 

is represented by 𝑑𝑑𝑖𝑖. For any triplet of selected reference points, the centroid is defined as 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖, and the corresponding score 

function S(𝑖𝑖, 𝑗𝑗,𝑘𝑘) quantifies the geometric suitability of the triplet based on its spatial arrangement relative to the grid point. 

This directional selection mechanism ensures that the chosen reference points form a geometrically stable and spatially 185 

balanced base for surface estimation. It mitigates anisotropic clustering, reduces potential for degenerate triangle 

configurations, and provides robustness in complex terrains—issues commonly encountered in conventional triangulation 

and IDW-based systems (Stupariu, 2021). 
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2.2.2 Elevation Estimation via Artificial Neural Networks (ANN) 

To accurately estimate terrain elevations from directionally balanced neighbor sets, an artificial neural network (ANN) 190 

architecture was developed and trained using the MATLAB Neural Network Toolbox. The network structure, input 

configuration, training parameters, and evaluation metrics were carefully selected to optimize performance on a moderately 

sized, structured dataset. 

Each interpolation target point was associated with three reference points selected using the DSNS method. The coordinates 

(𝑥𝑥,𝑦𝑦, 𝑧𝑧) of these three points formed the first nine inputs. The remaining two inputs corresponded to the (𝑥𝑥,𝑦𝑦) coordinates of 195 

the target grid location. Consequently, each training instance was represented as an 11-element input vector (Eq. 8). 

 𝑋𝑋 = �𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1, 𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2,𝑥𝑥3,𝑦𝑦3, 𝑧𝑧3, 𝑥𝑥𝑔𝑔,𝑦𝑦𝑔𝑔�
𝑇𝑇  (8) 

The target output for each input vector was the elevation 𝑧𝑧𝑔𝑔 of the corresponding grid location, derived from expert-adjusted 

terrain models. 

Prior to training, all input and output variables were normalized using min-max scaling, which linearly maps each feature to 

a [0, 1] interval based on its minimum and maximum values. This transformation improves numerical stability and supports 200 

faster convergence during backpropagation. The ANN architecture, visualized in Fig. 4, consists of three hidden layers, each 

comprising 10 neurons. All hidden layers employ the tangent-sigmoid (tansig) activation function, while the output layer 

uses a linear activation to map the learned features to the elevation estimate. 

 
Figure 4: Architecture of the artificial neural network used for elevation estimation. 205 

The network was trained using the Levenberg–Marquardt (LM) backpropagation algorithm, well-suited for moderate-sized 

regression problems due to its hybrid optimization capabilities combining gradient descent and second-order methods. The 
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dataset was randomly split into 70% for training, 15% for validation, and 15% for testing. Figure 5 and Table 1 present the 

overall training and validation performance of the ANN model used in the proposed terrain modeling framework. 

 210 
Figure 5: Regression performance plots for the training, validation, test, and all data sets. 

Table 1: Summary of ANN hyperparameters and final performance metrics. 

Unit Initial Value Stopped Value Target Value 
Epoch 0 704 1000 

Elapsed Time - 00:00:58 - 
Performance 1.24 1.01E-05 0 

Gradient 4.5 0.000136 1.00E-07 
Mu 0.001 1.00E-09 1.00E+10 

Validation Checks 0 6 6 
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The training process converged after 704 epochs, well before the upper limit of 1000, indicating fast and stable convergence 

behavior. The final mean squared error (MSE) was 1.01 × 10⁻⁵, demonstrating high numerical accuracy across the dataset. 215 

Regression coefficients (R) were recorded as 0.99989 for training, 0.99985 for validation, and 0.99988 for testing subsets, 

with an overall correlation of 0.99988. These values confirm the ANN's robust generalization capability and absence of 

overfitting. After training, all predicted outputs were rescaled to their original elevation values using the inverse of the min-

max normalization transformation. These rescaled predictions were subsequently used in the final blending stage of the 

proposed terrain modeling framework. 220 

2.2.3 Gradient-Based Weighted Average Blending (GWB) 

To generate a smoother and more accurate terrain surface, this study proposes a gradient-based weighted average blending 

method that combines the strengths of both the Artificial Neural Network (ANN) and the linear interpolation results. While 

the ANN-based model offers high prediction accuracy, it may introduce local artifacts such as sharp contour transitions due 

to overfitting in sparse regions. Conversely, the linear interpolation method provides smoother transitions but often lacks 225 

local accuracy. By integrating these two methods using a gradient-informed weighting scheme, both accuracy and surface 

smoothness can be achieved simultaneously. 

The effectiveness of blending multiple models to improve prediction reliability and reduce model-specific biases has been 

demonstrated in various domains. For instance, Besic et al. (2025) Besic et al. (2025) utilized Bayesian model averaging to 

combine different remote-sensing-based forest canopy height models, showing that such fusion provides a more 230 

comprehensive representation of spatial uncertainty and mitigates the individual limitations of each model. Likewise, Li et 

al. (2023) Li et al. (2024) applied multi-task deep learning and data fusion strategies to extract building height and footprint 

from satellite imagery, highlighting that the integration of multiple information sources and model outputs leads to superior 

accuracy, especially in complex urban landscapes. In the context of digital terrain modeling, our blending approach serves a 

similar function: it synthesizes the complementary strengths of machine learning and classical interpolation, resulting in 235 

elevation surfaces that better capture both global landform structure and local detail. 

Gradient magnitude is a measure of surface steepness and is computed from the elevation matrices of each method. Areas 

with high gradients typically correspond to sharp, unnatural contour bends which are undesirable in terrain models. 

Therefore, regions with lower gradients are considered to offer more reliable and realistic transitions. In this context, the 

blending weights are defined inversely proportional to the gradient magnitude (Eq. 9, 10). 240 

 𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖, 𝑗𝑗) =  ��
𝜕𝜕𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴
𝜕𝜕𝜕𝜕 �

2

+ �
𝜕𝜕𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴
𝜕𝜕𝜕𝜕 �

2

 (9) 

 𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿(𝑖𝑖, 𝑗𝑗) =  ��
𝜕𝜕𝑍𝑍𝐿𝐿𝐿𝐿𝐿𝐿
𝜕𝜕𝜕𝜕 �

2

+ �
𝜕𝜕𝑍𝑍𝐿𝐿𝐿𝐿𝐿𝐿
𝜕𝜕𝜕𝜕 �

2

 
(10) 
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where 𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴  (previously denoted as 𝑧𝑧𝑔𝑔) and 𝑍𝑍𝐿𝐿𝐿𝐿𝐿𝐿  are the elevation matrices derived from the ANN model and the linear 

interpolation method, respectively. 

The unnormalized weights are then computed as (Eq. 11, 12). 

 𝑤𝑤′𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖, 𝑗𝑗) =  
1

1 + 𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖, 𝑗𝑗)
 (11) 

 𝑤𝑤′𝐿𝐿𝐿𝐿𝐿𝐿(𝑖𝑖, 𝑗𝑗) =  
1

1 + 𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿(𝑖𝑖, 𝑗𝑗)
 (12) 

These are normalized to ensure they sum to one (Eq. 13, 14). 

 𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖, 𝑗𝑗) =  
𝑤𝑤′𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖, 𝑗𝑗)

𝑤𝑤′𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖, 𝑗𝑗) + 𝑤𝑤′𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖, 𝑗𝑗)
 (13) 

 𝑤𝑤𝐿𝐿𝐿𝐿𝐿𝐿(𝑖𝑖, 𝑗𝑗) =  1 − 𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖, 𝑗𝑗) (14) 

The final blended elevation at each grid location is then calculated using a weighted average of both methods (Eq. 15). 245 

 𝑍𝑍𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖, 𝑗𝑗) =  𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖, 𝑗𝑗) ∙ 𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖, 𝑗𝑗) + 𝑤𝑤𝐿𝐿𝐿𝐿𝐿𝐿(𝑖𝑖, 𝑗𝑗) ∙ 𝑍𝑍𝐿𝐿𝐿𝐿𝐿𝐿(𝑖𝑖, 𝑗𝑗) (15) 

This approach ensures that smoother surfaces from the linear model are favored where appropriate, while high-accuracy 

predictions from the ANN model are retained in less variable regions. This blending step is also reflected in the final stage of 

the overall modeling workflow shown previously in Fig. 2, where gradient analysis and weight normalization are integrated 

to produce the final terrain surface. 

The entire proposed modeling framework—including directional neighbor selection, ANN-based elevation estimation, 250 

gradient-based blending, and contour visualization—was implemented in MATLAB as a fully automated workflow. 

Through the integration of min-max normalization procedures, pre-trained neural networks, and built-in interpolation and 

plotting functions, the system requires no manual intervention once the initial terrain data are loaded. This automation 

ensures reproducibility, reduces user-induced variability, and enables rapid surface generation across diverse terrain datasets. 

3 Results and Discussion 255 

3.1 Comparative Analysis of Neighbor Selection Methods 

To illustrate the structural differences in neighbor selection strategies, a synthetic test case was constructed using a grid point 

at the origin and 20 randomly distributed reference points within a 4×4 m² area. This setup mimics typical local terrain data 

distributions with varying densities and angular gaps. The aim was to visualize how different methods select neighboring 

points and how well they distribute these selections across the 360° directional space. Four commonly used strategies were 260 

examined: Nearest Neighbor (k=3), TIN-style selection (6 closest points), Voronoi-like selection (all surrounding points), 
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and the proposed DSNS method with 12 angular sectors. Each method's selected neighbors were visualized, and the 

corresponding angular distributions were analyzed (Figure 6). 

 
Figure 6: Directional distribution of selected neighbors using four different selection methods. 265 

For each method, the polar angle (in degrees) between the grid point and its selected neighbors was computed. The angles 

were sorted to identify the mean and maximum angular gaps between consecutive neighbors. Additionally, a 12-sector radial 
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coverage scheme was used to calculate the percentage of the circle that was effectively covered (coverage ratio) and to 

estimate directional redundancy, defined as the average number of neighbors per occupied sector. These metrics are 

summarized in Table 2 and provide a quantitative basis for comparing directional diversity and spatial balance among the 270 

different selection approaches. 
Table 2: Quantitative comparison of angular coverage metrics across neighbor selection strategies. 

 Mean Angular Gap 

(°) 

Max Angular Gap (°) Coverage Ratio  

(°) 

Redundancy Index 

Nearest Neighbor 120.0 324.0 16.7 1.50 

TIN 60.0 144.0 41.7 1.20 

Voronoi-like 18.0 18.0 100.0 1.67 

DSNS 30.0 54.0 100.0 1.00 

 

As shown in Table 2, the proposed DSNS method demonstrates a well-balanced angular distribution, achieving full 

directional coverage (100%) and a redundancy index of 1.0—indicating that each sector is uniquely populated without 275 

excessive overlap. The method also achieves a mean angular gap of 30.0° and a maximum gap of 54.0°, reflecting a uniform 

spread of neighbors. In contrast, the Nearest Neighbor and TIN strategies result in significantly poorer angular coverage, 

with coverage ratios of only 16.7% and 41.7%, and maximum angular gaps of 324.0° and 144.0°, respectively. These large 

gaps highlight the risk of directional bias and underrepresentation in certain sectors. While the Voronoi-like method achieves 

100% coverage, it suffers from a higher redundancy index (1.67), indicating that multiple neighbors fall within the same 280 

angular sectors, potentially introducing unnecessary computational overhead. These results confirm that DSNS provides a 

more efficient and geometrically diverse sampling of neighbors—crucial for improving spatial generalization in data-driven 

terrain modeling frameworks. 

3.2 Validation of the Proposed Method on Alemdar-1 

To evaluate the accuracy and practical effectiveness of the proposed terrain modeling method, a detailed performance 285 

comparison was conducted using the Alemdar-1 site, where an expert-validated reference model was available. Four 

different modeling approaches were tested: NetCAD's triangulated model (uncorrected), MATLAB’s linear and natural 

neighbor interpolations, and the proposed ANN-based blended model. The comparative analysis and contour map 

visualizations were performed using custom MATLAB scripts developed for this study and made publicly available at 

https://doi.org/10.6084/m9.figshare.29279717.v1 (Akgol and Kara, 2025a). 290 

Quantitative performance metrics—Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the coefficient of 

determination (R²)—were calculated by comparing the estimated elevation values from each method against the reference 

model. The results are summarized in Table 3. 
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Table 3: Accuracy metrics for the Alemdar-1 site using different terrain modeling methods. 

Metric NetCAD MATLAB Linear MATLAB Natural Proposed (ANN + Blending) 
RMSE 0.14382 0.08969 0.19376 0.12187 
MAE 0.02316 0.00879 0.10246 0.06664 

R² 0.99927 0.99971 0.99867 0.99948 
 295 

As shown in Table 3, the proposed ANN + Blending method achieved a determination coefficient of R² = 0.99948, closely 

matching the highest value among all methods. Although MATLAB’s linear interpolation method yielded slightly lower 

RMSE and MAE values, this improvement comes with a trade-off: it tends to over-smooth terrain features, reducing its 

ability to adapt to local irregularities and complex landforms. In contrast, the proposed method balances numerical accuracy 

with topographic realism by integrating the adaptability of machine learning with the continuity of classical interpolation. 300 

The NetCAD model exhibited higher RMSE and similar MAE compared to the proposed method, reinforcing the need for 

expert adjustments in its default output. Natural neighbor interpolation produced the highest RMSE and MAE, highlighting 

its limitations in steep or morphologically complex regions. 

To further explore spatial behavior, Figure 7 presents contour maps for each method. The visual comparison highlights that 

the proposed method produces contour lines that are both smooth and aligned with natural terrain flow, closely matching the 305 

expert-validated surface. In contrast, the NetCAD and MATLAB natural outputs display irregular or distorted contours in 

sloped regions, while MATLAB linear interpolation, although smoother, oversimplifies the terrain in areas with high 

variability. 
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Figure 7: Comparative contour maps: (a) MATLAB Linear, (b) MATLAB Natural, (c) NetCAD uncorrected, (d) Proposed 310 
blended, (e) Reference terrain model. 

The local accuracy of each model was further evaluated using absolute elevation difference maps, shown in Fig. 8. These 

maps visualize the pointwise elevation differences between the reference model and the outputs of each tested method. The 

colormap illustrates deviations from −1.5 meters to +1.5 meters, with warm tones indicating overestimation and cool tones 

indicating underestimation. 315 
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Figure 8: Absolute elevation difference maps with respect to the reference terrain for MATLAB linear interpolation, MATLAB 
natural interpolation, NetCAD uncorrected model, and Proposed ANN + Blending method. 

As evident in the figure, the MATLAB Natural and NetCAD models exhibit noticeable localized deviations, particularly in 

areas with complex terrain morphology. The MATLAB Linear method shows very few but sharp discrepancies, especially 320 

near transition zones. In contrast, the proposed ANN + Blending method results in a more uniformly distributed error pattern 

with lower overall deviation magnitudes, confirming its robustness and spatial consistency across the modeling domain. 

3.3 Validation on Alemdar-2: Slope-Sensitive Mid-Scale Site 

To assess the consistency and robustness of the proposed terrain modeling framework, a second test was conducted on the 

Alemdar-2 site. This area, covering approximately 6,790 m², is located near a streambed and features sharp slope transitions 325 

within a relatively compact spatial domain. These characteristics make it an ideal case to evaluate how the model performs in 

high-gradient micro-environments. Despite the geometric and topographic differences from the Alemdar-1 site, the proposed 

ANN + Blending method maintained a high level of accuracy. A root means square error (RMSE) of 1.67 × 10⁻⁵ was 

achieved when compared to the expert-corrected reference model, underscoring the method’s strong generalizability and 

numerical stability across varying terrain structures. 330 

The contour map generated using the proposed method for this site is shown in Fig. 9. As evident in the figure, the contour 

lines are smooth, continuous, and free from artificial distortions, especially in slope transition zones adjacent to the stream. 

Unlike traditional interpolation techniques that tend to produce ripple effects or abrupt curvature changes in steep areas, the 

proposed method delivers a topographically coherent surface that aligns with expected terrain flow. 
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 335 
Figure 9: Contour map of the Alemdar-2 site generated using the proposed ANN + Blending method. 

These findings demonstrate that the proposed approach excels in preserving terrain fidelity in slope-sensitive environments 

without requiring any manual intervention. 

3.4 Validation on Hasanbey: Large-Scale Heterogeneous Terrain 

The Hasanbey site, spanning approximately 31,630 m², represents the largest and most topographically diverse area in this 340 

study. This region contains a mix of smooth and abrupt terrain transitions, as well as localized elevation variations, making it 

particularly suitable for assessing the adaptability of terrain modeling techniques. As in previous analyses, the expert-

adjusted TIN surface created in NetCAD is used as the reference model to evaluate the comparative performance of 

interpolation-based and learning-based methods. 

To further validate the robustness of the proposed ANN + Blending approach, it was applied to this large-scale region and 345 

compared against MATLAB's linear and natural neighbor interpolations. Figure 10 presents the contour maps of the expert-

adjusted reference model (left) and the proposed model (right). The proposed surface captures the overall landform 

continuity and ridge alignment effectively, producing smoother and more natural transitions across elevation zones. 
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Figure 10: Contour maps for the Hasanbey site: Expert-adjusted reference model, Proposed ANN + Blending model. 350 

In order to explore localized modeling discrepancies, the elevation differences between each method and the reference model 

were visualized in Fig. 11. These difference maps were superimposed with the contour lines of the reference surface to 

provide clearer spatial context. 

 
Figure 11: Elevation difference overlays with respect to the reference model: Reference vs. Linear, Reference vs. Natural, 355 
Reference vs. Proposed. Color gradients represent vertical deviations (in meters), with contour lines from the reference model 
overlaid for context. 
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The Reference vs. Linear comparison (left panel) shows systematic underestimations near slope breaklines, particularly 

around X = 539600–539610 and Y = 230–250. These artifacts stem from the angular nature of the linear method, which 

often fails to represent continuous terrain transitions accurately. In the Reference vs. Natural comparison (middle panel), 360 

deviations appear more irregular and oscillatory, introducing artificial features such as local ridges and valleys—especially 

in the central and southeastern zones. These are evident in scattered red and blue patches misaligned with the reference 

contour flow. In contrast, the Reference vs. Proposed panel (right) displays minimal deviation across the study area. Most 

differences remain within ±0.5 m and closely follow the terrain structure, indicating that the proposed method achieves both 

numerical precision and topographic realism more effectively than the interpolation-based techniques. 365 

The mean squared error (MSE) of the proposed model for this site was calculated as 4.116 × 10⁻⁵, confirming the method’s 

scalability and precision even on extensive and complex terrain. While the reference surface required manual correction to 

eliminate geometric inconsistencies in the TIN network, the proposed approach achieved a comparable or better result 

through a fully automated process. These results demonstrate that the proposed model balances local detail and regional 

terrain continuity, achieving reliable results without manual corrections. 370 

4 Conclusion 

The comparative results (Figures 10 and 11) highlight that the proposed ANN + Blending model produces a markedly 

smoother and more continuous terrain surface relative to traditional interpolation methods. In the elevation difference 

overlays of Figure 11, the ANN-based approach exhibits diffuse, “fuzzy” color regions – an indication that deviations from 

the reference TIN surface are minor in magnitude and gradually varying spatially, rather than abrupt. By contrast, the 375 

MATLAB linear interpolation yields sharper, more localized discrepancies; for example, systematic underestimations appear 

along slope breaklines, suggesting that the linear method imposes angular, segmented transitions on the terrain (Arun, 2013). 

Similarly, while MATLAB’s natural neighbor interpolation produces smoother transitions than linear overall, it introduces 

oscillatory artifacts – spurious small ridges and depressions that cut across the reference contours in an unrealistic manner 

(Bertram and Hagen, 2009). In stark difference, the ANN + Blending model avoids these issues: its discrepancies remain 380 

largely within a narrow ±0.5 m band and they align closely with the terrain’s true contour structure. This indicates that our 

approach not only achieves high point-wise accuracy, but also preserves the continuity of landform features more faithfully 

than the conventional methods.  

These visually smoothed transitions in the ANN-based model likely reflect a more realistic representation of the terrain’s 

continuous nature. Real landscapes (except at genuine discontinuities like cliffs) tend to change elevation gradually, with 385 

smooth curvatures that are difficult to capture using planar facets alone (Heimsath and Farid, 2002). In contrast, a 

triangulated irregular network, even when expertly constructed, is inherently constrained to piecewise-planar facets between 

data points (Alavi et al., 1987; Eurich and Schulzke, 2004; Bertram et al., 2000). This means that a TIN may inadvertently 

introduce subtle artificial slope breaks or flat patches where the actual terrain has gentle curvature (Rebecca and Gold, 2004; 
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Magillo et al., 2013; Li and Kuai, 2014). Indeed, without additional constraints such as breaklines, TIN models are known to 390 

oversimplify sharp or curved features (Jiang and Xie, 2005; Ali and Mehrabian, 2009). The reference surface in this study 

was an expert-adjusted TIN, chosen for its overall accuracy; however, the sharper deviations seen in the linear 

interpolation’s difference map and the unnatural oscillations in the natural neighbor’s map underscore the limitations of 

purely geometric interpolation on such a faceted reference (Figure 11). By contrast, the proposed ANN + Blending method 

leverages learned spatial patterns to produce a smoothly varying surface that respects the measured data while filling gaps in 395 

a more physically plausible way. In other words, the “fuzzy” difference patterns for the ANN model are not only small in 

magnitude, but also suggest that our model adheres to actual topographic continuity better than a rigid triangulated mesh can.  

From a broader perspective, these findings reinforce the benefits of data‐driven smoothing techniques in complex 

topographies. Classical interpolation algorithms (e.g. TIN, IDW, splines) are model-driven – they impose predetermined 

shapes between points (planar facets or weighted averages) which can lead to artifacts if the terrain is highly irregular or 400 

sparsely sampled (Gold and Dakowicz, 2002; Kobler et al., 2007). This often necessitates manual intervention to fix issues 

like spikes, pits or unnatural breaks in the generated surface. Machine-learning approaches, on the other hand, offer an 

adaptive framework that can learn the nonlinear relationships inherent in terrain data (Procopio et al., 2009). In our case, the 

ANN was trained to capture how elevation varies with different spatial configurations of neighboring points, essentially 

internalizing typical landform behaviors. As with the Topographically InformEd Regression (TIER) model (Newman and 405 

Clark, 2020), which incorporates terrain attributes into its regression-based interpolation, our approach ensures that local 

landform features are explicitly considered in surface generation, thus improving the physical realism of the final terrain 

model. The result is an interpolated surface that naturally smooths out noise and spurious fluctuations while retaining 

genuine terrain features. Notably, the blending strategy further enhances surface continuity and stability – by aggregating 

multiple ANN outputs, the model likely cancels out any outlier predictions and avoids over‐fitting to local anomalies. This 410 

concept of combining models or data sources to offset individual weaknesses has precedent in DEM research; for instance, 

fusing multiple elevation data types via neural networks has been shown to yield higher-quality models than any single 

source alone (Kumar Arora and Mathur, 2001). Our approach aligns with this philosophy, effectively integrating a learned 

component into the interpolation process to harness the strengths of both data-driven learning and traditional surface 

modeling.  415 

A key outcome of the study is the high accuracy achieved by the proposed method even in a large, topographically complex 

area, without the need for manual post-editing. In the most extensive test region (Hasanbey, ~31,630 m²), the ANN + 

Blending model attained a mean squared error of only 4.116 × 10⁻⁵ with respect to the reference – an extremely low error 

considering the size and complexity of this terrain. Crucially, this performance was obtained through a fully automated 

process. Generating a high-fidelity DTM for such challenging terrain using conventional means typically demands 420 

substantial expert effort: practitioners must identify and correct interpolation artifacts, enforce terrain breaklines, or fine-tune 

parameters to handle steep or irregular features. Such manual editing is not only time-consuming but can introduce 

subjective biases. The fact that our learning-based model produces an accurate surface out-of-the-box, without any hand-
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tuning for the Hasanbey site, underscores a major advantage. It demonstrates robustness and generalizability – the model 

effectively “adapts” to different landscape characteristics on its own.  425 

This level of automation addresses an oft-cited challenge in DTM production: the need for methods that yield high accuracy 

with minimal human intervention. Our findings resonate with the observations of Parquer et al. (2025), who emphasize that 

even when numerical or algorithmic consistency is achieved in 3D models, domain expertise is still required to ensure their 

practical validity for downstream applications. By drastically reducing the manual workload, our approach can improve the 

efficiency and consistency of terrain modeling in practice, while also reducing the potential for human-induced errors or 430 

inconsistencies. 

In summary, the proposed ANN + Blending method bridges the gap between the rigidity of traditional models and the 

adaptability of modern, learning-based interpolation. Conventional TIN or spline models, while mathematically 

straightforward and exact at given data points, lack the flexibility to gracefully accommodate complex, unseen terrain 

variations – they often enforce a rigid structure that either misses subtleties or requires laborious post-corrections (Li and 435 

Kuai, 2014). Our approach marries this classical reliability with the intelligence of machine learning: it respects measured 

elevations and known terrain structure (as a TIN would) but also generalizes the surface in a data-informed way to ensure 

natural continuity. The outcome is a terrain model that achieves the best of both worlds – high fidelity to observed data and 

smooth adaptability to the landscape’s intricacies. This finding is in line with recent views in the literature that call for 

hybrid solutions blending interpolation with intelligent modeling to surpass the limitations of either alone. Overall, the ANN 440 

+ Blending technique represents a significant step toward more accurate and automated DTM generation. It provides a robust 

solution that can handle large and complex topographies, maintaining terrain realism without sacrificing precision or 

requiring intensive user oversight. Such a balance between accuracy, continuity, and automation is highly desirable for next-

generation digital terrain modeling in engineering and geospatial applications. 
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