

1 Paleoseismic history of the intermountain Rieti Basin (Central 2 Apennines, Italy)

3 Franz A. Livio¹, Anna M. Blumetti², Valerio Comerci², Maria F. Ferrario¹, Gilberto Binda⁴, Marco
4 Caciagli³, Michela Colombo¹, Pio Di Manna², Fernando Ferri², Fiorenzo Fumanti², Roberto Gambillara¹,
5 Maurizio Guerra², Luca Guerrieri², Paolo Lorenzoni⁵, Valerio Materni⁶, Francesco Mischione², Rosa
6 Nappi⁷, Rosella Nave⁷, Kathleen Nicoll⁸, Alba Peiro⁹, Marco Pizza¹, Roberto Pompili², Luca M. Puzzilli²,
7 Mauro Roma², Aurora Rossi¹, Valerio Ruscito², Vincenzo Sapia⁶, Argelia Silva Fragoso¹, Emanuele
8 Scaramuzzo¹, Frank Thomas¹, Giorgio Tringali¹, Stefano Urbini⁶, Andrea Zerboni¹⁰, Alessandro M.
9 Michetti^{1,7}

10
11 ¹Università degli Studi dell’Insubria, Como, Italy

12 ²ISPRA, Geological Survey of Italy, Roma, Italy

13 ³Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Italy

14 ⁴Norwegian Institute for Water Research, Oslo, Norway

15 ⁵Professional Soil Science Consultant, Rieti, Italy

16 ⁶Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma 2, Italy

17 ⁷Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Napoli, Italy

18 ⁸University of Utah, Salt Lake City, Utah USA

19 ⁹University of Zaragoza, Spain

20 ¹⁰Università degli Studi di Milano, Italy

21 *Correspondence to:* F.A. Livio (franz.livio@uninsubria.it)

22 **Abstract.** From the paleoseismological and seismotectonic point of view, the intermountain basins of the Central Apennines
23 of Italy are one of the most studied areas worldwide. Within this context, however, the Rieti Basin, bounded at its sides by
24 active normal faults and with its peculiar rhombohedral shape, is a relatively overlooked area, and its most recent
25 paleoseismological studies date back to the ‘90s. This is a key area both for completing the paleoseismological history of this
26 sector of the chain and for understanding how the present-day extensional regime is accommodated through time by the faults
27 bounding the basin. With this aim in mind, we excavated 17 paleoseismological trenches along the normal faults bordering the
28 Rieti Basin (Central Apennines, Italy) and unveiled at least 6 paleoearthquakes that ruptured the faults during the last ca.
29 20 kyr.

30 Our analysis of the paleoearthquake succession along the basin-bounding faults suggests that a spatial pattern is followed
31 during sequences of rupturing events, with a maximum credible earthquake of Mw 6.5, consistently within this sector
32 of the Central Apennines.

33 **1 Introduction**

34 The Central Apennines in Italy are among the best studied areas worldwide in terms of active tectonics and paleoseismology
35 (Michetti et al., 1996; Pantosti et al., 1996; Galadini and Galli, 1999; Salvi et al., 2003; Roberts and Michetti, 2004; Galli et
36 al., 2008, 2011; Gori et al., 2015; Moro et al., 2016; Blumetti et al., 2017; Di Domenica and Pizzi, 2017; Cinti et al., 2018;
37 Iezzi et al., 2019, 2023; Roberts et al., 2025). Tens of paleoseismological trenches have been excavated along the active normal
38 faults of this mountain belt, providing one of the world's most complete datasets for an extensional domain, together with the
39 well-known Basin and Range Province of the western U.S. (McCalpin, 2009). This led to choosing the Italian Central
40 Apennines as one important global case study for the development of codes for fault-based seismic hazard assessment (Faure
41 Walker et al., 2021; Scotti et al., 2021).

42 Nonetheless, some overlooked areas within the Central Apennines lack comprehensive studies and investigations. This is the
43 case of the Rieti Basin (Fig. 1), an intermountain fault-bounded depression located in the axial sector of the range. Following
44 the contractional events that built the chain, the Rieti area experienced several phases of extensional tectonics during the Plio-
45 Quaternary, leading to the present day-configuration. Today, the Rieti Basin morphology appears as a box-shaped alluvial
46 plain, bounded by normal faults striking almost orthogonally to each other (Fig. 1). The master fault of the basin ("Rieti Fault";
47 Roberts and Michetti, 2004, and references therein) is the ca. 21 km long Eastern Border Fault (Fig. 1). The Rieti Fault is part
48 of a belt of active Quaternary normal faults (including the nearby Fiamignano and Fucino Faults; Bosi, 1975; Michetti et al.,
49 1996; Mildon et al., 2022) that characterizes the western side of the Central Apennines (Cowie and Roberts, 2001).

50 Past research focused on the Plio-Quaternary tectono-sedimentary evolution of the basin (Cavinato, 1993; Calderini et al.,
51 1998; Cavinato et al., 2000, 2002; Guerrieri et al., 2006), but only a few studies from the mid-90s, revealed Late Pleistocene
52 to Holocene strong seismic events by means of a paleoseismological approach. Observed Holocene slip rates at Piedicolle and
53 La Casetta Sites are in the order of 0.2 - 0.4 mm/yr. This is in good agreement with slip-rates measured along post-glacial
54 bedrock fault scarps (Cowie and Roberts, 2001), and long-term slip rates estimated from displacement of Early Pleistocene
55 paleo-surfaces (e.g., Brunamonte et al., 1993; Michetti et al., 1995). In fact, some open questions are still pending on the area,
56 including: i) the real seismotectonic potential of the Rieti Basin faults; ii) the coexistence and contemporary activity of two
57 sets of ca. orthogonal normal faults under the same extensional domain; and iii) the possible occurrence of earthquakes
58 rupturing the whole length of the Rieti Fault.

59 In 2020-2022, the Italian Government Extraordinary Commissioner for the 2016 Central Italy post-earthquake reconstruction
60 funded a program of studies on faults affecting urbanized zones in the earthquake epicentral areas. Some of the inhabited
61 centers under study are located along the northern, eastern and southern borders of the Rieti intermountain basin; boxes in
62 Figure 1C show the selected study areas. In 2021 and 2022, our team discovered evidence of Late Pleistocene and Holocene
63 activity along the investigated faults from study of 17 new paleoseismic trenches with 52 radiometric dates, and extensive
64 geophysical prospecting. We describe trench siting and investigations on the three sides of the basin, identifying several
65 paleoearthquakes that occurred in the last about 20 kyr. Based on these data, the paper aims at providing a summary of the

66 paleoseismic history of the Rieti basin; we discuss Late Quaternary fault slip-rates, event chronology, and we present a
67 space-time paleoseismological diagram to infer the possible sequence of single vs multi-rupture events that affected the
68 basin.

69 **2 Geological and seismotectonic setting**

70 The Rieti Basin is within the Central Apennines, a former Meso-Cenozoic passive margin that evolved in a fold and thrust belt
71 during the Neogene westward subduction of the Adriatic plate. The present-day setting is the result of an eastward progressive
72 migration of the front of the accretionary wedge and of the back-arc extensional domain (Doglioni, 1991; Cavinato and De
73 Celles, 1999; Cosentino et al., 2010), with the axial sector of the mountain chain currently affected by strong normal fault
74 earthquakes due to active crustal extension (Fig. 1b).

75 The local paleogeographic domain is the Umbria-Marche Domain: a stack of tectonic units composed of Jurassic-Paleogene
76 carbonate successions (i.e., the Mt. Sabini and Mt. Reatini units; Fig. 1c). The thrust sheets superposed on an inherited tectonic
77 setting developed during Jurassic-Eocene rifting of the passive margin (Galluzzo and Santantonio, 2002; Santantonio and
78 Carminati, 2011; Capotorti and Muraro, 2024), which was characterized by mainly N-S striking normal faults but locally
79 represented by a dense grid of faults, also including ca. E-W and NW-SE normal faults (Capotorti and Muraro, 2024).

80 Presently, the Rieti Basin is a box-shaped morphological depression, bounded along all its sides by Quaternary normal faults.
81 The development and evolution of the basin is closely related to the extensional regime that affected the western flank of the
82 eastward migrating Apennine chain during the Quaternary (Calderini et al., 1998; Cavinato and De Celles, 1999; Cavinato et
83 al., 2000, 2002; Roberts and Michetti, 2004; Guerrieri et al., 2006), in combination with regional uplifting (Dramis, 1992;
84 Galadini et al., 2003). During the Early Pleistocene, the subsidence of the basin was controlled by the eastern border normal
85 fault, striking ca. NNW-SSE (Fig. 1c). This structure, connected to a small monogenetic volcano formed near Cupaello (Lustrino
86 et al., 2025), acted as the master-fault, controlling a progressive deepening of a half-graben and promoting the deposition of
87 thick alluvial fan deposits (i.e., the Fosso Canalicchio Synthem) and alluvial plain sequences (i.e., the Monteleone Sabino
88 Synthem), pinching out to the west. During the Middle Pleistocene, along the margins of the basin, the Early Pleistocene
89 deposits were displaced by a few hundred meters, with normal faulting slip rates in the order of 0.2 – 0.4 mm/yr (Michetti et
90 al., 1995), with further deepening of the Rieti Basin. Regional uplift triggered strong fluvial erosion from the Nera River,
91 which captured the Velino River through the Le Marmore threshold, and generated the northward diversion of the whole
92 hydrographic network (Guerrieri et al., 2006). Later tectonic events developed other sets of faults, some of them in the inner
93 portions of the basin, finally resulting in the orthogonal fault architecture presently bordering this intra-mountain depression.
94 Faults also controlled fluid flow and, together with climate oscillations, the deposition and erosion of thick sequences of
95 travertine, coincident with spring emergence and water flow mainly along the northern and southern border of the basin
96 (Carrara et al., 1992). The fast Holocene growth (ca. 160 m of vertical accretion) of the Le Marmore travertine platform
97 dammed the Velino River and caused alluvial overfilling in the Rieti Plain with sedimentation rates of ca. 3 mm/yr (Guerrieri

98 et al., 2006; Archer et al., 2019). Fluvial erosion and deposition processes are therefore one order of magnitude more efficient
99 than tectonic faulting in shaping the local landscape of the Rieti Basin.

100 As already mentioned, we focus on the three areas along the border faults as requested by the Government Commissioner. To
101 the east, we investigated the master fault in the Cantalice Study Area; to the north, we investigated the N border fault at the
102 Rivodutri Study Area; to the south, we studied the eastern sector of the S border fault, at the Rieti-Santa Rufina Study Area
103 (i.e., east of Rieti town; Fig. 1c). The extensive investigations conducted under the 2016 post-seismic reconstruction project
104 provide a unique opportunity for a comprehensive characterization of local paleoearthquake surface faulting.

105 The seismicity of the Rieti Basin shows two ancient destructive events. The oldest (Io = X MCS; Me = 6.4) occurred in 76
106 BCE, of which, however, information is only available for the city of Rieti (Guidoboni et al. 2018, 2019). The second strongest
107 event recorded here is the Dec. 1st, 1298, earthquake (Mw 6.26; Io = X MCS; Brunamonte et al., 1993; Rovida et al., 2022)
108 whose epicenter is tentatively located to the north of the basin. Of note, a foreshock event occurred only a day before in the
109 southern part of the basin (Mw = 4.4; Io = V-VI MCS).

110 Relevant M>6 earthquakes, with epicenters within 40 km from the Rieti Basin, are likely responsible for coseismic
111 environmental effects recorded in the Rieti Basin itself (Archer et al., 2019). These include events that occurred on Sept. 9th,
112 1349 (Valle del Salto, Fiamignano Fault, Me = 6.1; Bosi, 1975; Mildon et al., 2022), Oct. 15th, 1639 (Amatrice, Laga Fault,
113 Me = 6.2; Galli et al., 2017; Mildon et al., 2017) and Jan 14th, 1703 (Norcia Fault, Me = 6.7; Blumetti, 1995; Guidoboni et al.
114 2018, 2019; Galli et al., 2021).

115 Several moderate historical earthquakes hit the area during the last 3 centuries (Fig. 1 c; Rovida et al., 2022). The Oct. 9th,
116 1785 (Mw 5.76; Io VIII-IX MCS) hit to the northwest of the area. Two relatively recent moderate earthquakes occurred near
117 the N and S border faults, which we investigated with exploratory trenches (Fig. 1c). The one to the south is the June 27th,
118 1898, Santa Rufina event (Mw 5.5; Io VIII-IX MCS; Comerci et al., 2003) whose causative fault, based on the epicentral area,
119 could be either the eastern boundary fault or the southern boundary fault of the basin. A similar size earthquake hit the NE
120 border of the basin near Rivodutri on December 31st, 1948 (Mw 5.3; Io VIII MCS; Bernardini et al., 2013).

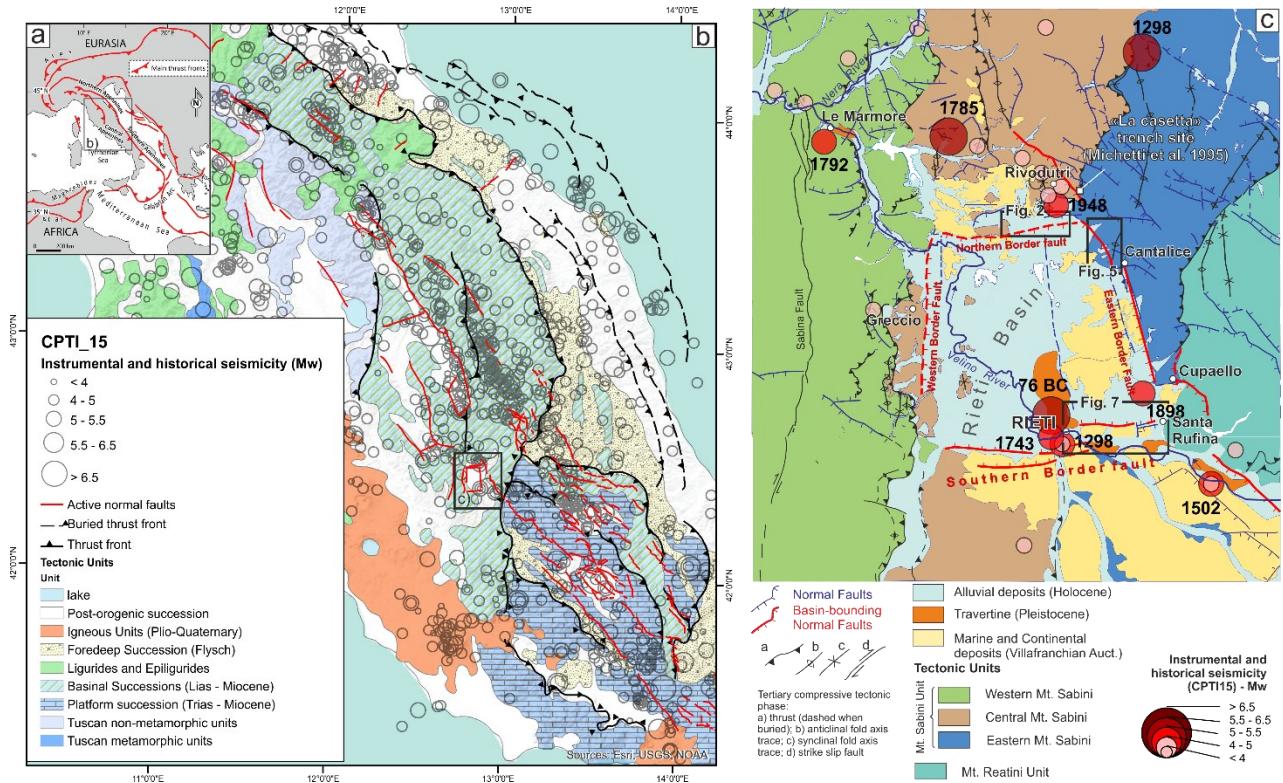


Figure 1: Geological setting (after, Capotorti and Muraro, 2021, modified) a) regional tectonic framework; b) simplified geological map of the Central Apennines with thrust fronts, the active normal faults running along the axis of the chain and seismicity (CPTI15 Catalogue, Rovida et al., 2022; CFTI5Med Catalogue, Guidoboni et al. 2018, 2019; and Baranello et al., 2024, for the 1743 Rieti earthquake); c) Rieti Basin area: simplified seismotectonic map (modified after Capotorti and Muraro, 2024; Servizio Geologico d'Italia, in press), the three study areas are delimited by boxes; note in the NW corner of the figure, the Le Marmore travertine platform dams the Velino River Valley just before its confluence with the Nera River Valley, and therefore controls the drainage of the whole Rieti Plain.

3 Materials and Methods

We investigated the three Study Areas by means of a multidisciplinary approach that aimed for best imaging the border faults and locating the paleoseismological trenches. For the purposes of data description, in the following we divide the three investigated Areas (namely along the northern, eastern and southern Border Faults) into Sectors, each one containing multiple Sites (i.e., individual trenches).

Geophysical prospecting included Electric Resistivity Tomography (ERT) and Ground Penetrating Radar (GPR) imaging. We acquired ERT and GPR lines across the main strands of the border faults.

ERT data was acquired using alternatively i) the X612EM+ multichannel geo-resistivimeter (MAE - Molisana Apparecchiature Elettroniche s.r.l.) capable of handling 96 electrodes connected to 4 bidirectional 24-takeouts cables; ii) a Syscal R2 multichannel geo-resistivimeter (IRIS Instrument) capable of handling 64 electrodes connect to 4 cables (16-takeouts). Regarding the investigation strategy, measurements were taken by using at least two out of three different arrays (i.e., among

140 Wenner, Wenner-Schlumberger, dipole-dipole and pole-dipole) along each profile, exploiting the different sensitivity of each
141 to achieve good resolution in both vertical and horizontal directions (see e.g. Dahlin & Zhou 2004). The sequences used during
142 the surveys always consisted of collecting a large number of measurements, as it was preferred to adopt a "high-resolution"
143 approach with an overabundant number of measurements for each layer/pseudo-depth. In particular, we used dipole-dipole
144 and/or pole-dipole arrays almost at each Site, as considered most suitable for characterizing areas where both lateral and
145 vertical variations in resistivity can be expected. This choice also made it possible to combine requirements for horizontal
146 measurement coverage, resolution, depth of investigation as well as needs related to timing and logistics (e.g., temporary
147 access to private areas). We carried out the 2D data inversion process after the quality check and data filtering using the
148 Res2DInv software by Geotomo (Loke & Barker 1996). For each profile, each dataset derived from single array was processed
149 individually and then, integrated into a single inversion process along with the others, to improve the quality of the final 2D
150 model that would be adopted and interpreted.

151 We acquired GPR lines with a GSSI Sir4000 instrument equipped by a 200 MHz antenna and coupled with a differential
152 GPS receiver Topcon GB1000 (post-processing kinematics) registering 1 position/sec. We summarize the acquisition as
153 follows: range: 150 ns; samples: 512; acquisition rate: 40 scan/s; dynamic: 32 bit. Data processing included vertical and
154 horizontal filtering, gain levelling, deconvolution and migration. We converted Two Way Traveltimes (TWT) to depth using
155 an average of dielectric constants calculated from diffraction hyperbolas occurring in the dataset and verified after the trench
156 excavations.

157 We logged the paleoseismological trenches at the 1:20 scale, using a reference net, and by means of digital photogrammetry.
158 For the latter, we used both portable LiDAR scanning (3D Scanner App for iOS) and a Structure from Motion and Multi-View
159 Stereo workflow (SfM-MvS – Metashape software; Westoby et al., 2012; Bemis et al., 2014). Field descriptions and horizon
160 designations followed internationally accepted guidelines, with the color definitions using nomenclature of the Munsell®
161 System (ASTM International, 2008). We also carefully considered the sediments, horizons, boundaries and the crosscut
162 relations with structural features to chronologically constrain the progressive deformation affecting the stratigraphic sequences.
163 Refer to the Supplementary Material 2 for the trench photomosaics.

164 In the three Study Areas, we excavated 17 trenches, 13 of them suitable for paleoseismological analyses. We collected 52
165 samples for AMS dating, 21 from Rivodutri Municipality, 14 from Cantalice, 8 from Rieti and 9 from Santa Rufina
166 (Cittaducale). We mapped the position of the samples on the trench logs, while Table 1 shows a summary of all the dated
167 samples. The samples were analyzed by specialist laboratories (Beta Analytic and CEDAD); calibration was performed with
168 the INTCAL20 curve using the OxCal ver 3.10 or the BetaCal4.20 software (CEDAD and Beta samples, respectively).

169 We also took into account results from the Michetti et al. (1995) trenching at 3 sites (Piedicolle, La Casetta and Caporio).
170 Geochron Lab performed the radiocarbon dating of samples from these trenches; we revisited the original dates using the same
171 calibration methods as above. Please note that throughout the text below we always refer to the calibrated ages listed in the
172 last column of Table 1.

173 In the following text, we present results from individual trenches and ERT/GPR profiles that are most relevant for the
174 paleoseismological analysis. Please refer to the Supplementary Material, which includes information on all trenches and
175 geophysical prospecting realized during this project.

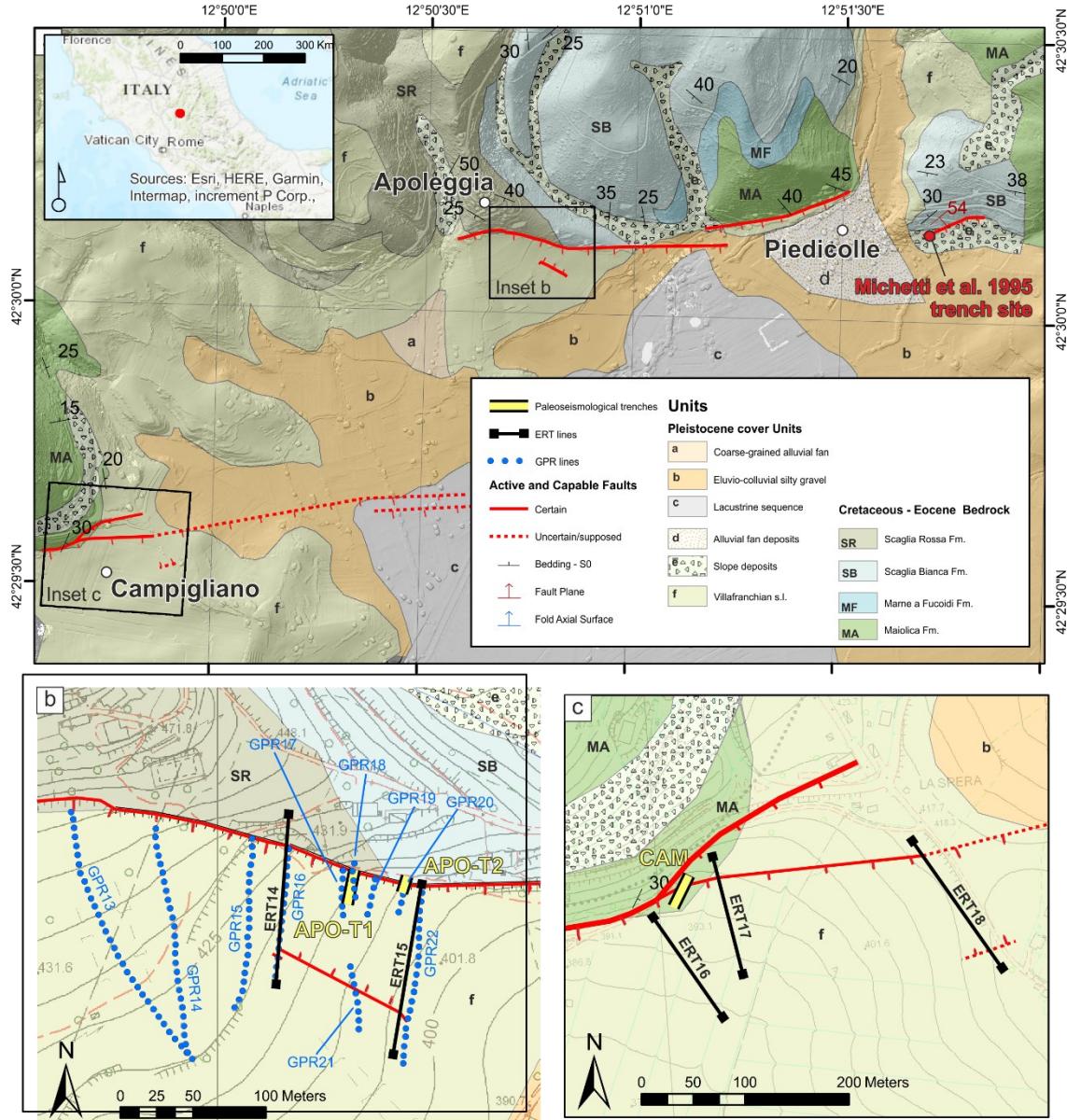
176 **4 Results**

177 We list the dated samples from the 13 paleoseismological trenches in Table 1, supplemented with the samples collected by
178 Michetti et al. (1995) in the La Casetta, Piedicolle and Caporio Sites. The Table presents both uncalibrated determinations and
179 calibrated age. In order to keep the discussion consistent and understandable, when the probability distribution of these
180 calibrated ages shows multiple peaks, in the following we will refer to the central age with the largest probability only (i.e.,
181 the one age calibration with highest probability; underlined in Table 1).

182

183 **Table 1: Summary of AMS dating results; we indicate the municipality and trench number, together with uncalibrated and**
184 **calibrated ages; “Dated Material” column abbreviations: “Org” for organic materials, “Charc” for charcoal, or burnt plant**
185 **materials; LTL samples are from CEDAD, CEntro di DATazione e Diagnostica, Università del Salento, Lecce; Beta samples are from**
186 **BETA Analytic, Inc., Miami.; GX samples (marked with *) are C14 dating after Michetti et al. (1995), recalibrated using the Oxcal**
187 **software and IntCal 20 curve; analyses from Geochron Lab., Cambridge, Massachusetts.**

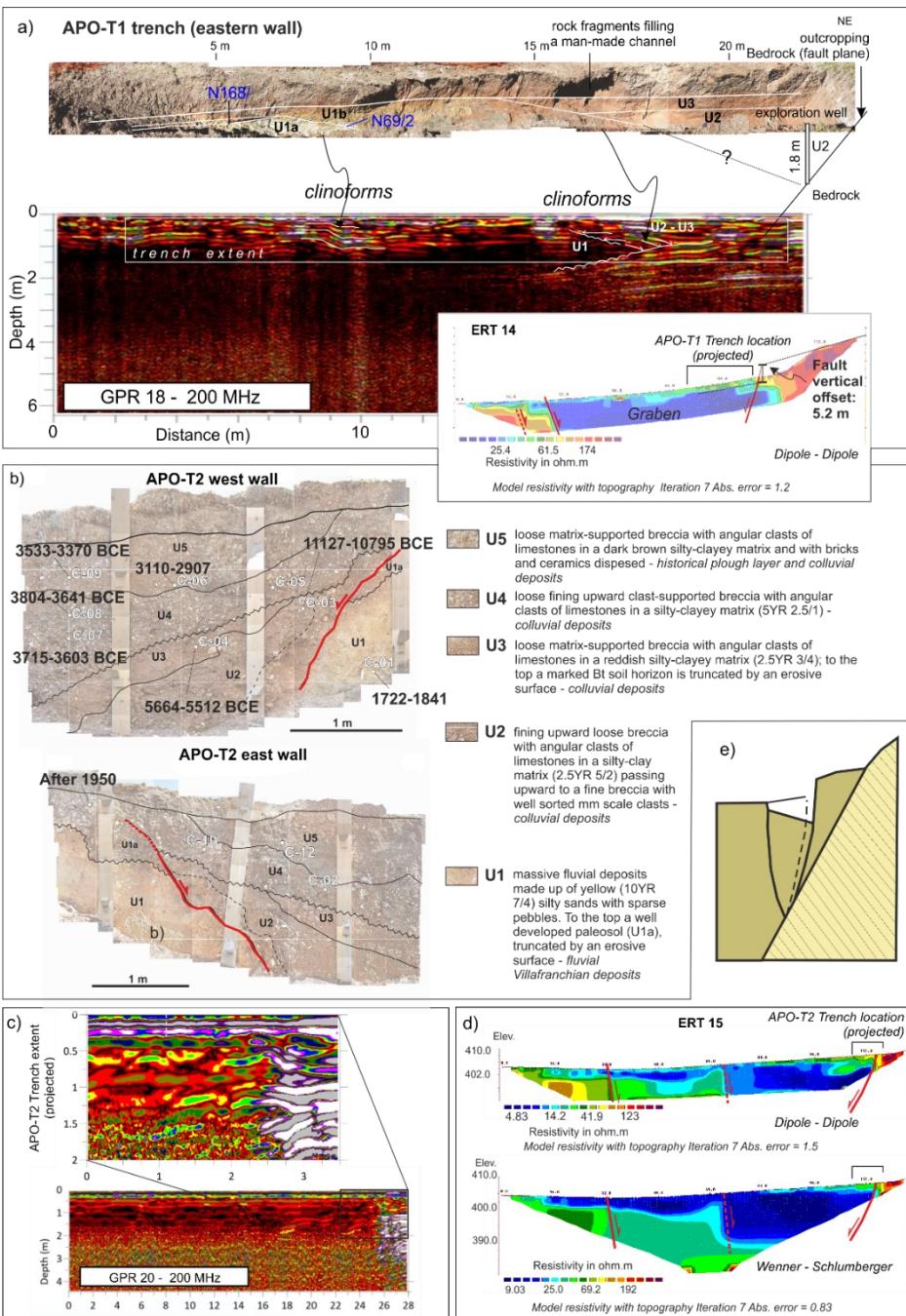
Municipality	Trench	ID sample	ID lab	Dated material	Uncal age (years BP)	Calibrated age (years) using IntCal20 curve
Rivodutri	APO T2	C01	LTL21211	Org	223 ± 45	1522-1574 CE (5.9%) 1625-1698 CE (29.0%) <u>1722-1814 CE (38.4%)</u> 1835-1882 CE (3.8%) 1910 CE (18.3%)
		C03	LTL21259	Org	10947 ± 100	11127-10795 BCE (95.4%)
		C04	LTL21213	Org	6670 ± 45	<u>5664-5512 BCE (90.4%)</u> 5505-5481 BCE (5.0%)
		C06	LTL21214	Org	4404 ± 45	3327-3225 BCE (14.9%) 3183-3154 BCE (3.0%) <u>3110-2907 BCE (77.5%)</u>
		C07	LTL21215	Org	4868 ± 45	3767-3721 BCE (6.6%) <u>3715-3603 BCE (69.5%)</u> 3588-3528 BCE (19.3%)
		C08	LTL21216	Org	4955 ± 45	3914-3876 BCE (5.8%) <u>3804-3641 BCE (89.6%)</u>


		C09	LTL21217	Org	4700 ± 45	3625-3560 BCE (17.3%) <u>3533-3370 BCE (78.1%)</u>
		C11	LTL21218	Plant remains	After 1950 CE	After 1950 CE
Rivodutri	CAM	C04	LTL22569	Org	15765 ± 120	17415-16872 BCE (95.4%)
		C06	LTL22570	Org	26571 ± 100	<u>29147-28749 BCE (87.0%)</u> 28666-28486 BCE (8.4%)
		C08	LTL22571	Org	17734 ± 65	19879-19280 BCE (95.4%)
		C10	LTL22572	Org	18557 ± 75	20739-20353 BCE (95.4%)
Cantalice	CUC	C02	Beta 634825	Charc	2280 ± 30	<u>401-351 BCE (51.3%)</u> 302-208 BCE (44.1%)
		C03	Beta 634826	Charc	2440 ± 30	<u>591-408 BCE (62.3%)</u> 751-684 BCE (22.3%) 668-634 BCE (9.7%) 622-613 BCE (1.1%)
	CANT-T1	C01	LTL21209	Charc	After 1950 CE	-
		C03	LTL21210	Charc	After 1950 CE	-
		C05	LTL21205	Charc	138 ± 40	<u>1797 - 1945 CE (57.3%)</u> 1670 - 1780 CE (38.1%)
	CANT-T3	C01	LTL22573	Org	17860 ± 65	20000 – 19475 BCE (95.4%)
		C02	LTL22574	Org	13860 ± 65	15083 – 14651 BCE (95.4%)
		C03	LTL22575	Org	9797 ± 45	9326 – 9206 BCE (95.4%)
Rieti	TR 1	C01	Beta 631859	Org	8710 ± 30	<u>7818-7597 BCE (94.6%)</u> 7931-7922 BCE (0.8%)
		C02	Beta 631860	Orgt	5000 ± 30	<u>3811-3701 BCE (65.2%)</u> 3942-3865 BCE (24.2%) 3682-3655 BCE (5.9%)
		C03	Beta 631861	Org	4310 ± 30	3011-2885 BCE (95.4%)

		C04	Beta 631856	Org	7510 ± 30	<u>6438–6340 BCE (71.9%)</u> 6313-6256 BCE (23.5%)
		C05	Beta 631857	Org	18670 ± 60	20919–20458 BCE (95.4%)
Rieti	TR 5	C03	Beta 631858	Org	4060 ± 30	<u>2673–2474 BCE (88.7%)</u> 2843-2813 BCE (6.3%) 2738-2735 BCE (0.4%)
Rieti	Villa Stoli South	C12	CEDAD LTL21261	Org	19127 ± 75	21261-20961 BCE (95.4%)
		C16	CEDAD LTL21260	Org	11801 ± 55	11835-11630 BCE (85.0%) 11601-11563 BCE (10.4%)
Santa Rufina (Cittaducale)	TR 3	C01	Beta 632175	Org	5270 ± 30	<u>4171-4036 BCE (60.9%)</u> 4233-4192 BCE (18.8%) 4027-3987 BCE (15.7%)
		C02	Beta 632176	Org	8640 ± 30	7729-7589 BCE (95.4%)
		C03	Beta 632177	Org	4870 ± 30	<u>3711-3627 BCE (87.7%)</u> 3560-3534 BCE (7.7%)
		C04	Beta 632178	Org	4550 ± 30	<u>3243-3102 BCE (57.2%)</u> 3371-3306 BCE (35.1%) 3300-3283 BCE (2.1%) 3276-3266 BCE (1.0%)
		C05	Beta 632179	Org	5910 ± 30	<u>4846-4712 BCE (95%)</u> 4878-4875 BCE (0.4%)
		C06	Beta 632180	Org	6000 ± 30	4988-4797 BCE (95.4%)
		C07	Beta 632181	Org	1690 ± 30	<u>326-424 CE (78.6%)</u> 255-286 CE (16.8%)
		C08	Beta63482 7	Char	8700 ± 30	7799-7597 BCE (95.4%)
Santa Rufina (Cittaducale)	TR 4	C01	Beta 632182	Org	1770 ± 30	224-376 CE (95.4%)
	CAS	C01*	GX-16336	Org	1530 ± 80	382-657 CE (95.4%)

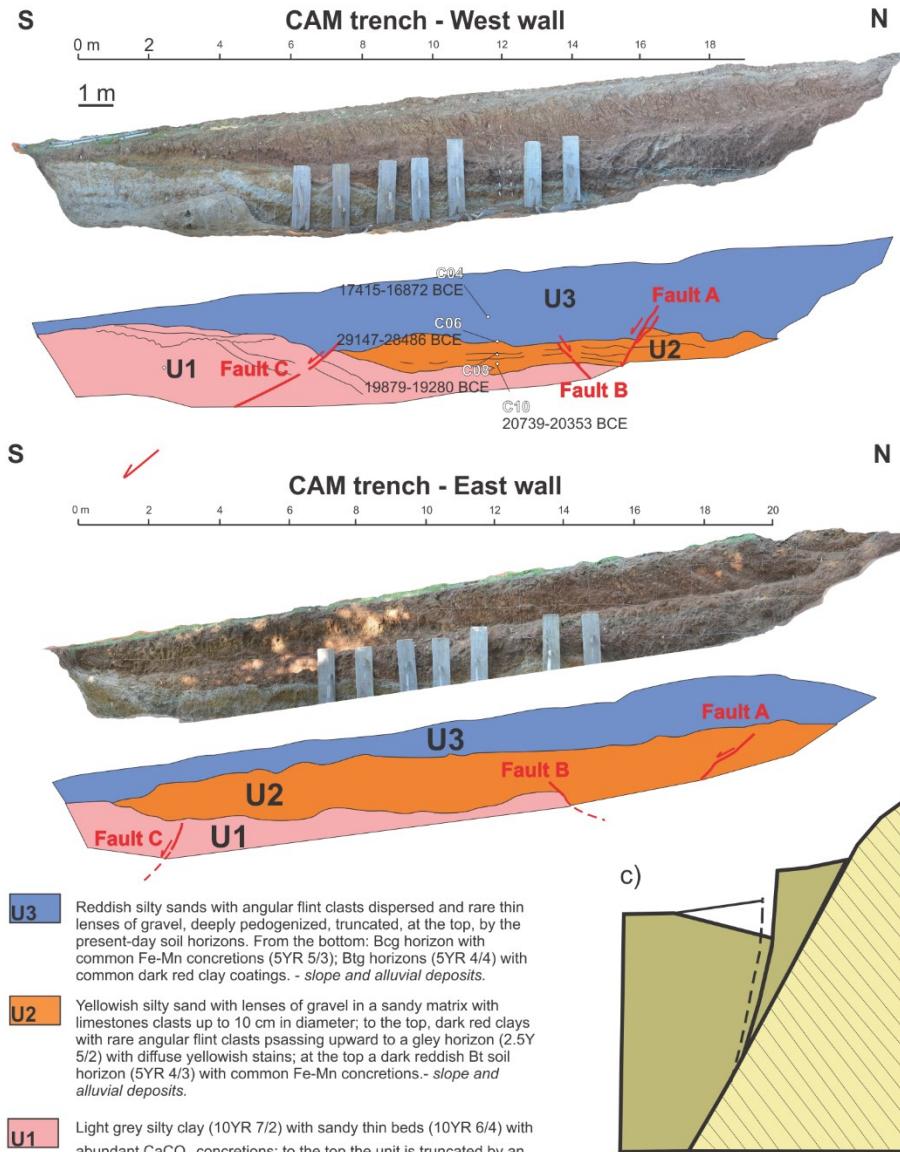
Rivodutri, La Casetta		C02*	GX-16338	Org	1635 ± 85	245-594 CE (95.4%)
		C03*	GX-16335	Org	2865 ± 150	1436-786 BCE (95.4%)
		C04*	GX-16333	Org	3110 ± 90	1604-1583 BCE (0.8%) <u>1544-1116 BCE (94.7%)</u>
		C05*	GX-16330	Org	4055 ± 175	3089-3056 BCE (0.7%) <u>3034-2128 BCE (93.7%)</u> 2091-2042 BCE (1.1%)
		C06*	GX-16337	Org	5040 ± 100	4044-4012 BCE (2.4%) <u>3999-3640 BCE (93.0%)</u>
		C07*	GX-16332	Org	6425 ± 130	<u>5623-5205 BCE (89.4%)</u> 5173-5070 BCE (6.1%)
		C08*	GX-16331	Org	19800 ± 1650	26596-18541 BCE (95.4%)
		C09*	GX-16334	Org	20700 ± 1600	27370-19763 BCE (95.4%)
Rivodutri	PDC	C01*	GX-18926	Org	2265 ± 80	<u>541-95 BCE (94.6%)</u> 73-56 BCE (0.8%)
		C02*	GX-18925	Org	3440 ± 90	2008-2004 BCE (0.2%) <u>1971-1517 BCE (95.2%)</u>
		C03*	GX-18924	Org	5305 ± 150	4446-3794 BCE (95.4%)
		C04*	GX-18923	Org	6770 ± 215	6077-5307 BCE (95.4%)
		C05*	GX-18922	Org	10810 ± 470	11787-11764 BCE (0.2%) 11701-11686 BCE (0.1%) <u>11660-9322 BCE (95.1%)</u>
		C06*	GX-18921	Org	13490 ± 235	15056-13695 BCE (95.4%)
		C07*	GX-18920	Org	15650 ± 680	18814-15483 BCE (95.4%)
Cava Caporio	Caporio	C01*	GX-17913	Org	33300 +6400/-3500	
		C02*	GX-17916	Org	>37000	
		C03*	GX-17914	Org	>42000	
		C04*	GX-17915	Org	>37300	

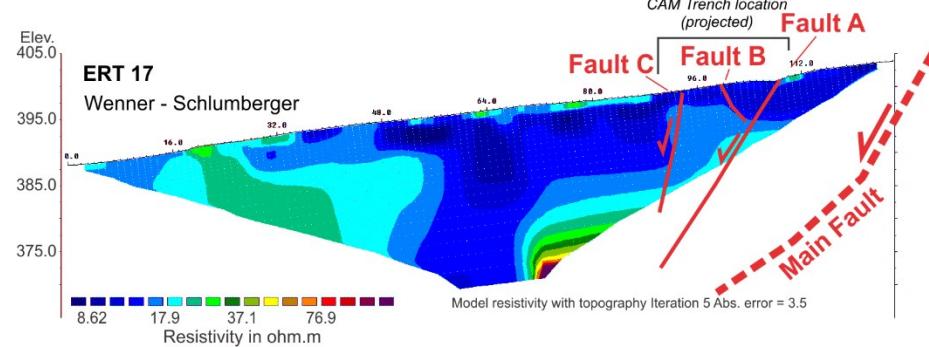
4.1 Rivodutri area: Northern Border Fault


190 The northern area includes two Sectors of investigation: Campigliano Sector, to the west and Piedicolle / Apoleggia Sector, to
 191 the east (Fig. 2a). We excavated 4 exploratory trenches in the Piedicolle / Apoleggia Sector, and one trench in the Campigliano
 192 Sector. In the following, we present results from two paleoseismological trenches at the Apoleggia Sector (APO-T1 and APO-
 193 T2; Fig. 2b) and one in the Campigliano Sector (CAM; Fig. 2c).

195 **Figure 2: Study Area along the Northern Border fault a) simplified geological map; b) and c) panels display detailed views on**
 196 **the two studied Sectors with the traces of the capable faults, of the geophysical investigations and the footprints of the excavated**
 197 **paleoseismological trenches; red dot in Fig. 2a is the Piedicolle trench Site from Michetti et al. (1995)**

198 The fault scarp we investigated at Apoleggia Sector shows all the characteristics of a typical post-glacial bedrock fault scarp
199 (Roberts and Michetti, 2004, and references therein). The topographic profile of the bedrock fault scarp at the Apoleggia Site
200 shows a minimum post-glacial vertical displacement of 5.2 m (Fig. 3). This value is calculated by projecting the topographic
201 slope in the footwall below the thickness of historical slope deposits. In fact, ERT profiles clearly show the position of the top
202 of the Pleistocene lacustrine deposits, which is parallel to the footwall slope and can be regarded as a proxy for the glacial
203 topographic slope. As discussed in the literature, we assume that this vertical displacement occurred during the last 18 kyr and
204 we derive a consistent post-glacial slip-rate of 0.29 mm/yr at this site. We excavated two trenches at the contact between the
205 Cretaceous-Eocene Scaglia Rossa Fm. and the Early Pleistocene Villafranchian lacustrine deposits. Trench APO-T1 was 24
206 m long with a maximum depth of 3 m. We fully covered the excavation walls with detailed photographic survey. However,
207 due to problems in maintaining the stability of the trench walls, we could not prepare a grid for logging. The NE limit of the
208 trench is located a few meters from the bordering fault scarp characterized by the bedrock outcrop. We recognized four
209 stratigraphic units in the APO-T1 trench, reported on the log (Fig. 3a). The stratigraphic units are briefly described as follows:
210 U1a is comprised of white and light gray clays with calcium carbonate concretions at the base; U1b is a reddish-brownish soil
211 truncated at the top by an erosive surface; U2 is slope debris with angular flint; U3 is a colluvial deposit characterized by
212 loose limestone breccia with angular flint and minor calcareous clasts; U4 is a colluvial deposit characterized by loose
213 limestone breccia with prevalent calcareous clasts and probably very recent brick fragments. APO-T1 shows a man-made hole
214 filled with limestone blocks of various sizes between 15 m and 20 m (each trench is labelled with progressive numbers in
215 meters from the beginning of the excavation; Fig. 3a). An exploratory well was drilled with a hand auger in the NE end of the
216 trench. The drilling crossed the loose limestone breccia of Unit 2 until it touched the limestone bedrock at a depth of 1.8 m
217 below the bottom of the trench (Fig. 3a), thus constraining the geometry of the fault scarp at depth. Furthermore, APO-T1
218 shows some clinoforms possibly related to a rollover anticline whose geometry is consistent with that of the bordering fault
219 (Fig. 3a). The clinoforms are also visible in the GPR_18 (Fig. 3a) located at the same position of APO-T1 (Fig. 2b).
220 Figure 3 shows the ERT_14 section (see location in Fig. 2b); the main fault, dipping towards the S, separates a sector with
221 resistivity greater than 150 Ω m in the footwall, with a sector of low resistivity in the hanging wall (5-20 Ω m). The ERT_14
222 profile shows another clear change in the resistivity values, which can be associated with an antithetic fault dipping toward
223 the N. Similar results are obtained from the ERT 15, presented in Figure 3d in dipole-dipole configuration, above, and
224 Wenner-Schlumberger, below.
225 The trench APO-T2 uncovered a sedimentary sequence comprising 5 units that were displaced along normal fault planes. The
226 stratigraphic units are described as follows: U1 is a massive fluvial deposit with yellow (10YR 7/4) silty sands; U2, U3, U4
227 and U5 are colluvial deposits characterized by a loose calcareous breccia with angular clasts in a silty-clay matrix with different
228 colors from reddish brown, in U2, to dark brown, in U5. Figure 3c shows the interpreted trench stratigraphy and the
229 paleoseismic history reconstructed at the Site. The trench crossed a typical earthquake gravity graben (*sensu* Gilbert, 1890;
230 Slemmons, 1957; Fig. 3e). The main fault plane outcrops a few meters outside the trench, whereas in the trench, a secondary
231 fault shows evidence of repeated movements that occurred during the deposition of Units 2-5. An older earthquake is inferred


232 from the deformation of Units 2 and 3: the top of Unit 2 and some stratigraphic markers within the unit are deformed and
233 inclined by the fault plane. We interpret Unit 3 as a fine-grained colluvial wedge that was deposited after the first earthquake;
234 this paleoseismic event is chronologically constrained by 14C dates between 11127 and 5512 cal yr BCE, with a minimum
235 offset of 15 cm. A second paleoearthquake is identified from the deformation of Units 3-5. The top of U5 is undeformed, and
236 the minimum offset of the underlying units is 22 cm; the age of this earthquake is between 3533 and 2907 cal yr BCE.
237 We excavated CAM trench (see location in Fig. 2c) for a length of 22 m and a maximum depth of 3 m. The stratigraphic units
238 recognized are on the CAM trench log of Figure 4a. The sedimentary sequence exposed in the CAM trench (Fig. 4a) has silts
239 and clays of the Villafranchian series (U1) at its base, presumably related to the Monteleone Sabino Unit (refer to Cavinato
240 1993 for the basic reference about the local Plio-Quaternary Stratigraphic units). An erosive surface truncates this unit at the
241 top. Loose sands and silts, with lenses of coarse gravel fining upwards to compacted silty clays (U2), lie on top of U1. This
242 unit is interpreted as a colluvial depositional environment.
243 The succession is closed, at the top, by colluvial reddish silty sands (U3). The beds of the units and their lower and upper limits
244 are crosscut by a series of faults that also induced considerable folds and deformation within the sediments. Three fault strands,
245 belonging to the same deformation zone, have been identified and coded as Fault A, B and C in Figure 4a. The main fault
246 strand is in fact located outside the trench, at an outcrop along a road cut that prohibited direct trenching. At this road cut
247 location, the Villafranchian conglomerates of the Fosso Canalicchio Unit outcrop along a bedrock fault scarp that puts the
248 conglomerates in tectonic contact with recent colluvial sediments. Logistical limitations did not allow the main fault plane to
249 be directly investigated through a paleoseismological excavation; however, the trench wall exposed a series of subsidiary
250 structures. The main fault plane, in fact, outcrops ca. 30 m west of the trench limit and, projected towards the trench, it runs
251 only a few m to N of the trench. The fault plane dips towards the SE (Fig. 4a) and separates two different units within the
252 Villafranchian lacustrine series (Monteleone Sabino Unit). Two fault strands, synthetic to the main one (i.e., Fault A and C),
253 progressively displaced the hanging wall block. An antithetic fault (Fault B), slightly oblique to Fault A, delimits a graben that
254 widens toward the east. Overall, the 'Villafranchian' series in the hanging wall of the fault is downthrown and backtilted
255 northward, that is toward the main fault plane, forming an asymmetric half-graben (earthquake gravity graben sensu Gilbert
256 1890; Slemmons, 1957; Fig. 4c). Faults A and B displaced the top of U1 in all the walls of the trench. The top of U2 along the
257 east wall apparently seals both, while Fault A clearly displaces the same horizon in the west wall, with a cumulative vertical
258 offset of ca. 35 cm. Given the clay-rich lithology, the limited cumulative vertical offset (i.e., less than 10 cm on a single fault
259 strand) and the gradual transitions between units, we believe that both faults can be considered active during the deposition of
260 the U3 colluvial deposit, and that U2 recorded the ultimate movement younger than 17415-16872 BCE. Fault C, synthetic to
261 the main one but with low-angle bedding, appears to be sealed by U2 along the east wall, while displacing the base of U3 at
262 the west wall. The total vertical offset of Fault C, measured at some levels in the Villafranchian deposits, is ca. 113 cm, while
263 the base of U3 appears to be displaced by only 27 cm. In this case, Fault 3 is also considered to have been reactivated with the
264 last movement during the deposition of U3.


Figure 3: Paleoseismological trench and investigations along the Northern Border fault – Apoleggia Sector (see Fig. 2 for the locations of trenches and geophysical line traces) a) APO-T1 trench eastern wall (for details on the cal ages see Table 1) and comparison with the GPR 18 and ERT14 lines; b) APO-T2 trench walls; c) GPR20 line; the inset shows a focus on the footprint of the APO-T2 trench (projected); d) ERT15 lines with indicated the footprint (projected) of the APO-T2 trench; (e) model of the gravity graben following Gilbert's theory of grouped fault scarps in alluvium (redrawn after Gilbert, 1890; Slemmons, 1957).

272 CAM_ERT_17 section in Figure 4b appears to show a slight discontinuity in the resistivity values in its northern sector,
273 along the progressive 90 and 70 m, probably associated with a S dipping fault. The high resistivity values at the base of the
274 section, along the progressive 70 m, may be associated with the bedrock. It is worth noting that the section does not reach the
275 bedrock at surface: the fault plane on bedrock is ca. 30 m far from the northern end of the section. Furthermore, a vertical
276 change in the resistivity values along the progressives 32-45 m may be associated with an antithetic fault dipping towards the
277 N.

a)

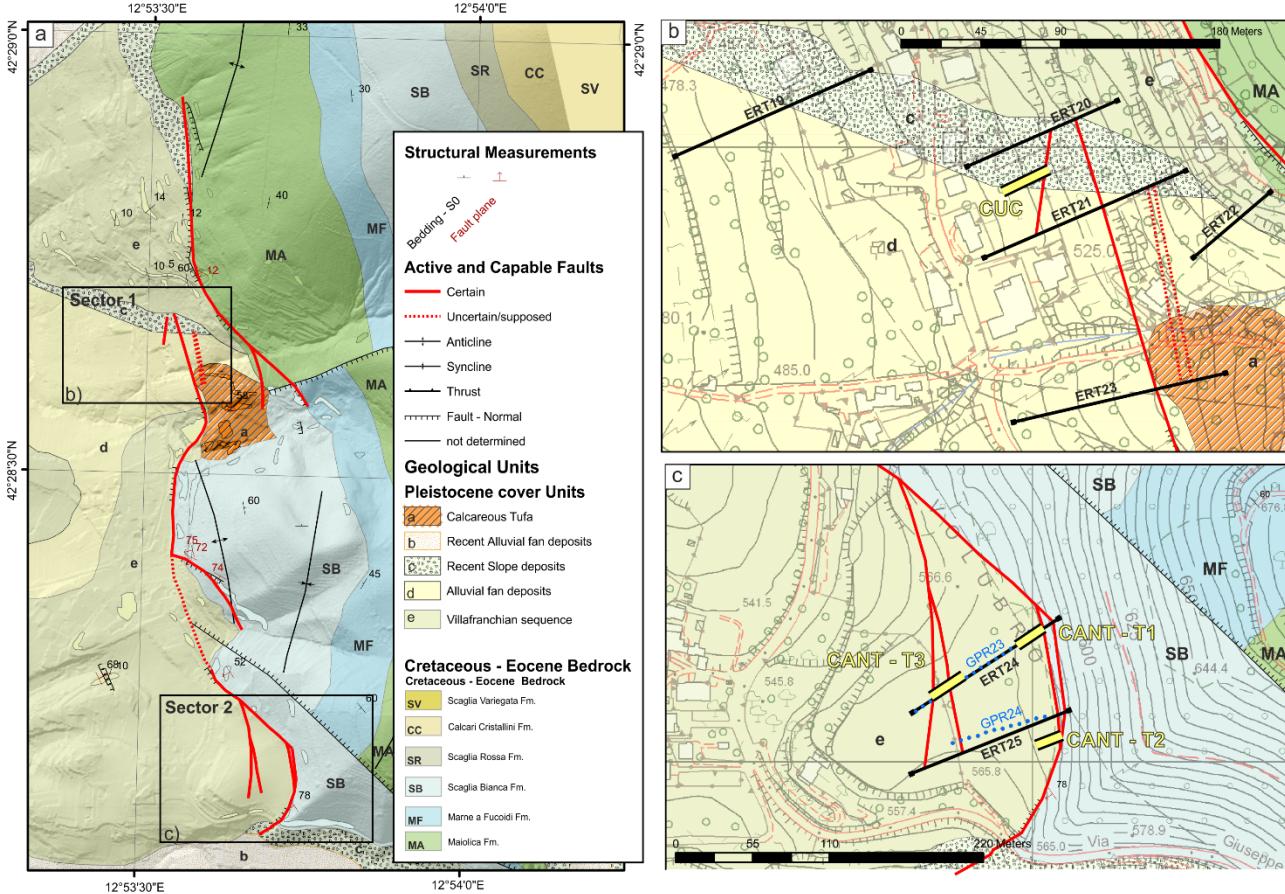

b)

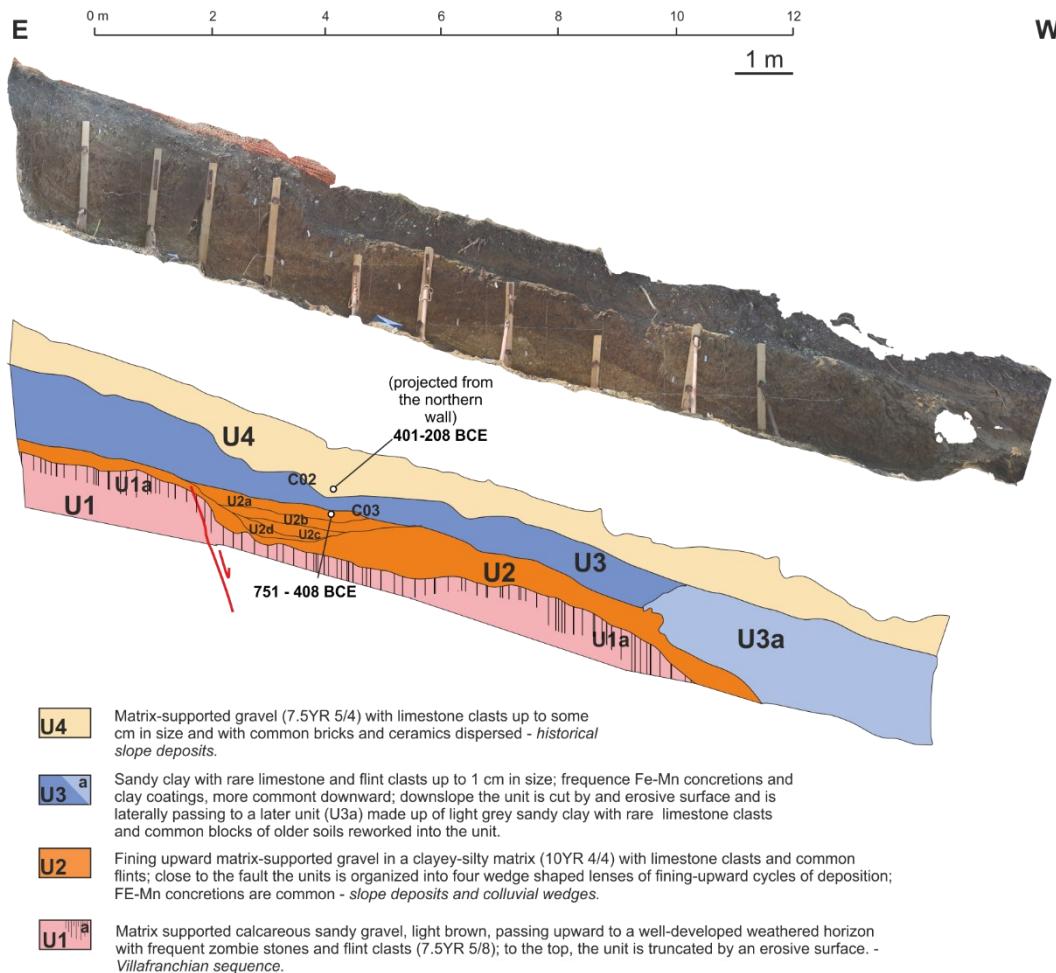
Figure 4: Paleoseismological trench and investigations along the Northern Border fault, Campiglione Sector; CAM trench (see Fig. 2 for trench location); a) photomosaic of the western and eastern walls (for details on the calibrated ages see Table 1); b) Wenner - Schlumberger ERT 17 line (trace in Fig. 2), the location of the CAM trench (projected) is indicated; c) model of the gravity graben following the Gilbert's theory of grouped fault scarps in alluvium (redrawn after Gilbert, 1890; Slemmons, 1957).

4.2 Cantalice area: Eastern Border Fault

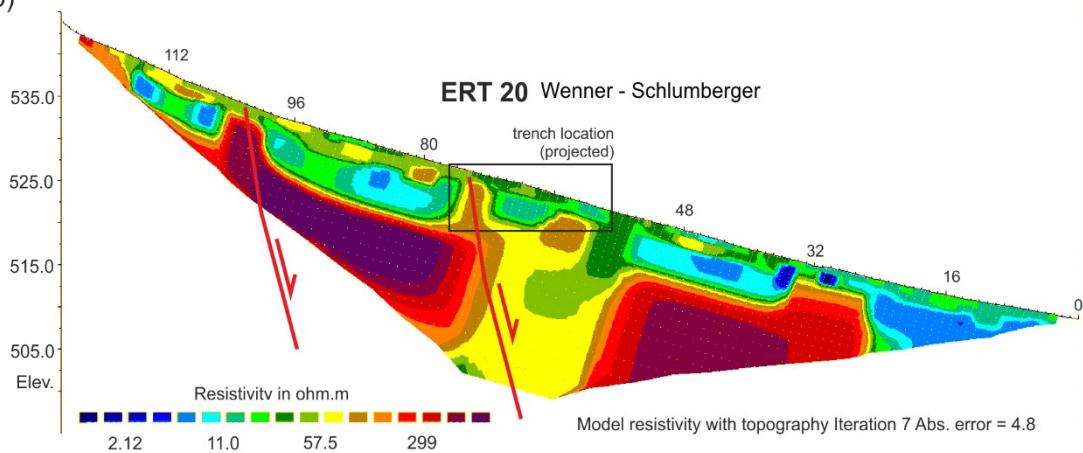
We investigated the Eastern Border fault at two Sectors along the same fault strand (Fig. 5a). We excavated one trench in Sector 1 (Fig. 5b) and three trenches in Sector 2 (Fig. 5c), two of which will be presented in the following section. For the whole dataset, please refer to the Supplementary Material.

Figure 5: Study Area along the Eastern Border fault a) simplified geological map; b) and c) panels display detailed views on smaller sectors with the mapped capable faults, the traces of the geophysical investigations and the footprints of the excavated paleoseismological trenches.

In Sector 1, we excavated the CUC trench for a length of 14 m and a maximum depth of 3 m. We reconstructed a stratigraphic sequence composed of four units, as described below, from the top to the base of the sequence. The uppermost unit of the stratigraphic sequence (U4) is represented by a matrix-supported conglomerate with well-rounded clasts of limestone (average


295 diameter 0.5 cm) embedded within a clay-rich matrix (7.5YR 5/4). Remains of roots, bricks and enameled ceramics are
296 dispersed within the matrix.

297 Unit U3 consists of a matrix-supported gravel made of carbonate clasts embedded within a clay-rich matrix. The matrix of the
298 U3 shows remarkable color variation, from 10YR 5/4; 10YR 4/3 up; 2.5YR 6/6 to base. At the top of the U3, the clasts show
299 frequent Fe (7,5YR 6/8) and Fe-Mn (10YR 3/2) coatings. The amount of Fe-Mn clast coating increases downward. The sub-
300 unit U3a shows local concentration of organic matter and Mn coatings (5YR 2.5/1) are present on clasts.


301
302 The unit U2 is made by a highly variable colored clay matrix (10YR 4/4; 10YR 3/1; 10yr 8/2) with rare limestone clasts
303 dispersed within it. The clasts show a maximum size of 3-5 cm, with evidence of partial reworking. In the central part of the
304 trench (i.e. progressive 2-4 meters; Fig. 6a) U2 has been split in several sub-units. From the base: the unit U2d consists of clay-
305 sandy matrix (7.5YR 4/3) with Fe-Mn (7,5YR 5/1) and Fe (7,5YR 5/8) coatings on limestone clasts. Some clasts of the U2d
306 unit are completely decarbonated. Above, the unit U2c is made of sandy-clay (10YR 4/4) with Fe-Mn levels of concretions
307 (7.5 YR 4/1). Unit U2b is made of a clay matrix (10YR 3/2) with millimeter clasts of limestones and flints. Clasts are covered
308 with Fe-Mn coatings (10YR 3/1). Finally, the unit U2a is made of a matrix-supported gravel of angular 1 cm sized clasts of
309 limestones and flint, dispersed in clay-rich sand (10YR 4/3). Clasts are locally covered with Fe (10YR 8/6) staining.

a)

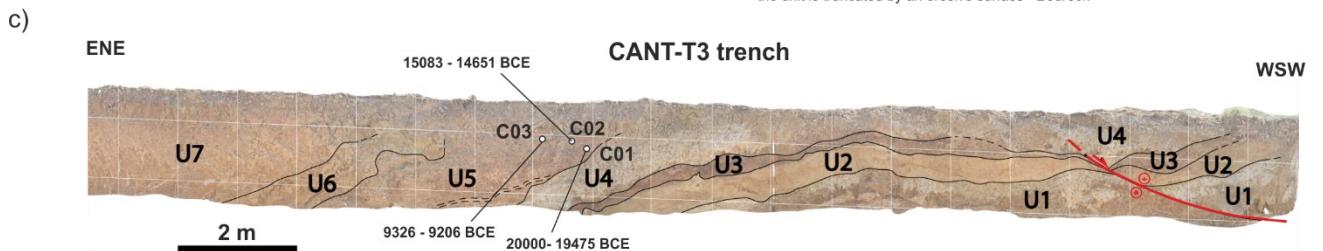
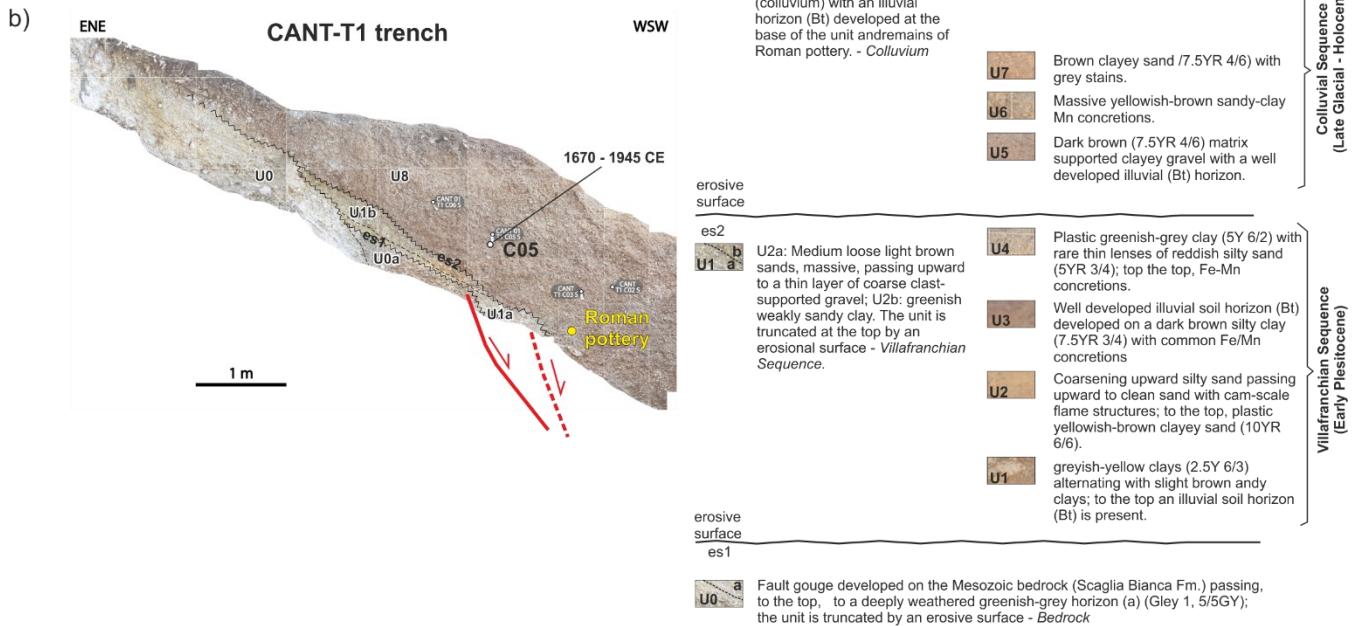
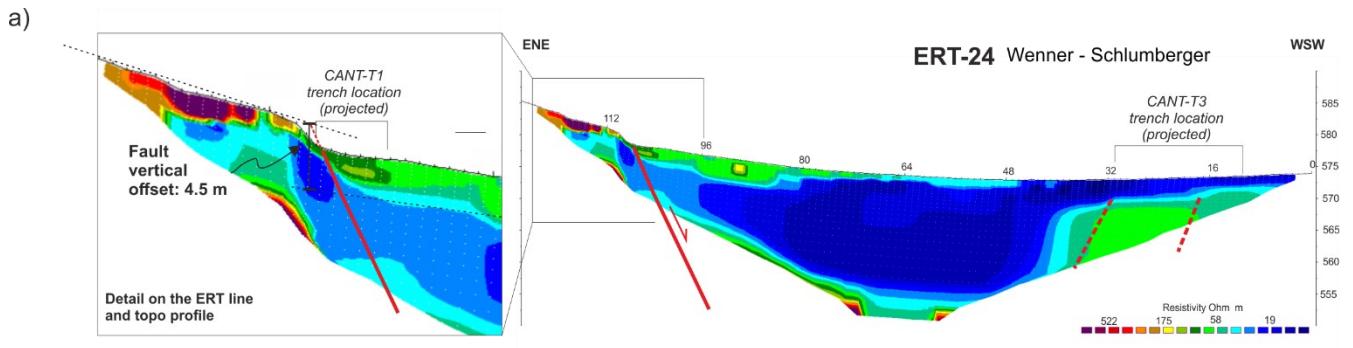
CUC trench - South wall

b)

311 **Figure 6: Paleoseismological trench and investigations at the Sector 1 of the Eastern Border Fault a) CUC trench, no vertical**
312 **exaggeration (southern wall; the footprint in Figure 5b; for details on the cal age determinations see Table 1); b) Wenner -**
313 **Schlumberger ERT survey (see trace in Fig. 5b), the location of the CUC trench (projected) is indicated**

314 The lowermost unit (U1) is a considerably older sequence, represented by a clast-supported breccia. At its top, unit U1 shows
315 a decimeter-thick distinctive weathering horizon (U1a). The clasts inside the weathered horizon U1a are completely
316 decarbonated. At the top, this horizon is cut by an erosive surface (Villanfranchiano Auct.; Upper Pliocene – Lower
317 Pleistocene). A normal fault, dipping towards W, offsets the sequence exposed at the CUC trench, down-throwing the lowest
318 stratigraphic units of the sequence, i.e., U1-U2. In the hanging wall of the fault, a wedge-shaped colluvial unit crops out (i.e.,
319 U2a – d). The fault exposed within the CUC trench shows a polyphasic activity, we observed that a cumulative offset of 87
320 cm is related to two surface rupturing events. The penultimate event shows an offset of 53 cm, while the last one shows an
321 offset of 34 cm. Both seismic events predate the deposition of the stratigraphic unit U3.

322 The calibrated dating results obtained from the samples of the CUC trench constrain the last activity of this fault within the
323 VI-V century BCE. In fact, the date of 751-408 BCE refers to the wash facies of the upper colluvial wedge (Unit U2a), which
324 postdates the last surface faulting event. We remark that also the dated sample from Unit 4 gives a similar calibrated age of
325 401-208 BCE; the whole sequence of slope deposits therefore formed in a few centuries after the observed surface faulting
326 events. It is possible to hypothesize that the fault splay located upslope from the trench that was imaged in the ERT 20 profile
327 (Fig. 6b) also slipped during the same events. The 53 cm offset observed during the penultimate event in the CUC trench, that
328 is relatively large when compared with the other trenches excavated during our investigations, might nevertheless be a
329 minimum value for the coseismic displacement at this site. This would seem to agree with the position of the CUC trench
330 located along the main fault of the Rieti Basin, where we expect the highest displacement during a strong earthquake.




331 At Sector 2, we investigated a strand of the eastern border fault, where a well-expressed bedrock fault scarp in the Cretaceous
332 Scaglia Bianca Fm. faces a nearly flat paleosurface. The fault scarp we investigated shows all the characters of a typical post-
333 glacial limestone fault scarp (Roberts and Michetti, 2004, and references therein). We acquired two ERT lines (24 and 25; Fig.
334 5c) that clearly show the tectonic contact between the high resistivity limestone and a package of conductive slope deposits at
335 least 15-20 m thick. To the WSW, the ERT 24 line shows two other abrupt steps in the resistivity units, consistent with a set
336 of antithetic normal faults, bounding the flat paleosurface. Topographic profiles of the bedrock scarp and thickness of Late
337 Holocene to historical slope deposits show a minimum post-glacial vertical offset of 4.5 m (Fig. 7a), hence a slip-rate of 0.25
338 mm/yr.

339 The lateral contact between the ERT units, at the ENE tip of the ERT line, well fits with the location of the morphological
340 scarp at the contact between the Cretaceous Scaglia Bianca Fm. and the Villafranchian lacustrine deposits, and with the
341 occurrence of a fault plane, that has been exposed by trench excavation (trench CANT-T1; Fig. 7b). CANT-T1 trench exposes
342 a sequence of Pleistocene Villafranchian units (U1 in Fig. 7b) separated by erosive surfaces, lying directly on a deeply
343 weathered bedrock (U0). The Villafranchian, in turn, is covered by a thick bed of massive colluvial deposits of Late Glacial to
344 historical age (U5). At the contact between the bedrock and the U1 unit an abrupt step was exposed, marked by the fold and

345 lowering of U1 toward the hanging wall block. A discrete fault plane has not been observed here, and we were not able to
346 excavate further in the trench for security reasons. The fault zone is here expressed as a wide and distributed zone of strain
347 accommodation, due to the highly plastic weathered units exposed. Nonetheless, episodic deformation events are here
348 confirmed by the geometry of the erosive surfaces, with the erosive surface “es1” being deformed by a first fault movement,
349 predating the erosive surface “es2”, instead. A possible second fault movement, can be inferred based on the abrupt step, only
350 partially exposed, that the “es2” displays just on the floor of the trench.

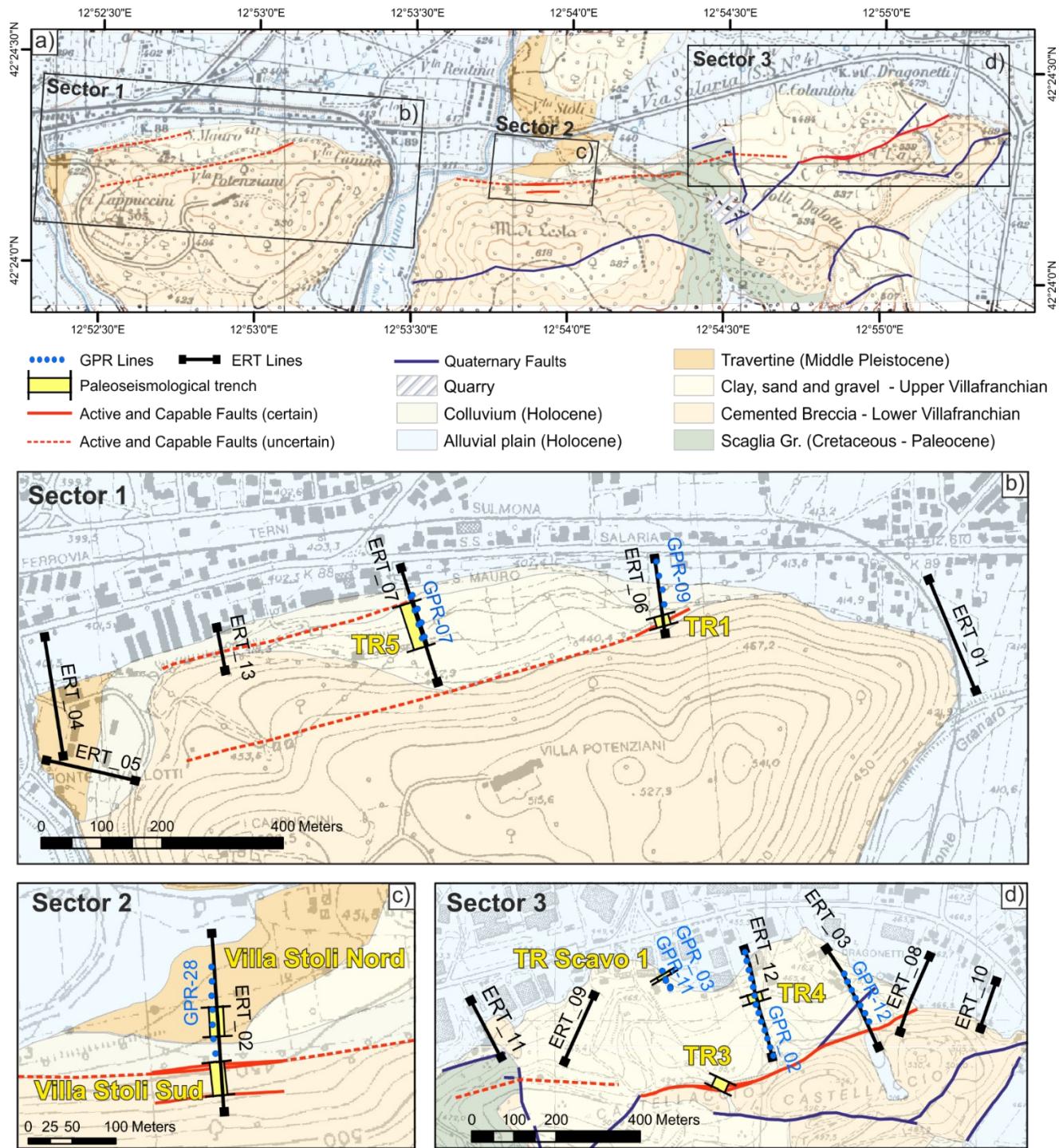
351 Trench CANT-T3 exposes a sequence of Villafranchian units (U1 to U4; Fig. 7c), overlain by a sequence of colluvial beds
352 with intercalated paleosol horizons. The units are involved in a set of asymmetric folds, which we interpret to be related to
353 underlying blind normal faulting, based on the features of the ERT-24 line described above. Dated samples in the colluvial
354 units indicate a Late Glacial to Holocene age. The colluvial beds, steeply dipping toward the mountain front, constitute the
355 syn-growth sedimentation of the graben-structure with a contemporary infilling of the subsiding block. To the WSW, the trench
356 also exposes a secondary normal fault in the Villafranchian Sequence, dipping to the SSE, crosscut almost along strike by our
357 trench, and testifying to complex deformation and hanging wall release faulting in the graben block.

358 From the features described above, we can constrain several fault movements for this fault strand since Late Pleistocene.
359 Deformation is distributed into a wide deformation zone with the development of a graben structure and near-surface fault-
360 related extensional folds.

361

362
363
364

Figure 7: Paleoseismological trench and investigations at the Sector 2 of the Eastern Border Fault a) ERT line with a zoom in on the fault scarp (see trace in Fig. 5c); b) and c), paleoseismological trenches T1 and T3 respectively (the trenches footprints in Fig. 5c; for details on the cal ages see Table 1).

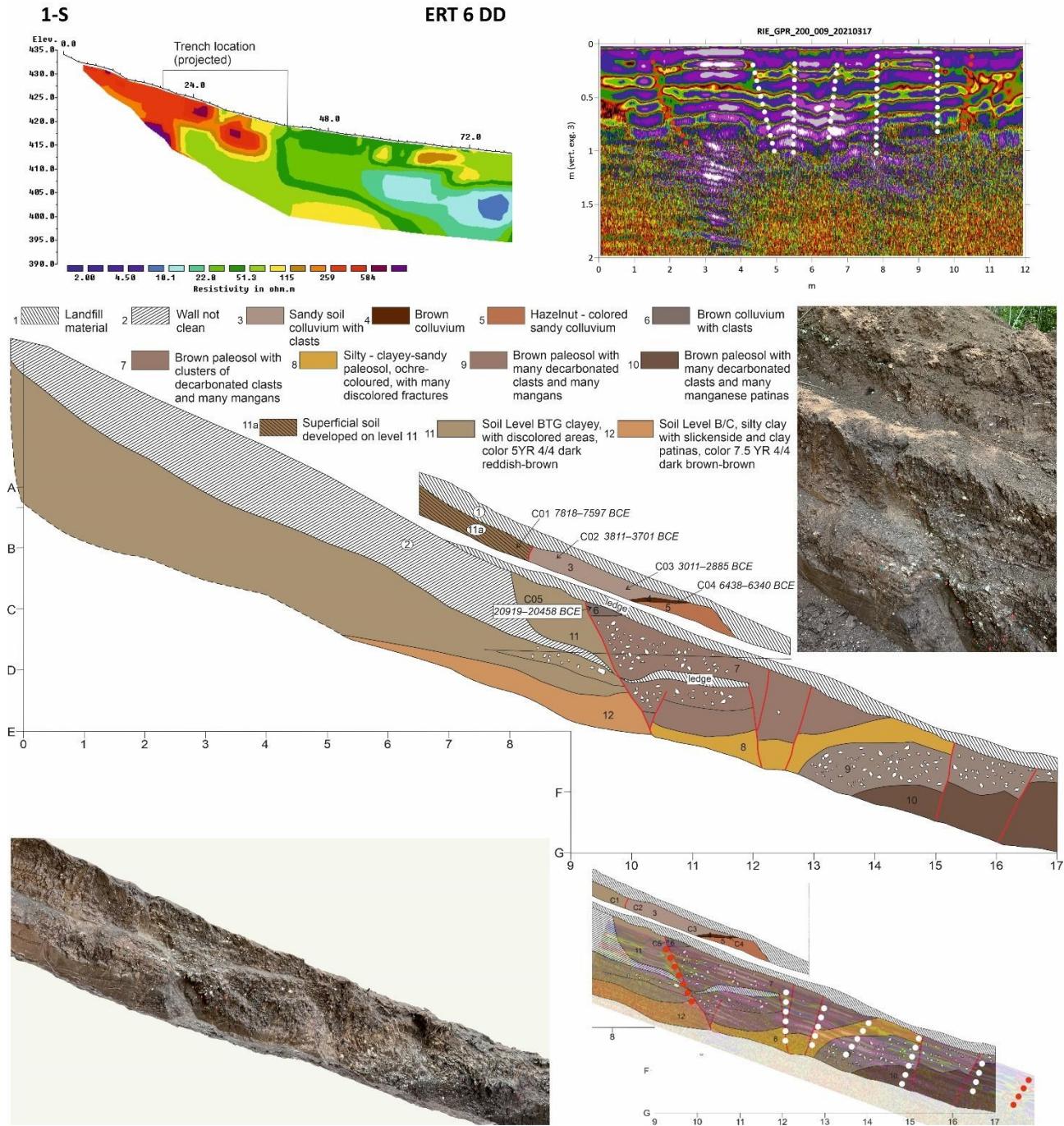

365

4.3 Rieti – Santa Rufina area: Southern Border Fault

366
367

The third Study Area extends about 5.5 km east of the historical center of Rieti, up to Santa Rufina, a hamlet of Cittaducale (RI), along the eastern part of the Rieti Southern Border Fault. The southern area includes three Sectors of investigation (Fig.

368 8). We dug seven exploratory trenches in this Area (Fig. 8b-d). Below, we describe the results of paleoseismological
369 investigations carried out only on the three trenches (TR1, Villa Stoli South and TR3) where we find primary coseismic
370 elements and, as examples of the structural styles of the fault zone, we show two trenches with only secondary elements (TR4
371 and TR5; Fig. 8).



372
373 **Figure 8: Study Area along the Southern Border Fault a) simplified geological map; b), c) and d): detailed views on the three studies**
374 **Sectors (extent is shown in a) with boxes) with the traces of the capable faults and of the geophysical investigations and the footprint**
375 **of the excavated paleoseismological trenches.**

376 **4.3.1 Sector 1: Trenches TR1 and TR5**

377 The 20 m long trench TR1 was excavated (location in Fig. 8b) with a NW-SE orientation where ERT 06 and GPR Line 09
378 investigations showed clear geophysical discontinuities. Figure 9 shows the result of the inversion of the Dipole-Dipole data
379 acquired along the ERT 06 profile (RMS 9.4%, 4 iterations) using 72 electrodes with an equidistance of 3 m. The tomographic
380 model shows, in its southernmost part, two significant lateral variations in resistivity. In the same zone, also the GPR 09 profile
381 shows several discontinuities in the electromagnetic characteristics of the shallow part of the terrain (dots lines). TR1
382 confirmed the occurrence of a fault zone affecting both the Monteleone Sabino Synthem (Early Pleistocene, Upper
383 Villafranchian in Fig. 8), which in this sector is completely pedogenised, and the recent *colluvia* above, outcropping in the
384 upper wall of the excavation. As shown in Figure 9, the trench wall has in fact a ca. 1.5 m thick lower part, separated from the
385 upper ca 70 cm thick upper part by a step about 1 m wide (“ledge” in Fig. 9).

386 The overlap between the stratigraphic log and the corresponding section of the GPR 09 profile clearly illustrates how the
387 discontinuities detected by the radar correspond well to those observed in the trench. This result confirms the effectiveness of
388 GPR prospecting in the siting of paleoseismic trenches.

389

390 Figure 9: Southern Border Fault, Sector 1, trench log and geophysical profiles at Trench 1 Site; Above: ERT 6 and Gpr 09 profiles;
 391 Below: Stratigraphic log of the W wall of trench 1, accompanied by a legend describing the various pedogenized deposits of the
 392 Monteleone Sabino Synthem and the overlying *colluvia* in clear discordance; the photomosaic of the lower west trench wall
 393 (progressive 7 m to 17 m) is also shown together with a detail of the major fault localized between progressive 8 and 11m; on the
 394 bottom right, the overlap of the stratigraphic log and the GPR profile.

395 Figure 9 also presents the stratigraphic log of the W trench wall, accompanied by a legend that describes the various colluvial
396 and soil horizons. Please refer to this legend for details on the stratigraphy visible in the trench walls. Throughout the trench,
397 an ancient and deep pedogenesis characterizes Unit 11. However, in the upper part of the trench Unit 11 is affected by a much
398 more superficial and recent soil horizon (Unit 11a), dated at 7818-7597 BCE. A N60°E trending, 70° NW dipping, fault offsets
399 the Monteleone Sabino Synthem, such that the soil horizons present at its footwall do not correlate with any of the horizons at
400 its hanging wall; the same fault also displaces the overlying succession of colluvial deposits. We identified this fault as the
401 major fault at the base of the northern slope of the Cappuccini-Villa Potenziani relief.

402 In the upper wall of the trench, this fault brings in contact the pedogenized Monteleone Sabino Synthem, here characterized
403 by a recent superficial soil horizon (indicated as Unit 11a), with a soil colluvium (Unit 3). The calibrated age of the faulted
404 units provided age ranges of 7818–7597 BCE (Sample C01, Table 1) and 3811 –3701 BCE (Sample C02), respectively. This
405 means that a surface faulting event occurred after 3811-3701 BCE (event TR1-2 in Fig. 15).

406 In the lower wall of the trench, the fault brings Unit 11 in contact with a colluvium (Unit 6) which, due to its geometry, we
407 interpret as a colluvial wedge. This colluvial wedge returned a calibrated age of 20919–20458 BCE (Sample C05) and,
408 considering its thickness, it is possible to estimate a surface dislocation of at least 15 cm necessary for it to be deposited. This
409 event occurred just before the deposition of the colluvial wedge, then before 20919–20458 BCE (event TR1-1 in Fig. 15).

410 In sector 1 (Fig. 8b) we also excavated the trench TR5, providing evidence of several tectonic dislocations of the Monteleone
411 Sabino Synthem deposits (Fig. 10). We interpreted these structures as secondary faults, presumably linked to a main fault
412 located just to the north. However, it was impossible to verify this hypothesis; we were not able to extend the exploratory
413 trench further N, due to the presence of an aqueduct.

414

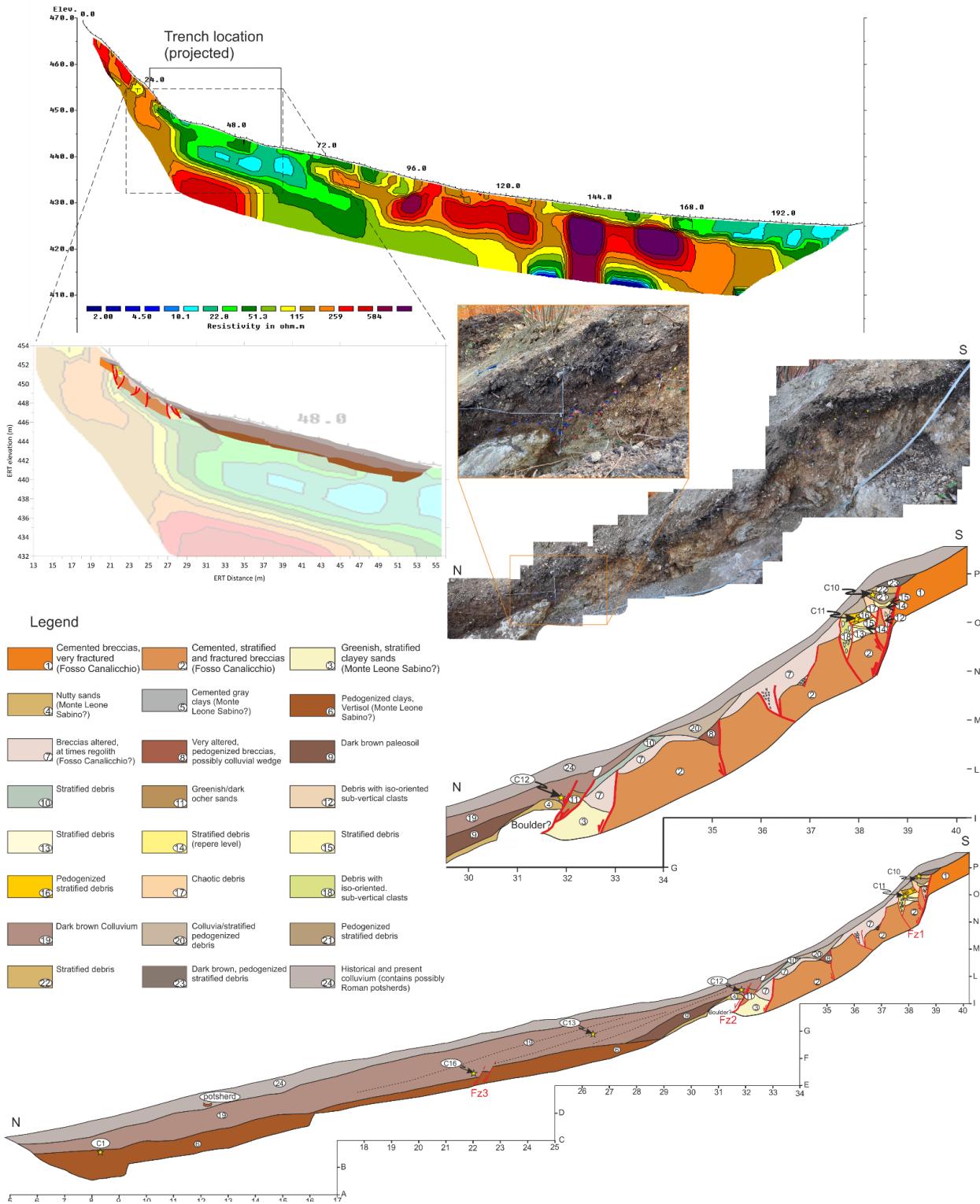
415 **Figure 10: Southern Border Fault, Sector 1, trench 5 showed the Monteleone Sabino deposits dislocated by a dense grid of faults;**
 416 **the figure shows a portion of the east wall of the 77 m long trench, no vertical exaggeration.**

417 **4.3.2 Sector 2: Villa Stoli South Trench**

418 The second Sector under investigation is the Villa Stoli area, where ERT 02 and GPR 28 have been carried out (Fig. 8c; see
 419 Supplementary Data for GPR 28). In this case, only the tomography detected discontinuities due to tectonics. They are, in the
 420 southern part of the profile, corresponding to a wooded area where the GPR was not applied (Fig. 11). The anomalies detected,
 421 indeed, in the central-northern part of the ERT profile (Fig. 11) and in the GPR profile, correspond to the travertine slab found
 422 in the Villa Stoli Nord trench (see geology in Fig. 8c).

423 We excavated the Villa Stoli South trench for a length of 40 m, a depth of about 2 m and a width of 1 m. In the uphill, S part
 424 of the trench, we uncovered three major discontinuities, which were also detected by the ERT 02 survey. Figure 11 shows the
 425 stratigraphic log with tectonic elements.

426 The first discontinuity of the fault zone FZ1 offsets the Lower Pleistocene cemented breccia (Fosso Canalicchio Synthem, FC)
 427 and, with decimetric throw, also all the overlying deposits, until it is sutured by the current organic soil. Eight meters
 428 downstream, the elements of the FZ2 places the FC Synthem breccia (Unit 2) in contact with metric blocks of conglomerates
 429 associated with sandy-clayey sediments, interpreted as belonging to the Monteleone Sabino Synthem (MS). FZ2 fault zone
 430 upward cuts the overlying colluvium made of decarbonated dark reddish-brown soil (2.5YR 3/4) (Unit 19 in Fig. 11), whose
 431 AMS calibrated age (sample C12) is 21261-20961 BCE (95.4%). The faulted Unit indicates the occurrence of an event post
 432 21261-20961 BCE. This event is possibly correlated with the one observed in Sector 1, TR1, where a colluvial wedge dated
 433 back to 20919–20458 BCE. The two events TR1-1 and VS-1 in Figure 15 might therefore indicate the same paleoearthquake.

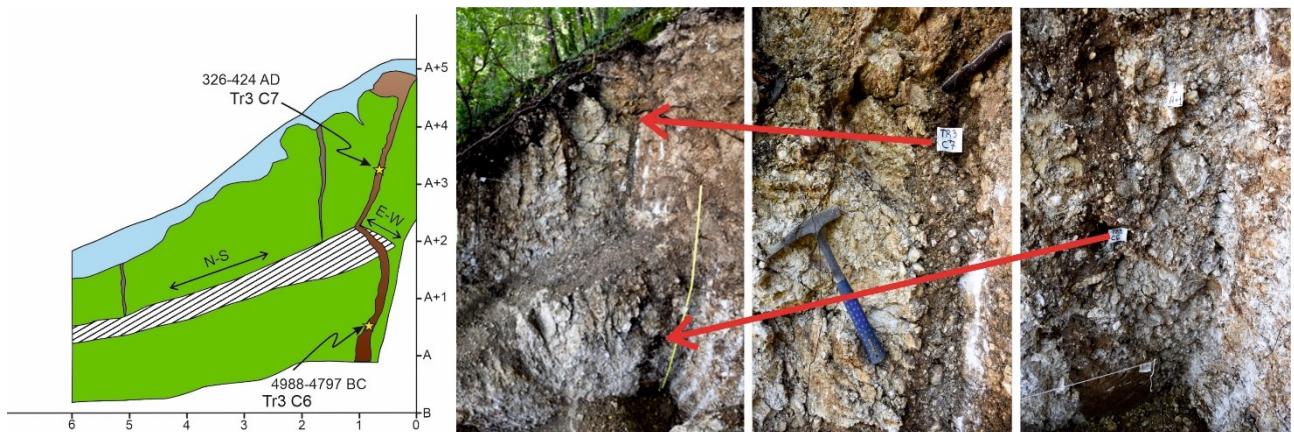

434 Starting from this point, the soil colluvium (Unit 19) thickens downwards, resting on a decarbonated clayey horizon (Unit 6 in
435 Fig. 11), developed on the clay-rich facies of the MS Synthem.

436 We identified another fault zone (FZ3) ten meters further downhill, toward the north. This fault offsets the interface between
437 the soil colluvium (Unit 19) and the pedogenized clay-rich horizon (Unit 6) with a throw up to 30 cm. The 14C calibrated age
438 of the younger deposits dislocated is 11835-11630 BCE (85.0%; Sample C16). This presumably means that a second seismic
439 event occurred after this date.

1-S

ERT 2 DD

72-N



441
442
443
444 **Figure 11: Southern Border Fault, investigations at Sector 2 – Villa Stoli; Above: ERT 02 profile; Middle: Photographic mosaic and
stratigraphic log of the southern and upper part (first 10 m) of the E wall of the Villa Stoli Sud trench, including fault zones Fz1 and
Fz2, and stratigraphic log superimposed on the southern part of the ERT 02 profile; Below: Stratigraphic log of the whole Villa Stoli
South eastern trench wall.**

445 **4.3.3 Sector 3: Trenches TR3 and TR4**

446 We selected the location of the trench TR3 based on geological and geomorphological evidence, without carrying out
447 geophysical investigations. It was dug at the main slope break on the northern slope of the Castellaccio relief (Fig. 8d).

448 The excavation began where a fault outcrops in the cemented breccia of the Fosso Canalicchio Synthem (basal Lower
449 Pleistocene in age), where the trench walls revealed open fractures filled by colluvial deposits. The breccias present sub-
450 angular to angular clasts with generally centimetric up to decimetric diameters. The fracture, visible at progressive 1 m of the
451 E trench wall (Fig. 12), is filled by brown paleosols that were sampled at different depths. The calibrated ages of the lower
452 sample C06 and of the upper sample C07 resulted in 4988-4797 BCE (95.4%) and in 326-424 CE (78.6%) respectively. Since
453 the filling of a seismic-induced open fracture supposedly occurs just after the event, an event should be dated just before 326-
454 424 CE and another just before 4988-4797 BCE.

455
456 **Figure 12: Southern Border Fault, Sector 3; Left: tectonic fracture outcropping at the S end of the trench TR3, filled by colluvial
457 deposits sampled in TR3 C7 (C07) and TR3 C6 (C06); calibrated C14 ages are, respectively, 326-424 CE (78.6%) and 4988-4797
458 BCE (95.4%); Right, log of the first 6 m of the E trench wall; “ledge” is a bench due to the backhoe excavation**

459 From progressive 11 m toward N, there is an over one-meter-wide fault zone which brings in contact the Fosso Canalicchio
460 Synthem with the overlying Monteleone Sabino Synthem (Fig. 13), the fault zone can be distinguished into two fault subzones.

461 The fault zones involve recent paleosols and colluvial deposits. Among them, Units 6 and 7 (Fig. 13), located only at the
462 hanging wall of the FZ1, are evidently backtilted toward the fault. Unit 7 is a brown paleosol (7.5YR 5/4) developed on the
463 sands of the Monteleone Sabino Synthem, with a calibrated age 4171-4036 BCE (60.9%; Sample C01). Above Unit 7 there is
464 a soil colluvium (Unit 6) that contains small calcareous clasts, with a calibrated age 7729-7589 BCE (95.4%; Sample C02).

465 Going stratigraphically up section, Unit 5 is a dark brown colluvium (10YR 3/3) with a calibrated age 3711-3627 BCE (87.7%;
466 Sample C03), and Unit 4 is made of sub-angular-angular deposits, multi-centimetric in size, with a pedogenized matrix, with
467 a calibrated age 3243-3102 BCE (57.2%; Sample C04). The most downstream part of Unit 4 is thickened at the hanging wall
468 of the FZ1 (yellow star in the picture detail of Fig. 13) and because of this, it is interpreted as a colluvial wedge that formed
469 following the surface faulting event that tilted Unit 6 and 7. In this hypothesis, the underlying dark brown colluvium (Unit 5),
470 interrupted by FZ1, must have been deposited before the seismic event. The coseismic fault slip is 13 cm. All the above
471 considerations suggest the occurrence of a seismic event between 3627 and 3102 BCE. The age constraints for this event are
472 very similar to those available for the last event detected at APO-3 trench near Apoleggia along the N Border Fault, on the
473 opposite side of the Rieti Basin.

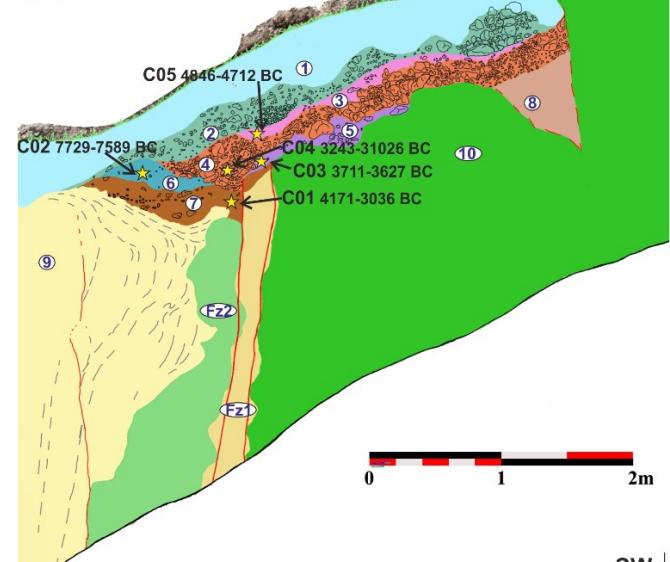
474 Moving N, the Monteleone Sabino Synthem outcrops with subvertical layers, parallel to the fault, probably because they were
475 dragged along the fault itself. These deposits are characterized by alternations of sandy and silty layers, rarely interspersed
476 with layers of fine gravel (millimetric clasts). Also, a system of mesoscale tectonic lineaments was recognized along the wall
477 of the trench, which are generally subparallel to the bedding. Therefore, we assume bed-parallel tectonic slip occurred here.

478 Towards progressive 24-26 m, the inclination of the Monteleone Sabino Synthem deposits decreases and the contact with a
479 pedogenized colluvium with clasts altered by pedogenesis (ghosts of clasts or “biscuit” clasts) has a slope of approximately
480 30° towards the valley (see Fig. 13).

481 Above the pedogenized colluvium, there is sharp contact with colluvial deposits characterized by frequent sub-rounded
482 calcareous clasts, with decimetric diameter, immersed in an abundant soil matrix. This contact, which is dipping about twenty
483 degrees towards the valley, becomes abruptly sub-horizontal in the N terminal zone of the trench.

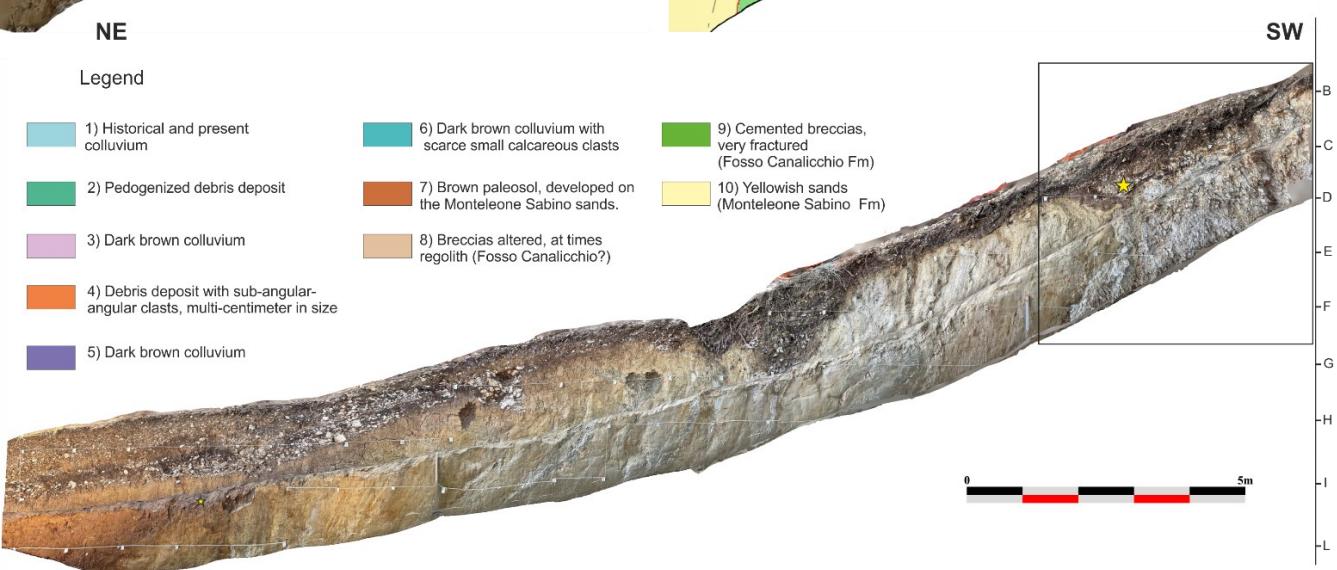
NE SW NE SW

TR3 - East


NE

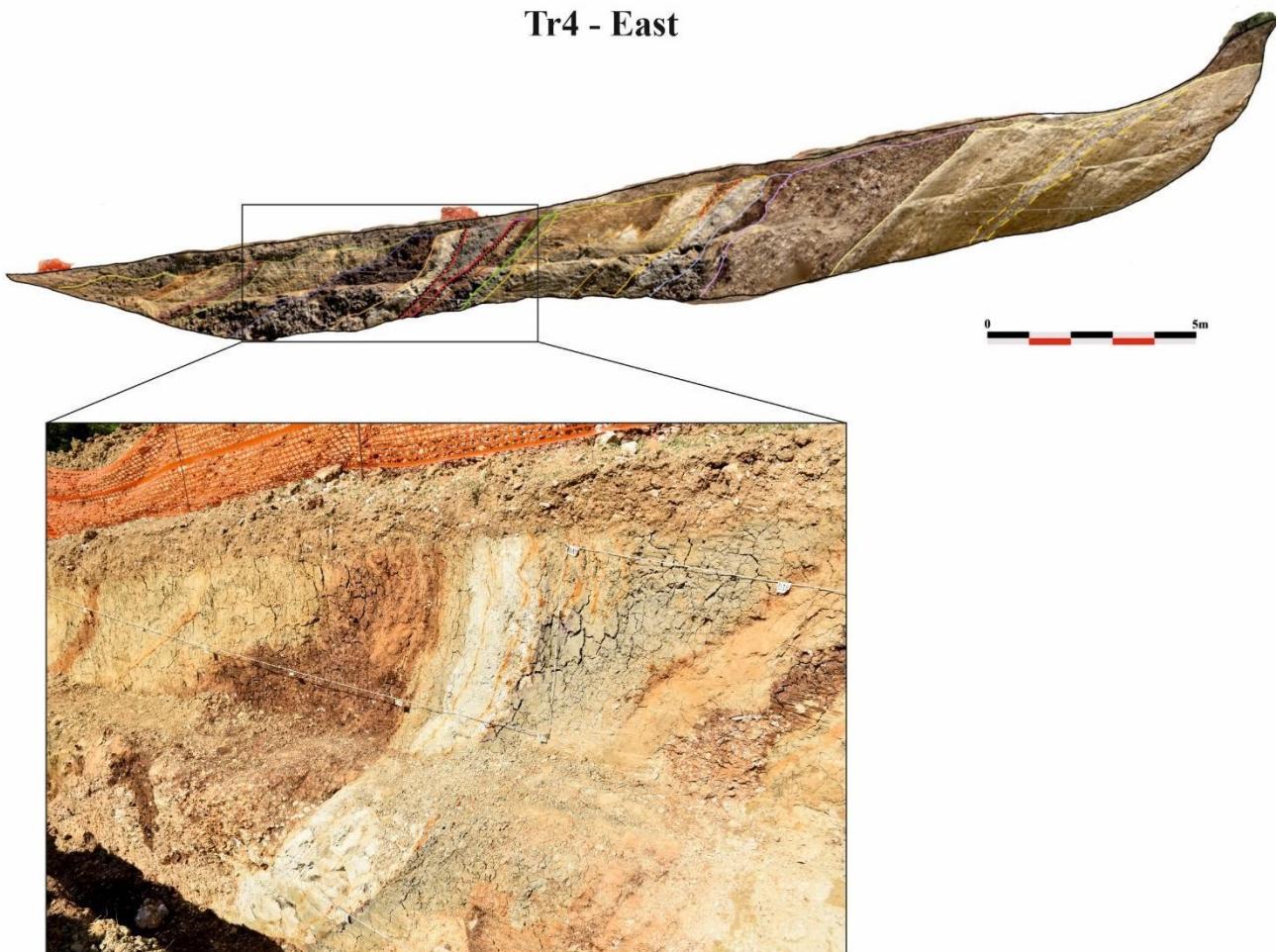
Legend

1) Historical and present colluvium	6) Dark brown colluvium with scarce small calcareous clasts
2) Pedogenized debris deposit	7) Brown paleosol, developed on the Monteleone Sabino sands.
3) Dark brown colluvium	8) Breccias altered, at times regolith (Fosso Canalicchio?)
4) Debris deposit with sub-angular-angular clasts, multi-centimeter in size	
5) Dark brown colluvium	


TR3 - East

Log detail from progressive 8 m to progressive 13 m

0 1 2m


SW

0 1 5m

485 **Figure 13: Southern Border Fault, Sector 3; portion (from progressive 8 m northwards to 26 m) of the E wall of the TR3 trench:**
486 **detail and log of the fault zone putting in contact the Fosso Canalicchio Synthem (Unit 10) with the Monteleone Sabino Synthem**
487 **(Unit 9); the stratigraphic log shows the deposits, the sampling points for AMS dating and the fault zones Fz1 and Fz2.**

488 In trench TR4, located north-east with respect to trench TR3 (see Fig. 8d) and 26 m long, we found the deposits of the
489 Monteleone Sabino Synthem dipping toward north-west, with slopes between 40° and 70° . Between the progressive 18 m and
490 19 m, gray silts diminish from the top to the bottom of the trench wall and are delimited by two fault surfaces (Fig. 14). In this
491 case, as in TR3, bedding-parallel slip is assumed. We observe that the faults are directly sealed by ploughed soil, and no
492 deposits younger than lower Pleistocene are involved in the deformation.

493
494 **Figure 14: Southern Border Fault, Sector 3; trench TR4, the bedding of the Monteleone Sabino Synthem dips between 40° and 70°**
495 **toward NW along the 26 m long trench; between the progressive 18 m and 19 m, gray silts diminishing from the top to the bottom**
496 **of the trench wall are delimited by two faults.**

497 **5 Discussion**

498 Here, we provide a critical discussion of the results obtained in the Rieti Basin, contextualized in the wider framework of the
499 Central Apennines. In fact, surface faulting events similar to those observed in the Rieti basin have been documented on nearby
500 Quaternary faults located near the SW flank of the Central Apennines (e.g., Leonessa Fault: Mildon et al.,
501 2022; Fiamignano Fault: Beck et al., 2018; Fucino Fault: Gori et al., 2017; Liri Fault: Maceroni et al., 2022). In particular,
502 slip histories recovered from the 36Cl data using Bayesian Monte Carlo Markov Chain (MCMC) modelling show that the
503 Leonessa Fault, Fiamignano Fault, Fucino Fault and Liri Fault exhibit a period of slip rate acceleration during the 7 to 5 kyr BP
504 and 2.5 to 1.5 Kyr BP time windows (Roberts et al., 2025). These are the same time intervals during which the Rieti Basin
505 faults generated the “Earthquake Sequences 1 and 2” based on the paleoseismic analyses described below.

506 The interpretation and correlation of paleoseismic data obtained during the study campaign on the Rieti Basin capable faults
507 conducted in 2021 - 2022 is necessarily limited due to the peculiar logistic and the stratigraphic/geomorphic field setting.
508 Nevertheless, we claim that a few elements of discussion can be pointed out.

509 First, we investigated selected areas identified based on administrative criteria. We conducted geophysical prospecting and
510 trenching on “active and capable faults” as defined by the Microzoning Guidelines of the Italian Government (Commissione
511 Tecnica per la Microzonazione Sismica, 2015). We worked in the framework of the “Scientific Collaboration Agreement
512 between the Extraordinary Commissioner for Reconstruction and the National Institute of Geophysics and Volcanology
513 (INGV)” for the redefinition of the Attention Zones of Active and Capable Faults emerging from the seismic microzonation
514 studies carried out in the Municipalities affected by the seismic events that occurred starting from 24 August 2016
515 (<https://sisma2016data.it/faglie-attive-e-capaci/>). For this reason, we aimed our investigations to specific technical targets, and
516 associated progressive deadlines, for the timely definition of the avoidance belts where the construction of new buildings and
517 the reconstruction of buildings damaged by the 2016-2017 seismic sequence had to be prevented.

518 Second, in the Rieti alluvial and lacustrine plain, literature data clearly show that the Late Holocene sedimentation rates are
519 tenfold the expected fault- slip rates (Guerrieri et al., 2006; Archer et al., 2019; Brunamonte et al. 2022). We confirmed this
520 conclusion also through our exploratory trenches in the N Study Area of the Rieti Basin. In the Rivodutri Area, we located two
521 trenches (Villaggio Santa Maria and Piedicolle trenches) in the lower part of the slopes, where ERT profiles suggested the
522 presence of faulting at shallow depth. In both trenches, we obtained AMS ages younger than 2000 years BP from colluvial and
523 alluvial deposits at 3 m below the ground surface. The presence of Roman pottery at the base of the trench walls confirmed
524 AMS dating. Therefore, our trenches did not reach the possible faults beneath the ground surface because of the excessive
525 thickness of very young historical deposits. In general, in the Rieti plain it is challenging to find suitable sites for
526 paleoseismic trenching; and it is not possible to expose faulted Holocene sediments in the high-resolution lacustrine
527 stratigraphy. We excavated all our 13 trenches at or near the bedrock-slope deposits contact, typically delimiting the
528 reconstruction of paleoseismic events with less well constrained chronologies and estimates of coseismic displacement.

529 Having this in mind, our new dataset, also compared with past paleoseismic analyses from Michetti et al. (1995), offers relevant
530 information on the paleoearthquake dates and magnitude, as discussed in the following sections.

531 **5.1 Post-Last Glacial Maximum (post-LGM) fault slip-rates and limestone bedrock scarp evolution in the Rieti Basin** 532 **landscape**

533 Data from our trench investigations confirmed the general model of post-LGM and Late Glacial to Holocene evolution for
534 bedrock fault scarps in the Meso-Cenozoic pelagic marly limestones of the Umbria-Marche-Sabina Sequence. As extensively
535 discussed in the literature (Bosi, 1975; Serva et al., 1986; Blumetti et al., 1993; Lorenzoni et al., 1993; Michetti et al., 1995;
536 Roberts et al., 2025), the morphological evidence of Holocene tectonic and seismic activity is very clear along the mountain
537 fronts carved in the Meso-Cenozoic Abruzzi carbonate platforms.

538 During the Last Glacial Maximum, the high elevations of the Central Apennines (up to 2900 m) supported valley glaciers, as
539 indicated by moraines and associated glacial landforms. Beyond the glaciated zones, periglacial conditions dominated. On
540 slopes composed of pure carbonate bedrock, rapid erosion and sedimentation—exceeding 0.2–0.4 mm yr⁻¹ (Tucker et al.,
541 2011)—favored the development of alluvial fans emerging from ice-free valleys. These rates surpassed typical fault throw
542 rates (Roberts and Michetti, 2004), as proved by fan surfaces and colluvial slopes graded to adjacent footwall bedrock.
543 Following glacier retreat, the establishment of temperate vegetation stabilized both fans and slopes, while stream discharge
544 declined, producing the smooth hillsides characteristic of former periglacial landscapes. Fan surfaces, bedrock slopes, and
545 moraines are mantled by thin soils (0.5–1.0 m) enriched in organic matter and locally containing volcanic components
546 deposited during and after deglaciation. Terminal moraines are frequently overlain by fluvial outwash or lacustrine deposits,
547 which often include paleo-vegetation and volcanic ash suitable for radiocarbon dating and tephrochronology. These
548 chronological datasets enable robust age determinations and correlations with climate records from Tyrrhenian Sea cores and
549 other archives. The final major phase of glacial retreat occurred ca. 18–16 ka, coinciding with a marked $\delta^{18}\text{O}$ shift in marine
550 records, signaling a major climatic transition. Presently, normal fault scarps dissect these glaciation-related landscapes,
551 exposing minimally degraded Mesozoic carbonate platform bedrock in footwalls. Conversely, marly-limestone bedrock of the
552 Umbria-Marche-Sabina pelagic domain exhibits higher modern erosion rates than the Abruzzi carbonate platform (0.016 ±
553 0.005 mm yr⁻¹; Tucker et al., 2011). Prominent fault scarps in basins such as Rieti, Leonessa, and Norcia occur only where
554 pure carbonate formations (e.g., Calcare Massiccio and Maiolica Fms.) are exposed.

555 The same is not true for the Rieti Basin and other Quaternary basins in the Umbria-Marche-Sabina sector (such as the Norcia,
556 Leonessa and Colfiorito basins; Messina et al., 2002; Mildon et al., 2022), where the presence of forest cover on the slopes
557 indicates the development of pedogenetic and colluvial processes on the material supplied by the Mesozoic marly-clay-rich
558 units.

559 Moreover, human impact on the mountain slopes through deforestation and agriculture generated a significant increase in the
560 sedimentation rates of slope deposits since the early stage of the Roman Empire, and thereafter (Lorenzoni et al., 1993; Michetti
561 et al., 1995; Borrelli et al., 2014). Stratigraphic and geoarchaeological data at La Casetta site clearly document this

562 anthropogenic impact, with meters of Roman to Middle Ages slope deposits containing abundant and well dated pottery
563 remains.

564 This is therefore the reason why bedrock fault scarps in the Rieti Basin are discontinuous and relatively subdued. As already
565 mentioned, the selection of trench sites in our study was affected by logistic constraints, since the primary goal of our study
566 was the characterization of capable faults in urban areas, aiming at post-emergency reconstruction. However, we successfully
567 investigated two of these bedrock fault scarps, one along the N border fault at Apoleggia sector, and the second along the E
568 master fault at Cantalice sector. Trenching and geophysical prospecting in the Cantalice area, Sector 2, shows faulted historical
569 colluvial deposits against the Scaglia Fm. fault plane. The measured slip-rate of 0.25 mm/yr is a minimum, because our
570 trenching did not reach the base of historical slope sediments. We draw a similar conclusion also at Apoleggia. Here we
571 observed a synthetic fault splay in the hanging wall of the bedrock fault scarp. Therefore, the measured slip-rate of 0.29 mm/yr
572 is also a minimum estimate.

573 Nevertheless, these values are meaningful because we have both morphological and stratigraphic constraints. These new post-
574 glacial fault slip-rate data confirm the previous estimates available in the Rieti Basin. Roberts and Michetti (2004) measured
575 0.27 mm/yr at a site N of Rivodutri along the Rieti Eastern Border Fault; and Michetti et al. (1995) documented 0.4 mm/yr
576 over the Holocene at the Piedicolle trench site along the Northern Border Fault.

577 Several Late Quaternary faults in Central Italy share similar post-glacial slip-rates (Roberts et al., 2025; Lombardi et al., 2025).
578 For instance, the Mt. Morrone Fault (0.20 – 0.40 mm/yr; Puliti et al., 2024); the Paganica Fault that generated the April 6,
579 2009, Mw 6.0 earthquake (0.25 – 0.30 mm/yr; Cinti et al., 2011) the Montereale Fault which ruptured during the January 16,
580 1703, Mw 6.0, earthquake (0.30 – 0.40 mm/yr; Cinti et al., 2018) and the Mt. Vettore–Mt. Bove normal fault system source of
581 the Mw 6.5 Norcia earthquake of October 30, 2016 (minimum 0.26 – 0.38 mm/yr; Cinti et al., 2019). More recent slip rates
582 estimates for the Mt. Vettore Fault are 0.8-1 mm/yr (Puliti et al. 2020); 0.7-1.2 mm/yr (based on ^{36}Cl exposure dating of
583 bedrock fault plane; Pousse Beltran et al. 2022); ranging from a minimum of 0.4 to a maximum of 1.3 mm/yr (Galli et al.,
584 2019).

585 5.2 The paleoseismic history of the Rieti Basin: a possible pattern in the earthquake sequence?

586 We compiled the paleo-earthquakes identified in the trenches with those recognized by Michetti et al. (1995) (i.e., the
587 Piedicolle and La Casetta trenches, PDC and CAS, respectively, with original Geochron Lab. radiocarbon dates recalibrated
588 using the IntCal20 curve) and summarized all the data in the space-time diagram in Figure 15.

589 Red bars are the time spans of the calibrated ages, defining the terminus *ante-* and/or *post-quem* for earthquakes (see Table 2).
590 Some paleo-events are tightly constrained in time (e.g., CUC-2), whereas in other cases we have less robust chronological
591 constraints, and in some cases can only bracket the timing of the paleoseismic events.

592 We highlighted five events, here coded as A to E, which are chronologically well-constrained (i.e., black boxes in Fig. 15),
593 plus one less-constrained additional event (F in Fig. 15). The six events do not overlap in time, thus possibly representing
594 distinct earthquakes. Correlation of paleoseismic events recognized in different trench sites are inherently speculative in nature.

595 Moreover, for the Rieti Basin we consider these correlations unlikely, given the large chronological uncertainty. Nevertheless,
596 we think that these correlations should be taken seriously into account, as they depict a conservative scenario in terms of
597 reconstructing the maximum credible earthquake magnitude and associated seismic hazard. Below we summarize the evidence
598 driving our interpretation, supplemented with constraints from historical catalogues, and we discuss potential ruptures of the
599 whole Rieti Basin Fault segment.

600 Event A is constrained at trench TR3 in the SE margin of the basin; the coseismic movements that occurred over time along
601 the identified fault (Fig. 12) cyclically determined the reopening of the fracture, which was repeatedly filled with *colluvia*. The
602 younger age obtained from the *colluvia* trapped in the fracture is 326-424 CE (1624-1526 cal BP). No event in the historical
603 seismic catalogue matches with our Event A.

604 A few centuries before, a strong event is reported to have occurred in the Rieti area in 76 BCE (Guidoboni et al., 2018, 2019).
605 Obsequens Iulius (1910) stated:

606 “*Reate terrae motu aedes sacrae in oppido agrisque commotae. Saxa quibus forum stratum erat, discussa.*
607 *Pontes interrupti. Ripae [prae] labentis fluminis in aquam provolutae, fremitus inferni exauditi et post*
608 *paucos dies, quae concussa erant, corruerunt*”

609 (Due to the earthquake, the sacred buildings in the town and the fields were moved. The stones with which
610 the market was laid were broken up. Bridges broken. The banks of the flowing river were thrown into the
611 water, the roar of hell was heard, and after a few days those that had been shaken collapsed).

612
613 **Table 2: Attributes summary of the paleo-earthquakes identified in the trenches excavated in the Rieti Basin; the “notes” column**
614 **refers to the possible ruptures of the whole Rieti Fault segment as described in the text; asterisks mark the events that “control”**
615 **Event A, B, C, D, E; F; the others are the possible correlations.**

Trench	Earthquake	Younger than	Older than	Offset	Notes
TR3	3	-	326-424 CE (1624-1526 cal BP)	-	A*
TR3	2	3711-3627 BCE (5661-5577 cal BP)	3243-3102 BCE (5193-5052 cal BP)	13 cm (min)	C
TR3	1	-	4988-4797 BCE (6938-6747 cal BP)	-	D*
TR1	2	3811–3701 BCE (5761-5651 cal BP)	-	30 cm	A, B, C

TR1	1	-	20919-20458 BCE (22869-22408 cal BP)	15 cm (min)	F*
VS	2	11835-11630 BCE (13785-13580 cal BP)	-	38 cm	B, C, D, E
VS	1	21261-20961 BCE (23211-22911 cal BP)	-	78 cm	B, C, D, E, F
CUC	2	591-408 BCE (2541-2358 cal BP)	401-351 BCE (2351-2301 cal BP)	53 cm	B*
CUC	1	-	591-408 BCE (2541-2358 cal BP)	34 cm	C, D, E, F
CAS	1	5623-5205 BCE (7573-7155 cal BP)	3999-3640 BCE (5949-5590 cal BP)	80-100 cm	D
PDC	2	-	1971-1517 BCE (3921-3467 cal BP)	100 cm	C, D, E, F
PDC	1	4446-3794 BCE (6396-5744 cal BP)	-	90 cm	A, B, C
APO T2	2	3533-3370 BCE (5483-5320 cal BP)	3110-2907 BCE (5060-4857 cal BP)	22 cm (min)	C*
APO T2	1	11127-10795 BCE (13077-12745 cal BP)	5664-5512 BCE (7614-7462 cal BP)	15 cm	E*
CAM	1	17415-16872 BCE (19365-18822 cal BP)	-	27 cm (last event)	A, B, C, D, E

616 In the Italian seismic catalogue, the 76 BCE event has an Epicentral Intensity X and an intensity-derived magnitude Mw 6.4.
617 Guidoboni et al., 2018). Guidoboni et al. (2018, 2019), based on the only historical source available, place the epicenter in
618 the town of Rieti, but its exact location could be anywhere in the basin area, or in the SE part of the basin, like the M 5.5 event
619 occurred in 1898 CE (Rovida et al., 2022; Comerci et al., 2003). Chronological constraints obtained from the trenches indicate
620 that the earthquakes identified in TR1 (S margin) or PDC and CAM (N margin) overlap with the 76 BCE, even though the
621 dating uncertainties are high.

622 Regarding the extension of faulting associated with Event A, and possible involvement of multiple fault splays in the Rieti
623 Basin, we note that paleo-earthquakes consistent with the chronology of Event A are found in trenches TR1 (S margin of the
624 basin), PDC and CAM (N margin). We are indeed quite confident that Event A did not produce faulting at APO T2 Site, since
625 the top of Unit 5 seals the deformation there and younger deposits are not faulted (Fig. 3).

626 Event B is tightly constrained at trench CUC (E margin of the basin); the earthquake occurred between 591-408 BCE (2541-
627 2358 cal BP) and 401-351 BCE (2351-2301 cal BP), with an offset of 53 cm. A tentative hypothesis about a rupture affecting
628 the E master fault and multiple fault splays in its hanging wall is supported by paleo-earthquakes identified at trenches TR1,
629 VS, PDC and CAM; however, like Event A, such correlations seem highly speculative.

630 In the time span between 3 and 5 kyr BCE, all of the three investigated margins of the basin moved: the N margin hosted Event
631 C, constrained at APO T2, dating between 3533-3370 BCE (5483-5320 cal BP) and 3110-2907 BCE (5060-4857 cal BP) and
632 with a minimum offset of 22 cm. Trenching at La Casetta site shows evidence for the movement of the E master fault, dated
633 between 5623-5205 BCE (7573-7155 cal BP) and 3999-3640 BCE (5949-5590 cal BP). The movement of the S margin is
634 constrained at TR3 Site, where two earthquakes have been recognized: the one dated between 3711-3627 BCE (5661-5577 cal
635 BP) and 3243-3102 BCE (5193-5052 cal BP) has a good overlap with Event C, while the earthquake dated at 4988-4797 BCE
636 (6938-6747 cal BP) is tightly constrained and identified as Event D. We can confidently claim that Events C and D are two
637 distinct earthquakes, since the date ranges do not overlap. Therefore, Events C and D likely did rupture the whole length of
638 the ca. 21 km long Rieti Basin with a Mw in the order of 6.5. This is consistent with coseismic displacement of more than 50
639 cm observed at CAS (Event D, CAS1; Fig. 15), and in the order of 1 m observed at PDC (Events C and D, PDC1 and PDC2;
640 Fig. 15).

641 Event E activated the N margin and is broadly constrained at APO T2 Site (date range between 11127-10795 and 5664-5512
642 BCE, i.e., 13077-12745 and 7614-7462 cal BP). Like for the other events, in this case weak correlations with movements on
643 the other margins of the basin are possible.

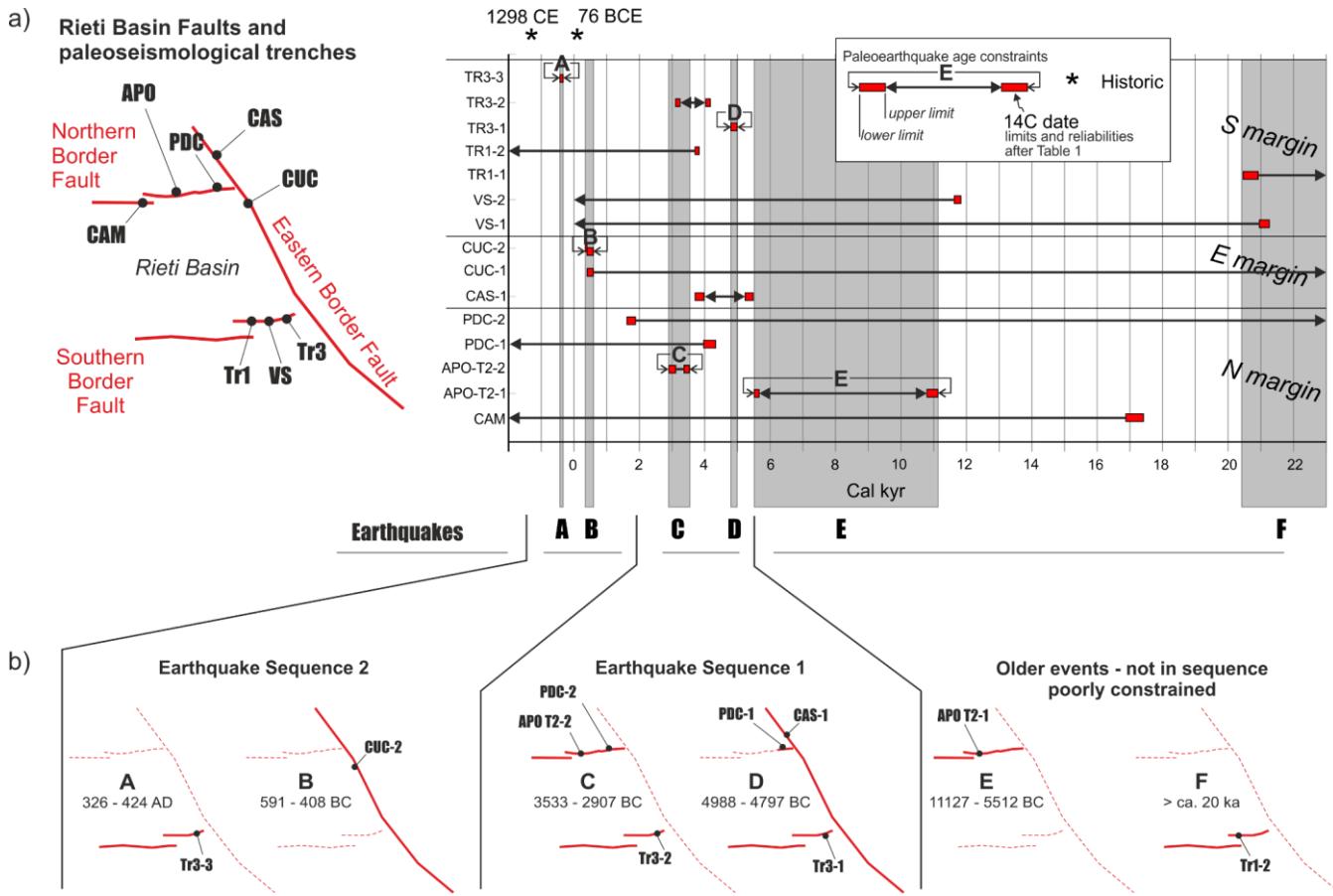


Figure 15: a) Space-time diagram at the basin scale; on the ordinates the acronym of the earthquakes recognized in each trench (from Table 2); each horizontal bar represents the temporal constraints to the occurrence of each earthquake; black boxes indicate well-constrained events, and the grey transparent bars are highlighting possible correlations across trenches; b) summary of the sequence of fault ruptures along the basin-bounding faults, based on well-constrained events (thick continuous lines indicate fault ruptures; thin dashed lines, not assessed).

Finally, Event F involved the S margin of the basin; it is constrained at TR1, with an estimated age older than 20919–20458 BCE (22869–22408 cal BP). This event is also responsible for the dislocation of the colluvial Unit 19 dated 21261–20961 BCE (23211–22911 cal BP) in the trench of Villa Stoli (Sample Ri12; event VS1).

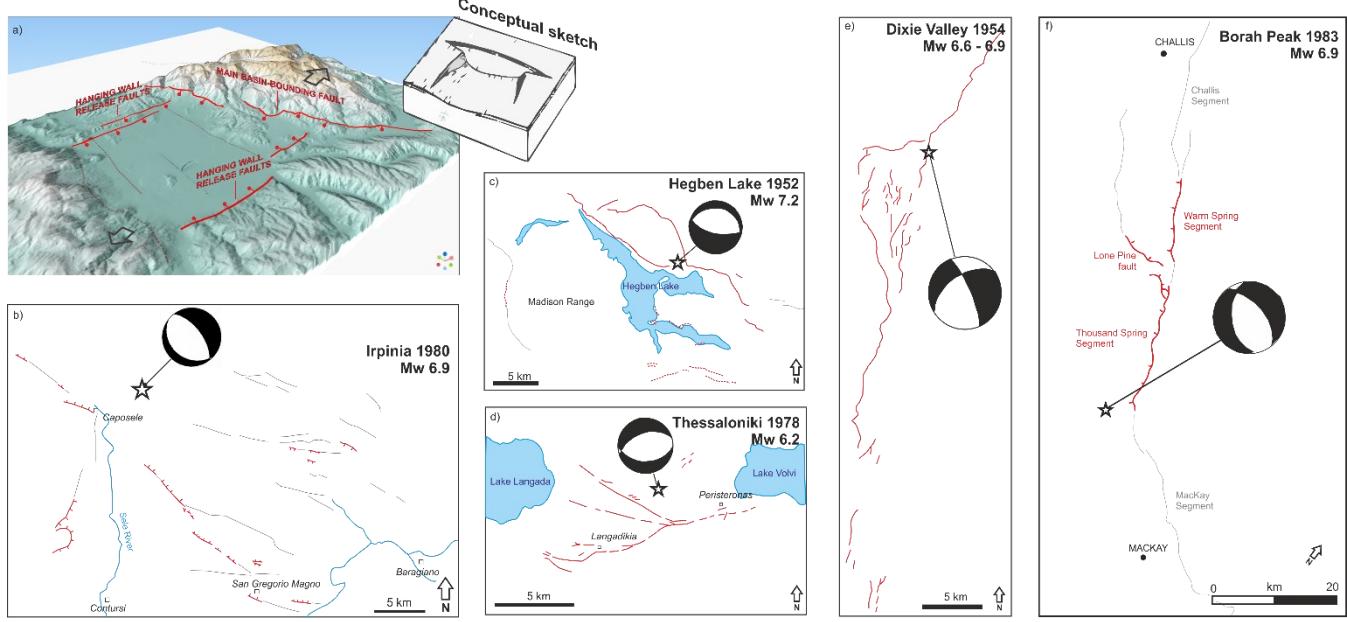
Figure 15b summarizes the overall picture emerging from this complex pattern of fault ruptures, given the uncertainties of both the age dating and possible across-trenches correlations. Seven earthquakes have an age bracketed in time, three referring to the S margin (trench TR3), two on the E margin (events CUC-2 and CAS-1) and two on the N margin (trench APO T2). The average recurrence interval is of a few millennia on all the segments; given fault length and the long-term slip rate, the recurrence intervals obtained in our study are consistent with observations on a global scale (Mouslopoulou et al., 2025). If we only rely on the chronologically well-constrained events correlated across-trenches, these indicate two sequences of rupturing events that follow a similar spatial pattern (i.e., Earthquake Sequences 1 and 2 in Fig. 15b). With the term

660 “earthquake sequence” we refer to a series of characteristic earthquakes rupturing adjacent fault segments or adjacent faults
661 over a short time period.

662 Earthquake Sequence 1 started with the rupture of the main fault bordering the basin, the Eastern Border Fault, and of the
663 Southern Border Fault around 4988 – 4797 BCE (6938-6747 cal BP; Event D). Possibly, also the easternmost tip of the
664 Northern Border Fault ruptured, as recorded at the PDC trench (Michetti et al., 1995). The sequence ended up with the rupture
665 of the Northern and Southern Border Faults around 3533 – 2907 BCE (5483-4857 cal BP).

666 After an apparent period of quiescence, the inception of Earthquake Sequence 2 is dated 591 – 408 BCE (2541-2358 cal BP),
667 when the Eastern Border Fault ruptured with a major earthquake (Event C) that was later followed by the movement of the
668 Southern Border Fault at 326 – 424 CE (1624-1526 cal BP).

669 The general recurring scheme here is that for each sequence, a main rupture of the Eastern Border Fault is later followed by
670 movements on the other two structures.


671 The structural setting of the Rieti Basin might shed some light on such behavior. In fact, the basin is bounded to the east by a
672 main west-dipping fault, whereas relatively short orthogonal faults bound it to the north and to the south. The latter faults are
673 constrained within the hanging wall block of the main Eastern Border Fault. Such a fault architecture can be interpreted in
674 terms of a hanging wall release faults model (*sensu* Destro, 1995; Fig. 16a). The role of release faults is to accommodate the
675 hanging wall deformation resulting from a bow-shaped profile of cumulative slip along a fault strike. If a significant
676 displacement gradient exists along the fault strike, then resultant orthogonal extension can be accommodated by release faults.
677 This is the case of the extensional faults in the Central and Southern Apennines, where structural inheritance from previous
678 tectonic phases (Capotorti and Muraro, 2024; Asti et al., 2024) results in relatively short faults with high displacement gradients
679 (e.g., Roberts and Michetti, 2004; Papanikolaou and Roberts, 2007; Porreca et al., 2020). The faults bounding the Rieti Basin
680 are indeed located close to inherited rift-related faults. To the west, the basin bounding fault runs almost along the inherited
681 Sabina Paleofault (Galluzzo and Santantonio, 2002). To the east, the main basin-bounding fault is running at the margin of a
682 series of aligned Mesozoic structural highs (i.e., the so-called pelagic Carbonate Platforms - PCP; specifically, the Lisciano,
683 Mt. Rosato and Polino ones; Capotorti and Muraro, 2024).

684 In this line, the proposed rupture sequence would originate from the entire rupture of the Eastern Border Fault: the resulting
685 stress loading on the other two receiving faults would result in a later re-adjustment of the strain field by means of one or more
686 earthquakes on the hanging wall release faults (e.g., Mildon et al., 2017; Valentini et al., 2024).

687 The architecture of the faults bordering the Rieti basin is apparently odd, with systems of normal faults striking at ca. 60°-
688 120°. Nonetheless, other well-documented examples worldwide (Fig. 16b-e) highlight that normal faulting events can result
689 in a surprisingly complex pattern of deformation and surface ruptures, with faults trending at high angles to each other. This
690 mainly results from i) oblique extension and/or ii) the presence of inherited structures partly misoriented with respect to the
691 orientation of the stress field but may still be compliant for future re-activations.

692 As a general consideration, the rupture of the whole eastern master fault of the Rieti Basin seems to be the only scenario
693 compatible with the Mw 6.4 estimated by the CFTI5Med catalogue (Guidoboni et al., 2018, 2019) for the 76 BCE event, or

694 with the Mw 6.26 estimated by the CPTI15 catalogue (Rovida et al., 2022) for the 1298 event. In summary, the paleoseismic
 695 history described above suggests a maximum magnitude in the order of Mw 6.5. We discuss below that this interpretation
 696 agrees with the available data from surface faulting events that occurred in Central and Southern Italy during the instrumental
 697 era, and in particular over the past 45 years.

698
 699 **Figure 16:** a) a 3D perspective on the Rieti basin with the studied faults and a conceptual scheme (after Destro, 1995, modified)
 700 illustrating the structural interpretation for the area, with the E Fault as Master Fault of the Rieti Basin and the N and S Faults as
 701 hanging wall release faults; b) to f) the complexity of the surface fracture pattern occurred during well-documented ruptures
 702 accompanying Mw 6.2 – 7.2 normal faulting earthquakes in Italy, Greece and the US Basin and Range Province, with the calculated
 703 moment tensor solutions (Doser, 1984; 1986; Crone et al., 1987; Liotier, 1989; Giardini, 1993).

704

705 5.3 Fault displacement hazard in the Rieti basin

706 The paleo-earthquakes identified in the Rieti basin show offsets in the order of few cm to 1 m (Table 2). We consider these
 707 values consistent with the seismic potential of the region. In a broader perspective, the Rieti basin belongs to the seismotectonic
 708 setting of the Central-Southern Apennines, which in the last decades were repeatedly hit by groundbreaking earthquakes.
 709 As illustrated in Table 3, the Colfiorito 1997, L'Aquila 2009, Amatrice 2016 and Visso 2016 earthquakes had magnitude in
 710 the Mw 6.0 range and resulted in maximum displacement of 20 cm (Vittori et al., 2011; Boncio et al., 2012; Pucci et al., 2017).
 711 The much stronger Fucino 1915, Irpinia 1980 and Norcia 2016 earthquakes (Mw 6.5-6.9) instead generated metric
 712 displacements (max values 210 cm; Pantosti and Valensise, 1990; Michetti et al., 1996; Villani et al., 2018).
 713

Table 3: Ground rupture parameters for recent earthquake surface faulting along normal faults in the Central and Southern Apennines. SRL = Earthquake Surface Rupture Length

Earthquake (dd/mm/yyyy)	Mw	SRL (Km)	MAX Disp (m)	Source
Fucino 13/01/1915	7.0	27 (36)*	1.0*	Michetti et al., 1996; Galadini and Galli, 1999*
Irpinia 23/11/1980	6.9	30	1.3	Pantosti and Valensise, 1990
Colfiorito 26/09/1997	6.0	12	0.08	Guerrieri et al., 2010
Sellano 14/10/1997	5.6	1.7	0.04	Guerrieri et al., 2010
Lauria 09/09/1998	5.6	0.2	0.02	Michetti et al., 2000
L'Aquila 06/04/2009	6.1	13.0	0.15	Vittori et al., 2011
Amatrice 24/08/2016	6.0	5.2	0.20	Pucci et al., 2017
Visso 28/10/2016	6.0	7.0	0.4	Scognamiglio et al., 2018
Norcia 30/10/2016	6.5	21.9	2.4	Villani et al., 2018

717 The hypothetical rupture of the whole Rieti Fault would result in a surface faulting length of ca. 21 km. Using literature
 718 empirical equations in the literature (e.g., Wells and Coppersmith, 1994; Pavlides and Caputo, 2004), the corresponding
 719 magnitude would be around 6.5. This is consistent with the coseismic ruptures in Table 3, in particular with those observed
 720 during the October 30, 2016, Mw 6.5, Norcia earthquake.

721 As a further speculation, we observe that in case of Mw 6.5 events, surface ruptures along the W margin of the Basin would
 722 not be seen as a surprise. In fact, the 2016 Mw 6.5 Norcia earthquake generated surface faulting several km west of the Mt.
 723 Vettore master fault, including antithetic ruptures that affected the San Benedetto subsurface road tunnel located ca. 8 km west
 724 of the master fault (Galli et al., 2020).

725 On the other hand, Table 3 shows that the threshold for surface faulting during shallow crustal normal faulting earthquakes in
 726 the Central - Southern Apennines is ca. Mw 5.6. Again, this is consistent with observations from recent moderate magnitude
 727 events in the Rieti Basin. The June 27th, 1898, Santa Rufina event (Mw 5.5; Io VIII-IX MCS; Comerci et al., 2003) generated
 728 ground fractures E of Rieti. According to Moderni (1899), near Santa Rufina “seven large and long cracks” had formed in
 729 1898, parallel and close to each other; while five similar long cracks had formed 2-3 km W of Cupello. However, during the
 730 December 31st, 1948, Rivodutri event (Mw 5.3; Io VIII MCS; Bernardini et al., 2013), near the NE border of the basin, we
 731 have no report of ground fractures.

732 **6 Conclusions**

733 In this paper, we present new insights regarding the paleoseismic history of the Rieti Basin in Central Italy, derived from the
734 excavation of 17 paleoseismic trenches. Our work represents the first comprehensive characterization of the seismic hazard of
735 the Rieti Basin, which so far has been underdocumented compared to other areas of the Italian Apennines.

736 Through extensive fieldwork and analyses, we identified and chronologically constrained up to 15 paleo-earthquakes that
737 generated surface faulting on three sides of the box-shaped Rieti basin during the last ca. 20 ka. These results provide a baseline
738 of tectonic activity in the region that was not known prior to this work.

739 Considering the spatio-temporal distribution of the faulting events, we propose a temporal development characterized by the
740 earthquake rupture of the Eastern Border Fault, followed by seismic events either on the northern or southern border faults.

741 This pattern is consistent with the structural architecture of the basin, which comprises two sets of nearly orthogonal faults.

742 Our results indicate that the maximum credible earthquake in the Rieti Basin is in the order of magnitude Mw 6.5, which is
743 consistent with the general setting of the Central Apennines. Given the resolution of chronological constraints obtainable with
744 radiocarbon dating techniques in paleoseismic trenches, we cannot disentangle the occurrence of a single earthquake as
745 compared to multiple earthquakes occurring over a short time interval (like the 2016 seismic sequence). Additionally,
746 paleoseismic data inherently focus on surface-rupturing earthquakes, thus aliasing smaller seismic events, which however
747 could have caused significant damage.

748 Our study reinforces the need for detailed paleoseismic studies in a careful evaluation of the seismic hazard in such a densely
749 populated region. The study of capable faults affecting urbanized zones indeed provides valuable contexts that should inform
750 decision-making; we argue that conducting similar projects like ours could benefit other areas in and beyond the Italian
751 territory.

752 **Author contribution**

753 Conceptualization and writing: FL, AMM, MFF, ES, VC, MCac, AMB. Field work, geological mapping, trenching and
754 logging: FL, AMM, MFF, ES, VC, MCac, AMB, PDM, FF, RG, PL, ASF, MP, KN, GT, FT, AP, FF, MG, FM, RNap, RNav,
755 RP, LMP, MR, AR, VR. Geophysical data acquisition and processing: LMP, VM, VR, VS, SU. Scientific discussion and text
756 revision: KN, AZ, GB, MCol, LG, PDM.

757 **Code/Data availability**

758 All the data are publicly available in this work and in the Supplementary Material. The data presented are included in the
759 microzonation studies carried out in the municipalities of Central Italy affected by the seismic events starting from August 24,
760 2016, as provided by Ordinance No. 24 of May 12, 2017, issued by the Extraordinary Commissioner.

762 With Ordinance No. 55, Article 5, "Amendments to Ordinance No. 24 of May 12, 2017," the general criteria were approved
763 for the use of Level 3 Seismic Microzonation studies in the reconstruction of the areas affected by the seismic events starting
764 from August 24, 2016. All the reports and data are publicly available at <https://sisma2016data.it/microzonazione/>)in Italian
765 (last accessed on the 29th, May 2025).

766 **Competing interests**

767 The Authors declare that they have no conflict of interest.

768 **Acknowledgements**

769 We are grateful to the owners of the land where we conducted geophysical prospecting and trench investigations. The
770 assistance of the Rivodutri, Cantalice, Rieti and Cittaducale Municipalities is gratefully acknowledged. Special thanks to
771 Matteo Carrozzoni, Geologist at "Commissario Straordinario Ricostruzione Sisma 2016", for the invaluable support to this
772 project: without him our research would have been simply impossible. Thanks to Francesco Chiaretti and Domenico "Mimmo"
773 Marchetti, authors of the local microzoning studies, for sharing their expertise and scientific discussion. We are grateful to
774 Enzo Sepe, INGV leader of the 2016 post-seismic capable fault project, indeed a scientific leader; and to Carlo Doglioni,
775 INGV President, who strongly believed in the realization of this project.

776 **Financial support**

777 The agreements of scientific collaboration between INGV, ISPRA, and Università degli studi dell'Insubria "Ridefinizione
778 delle Zone di Attenzione delle Faglie Attive e Capaci emerse dagli studi di microzonazione sismica effettuati nel territorio
779 comunale di Cittaducale (RI) e Rieti, interessati dagli eventi sismici verificatisi a far data dal 24 agosto 2016" signed on
780 December 2020 and "Aggiornamento degli studi di microzonazione sismica a seguito degli approfondimenti dedicati alle zone
781 delle faglie attive e capaci presenti nei territori dei Centri abitati di Rieti e Cittaducale (RI)" signed on April 2022 provided
782 funding and the legal framework for the paleoseismic investigations in the Rieti Basin carried out by ISPRA and Università
783 degli Studi dell'Insubria.

784 Research funded by European Union – NextGenerationEU – Mission 4 "Education and Research" – Component 2 "From
785 Research to Business" – Investment 3.1 "Fund for the realization of an integrated system of research and innovation
786 infrastructures" – Project IR0000037 – GeoSciences IR - CUP I53C22000800006

787 K. Nicoll acknowledges support and funding from the USA-Italy Fulbright Program.

788 **References**

789 Archer, C., Noble, P., Rosen, M., Sagnotti, L., Florindo, F., Mensing, S., Piovesan, G., and Michetti, A. M.: Lakes as
790 paleoseismic records in a seismically-active, low-relief area (Rieti Basin, central Italy), *Quat. Sci. Rev.*, 211, 186–207,
791 <https://doi.org/10.1016/j.quascirev.2019.03.004>, 2019.

792 Asti, R., Bonini, S., Viola, G., and Vignaroli, G.: Reconciling post-orogenic faulting, paleostress evolution, and structural
793 inheritance in the seismogenic northern Apennines (Italy): insights from the Monti Martani Fault System, *Solid Earth*, 15,
794 1525–1551, 2024.

795 ASTM International: *Standard Practice for Specifying Color by the Munsell System (ASTM D1535–08)*. West Conshohocken,
796 PA: ASTM International, 2008.

797 Baranello, S., Camassi, R., and Castelli, V.: Behind the Italian catalogues: overlooked but far from negligible earthquakes,
798 *Ann. Geophys.*, 67, SE215, <https://doi.org/10.4401/ag-9096>, 2024.

799 Beck, J., Wolfers, S. and Roberts, G.P.: Bayesian earthquake dating and seismic hazard assessment using chlorine-36
800 measurements (BED v1), *Geoscientific Model Development*, 11(11), pp. 4383–4397, 2018.

801 Bemis, S. P., Micklethwaite, S., Turner, D., James, M. R., Akciz, S., Thiele, S. T., and Bangash, H. A.: Ground-based and
802 UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology, *J.
803 Struct. Geol.*, 69, 163–178, 2014.

804 Bernardini, F., Castelli, V., Camassi, R., Caracciolo, C. H., and Ercolani, E.: A “Forgotten” Earthquake Rediscovered: the
805 1948–1949 Monti Reatini (Central Apennines) seismic sequence, *Boll. Geof. Teor. Appl.*, 54, 3, 229–244,
806 <https://doi.org/10.4430/bgta0113>, 2013.

807 Blumetti, A. M., Dramis, F., and Michetti, A. M.: Fault generated mountain fronts in the Central Apennines (Central Italy):
808 geomorphological features and seismotectonic implications, *Earth Surf. Process. Landf.*, 18, 203–223, 1993.

809 Blumetti, A. M.: Neotectonic investigations and evidence of paleoseismicity in the epicentral area of the January–February
810 1703, Central Italy, earthquakes, in: *Perspectives in Paleoseismology*, *Bull. Assoc. Eng. Geol., Spec. Publ.* 6, 83–100, 1995.

811 Blumetti, A. M., Grützner, C., and Guerrieri, L.: Quaternary earthquakes: Geology and palaeoseismology for seismic hazard
812 assessment, *Quat. Int.*, 451, 1–10, <https://doi.org/10.1016/j.quaint.2017.04.002>, 2017.

813 Boncio, P., Lavecchia, G., Pace, B., and Visini, F.: Seismic hazard analysis for large earthquakes from a surface faulting hazard
814 perspective: the example of the 2009 L'Aquila earthquake (central Italy) and its implications for earthquake recurrence in the
815 Apennines, *Tectonophysics*, 522–523, 33–45, <https://doi.org/10.1016/j.tecto.2011.12.014>, 2012.

816 Borrelli, P., Domdey, C., Hoelzmann, P., Knitter, D., Panagos, P., and Schütt, B.: Geoarchaeological and historical
817 implications of late Holocene landscape development in the Carseolani Mountains, central Apennines, Italy, *Geomorphology*,
818 216, 26–39, 2014.

819 Bosi, C.: Osservazioni preliminari su faglie probabilmente attive nell'Appennino centrale, *Boll. Soc. Geol. It.*, 94, 4, 827–859,
820 1975.

821 Brunamonte, F., Michetti, A. M., Serva, L., and Vittori, E.: Seismic-hazard evaluation in Central Italy: preliminary results of
822 the Rieti Basin project, *Ann. Geophys.*, 36, 21, <https://doi.org/10.4401/ag-4309>, 1993.

823 Brunamonte, F., Michetti, A. M., Guerrieri, L., and Serva, L.: L'evoluzione tardo-quaternaria del Bacino di Rieti e la
824 formazione del Lacus Velinus, in: Virili, C. (Ed.), Atti Giornata di Studi sulla Protostoria nell'area del Lacus Velinus, Rieti,
825 12 Dicembre 2009, Teseo Editore, Roma, 59–88, ISBN 978-88-95291-178, 2022.

826 Calderini, G., Calderoni, G., Cavinato, G. P., Gliozzi, E., and Paccara, P.: The upper Quaternary sedimentary sequence at the
827 Rieti Basin (central Italy): a record of sedimentation response to climatic changes, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*,
828 140, 97–111, 1998.

829 Capotorti, F. and Muraro, C.: Post-rift extensional tectonics at the edge of a carbonate platform: insights from the Middle
830 Jurassic-Early Cretaceous Monte Giano stratigraphic record (central Apennines, Italy), *Geologica Acta*, 19, 1–22,
831 <https://doi.org/10.1344/GeologicaActa2021.19.12>, 2021.

832 Capotorti, F., and Muraro, C.: Jurassic to Quaternary reactivation of inherited structures in the central Apennines, *Ital. J.*
833 *Geosci.*, 143, 37–59, <https://doi.org/10.3301/IJG.2024.03>, 2024.

834 Carrara, C., Brunamonte, F., Ferrel, L., Lorenzoni, P., Margheriti, L., Michetti, A. M., Raglione, M., Rosati, M., and Serva,
835 L.: I terrazzi della medio-bassa valle del F. Velino, *Studi Geol. Camerti, Spec. Vol.* 1992/1, 97–102, 1992.

836 Cavinato, G. P.: Controls and stratigraphic implications of synsedimentary tectonics in Plio–Quaternary continental deposits
837 of the Roman Basin, central Italy, *Geol. Romana*, 29, 81–100, 1993.

838 Cavinato, G. P., Carusi, C., Dall'Asta, M., Miccadei, E., and Piacentini, T.: Sedimentary and tectonic evolution of Plio–
839 Pleistocene alluvial and lacustrine deposits of Fucino Basin (central Italy), *Sediment. Geol.*, 148, 29–59, 2002.

840 Cavinato, G. P., and De Celles, P. D.: Extensional basins in the tectonically bimodal central Apennines fold-thrust belt, Italy:
841 response to corner flow above a subducting slab in retrograde motion, *Geology*, 27, 955–958, 1999.

842 Cavinato, P., Gliozzi, E., and Mazzini, I.: Two lacustrine episodes during the Late Pliocene–Holocene evolution of the Rieti
843 Basin (Central Apennines, Italy), *AAPG Stud. Geol.*, 46, 527–534, 2000.

844 Cinti, F. R., Civico, R., Blumetti, A. M., Chiarini, E., La Posta, E., Pantosti, D., Papasodaro, F., Smedile, A., De Martini, P.
845 M., and Villani, F.: Evidence for surface faulting earthquakes on the Montereale fault system (Abruzzi Apennines, central
846 Italy), *Tectonics*, 37, 2758–2776, <https://doi.org/10.1029/2018TC005054>, 2018.

847 Cinti, F. R., De Martini, P. M., Pantosti, D., Baize, S., Smedile, A., Villani, F., et al.: 22-kyr-long record of surface faulting
848 along the source of the 30 October 2016 earthquake (central Apennines, Italy), from integrated paleoseismic data sets. *Journal*
849 *of Geophysical Research: Solid Earth*, 124, <https://doi.org/10.1029/2019JB017757>, 2019.

850 Cinti, F. R., Pantosti, D., De Martini, P. M., Pucci, S., Civico, R., Pierdominici, S., and Patera, A.: Evidence for surface faulting
851 events along the Paganica fault prior to the 6 April 2009 L'Aquila earthquake (central Italy), *J. Geophys. Res.-Sol. Ea.*, 116,
852 B7, <https://doi.org/10.1029/2010JB007998>, 2011.

853 Comerci, V., Molin, D., Pasquaré, F. A., and Serva, L.: Risposta sismica dell'area urbana di Rieti in occasione del terremoto
854 del 27 giugno 1898 nel bacino di Vazia (RI), *Boll. Soc. Geol. It.*, 122, 147–156, 2003.

855 Commissione tecnica per la microzonazione sismica: Linee guida per la gestione del territorio in aree interessate da Faglie
856 Attive e Capaci (FAC), versione 1.0, Conferenza delle Regioni e delle Province Autonome – Dipartimento della Protezione
857 Civile, Roma, 66 pp., <https://www.protezionecivile.gov.it/it/pubblicazione/microzonazione-sismica-linee-guida-per-la-gestione-del-territorio-in-aree-interessate-da-faglie-attive-e-capaci--fac-/>, 2015.

859 Cosentino, D., Cipollari, P., Marsili, P., and Scrocca, D.: Geology of the central Apennines: a regional review, *J. Virtual*
860 *Explor.*, 36, 1–37, 2010.

861 Cowie, P. A. and Roberts, G. P.: Constraining slip rates and spacings for active normal faults, *J. Struct. Geol.*, 23, 1901–1915,
862 [https://doi.org/10.1016/S0191-8141\(01\)00036-0](https://doi.org/10.1016/S0191-8141(01)00036-0), 2001.

863 Crone, A. J., Machette, M. N., Bonilla, M. G., Lienkaemper, J. J., Pierce, K. L., Scott, W. E., and Bucknam, R. C.: Surface
864 faulting accompanying the Borah Peak earthquake and segmentation of the Lost River fault, central Idaho. *Bulletin of the*
865 *Seismological Society of America*, 77(3), 739–770, 1987.

866 Dahlin, T., and Zhou, B. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. *Geophysical prospecting*,
867 52(5), 379–398, 2004

868 Destro, N.: Release fault: A variety of cross fault in linked extensional fault systems, in the Sergipe-Alagoas Basin, NE Brazil,
869 *J. Struct. Geol.*, 17, 615–629, [https://doi.org/10.1016/0191-8141\(94\)00100-X](https://doi.org/10.1016/0191-8141(94)00100-X), 1995.

870 Di Domenica, A. and Pizzi, A.: Defining a mid-Holocene earthquake through speleoseismological and independent data:
871 implications for the outer Central Apennines (Italy) seismotectonic framework, *Solid Earth*, 8, 161–176,
872 <https://doi.org/10.5194/se-8-161-2017>, 2017.

873 Doglioni, C.: A proposal for the kinematic modelling of W-dipping subductions—possible implications for the Apennines–
874 Maghrebides and the Alps, *Terra Nova*, 3, 423–434, <https://doi.org/10.1111/j.1365-3121.1991.tb00172.x>, 1991.

875 Doser, D. I.: Source parameters and faulting processes of the August 1959 Hebgen Lake, Montana earthquake sequence, Ph.D.
876 thesis, The University of Utah, USA, 1984.

877 Doser, D. I.: Earthquake processes in the Rainbow Mountain–Fairview Peak–Dixie Valley, Nevada, region 1954–1959, *J.*
878 *Geophys. Res.-Sol. Ea.*, 91, 12572–12586, <https://doi.org/10.1029/JB091iB12p12572>, 1986.

879 Dramis, F.: Il ruolo dei sollevamenti tettonici a largo raggio nella genesi del rilievo appenninico, *Studi Geol. Camerti*, 1, 9–
880 15, 1992.

881 Faure Walker, J., Boncio, P., Pace, B., Roberts, G., Benedetti, L., Scotti, O., Visini, F., and Peruzza, L.: Fault2SHA Central
882 Apennines database and structuring active fault data for seismic hazard assessment, *Sci. Data*, 8, 87,
883 <https://doi.org/10.1038/s41597-021-00864-0>, 2021.

884 Galadini, F. and Galli, P.: The Holocene paleoearthquakes on the 1915 Avezzano earthquake faults (central Italy): implications
885 for active tectonics in the central Apennines, *Tectonophysics*, 308, 143–170, [https://doi.org/10.1016/S0040-1951\(99\)00103-9](https://doi.org/10.1016/S0040-1951(99)00103-9), 1999.

887 Galadini, F., Messina, P., Giaccio, B., and Sposato, A.: Early uplift history of the Abruzzi Apennines (central Italy): available
888 geomorphological constraints, *Quat. Int.*, 101, 125–135, [https://doi.org/10.1016/S1040-6182\(02\)00132-7](https://doi.org/10.1016/S1040-6182(02)00132-7), 2003.

889 Galli, P., Galadini, F., and Pantosti, D.: Twenty years of paleoseismology in Italy, *Earth-Sci. Rev.*, 88, 89–117,
890 <https://doi.org/10.1016/j.earscirev.2008.01.001>, 2008.

891 Galli, P. A., Giaccio, B., Messina, P., Peronace, E., and Zuppi, G. M.: Palaeoseismology of the L’Aquila faults (central Italy,
892 2009, M w 6.3 earthquake): implications for active fault linkage, *Geophys. J. Int.*, 187, 1119–1134,
893 <https://doi.org/10.1111/j.1365-246X.2011.05197.x>, 2011.

894 Galli, P., Castenetto, S., and Peronace, E.: The macroseismic intensity distribution of the 30 October 2016 earthquake in central
895 Italy (Mw 6.6): Seismotectonic implications, *Tectonics*, 36, 2179–2191, <https://doi.org/10.1002/2017TC004653>, 2017.

896 Galli, P., Galderisi, A., Martino, M., Scarascia Mugnozza, G., and Bozzano, F.: The coseismic faulting of the San Benedetto
897 tunnel (2016, Mw 6.6 central Italy earthquake), in: *Tunnels and Underground Cities: Engineering and Innovation Meet*

898 Archaeology, Architecture and Art, edited by: Peila, Viggiani and Celestino, 805–811, Taylor & Francis Group, London, ISBN
899 978-1-138-38865-9, 2020.

900 Galli, P., Galderisi, A., Peronace, E., Giaccio, B., Hajdas, I., Messina, P., Pieaggi, D. and Polpetta, F.: The awakening of the
901 dormant Mount Vettore fault (2016 central Italy earthquake, Mw 6.6): Paleoseismic clues on its millennial silences. *Tectonics*,
902 38(2), 687–705, 2019.

903 Galli, P., Peronace, E., and Messina, P.: Archaeoseismic evidence of surface faulting in 1703 Norcia earthquake (Central
904 Italian Apennines, Mw 6.9), *Geosciences*, 12, 14, <https://doi.org/10.3390/geosciences12010014>, 2021.

905 Galluzzo, F. and Santantonio, M.: The Sabina Plateau: a new element in the Mesozoic paleogeography of Central Apennines,
906 *Boll. Soc. Geol. Ital.*, 1, 561–588, 2002.

907 Giardini, D.: Teleseismic observation of the November 23, 1980, Irpinia earthquake, *Ann. Geophys.*, 36, 1, 1993.

908 Gilbert, G. K.: Lake Bonneville (Vol. 1), *U.S. Geol. Surv. Monogr.*, 1, 1438, 1890.

909 Gori, S., Falcucci, E., Di Giulio, G., Moro, M., Saroli, M., Vassallo, M., Ciampaglia, A., Di Marcantonio, P., and Trotta, D.:
910 Active Normal Faulting and Large-Scale Mass Wasting in Urban Areas: The San Gregorio Village Case Study (L’Aquila,
911 Central Italy). Methodological Insight for Seismic Microzonation Studies, *Eng. Geol. for Soc. and Territ.-Vol. 5: Urban Geol.,*
912 *Sustain. Plan. and Landsc. Exploit.*, Springer, 1033–1036, 2015.

913 Gori, S., Falcucci, E., Galadini, F., Moro, M., Saroli, M., and Ceccaroni, E.: Geoarchaeology and paleoseismology blend to
914 define the Fucino active normal fault slip history, central Italy, *Quaternary International* 451 (2017): 114–128, 2017.

915 Guerrieri, L., Comerci, V., Ferreli, L., Pompili, R., Serva, L., Brunamonte, F., and Michetti, A. M.: Geological evolution of
916 the intermountain Rieti basin (Central Apennines), *Mapping Geol. in Italy*, SELCA, 123–130, 2006.

917 Guerrieri, L., Vittori, E., Comerci, V., Esposito, E., Michetti, A. M., and Porfido, S.: Ground effects and surface faulting in
918 the April 6, 2009 L’Aquila earthquake (central Italy), *Nat. Hazards Earth Syst. Sci.*, 10, 2311–2336,
919 <https://doi.org/10.5194/nhess-10-2311-2010>, 2010.

920 Guidoboni, E., Ferrari, G., Mariotti, D., Comastri, A., Tarabusi, G., Sgattoni, G., and Valensise, G.: CFTI5Med, Catalogo dei
921 Forti Terremoti in Italia (461 a.C.-1997) e nell’area Mediterranea (760 a.C.-1500), Istituto Nazionale di Geofisica e
922 Vulcanologia (INGV), <https://doi.org/10.6092/ingv.it-cfti5>, 2018.

923 Guidoboni, E., Ferrari, G., Tarabusi, G., Sgattoni, G., Comastri, A., Mariotti, D., Ciuccarelli, C., Bianchi, M. G., and Valensise,
924 G.: CFTI5Med, the new release of the catalogue of strong earthquakes in Italy and in the Mediterranean area, *Sci. Data*, 6, 80,
925 <https://doi.org/10.1038/s41597-019-0091-9>, 2019.

926 Iezzi, F., Francescone, M., Pizzi, A., Blumetti, A., Boncio, P., Di Manna, P., Pace, B., Piacentini, T., Papasodaro, F., and
927 Morelli, F.: Slip localization on multiple fault splays accommodating distributed deformation across normal fault complexities,
928 *Tectonophysics*, 868, 230075, 2023.

929 Iezzi, F., Roberts, G., Walker, J. F., and Papanikolaou, I.: Occurrence of partial and total coseismic ruptures of segmented
930 normal fault systems: Insights from the Central Apennines, Italy, *J. Struct. Geol.*, 126, 83–99, 2019.

931 Liotier, Y.: Modelisation des ondes de volume des seismes se l’arc Ageoen, DEA de l’Universite Joseph Fourier, Grenoble,
932 France, 1989 (in French).

933 Loke, M. H., and Barker, R. D.: Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton
934 method1. *Geophysical prospecting*, 44(1), 131–152, 1996.

935 Lombardi, A. M., Cinti, F. R., and Pantosti, D.: Paleoearthquakes modeling and effects of uncertainties on probability
936 assessment of next fault ruptures: the case of Central Italy surface faulting earthquakes, *Geophys. J. Int.*, 2025; ggaf105,
937 <https://doi.org/10.1093/gji/ggaf105>, 2025.

938 Lorenzoni, P., Raglione, M., Brunamonte, F., Michetti, A. M., and Pennacchioni, M.: Stratigrafia dei depositi di versante tardo-
939 quaternari del Bacino di Rieti: la sezione de "La Casetta", *Studi Geol. Camerti, Spec. Vol.* 1992/1, 145–153, 1993.

940 Lustrino, M., Pistocchi, L., Ronca, S., Innocenzi, F., and Agostini, S.: Origin of ultrapotassic, ultracalcic, ultrabasic SiO₂-
941 undersaturated magmas: The case study of the Pleistocene Cupello kamafugite monogenetic volcano, central Italy, *Geochem.*
942 *Geophys. Geosyst.*, 26, e2024GC011683, <https://doi.org/10.1029/2024GC011683>, 2025.

943 Maceroni, D., Dixit Dominus, G., Gori, S., Falcucci, E., Galadini, F., Moro, M., and Saroli, M.: First evidence of the Late
944 Pleistocene–Holocene activity of the Roveto Valley Fault (Central Apennines, Italy), *Frontiers in Earth Science*, 10, 1018737,
945 2022.

946 McCalpin, J. P.: Paleoseismology in extensional tectonic environments, *Int. Geophys.*, 95, 171–269, 2009.

947 Messina, P., Galadini, F., Galli, P., and Sposato, A.: Quaternary basin evolution and present tectonic regime in the area of the
948 1997–1998 Umbria–Marche seismic sequence (central Italy), *Geomorphology*, 42(1-2), 97–116, 2002.

949 Michetti, A. M., Brunamonte, F., Serva, L., and Whitney, R. A.: Seismic hazard assessment from paleoseismological evidence
950 in the Rieti Region (Central Italy), *Perspect. Paleoseismol., Assoc. Eng. Geol. Bull., Special Publ.*, 63–82, 1995.

951 Michetti, A. M., Brunamonte, F., Serva, L., and Vittori, E.: Trench investigations of the 1915 Fucino earthquake fault scarps
952 (Abruzzo, Central Italy): geological evidence of large historical events, *J. Geophys. Res. Solid Earth*, 101, 5921–5936, 1996.

953 Michetti, A. M., Ferreli, L., Esposito, E., Porfido, S., Blumetti, A. M., Vittori, E., Serva, L., and Roberts, G. P.: Ground effects
954 during the 9 September 1998, Mw= 5.6 Lauria earthquake and the seismic potential of the “aseismic” Pollino region in southern
955 Italy, *Seismological Research Letters*, 71, 31–46, 2000.

956 Mildon, Z. K., Roberts, G. P., Faure Walker, J. P., and Iezzi, F.: Coulomb stress transfer and fault interaction over millennia
957 on non-planar active normal faults: The M w 6.5–5.0 seismic sequence of 2016–2017, central Italy, *Geophys. J. Int.*, 210(2),
958 1206–1218, 2017.

959 Mildon, Z. K., Roberts, G. P., Faure Walker, J. P., Beck, J., Papanikolaou, I., Michetti, A. M., and Vittori, E.: Surface faulting
960 earthquake clustering controlled by fault and shear-zone interactions, *Nat. Commun.*, 13(1), 7126, 2022.

961 Moderni, P.: Il terremoto di Rieti del 28 giugno 1898, *Bollett. Regio Comit. Geol. Italia*, 30(3), 263–268, 1899.

962 Moro, M., Falcucci, E., Gori, S., Saroli, M., and Galadini, F.: New paleoseismic data across the Mt. Marine Fault between the
963 2016 Amatrice and 2009 L’Aquila seismic sequences (central Apennines), *Ann. Geophys.*, 69, Fast Track 5,
964 <https://doi.org/10.4401/ag-7260>, 2016.

965 Mouslopoulou, V., Nicol, A., Howell, A., and Griffin, J. D.: Comparison of paleoearthquake elapsed-times and mean
966 interevent-times for a global data set of active faults: Implications for future earthquakes and seismic hazard, *J. Geophys. Res.*
967 *Solid Earth*, 130, e2024JB030036, <https://doi.org/10.1029/2024JB030036>, 2025.

968 Obsequens Iulius: Prodigiorum liber, in "T. Livi Periodiae omnium librorum. Fragmenta Oxyrhynchi reperta. Iulii Obsequentis
969 Prodigiorum liber", ed. O. Rossbach, pp.149-181, *Bibliotheca scriptorum Graecorum et Romanorum Teubneriana*, Leipzig,
970 1910.

971 Pantosti, D., D'Addezio, G., and Cinti, F. R.: Paleoseismicity of the Ovindoli-Pezza fault, central Apennines, Italy: A history
972 including a large, previously unrecorded earthquake in the Middle Ages (860–1300 AD), *J. Geophys. Res. Solid Earth*, 101,
973 5937–5959, 1996.

974 Pantosti, D., and Valensise, G.: Faulting mechanism and complexity of the November 23, 1980, Campania-Lucania
975 earthquake, inferred from surface observations, *J. Geophys. Res. Solid Earth*, 95, 15319–15341,
976 <https://doi.org/10.1029/JB095iB10p15319>, 1990.

977 Papanikolaou, I. D., and Roberts, G. P.: Geometry, kinematics and deformation rates along the active normal fault system in
978 the southern Apennines: Implications for fault growth, *J. Struct. Geol.*, 29(1), 166–188, 2007.

979 Pavlides, S., and Caputo, R.: Magnitude versus faults' surface parameters: quantitative relationships from the Aegean
980 Region, *Tectonophysics*, 380(3-4), 159–188, 2004.

981 Porreca, M., Fabbrizzi, A., Azzaro, S., Pucci, S., Del Rio, L., Pierantoni, P. P., and Barchi, M. R.: 3D geological reconstruction
982 of the M. Vettore seismogenic fault system (Central Apennines, Italy): Cross-cutting relationship with the M. Sibillini thrust,
983 *J. Struct. Geol.*, 131, 103938, 2020.

984 Pousse-Beltran, L., Benedetti, L., Fleury, J., Boncio, P., Guillou, V., Pace, B., Rizza M., Puliti I., Socquet A. and Aster Team:
985 36Cl exposure dating of glacial features to constrain the slip rate along the Mt. Vettore Fault (Central Apennines, Italy).
986 *Geomorphology*, 412, 108302, 2022.

987 Pucci, S., De Martini, P. M., Civico, R., Villani, F., Nappi, R., Ricci, T., Azzaro, R., Brunori, C. A., Caciagli, M., Cinti, F. R.,
988 Sapia, V., De Ritis, R., Mazzarini, F., Tarquini, S., Gaudiosi, G., Nave, R., Alessio, G., Smedile, A., Alfonsi, L., Cucci, L.,
989 and Pantosti, D.: Coseismic ruptures of the 24 August 2016, Mw 6.0, Amatrice earthquake (central Italy), *GSA Today*, 27, 4–
990 10, <https://doi.org/10.1130/GSATG321A.1>, 2017.

991 Puliti, I., Benedetti, L., Pizzi, A., Fleury, J., Francescone, M., Guillou, V., and Aster Team: Evidence for a constant slip rate
992 over the last ~40 ka along the Mt. Morrone fault system in Central Apennines, *Tectonics*, 43(3), e2023TC007871, 2024.

993 Puliti, I., Pizzi, A., Benedetti, L., Di Domenica, A., and Fleury, J.: Comparing slip distribution of an active fault system at
994 various timescales: Insights for the evolution of the Mt. Vettore-Mt. Bove fault system in Central Apennines. *Tectonics*, 39(9),
995 e2020TC006200, 2020.

996 Roberts, G. P., and Michetti, A. M.: Spatial and temporal variations in growth rates along active normal fault systems: an
997 example from the Lazio–Abruzzo Apennines, central Italy, *J. Struct. Geol.*, 26, 339–376, 2004.

998 Roberts, G. P., Iezzi, F., Sgambato, C., Robertson, J., Beck, J., Mildon, Z. K., Papanikolaou, I., Michetti, A. M., Faure Walker,
999 J. P., Mitchell, S., Meschis, M., Shanks, R. P., Phillips, R., McCaffrey, K., Vittori, E., Visini, F., and Iqbal, M.: Characteristics
1000 and modelling of slip-rate variability and temporal earthquake clustering across a distributed network of active normal faults
1001 constrained by in situ 36Cl cosmogenic dating of fault scarp exhumation, central Italy, *J. Struct. Geol.*, 195, 105391,
1002 <https://doi.org/10.1016/j.jsg.2025.105391>, 2025.

1003 Rovida, A., Locati, M., Camassi, R., Lolli, B., Gasperini, P., and Antonucci, A. (eds): Italian Parametric Earthquake Catalogue
1004 (CPTI15), version 4.0, Istituto Nazionale di Geofisica e Vulcanologia (INGV), <https://doi.org/10.13127/cpti/cpti15.4>, 2022.

1005 Salvi, S., Cinti, F. R., Colini, L., D'Addezio, G., Doumaz, F., and Pettinelli, E.: Investigation of the active Celano–L'Aquila
1006 fault system, Abruzzi (central Apennines, Italy) with combined ground-penetrating radar and palaeoseismic trenching,
1007 *Geophys. J. Int.*, 155, 805–818, 2003.

1008 Santantonio, M., and Carminati, E.: Jurassic rifting evolution of the Apennines and Southern Alps (Italy): Parallels and
1009 differences, *Bull.*, 123, 468–484, 2011.

1010 Scognamiglio, L., Tinti, E., Casarotti, E., Pucci, S., Villani, F., Cocco, M., Magnoni, F., Michelini, A., Dreger, D.: Complex
1011 fault geometry and rupture dynamics of the MW 6.5, 30 October 2016, Central Italy earthquake. *Journal of Geophysical*
1012 *Research: Solid Earth* 123, 2943–2964, 2018.

1013 Scotti, O., Visini, F., Faure Walker, J., Peruzza, L., Pace, B., Benedetti, L., Boncio, P., and Roberts, G.: Which Fault Threatens
1014 Me Most? Bridging the Gap Between Geologic Data-Providers and Seismic Risk Practitioners, *Front. Earth Sci.*, 8, 626401,
1015 <https://doi.org/10.3389/feart.2020.626401>, 2021.

1016 Serva, L., Michetti, A. M., and Trippa, G.: Trench investigations across the 1915 surface faulting in the Fucino Basin (central
1017 Italy), *Mem. Soc. Geol. It.*, 35, 893–907, 1986.

1018 Slemmons, D. B.: Geological effects of the Dixie valley-Fairview peak, Nevada, earthquakes of December 16, 1954, *Bull.*
1019 *Seismol. Soc. Am.*, 47(4), 353–375, 1957.

1020 Servizio Geologico d'Italia (in press) - Carta geologica d'Italia alla scala 1:50.000, F. 347 Rieti. ISPRA. Roma.

1021 Tucker, G. E., McCoy, S. W., Whittaker, A. C., Roberts, G. P., Lancaster, S. T., and Phillips, R.: Geomorphic significance of
1022 postglacial bedrock scarps on normal-fault footwalls. *Journal of Geophysical Research: Earth Surface*, 116, F01022, 1-14,
1023 doi:10.1029/2010JF001861, 2011.

1024 Valentini, G., Volatili, T., Galli, P., and Tondi, E.: A millennial perspective on Coulomb stress transfer impact in the seismicity
1025 of the Central Apennine Fault System, *EGU General Assembly 2024*, Vienna, Austria, 14–19 Apr 2024, EGU24-7956,
1026 <https://doi.org/10.5194/egusphere-egu24-7956>, 2024.

1027 Villani, F., Civico, R., Pucci, S., Pizzimenti, L., Nappi, R., De Martini, P. M., and the Open Emergeo Working Group: A
1028 database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy, *Sci. Data*, 5(1), 1–11,
1029 2018.

1030 Vittori, E., Di Manna, P., Blumetti, A. M., Comerci, V., Guerrieri, L., Esposito, E., Michetti, A. M., Porfido, S., Piccardi, L.,
1031 and Roberts, G. P.: Surface faulting of the 6 April 2009 M w 6.3 L'Aquila earthquake in central Italy, *Bulletin of the*
1032 *Seismological Society of America*, 101, 1507–1530, 2011.

1033 Wells, D. L., and Coppersmith, K. J.: New empirical relationships among magnitude, rupture length, rupture width, rupture
1034 area, and surface displacement. *Bulletin of the seismological Society of America*, 84(4), 974–1002, 1994.

1035 Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M.: ‘Structure-from-Motion’ photogrammetry:
1036 A low-cost, effective tool for geoscience applications, *Geomorphology*, 179, 300–314, 2012.

1037