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Abstract. The applicability of one-dimensional (zonally in-
variant) harmonic and trapped wave theories for Inertia-
Gravity waves to simulations on the mid-latitude β-plane
is examined by comparing the analytical estimates in the
geostrophic adjustment and Ekman adjustment problems5

with numerical simulations of the linearized rotating shallow
water equations. The spatial average of the absolute differ-
ences between the theoretical solutions and the simulations,
ε(t), is calculated for values of the domain’s north-south ex-
tent, L, ranging from L= 4 to L= 60 (where L is mea-10

sured in units of the deformation radius). The comparisons
show that: (i) though ε oscillates with time, its low-pass fil-
ter, εLP(t), increases with time. (ii) In small domains, εLP(t)

in harmonic theory is significantly smaller than in trapped
wave theory, while the opposite occurs in large domains.15

(iii) The accuracy of the harmonic wave theory decreases
with L for 0< L< 20, while for L > 20 the trend changes
with time. (iv) The accuracy of the trapped wave theory in-
creases with L in the geostrophic adjustment problem, while
in the Ekman adjustment problem, its best accuracy is ob-20

tained when L≈ 30. (v) There is a range of L and t values
for which no theory provides reasonable approximations, and
this range is wider in the Ekman adjustment problem than in
the geostrophic adjustment problem. Non-linear simulations
of a multilayered stratified ocean show that internal inertia-25

gravity waves exhibit the same characteristics as the wave
solutions of the linearized rotating shallow water equations
in a single layer ocean.

1 Introduction

The Rotating Shallow Water Equations (RSWE, hereafter) 30

provide a fundamental description of the dynamics of an in-
compressible fluid in a thin layer in the presence of rota-
tion. This framework is applicable when the horizontal scale
of the fluid motion is much larger than the layer thickness.
The linear waves of the RSWE include three wave types: 35

Kelvin waves, Inertia-Gravity waves (also known as Poincaré
waves) and Planetary waves (also known as Rossby waves).
Mid-latitude (coastal) Kelvin waves occur in the presence of
an ocean boundary, while all three wave types are generated
in response to atmospheric forcing, such as wind stress, or 40

due to local perturbations in the ocean’s velocity or surface
height. These waves are traditionally classified into two main
categories based on their frequencies. The first category com-
prises the high-frequency Kelvin and Inertia-Gravity waves,
which are rotationally modified gravity waves. The second 45

category includes the low-frequency Planetary waves, which
originate as perturbations respond to the latitudinal variation
of the Coriolis parameter (see, e.g., Gill, 1982; Pedlosky,
1987; Cushman-Roisin and Beckers, 2011, and Vallis, 2017).

In the classical harmonic wave theory in mid-latitudes, the 50

meridional structure of the waves’ amplitude is described by
harmonic functions, i.e., sine, cosine, or exponential func-
tions. This simple theory provides accurate wave solutions
when the Coriolis frequency is assumed constant on a plane
tangential to the spherical Earth at some latitude φ0 (i.e., f = 55

2�sin(φ)≈ f0 = 2�sin(φ0), where � is Earth’s frequency
of rotation). This model is referred to as the f -plane approx-
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imation. In contrast, when the Coriolis frequency is assumed
to vary linearly with the meridional coordinate y (i.e., f =
f0+βy, where β = 2�cos(φ0)/R is constant, where R is
Earth’s mean radius), the model is referred to as the β-plane
approximation. On the β-plane, the harmonic wave theory5

provides only approximate solutions. A detailed derivation
of mid-latitude harmonic waves can be found in the text-
books mentioned earlier in this section. Note that this har-
monic structure of waves in mid-latitudes differs substan-
tially from that on the equatorial β-plane where φ0 = 0 which10

yields wave structure that is described by the Hermite func-
tions (Matsuno, 1966) that are not a limiting case of the har-
monic structure when φ0→ 0.

Several observational and numerical studies highlight the
limitations of the harmonic wave theory in accurately de-15

scribing the basic features of mid-latitude Rossby waves.
For example, Chelton and Schlax (1996) and Osychny and
Cornillon (2004) demonstrate that the phase speed of ob-
served long Rossby waves is greater than that of harmonic
Rossby waves, with the difference in phase speeds increas-20

ing with latitude. Consistent with the observations, Aoki
et al. (2009) used a high-resolution ocean general circulation
model (OGCM) and showed that the phase of the simulated
Rossby waves propagates faster than predicted by the har-
monic wave theory.25

An alternate theory, the trapped wave theory, was recently
developed for both Poincaré and Rossby waves in wide do-
mains on the mid-latitude β-plane (Paldor et al., 2007; Paldor
and Sigalov, 2008; Paldor, 2015, see details in Appendix A
below). These waves are called trapped since, in contrast30

to the harmonic waves, they are not spread over the entire
meridional domain. Instead, they decay monotonically with
latitude from their single maximum located near the equator-
ward boundary for low modes. The relevance of the trapped
wave theory to the ocean was confirmed by satellite observa-35

tions in the Indian Ocean (De-Leon and Paldor, 2017). Ideal-
ized numerical simulations carried out in Gildor et al. (2016)
and Yacoby et al. (2023) demonstrate that harmonic wave
theory provides accurate approximations for waves only in
domains of a small meridional extent, while trapped wave40

theory does so in large meridional domains. The results re-
ported by Yacoby et al. (2023) also show that the transition
from small to large extent depends on the meridional wave
mode. Thus, the distinction between “small” and “large” do-
mains is unclear in the context of initial value problems that45

involve the superposition of several wave modes.
The present study examines the applicability of the har-

monic and trapped wave theories to zonally-invariant sim-
ulations on the mid-latitude β-plane. Both theories provide
valuable but distinct perspectives. The harmonic wave the-50

ory, formulated with a constant Coriolis parameter, requires
two rigid meridional boundaries to support standing modes
and can also be applied locally through WKBJ-type approx-
imations that use a local dispersion relation. These local in-
terpretations are widely used and enhance the applicability55

of harmonic theory in geophysical contexts. In contrast, the
trapped wave theory requires only a single boundary and
yields solutions that decay poleward of this boundary, ex-
tending the applicability of linear wave theory to wide merid-
ional domains where harmonic modes do not prevail. Our 60

goal is to systematically compare the accuracy of the two
theories by comparing them with numerical simulations and
to clarify the parameter regimes where each provides reliable
approximations.

The examination is carried out by deriving harmonic and 65

trapped depth-independent wave solutions to two known
physical problems and comparing these solutions with the
temporal evolution in numerical simulations of a single
layer ocean. The physical problems considered here are the
geostrophic adjustment problem (see, e.g., Gill, 1976, 1982; 70

Blumen, 1972 and Yacoby et al., 2021, 2023, 2024) and the
Ekman adjustment problem that results from the addition of
a constant zonal wind forcing to the RSWE (see, e.g., Char-
ney, 1955, Gill, 1982, Sect. 10.9 and Yacoby et al., 2024). In
both problems, the waves are the key mechanism that trans- 75

forms the unbalanced initial state to a balanced (i.e., steady)
final state. However, the forces that drive the waves are differ-
ent in the two problems. In the geostrophic adjustment prob-
lem, the waves are generated by an initial disturbance (sea
surface height anomaly in the case discussed here), while 80

in the Ekman adjustment problem, the waves are generated
by wind stress. The assumption of no zonal variations elim-
inates the Rossby and Kelvin waves from the problem, leav-
ing Poincaré waves (which have not been studied as inten-
sively as Rossby waves) as the sole wave type on which the 85

present study focuses. Under this assumption, the harmonic
wave solutions on the β-plane are identical to those on the
f -plane. Thus, a comparison between harmonic and trapped
wave theories can also be interpreted as a comparison be-
tween exact wave solutions on the f -plane and approximate 90

trapped wave solutions on the β-plane.
The paper is organized as follows. Section 2 presents the

governing equations and the set-up of the geostrophic adjust-
ment and the Ekman adjustment problems. Section 3 briefly
outlines the harmonic and trapped wave solutions to these 95

problems. Section 4 compares these analytic solutions with
idealized single-layer ocean simulations and in Sect. 5 we
discuss the results and their implications. The paper also
includes five appendices that provide additional technical
or side details. Appendix A summarizes the harmonic and 100

trapped solutions of the eigenvalue equation for the merid-
ional velocity from which the particular solutions of Sect. 3
are derived. The corresponding solutions of zonal velocity
and sea surface height are provided in Appendix B. Ap-
pendix C discusses the relevance of depth-independent (har- 105

monic and trapped) wave solutions to simulations of a two-
layer ocean model. In Appendix D, the idealized single-layer
ocean simulations of Sect. 4 are compared with nonlinear
simulations of a multilayered stratified ocean. Finally, Ap-
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pendix E addresses the relevance of the idealized harmonic
and trapped wave solutions to observations.

2 Set-up of the problems

The two physical problems studied in this work – the
geostrophic adjustment and the Ekman adjustment – share5

a common mathematical set-up in the homogeneous part of
the differential equations and in the boundary conditions. In
contrast, the inhomogeneous term of the differential equation
and the initial conditions differ in the two problems. The de-
tails of the mathematical set-up in each of these problems are10

described in this section.

2.1 Governing equations

The zonally invariant, vertically averaged linearized RSWE
in a surface layer of mean uniform thickness H forced by a
constant (in time and space) zonal wind stress, τ0, are:15

∂u

∂t
− f (y)v =

τ0

ρH
, (1)

∂v

∂t
+ f (y)u=−g

∂η

∂y
, (2)

∂η

∂t
+H

∂v

∂y
= 0, (3)

where u and v are the vertically averaged velocity compo-
nents along the x (zonal) and y (meridional) coordinates, re-20

spectively, η is the deviation of the fluid height from its mean
value H , ρ is the fluid density, and g is the gravitational ac-
celeration (or the reduced gravitational acceleration when the
fluid is stratified). As mentioned above, on the mid-latitude
β-plane the Coriolis frequency is given by:25

f (y)= f0+βy = 2�
(

sin(φ0)+
cos(φ0)

R
y

)
(4)

where R and � are Earth’s mean radius and frequency, re-
spectively (see, e.g., Gill, 1982, Sect. 12.2, Pedlosky, 1987,
Sect. 3.17 and Chap. 6, Cushman-Roisin and Beckers, 2011,
Sect. 9.4, and Vallis, 2017, Sect. 2.3].30

2.2 Domain configuration and boundary conditions

The study of wave solutions of the zonally invariant (x-
independent) linearized RSWE equations (Eq. 1–3) in a
meridional domain, y ∈ [0,L], where L is the domain’s
meridional extent requires the application of boundary con-35

ditions. In both problems, the boundary conditions at the do-
main’s boundaries are the vanishing of the normal velocities,
i.e.:

v(y = 0)= 0= v(y = L) (5)

2.3 Initial conditions and wind forcing 40

In both problems, the fluid is assumed to be initially at rest,
i.e.:

u= 0= v at t = 0. (6)

In the geostrophic adjustment problem, the wind stress, τ0 on
the RHS of Eq. (1) is set to zero and the initial surface height 45

disturbance is given by:

η =−η0sgn(y− y′), (7)

where η0 is the initial disturbance amplitude, sgn(z) is the
sign function, and y′ is the initial location of the initial dis-
continuity (front) in fluid height, i.e.: 50

η(t = 0)=
{
+η0, for 0≤ y < y′,
−η0, for y′ < y, . (8)

In the Ekman adjustment problem, the initial surface
height disturbance is set to zero, i.e., η(t = 0)= η0 = 0, in
Eqs. (7) and (8).

2.4 Nondimensionalization 55

To reduce the number of free parameters in Eqs. (1)–(3), we
introduce nondimensional variables, which are temporarily
denoted with asterisks. Following the standard deformation-
radius scaling (e.g., Gill, 1976), we define

t∗ = f0t, 60(
x∗,y∗

)
=

1
Rd
(x,y),

where Rd =
√
gH/f0 is the radius of deformation. For the

dependent variables, η∗ and (u∗, v∗), distinct scalings must
be chosen for the geostrophic adjustment problem (where
τ0 = 0) and the Ekman adjustment problem (where η0 = 0). 65

Our choices follow the scaling proposed by Yacoby et al.
(2024, Sect. VI). Specifically, the scaling for the geostrophic
adjustment problem is:

η∗ =
1
η0
η,

(
u∗,v∗

)
=
H

η0

1
√
gH

(u,v), 70

while for the Ekman adjustment problem the scaling is:

η∗ =
ρf0
√
gH

τ0
η,(

u∗,v∗
)
=
ρf0H

τ0
(u,v).

To reduce the number of free parameters in Eqs. (1)–(3),
we introduce nondimensional variables, which are temporar- 75

ily denoted with asterisks. The scaling we use is:

t∗ = f0t,(
x∗,y∗

)
=

1
Rd
(x,y),

Nathan
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where Rd =
√
gH/f0 is the radius of deformation. In con-

trast to these nondimensional variables that are common to
the two problems, the scaling of η∗ and (u∗, v∗) must be
chosen differently for the geostrophic adjustment problem
(where τ0 = 0) and the Ekman adjustment problem (where5

η0 = 0). The scaling for the geostrophic adjustment problem
is:

η∗ =
1
η0
η,

(
u∗,v∗

)
=
H

η0

1
√
gH

(u,v),

while for the Ekman adjustment problem the scaling is:10

η∗ =
ρf0
√
gH

τ0
η,(

u∗,v∗
)
=
ρf0H

τ0
(u,v).

With these nondimensional variables, Eqs. (1)–(3) become:

∂u∗

∂t∗
−
(
1+ by∗

)
v∗ = δi0, (9)

∂v∗

∂t∗
+
(
1+ by∗

)
u∗ =−

∂η∗

∂y∗
, (10)15

∂η∗

∂t∗
+
∂v∗

∂y∗
= 0, (11)

where δi0 is the Kronecker delta. The Ekman adjustment
problem is defined by i = 0 so the non-dimensional wind
stress δi0 = 1, while the geostrophic adjustment problem is
defined by i 6= 0 so δi0 = 0 (since τ0 = 0). The differential20

system that describes both problems contains a single free
parameter – the “non-dimensional β”:

b =
βRd

f0
= cot(φ0)

Rd

R
.

The boundary conditions, (Eq. 5), and initial condition for η0,
Eq. (7), must also be scaled. Using the same nondimensional25

variables straightforwardly yields:

v
(
y∗ = 0

)
= 0= v

(
y∗ = L∗

)
, L∗ = L/Rd,

for both problems, and:

η∗
(
t∗ = 0

)
=−sgn

(
y∗− y′

∗
)
, y′

∗
= y′/Rd,

for the geostrophic adjustment problem only [since for the30

Ekman adjustment problem η∗(t∗ = 0)= 0]. Naturally, the
boundary conditions add a second model parameter – L∗ =
L/Rd. The formulation above emphasizes that both the
geostrophic and Ekman adjustment problems can be ex-
pressed within a single nondimensional system (Eq. 9)–(11).35

While this introduces some additional algebraic complexity,
it provides a clear benefit: the two classical problems can be

compared within the same mathematical framework, with the
distinction encoded only through the Kronecker delta δi0.
This unified formulation highlights the structural similar- 40

ity of the two types of adjustment and allows their respec-
tive solutions to be contrasted directly in terms of the same
nondimensional parameters (b and L∗). Thus, the approach
reduces redundancy and clarifies which aspects of the dy-
namics are problem-specific and which are common to both 45

cases.
From this point, all variables (including L and y′) in the

main text are nondimensional, and the asterisks are omitted
for clarity.

2.5 The eigenvalue equations for v 50

Following the derivation of Gill (1982, Sect. 10.9) on the f -
plane, a single equation for v is derived here on the β-plane
by subtracting (1+ by) times (Eq. 9) and the y derivative of
Eq. (11) from the time derivative of Eq. (10). This straight-
forward calculation yields: 55

∂2v

∂t2
−
∂2v

∂y2 + (1+ by)
2v =−δi0(1+ by). (12)

In the Ekman adjustment problem (δi0 = 1), Eq. (12) can
be solved by dividing v into a time-independent compo-
nent, v, that solves the inhomogeneous part of Eq. (12), i.e.:

d2v

dy2 − (1+ by)
2v = (1+ by), (13) 60

and a time-dependent component, v′, that solves the homo-
geneous part of Eq. (12):

∂2v′

∂t2
−
∂2v′

∂y2 + (1+ by)
2v′ = 0. (14)

In the geostrophic adjustment problem (δi0 = 0), the RHS
of Eq. (12) vanishes identically. In addition, Eq. (9) with ∂

∂t
= 65

0 leads to v = 0, indicating that v consists solely of a time-
dependent component, i.e., v = v′.

These considerations imply that in both problems, the
time-dependent component, v′, is determined by Eq. (14). As
is common in linear initial-value problems, the general solu- 70

tion can be expressed as a superposition of the eigenfunctions
of Eq. (14). This guarantees that any admissible initial condi-
tion can be represented consistently within the eigenfunction
basis, and it highlights the role of the eigenvalue problem
in determining both the temporal evolution and the spatial 75

structure of the solution. While this observation is standard,
we include it here explicitly to clarify the connection be-
tween the initial-value formulation and the spectral solutions
of Eq. (14).

We now substitute v′ = v̂(y)e−iωt (where ω is the fre- 80

quency of the wave) into Eq. (14) and neglect the second-
order coefficient b2y2. The latter is justified since, in the β-
plane approximation, f (y) is expanded to first order only in

Nathan
Cross-Out
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y so mathematical consistency mandates that terms of order
y2 should be neglected throughout. The neglect of O(y2)

terms in the wave solutions on the β-plane was previously
justified by comparing the analytic expressions with numeri-
cal solutions (see e.g. Paldor and Sigalov, 2008; Gildor et al.,5

2016). The above changes in Eq. (14) yield the Schrödinger
eigenvalue equation for v̂:

d2v̂

dy2 + (E− 2by)v̂ = 0 (15)

where

E = ω2
− 1 (16)10

is the eigenvalue.
Note that the only dispersion relation derived from

Eq. (16) is that of the super-inertial Poincaré waves:

ω2
= 1+E. (17)

This restriction to Poincaré waves results from the assump-15

tion ∂/∂x = 0 in system (Eqs. 1–3) that eliminates Rossby
waves for zero wavenumber in the x-direction. An explicit
expression for ω (the dispersion relation) follows the solu-
tion of the eigenvalue equation (Eq. 15), which determines
both v̂ – the eigenfunction and E – the associated eigen-20

value. Trapped waves are described by solutions of the com-
plete equation, while harmonic waves are described by solu-
tions of an approximate equation derived by setting 2by = 0
in Eq. (15). Although both harmonic and trapped wave so-
lutions of Eq. (15) are well known, a brief derivation is25

included in Appendix A for completeness of the presenta-
tion. A detailed discussion on harmonic and trapped Rossby
waves can be found in Paldor and Sigalov (2008), De-Leon
and Paldor (2011), Gildor et al. (2016), and Yacoby et al.
(2023).30

3 Application of wave solutions to the two adjustment
problems

The general solutions derived in Appendix A are applied in
the present section to two physical problems: the geostrophic
adjustment and the Ekman adjustment. The analytical solu-35

tions derived here are compared with numerical simulations
in Sect. 4.

3.1 Geostrophic adjustment

As mentioned in Sect. 2.5, in the geostrophic adjustment
problem, the solution of v contains only a time-dependent40

component, i.e., v = v′. Accordingly, Eq. (6) implies that
v′(t = 0)= 0= v(t = 0). The solution for v′ that satisfies the
initial condition (Eq. 6) is:

v′ =

∞∑
n=0

a∗n v̂
∗
n(y)sin(ωnt) (18)

where: 45

v̂∗n(y)=

√
2
L

sin
[
π(n+ 1)

L
y

]
, ω2

n = 1+
(
π(n+ 1)

L

)2

(Eqs. A4 and A3) for harmonic waves, and:

v̂∗n(y)=

[
22/3

2b1/3

(
Ai′ (ξn)

)2]−1/2

Ai
(
(2b)1/3y+ ξn

)
,

ω2
n = 1− ξn(2b)2/3

(Eqs. A12 and A11) for trapped waves. In this equation Ai 50

is the Airy function that decays to 0 at +∞ and ξn is the
nth zero of this function (which is oscillatory for negative
argument). To calculate the coefficients a∗n , an initial con-
dition for ∂v

′

∂t
must be derived. Substituting the initial condi-

tions u= 0 (Eq. 6) and η =−sgn(y−y′) (Eq. 7) into Eq. (10) 55

gives:

∂v′(t = 0)
∂t

= 2δ(y− y′), (19)

where δ(z) denotes the Dirac delta function [not to be con-
fused with the Kronecker delta δi0 on the RHS of Eq. (9)].
The substitution of Eq. (19) in Eq. (18) yields: 60

∞∑
n=0

ωna
∗
n v̂
∗
n(y)= 2δ(y− y′), (20)

where, according to Sturm–Liouville theory, a∗n is given by:

a∗n =
2
ωn

L∫
0

v̂∗n(y) · δ(y− y
′)dy. (21)

Substituting the definitions of v̂∗n(y), Eqs. (A4) and (A12), in
Eq. (21) and solving the integral yields: 65

a∗n =
2
ωn

√
2
L

sin
[
π(n+ 1)

L
y′
]
, (22)

for harmonic waves and:

a∗n =
2
ωn

[
22/3

2b1/3

(
Ai′ (ξn)

)2]−1/2

Ai
(
(2b)1/3y′+ ξn

)
(23)

for trapped waves.
It should be noted that although v in the geostrophic ad- 70

justment problem consists only of a time-dependent com-
ponent, η and u contain both time-independent and time-
dependent components. The time-independent and time-
dependent components of η and u are derived in Sect. B1.

3.2 Ekman adjustment 75

In the Ekman adjustment problem the decomposition in
Sect. 2.5 of v = v+v′ implies that v 6= 0 so the initial condi-
tion (Eq. 6) yields:

v′(t = 0)=−v. (24)
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Following the approach outlined in Sect. 3.1, the solution
for v′ that satisfies condition (Eq. 24) can be expressed as:

v′ =

∞∑
n=0

a∗n v̂
∗
n(y)cos(ωnt) (25)

where v̂∗n(y) is given by Eqs. (A4) and (A12) and ωn is
given by Eqs. (A3) and (A11). The application of condition5

(Eq. 24) then implies that a∗n is given by:

a∗n =−

L∫
0

v̂∗n(y) · vdy. (26)

As mentioned in Sect. 2.5, v is determined by the solution of
Eq. (13) subject to the boundary conditions (Eq. 5). In con-
trast to the integral in Eq. (21), the integral in Eq. (26) cannot10

be solved analytically since no analytical solution for v has
been found. However, v can be found numerically by em-
ploying a boundary value problem (BVP) numerical solver
to solve Eq. (13). Subsequently, the integral in Eq. (26) can
be calculated numerically to find a∗n .15

The solutions for η and u in the Ekman adjustment prob-
lem are provided in Sect. B2.

4 Comparing the analytical results with numerical
solutions

This section compares the analytical solutions derived in20

Sect. 3 with numerical simulations. The dimensional, time-
dependent system (Eqs. 1–3) is solved numerically us-
ing the Massachusetts Institute of Technology General Cir-
culation Model (MITgcm) (Marshall et al., 1997). The
MITgcm was configured to solve the same linear shal-25

low water equations that form the focus of this study.
The setup follows closely the procedure described in
Sect. 4.1.1 (“Equations Solved”) of the MITgcm barotropic
gyre example (see https://mitgcm.readthedocs.io/en/latest/
examples/barotropic_gyre/barotropic_gyre.html, last access:30

TS1 ). To ensure direct comparability with the analytical solu-
tions of the linearized RSWE, we modified the MITgcm by
removing the nonlinear terms in the material derivative and
the viscous dissipation terms, leaving only the linear shallow
water dynamics.35

The domain is periodic in the zonal direction with walls
parallel to the x-axis located at y = 0 and y = L. The do-
main’s meridional extent, L, was varied between L= 4 to
L= 60 (in units of Rd) and is noted in each case. Since the
differential system involves only variations in t and y (while40

x-variation is ignored), we set the number of cells in the x-
direction to 4 to ensure the periodicity in x, so the zonal
extent of the domain is 41x, where 1x is the grid spac-
ing. No x variations were developed in the numerical sim-
ulations. The model parameters are summarized in Table 1.45

The Rossby radius of deformation, Rd =
√
gH/f0, is set to

Table 1. Model parameters. In addition to the parameters listed in
the table, the Rossby radius of deformation, Rd =

√
gH/f0, was

set to 30 m throughout, and the domain’s meridional extent, L, was
varied between L= 4Rd and L= 60Rd (the value is always noted).

Equation parameters

(Reduced) gravity, g 0.018 m s−2

Mean ocean depth, H 500 m
Water density, ρ 1000 kg m−3

Coriolis parameter at y = 0, f0 10−4 s−1

Gradient of the Coriolis parameter, β 1.67× 10−11 m−1 s−1

Wind forcing/initial conditions

Geostrophic Ekman
adjustment adjustment

Wind stress amplitude, τ0 0 N m−2 0.05 N m−2

Initial disturbance amplitude, η0 1 m 0 m
Location of the initial front, y′ L/2 –

Numerical parameters

Time step, 1t 0.5 s
Grid size, 1y 50 m

30 km – a typical value for the first baroclinic mode in the
midlatitude ocean (Chelton et al., 1998). Note that the model
parameters are given in dimensional form. However, the nu-
merical results are presented in nondimensional form using 50

the scales listed in Sect. 2.4.
In the Ekman adjustment problem, we focus on the

time-dependent velocity component v′(y, t)= v(y, t)−v(y).
However, the modified MITgcm we constructed solves the
RSWE, so the simulations include also the time-independent 55

mean component, v(y). This mean flow corresponds to the
solution of the inhomogeneous part of the eigenvalue prob-
lem Eq. (12) i.e. Eq. (13). Therefore, when comparing the
numerical simulations with the analytical wave solutions,
we subtract v from the total velocity v(y, t) in the sim- 60

ulations to isolate the time-dependent component v′. The
time-independent component v(y) was obtained by solv-
ing Eq. (13) with scipy’s solve_bvp function. To vali-
date this procedure, we employed an alternative approach in
which v was computed by averaging v over many wave pe- 65

riods. As expected, the results from the direct numerical so-
lution of Eq. (13) were indistinguishable from the long-term
averages of v (see discussion and figures in Yacoby et al.,
2024, in particular Sect. IV A 2 and Fig. 2). The solutions
for v are also used to calculate the coefficients of the eigen- 70

functions, a∗n , in Eq. (26).
In the calculation of the trapped wave solutions, the upper

bound of the summation in Eqs. (18) and (25), i.e., the num-
ber of modes summed, was set to 104. In contrast, summing
such a large number of modes in the calculation of the har- 75

monic wave solutions led to numerical errors. Therefore, for
the harmonic solutions only, the number of summed modes
was reduced to 500 (this issue is discussed in Sect. 5).

https://mitgcm.readthedocs.io/en/latest/examples/barotropic_gyre/barotropic_gyre.html
https://mitgcm.readthedocs.io/en/latest/examples/barotropic_gyre/barotropic_gyre.html
https://mitgcm.readthedocs.io/en/latest/examples/barotropic_gyre/barotropic_gyre.html
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Figure 1. The meridional velocity, v(y, t)= v′, in the geostrophic adjustment problem for L= 4. Black lines: Numerical simulations; Red
lines: Analytical harmonic waves; Blue lines: Analytical trapped waves. Time, t , is in units of f−1

0 .

4.1 Results

The results in this section are presented in four figures, struc-
tured as follows. For each problem (the geostrophic adjust-
ment and the Ekman adjustment) we display the solution of
v′(y, t)= v(y, t)− v(y) for narrow (L= 4) and wide (L=5

60) channels derived by subtracting the time-independent an-
alytic solutions from the simulations. Each figure compares
the simulated v′(y, t) (depicted by black lines) with the an-
alytical solutions of v′ derived for harmonic (red lines) and
trapped (blue lines) waves. The figures show snapshots of v′10

at intervals of 6 time units. Although each of the 4 cases
(2 problems and 2 channel widths) exhibits different leading
frequencies, we chose to maintain intervals of 6 time units in
all 4 figures so the results are presented in a uniform style of
display.15

Before presenting the results, it is worth noting that in
fixed time snapshots, the differences between simulations
and analytical solutions, as well as the differences between
the two analytical solutions, can result from two reasons:
The first is the disparities between the spatial structures20

(i.e. the eigenfunctions) of the harmonic, trapped, and sim-
ulated waves and the second is differences between the fre-
quencies (i.e. the eigenvalues) of the harmonic, trapped, and
simulated waves (since the difference might be smaller/larger
at an earlier/later time). Both contributing factors should be 25

considered in explanations of the differences between differ-
ent cases.

Figure 1 shows v′ in the geostrophic adjustment problem
for L= 4. Note that the time in this figure, as well as in all
other figures, is the nondimensional time that equals the di- 30

mensional time multiplied by f0. The agreement between the
harmonic wave solutions (red lines) and the numerical re-
sults (black lines) is acceptable up to t / 40 while the trapped
wave solutions (blue lines) are entirely irrelevant to the nu-
merical results. Beyond t = 40 the simulated waves devi- 35

ate appreciably from the anticipated structure of harmonic
waves. The discrepancy between the two is particularly no-
ticeable in the center of the channel at t = 42 and t = 54. We
hypothesize that this appreciable difference between the har-
monic wave structures and the numerically simulated waves 40

is due to a slight difference between the harmonic and numer-
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Figure 2. As in Fig. 1 but for L= 60.

ical frequencies rather than differences in the harmonic and
numerical meridional wave structures. In addition to the dis-
crepancy between the harmonic and the numerical frequen-
cies, we also observe a difference in the amplitudes of har-
monic and simulated waves at the wave-fronts. The wave-5

fronts of harmonic waves are larger and sharper compared to
those obtained from the simulations, which is particularly no-
ticeable near the domain boundaries at t = 18, 30, 42, and 54,
and at the center of the domain at t = 48. This difference be-
tween the theory and the simulations is likely due to the dis-10

sipation applied in the MITgcm that reduces the energy con-
tained in the short wave limit. At lower resolutions of both
y and t the gap between the theory and simulation at y = 2
evident at t = 48 occurs earlier and the gap at t = 48 is larger
by a factor of about 2.15

Figure 2 shows v′ in the geostrophic adjustment problem
for L= 60. The harmonic wave solutions (red lines) differ
substantially from the numerical results (black lines), except
near the wave-fronts. In contrast, there is a very good agree-
ment between the trapped wave theory (blue lines) and the20

numerical results up to t = 30. This agreement reaffirms the
neglect of the y2 terms in the derivation of the eigenvalue

equation Eq. (15). At t = 30, the wave-fronts reach the do-
main boundaries and are reflected towards the center of the
domain. This reflection is observed in the numerical results 25

and the harmonic wave solutions. However, in the trapped
wave solutions, the waves are reflected only from the south-
ern wall (at y = 0). Consequently, a discrepancy between the
trapped wave structure and that of the numerical results de-
velops near the northern wall and propagates southward at 30

the speed of the wave-fronts that equals 1 in non-dimensional
units (i.e.

√
gH in dimensional units, since Rdf0 =

√
gH ).

This is evident, for example, at t = 48, at which time the
northern wave-front, that had reached the northern wall at
t = 30, is located at y = 42= 60− 18. Thus, the trapped 35

wave theory yields incorrect results between y = 42 and
y = 60. Regardless of the reflection, a small, yet, noticeable
difference can be observed between the trapped wave theory
and the numerical results, particularly for t ≥ 24 and near
the center of the domain. We hypothesize that this difference 40

arises from a slight difference between the trapped frequen-
cies and the numerical frequencies.

Figure 3 shows v′ in the Ekman adjustment problem for
L= 4. As in the geostrophic adjustment problem (Fig. 1),
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Figure 3. The time-dependent component of the meridional velocity, v′ = v(y, t)−v(y), in the Ekman adjustment problem for L= 4. Black
lines: Numerical simulations; Red lines: Analytical harmonic waves; Blue lines: Analytical trapped waves. Time, t , is in units of f−1

0 .

the agreement between the harmonic waves (red lines) and
the simulations (black lines) is good, though, as in Fig. 1, a
discrepancy is evident between the harmonic and numerical
frequencies. In this case, the discrepancy is particularly no-
ticeable at t = 36 and t = 48. As expected, the trapped wave5

structure (blue lines) is irrelevant to the simulations at L= 4.
Figure 4 shows v′ in the Ekman adjustment problem for

L= 60. As in the geostrophic adjustment problem (Fig. 2),
the harmonic wave solutions (red lines) differ substantially
from the numerical results (black lines). For t ≤ 18, the dis-10

crepancy between the harmonic wave theory and the numer-
ical results is more significant in the northern side of the do-
main than in its southern side. This may be related to the fact
that the term −2by, which is ignored in the harmonic wave
theory, increases linearly with y. The trapped wave theory15

(blue lines) matches the numerical results only for small t .
As in the geostrophic adjustment problem, the mismatch be-
tween the theory and the simulations develops at the northern
wall and spreads southwards. However, in the Ekman adjust-
ment problem, this southward spread begins at t = 0. Conse-20

quently, in the Ekman adjustment problem, the trapped wave

theory provides reasonable results for shorter times com-
pared to the geostrophic adjustment problem. For example,
in the Ekman adjustment problem the trapped wave theory
yields reasonable results at t = 48 only for y < 20 while in 25

the geostrophic adjustment problem, it yields reasonable re-
sults for y < 30.

4.2 Error estimates

The visual comparisons in Figs. 1–4 are useful but inherently
qualitative. To complement them with a more systematic and 30

reproducible metric, we introduce a quantitative diagnostic
error measure, ε(t), defined as the spatially averaged abso-
lute difference between the theoretical and numerical v′(y, t)
fields:

ε(t)=
1

600

600∑
m=0

∣∣∣∣v′theory

(
t,y =

mL

600

)

− v′numerical

(
t,y =

mL

600

)∣∣∣∣. (27) 35
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Figure 4. As in Fig. 3 but for L= 60.

Here v′theory is evaluated either from the harmonic or the
trapped wave solutions, and v′numerical from the MITgcm sim-
ulations. The purpose of ε(t) is not to introduce a new phys-
ical quantity, but to provide a simple and compact diagnostic
that quantifies the agreement across different theories, prob-5

lems, and channel widths.
Figure 5 shows the time dependence of ε(t). In all cases,

ε(t) exhibits relatively fast oscillations. These arise because
even a small frequency mismatch between theoretical and nu-
merical solutions can lead to alternating phases of agreement10

and disagreement. To highlight the longer-term behavior, we
applied a third-order low-pass Butterworth filter with a cutoff
frequency of 0.05 (corresponding to 5× 10−6 s−1 in dimen-
sional units). The filtered quantity, εLP(t), is shown as solid
curves in Fig. 5. This filtering suppresses high-frequency15

variations while retaining the overall growth or decay trends.
For L= 4, the harmonic wave solutions are closer to the

numerical solutions than the trapped wave solutions. In both
the geostrophic adjustment problem (upper-left panel) and
the Ekman adjustment problem (upper-right panel), εLP(t)20

shows similar magnitudes and trends. In the harmonic wave
theory (red lines), εLP(t) increases linearly with time, while

in the trapped wave theory (blue lines), it exhibits low-
frequency oscillations that pass the low-pass filter.

For L= 60, the trapped wave solutions are closer to 25

the numerical solutions compared to the harmonic wave
solutions. In both the geostrophic adjustment (lower-left
panel) and the Ekman adjustment (lower-right panel) prob-
lems, εLP(t) shows similar trends. In the trapped wave the-
ory (blue lines), εLP(t) increases linearly with time, while 30

in the harmonic wave theory (red lines), it exhibits low-
frequency oscillations. However, εLP(t) is approximately
five times larger in the Ekman adjustment problem compared
to the geostrophic adjustment problem in both harmonic- and
trapped-wave theories. 35

In the last analysis of error employed here, ε(t) is com-
puted for values of L that vary betweenL= 4 toL= 60 with
intervals of 4 in the two problems and the two wave theories.
The resulting low-pass filtered ε, εLP, are shown in Fig. 6 as
a function of t and L. Clearly, the changes in εLP with t and 40

L do not follow a uniform pattern. It is worth noting that the
maximal error occurs in the harmonic wave solution for the
Ekman adjustment problem (upper right panel). The varia-
tion of εLP in the trapped wave solution of the geostrophic
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Figure 5. Temporal evolution of the errors. Dotted lines: the time-
dependent difference between the wave theories and the numerical
solutions, ε(t) defined in Eq. (27). Red dotted lines: harmonic wave
theory. Blue dotted lines: trapped wave theory. Solid lines: low-pass
filter of the corresponding dotted lines – εLP(t). Time, t , is in units
of f−1

0 .

adjustment problem (lower left panel) is monotonic in both
t and L. In the Ekman adjustment problem the best agree-
ment between the simulations and the trapped wave theory
occurs near L= 30. These results are further discussed in
Sect. 5. We emphasize that ε(t) and its filtered counterpart5

are employed here strictly as diagnostic tools. Their purpose
is to provide an objective and reproducible way of summa-
rizing the complex spatio-temporal differences between the-
ories and simulations, rather than to serve as physical novel
quantities. Nevertheless, the systematic trends they reveal,10

such as the crossover between harmonic and trapped dom-
inance with increasing L and the gradual increase in mis-
match with time, help clarify the regimes of validity of each
theory and the mechanisms by which they depart from the
numerical solutions.15

5 Summary and discussion

This work examined the applicability of two wave theories
on the mid-latitude β-plane – the harmonic and the trapped
wave theories – to the temporal evolution evidenced in nu-
merical simulations. The examination is based on the deriva-20

tion of one-dimensional, zonally-invariant, wave solutions
for two physical problems – the geostrophic adjustment and
the Ekman adjustment problems. The analytical solutions are
then compared to numerical simulations conducted using the
MITgcm. The numerical simulations are assumed to be ac-25

curate and the aim in comparing the theories with numerical
simulations is to evaluate the applicability of the idealized
theories, rather than the accuracy of the simulations.

The discrepancies between the two theories and numerical
simulations were quantified using ε(t), defined in Eq. (27), 30

focusing on its low-pass filtered, εLP(t). The discrepancies
originate from different approximations associated with each
theory. The harmonic wave theory, which neglects the β ef-
fect, becomes less accurate when the meridional domain, L,
increases to L= 20, with more complex variations beyond 35

this domain size (upper panels of Fig. 6). On the other hand,
the trapped wave solutions of the geostrophic adjustment
problem, that account consistently for β, neglect the family
of eigenfunctions associated with the second Airy function
– Bi are more accurate as L increases as they better satisfy 40

the boundary condition at the north wall with the increase
in L (lower-left panel of Fig. 6). However, in the Ekman
adjustment problem, optimal agreement occurs near L≈ 30
(lower-right panel of Fig. 6). Intuitively, the increase of εLP

with L for L > 30 can be attributed to the larger number of 45

wave modes required to accurately describe the solution in
large domains, while the number of wave modes used here
was identical at all values L. To test this hypothesis, εLP

in the Ekman adjustment problem was recalculated with the
number of summed modes equal to 103 and 5×104 (whereas 50

the number of modes used throughout was 104). Contrary to
intuition, the effect on εLP of the change in the number of
summed wave modes was insignificant for small t and prac-
tically 0 for large t .

Our results clearly demonstrate the failure of the trapped 55

wave theory in small domains. This failure is attributed to
two reasons. The main reason, which plays a role in both
problems, is that the Airy functions Ai(y) can not satisfy
the boundary condition of v′ = 0 at y = L when L is small.
The second reason for the failure is that the superposition 60

of Ai(y) modes fails to satisfy the initial conditions of v.
In both cases Bi(y) must be added to the solution in or-
der to satisfy the boundary condition at y = L or the ini-
tial condition of v. This reason contributes to the failure of
the trapped wave theory only in the geostrophic adjustment 65

problem. The failure of the Ai(y) modes to satisfy the ini-
tial condition (Eq. 19) at small domains is demonstrated in

Fig. 7 where ∂v′

∂t
(t = 0)=

N∑
n=0

ωna
∗
n v̂
∗
n(y) is shown for the

harmonic waves (red lines) and trapped waves (blue lines)
forL= 4 (left panel) andL= 60 (right panel). As in Figs. 1– 70

4, the number of summed-up modes, N , is set to 0 in the
expansion to harmonic waves and to 104 in the expansion to
trapped waves. Except for the blue curve on the left panel, all
curves accurately approximate ∂v′/∂t (t = 0)= 2δ(y−y′) as
is evident from the values of the integrals over the curves that 75

should be 2.0 for a Dirac delta function. The calculated val-
ues of the integrals (indicated in the figure using red and blue
legends) are close to 2. The largest deviation, of about 5 %,
occurs for trapped waves in small domains which is evident
in the blue curve (and associated legend) on left panel. In 80

contrast to the geostrophic adjustment problem, in the Ekman
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Figure 6. Contours of low-pass filtered ε, εLP, on the t and L plane in the two physical problems and for the two wave theories. Time, t , is
in units of f−1

0 .

adjustment problem, the superposition of Ai modes satisfies
the initial condition (Eq. 24) even when L= 4, as illustrated
in the upper-left panel of Fig. 3.

In large domains, the harmonic theory does not reproduce
several features of the simulations, primarily because of the5

omission of the β effect (recall: Rossby waves are filtered out
by the k = 0 assumption) rather than from the limited num-
ber of summed harmonic modes (500 compared to 104 Airy
modes). This conclusion is evident upon comparisons with
the f -plane simulations, where the summation over 500 har-10

monic modes produces accurate results, confirming that the
harmonic wave theory effectively describes the f -plane dy-
namics (results not shown). Errors in the harmonic solutions
also stem from the inclusion of modes with tiny amplitudes
in the summation, especially in the Ekman adjustment prob-15

lem, where the superposition of harmonic modes fails to sat-
isfy the initial condition for v′, Eq. (24). These errors are
less pronounced in the geostrophic adjustment problem but
still affect the wave-front amplitudes. Nevertheless, it should

be noted that the harmonic theory can be extended locally 20

through WKBJ-type approximations, which account for the
slow meridional variation of the Coriolis parameter by using
a local dispersion relation. This local interpretation has been
widely applied in geophysical contexts and provides addi-
tional validity to the harmonic framework beyond the strict 25

global solutions considered here.
Although both problems share the same governing equa-

tion, Eq. (14), their forcing mechanisms are different. In the
geostrophic adjustment problem waves are driven by local-
ized initial perturbations and for small t < L/2 the trapped 30

wave theory agrees with the simulations. However, at larger t
the neglect of the Bi functions causes discrepancies when the
simulated waves are reflected from both walls while trapped
waves are reflected from the south wall only. In contrast, in
the Ekman adjustment problem, waves are driven by constant 35

wind stress and violate the boundary conditions at y = L
from the outset.
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Figure 7. The derivative of v′ with respect to t at t = 0 in the geostrophic adjustment problem. Left panel: L= 4. Right panel: L= 60.
Red lines: harmonic waves. Blue lines: trapped waves. The ordinate of the left panel is truncated at 60, though the maximal value of the
red curve is 184, to ensure the finite values of both curves at y 6= 2 can be clearly seen. According to Eq. (19), the curves should satisfy
∂v′(t = 0)/∂t = 2δ(y−y′) so the area under the curves should be 2.00. The areas under the red and blue curves are noted in the figure using
red and blue legends, respectively.

In both problems, the discrepancies between the theories
and the simulations increase with time. However, for large
values of L the error of the harmonic wave theory is larger
in the Ekman adjustment problem than in the geostrophic ad-
justment problem (compare the ordinate ranges of the lower5

panels of Fig. 5). Part of the reason for the higher values
of εLP(t) in the Ekman adjustment problems arises from the
higher amplitude of the waves themselves in the Ekman ad-
justment problem compared to the geostrophic adjustment
problem (compare the ordinate range of Fig. 2 to that of10

Fig. 4).
Figure 8 summarizes the ranges of L and t where the theo-

ries yield acceptable results, defined by εLP < 0.1. The colors
in Fig. 8 indicate which theory satisfies εLP < 0.1 as a func-
tion of L and t using the following color codes: White: both15

theories. Red: harmonic wave theory. Blue: trapped wave
theory. Black: neither theory. Regions in which neither the-
ory is accurate are wider in the Ekman adjustment problem,
reflecting the greater challenges of modeling its dynamics.
In both problems, the trapped wave theory yields εLP < 0.120

over larger ranges of L and t compared to the harmonic
wave theory. As evident from the white regions near the ordi-
nates of Fig. 8, both theories satisfy εLP < 0.1 for sufficiently
small t . This is because the superposition of harmonic and
trapped wave modes in the two problems was selected such25

that the resulting functions satisfy the initial conditions. The
failure of the trapped wave theory at large L in the Ekman
adjustment problem does not result from the small number
of modes, as a change in the number of modes (to 103 and
5× 104) has a negligible effect on εLP. This delicate issue is30

left for future study.
This study expands on earlier works by examining the ac-

curacy of wave theories across both time and domain ranges
(L-values), rather than focusing solely on two values of L
(one small and one large) as was done in Gildor et al. (2016)35

and Yacoby et al. (2023). It demonstrates that neither of the

Figure 8. The range of L and t for which the harmonic and trapped
wave theories yields εLP < 0.1. White: both theories. Red: only the
harmonic wave theory. Blue: only the trapped wave theory. Black:
neither theory. Time, t , is in units of f−1

0 .

existing wave theories provides accurate approximations for
the waves at all (large) times. This underscores the need for
a more comprehensive theory that incorporates the β effect
while fully satisfying the boundary conditions. An approach 40

to achieve this goal is to decompose the initial conditions into
the basis of the two Airy functions, Ai and Bi, while satisfy-
ing the boundary conditions, based on solutions of the tran-
scendental equations that currently have no known explicit
solutions. 45

This paper focuses on zonally-invariant Poincaré waves.
However, the approach employed here can also be applied to
zonally-dependent problems, e.g., geostrophic adjustment in
rotating channels (Gill, 1976; Hermann et al., 1989; Tomas-
son and Melville, 1992, Sect. 9, and Yacoby et al., 2023, 50

Sect. 5), geostrophic adjustment in closed basins (Johnson
and Grimshaw, 2014), and wind-driven circulation in closed
basins (Pedlosky, 1965; Pierini, 1998; Sura et al., 2000; La-
Casce, 2000; Cessi and Primeau, 2001; Cessi and Louazel,
2001). The extension of this work to a zonally-dependent 55
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setup, where Rossby waves are also excited, is left for future
works.

Appendix A: Harmonic- and trapped-wave theories

This appendix reviews the two types of wave solutions of
Eq. (15). We start with classical harmonic waves in Sect. A15

and proceed to trapped waves in Sect. A2. In addition to the
solutions for v (that are the main focus of this work) we also
provide, for completeness of presentation, the solutions for η
and u in Appendix B.

A1 Harmonic waves10

Although the classical harmonic wave theory is well-known,
its discussion here serves to highlight the differences be-
tween this wave type and the trapped waves presented in
Sect. A2.

In the harmonic theory, the y-dependent term −2by is ne-15

glected in Eq. (15). Considering the boundary conditions
(Eq. 5), the resulting equation is solved by the harmonic
eigenfunctions:

v̂n = an sin
[
π(n+ 1)

L
y

]
, n= 0, 1, . . . (A1)

and the associated eigenvalues:20

En =

(
π(n+ 1)

L

)2

, n= 0, 1, . . . (A2)

The coefficients an are determined in Sect. 3 based on the ini-
tial conditions. Substituting the expression for En in Eq. (17)
yields the dispersion relation for harmonic Poincaré waves:

ω2
n = 1+

(
π(n+ 1)

L

)2

. (A3)25

Before moving on to the trapped wave theory we define
the normalized harmonic eigenfunctions:

v̂∗n(y)=

√
2
L

sin
[
π(n+ 1)

L
y

]
, (A4)

in which the coefficient
√

2
L

guarantees that:

〈v̂∗n, v̂
∗
n〉 =

L∫
0

(
v̂∗n(y)

)2dy = 1. (A5)30

The definition of v̂∗n is employed in Sect. 3 to determine the
coefficient an in Eq. (A1).

Note that in the absence of zonal variations, the harmonic
wave solutions are identical to those on the f -plane.

A2 Trapped waves 35

This section presents the trapped wave theory, in which the
harmonic wave functions of Sect. A1 are replaced by Airy
functions, as has been shown by Paldor and Sigalov (2008),
De-Leon and Paldor (2011), Gildor et al. (2016), and Yacoby
et al. (2023). 40

In the trapped wave theory, Eq. (15) is transformed to an
Airy equation:

d2v̂

dz2 − zv̂ = 0 (A6)

by defining

z(y)=−(2b)−2/3
[E− 2by]. 45

The general solution of Eq. (A6) is a linear combination of
Ai(z), that decays (faster than exponential) for z > 0, and
Bi(z), that grows (faster than exponential) for z > 0, namely:

v̂ = aAi(z)+ bBi(z), (A7)

where the coefficients a and b are determined from the initial 50

and/or boundary conditions.

A2.1 Semi-infinite domains

In semi-infinite domains (L→∞), the boundary condition
that v vanishes at infinity implies that the coefficient of Bi
(that grows to infinity) in Eq. (A7) must be 0. Accordingly, 55

using the definition of z(y), Eq. (A7) reduces to:

v̂ = aAi
(
−(2b)−2/3

[E− 2by]
)
. (A8)

The final step is the application of the wall boundary con-
dition at y = 0, i.e. setting z(y = 0) in the expression of
the nth zero of Ai(z), denoted as ξn, e.g., ξ0 =−2.338, 60

ξ1 =−4.088, etc. (note that ξn are all negative since Ai(z)
vanishes only at finite negative values of z). This condition
determines the discrete wave functions:

v̂n = anAi
(
(2b)1/3y+ ξn

)
(A9)

with the corresponding eigenvalues: 65

En =−ξn(2b)2/3. (A10)

Substituting this expression for En in Eq. (16) yields the fol-
lowing dispersion relation for trapped Poincaré waves:

ω2
n = 1− ξn(2b)2/3. (A11)

As in Sect. A1 we define the normalized (Airy) eigenfunc- 70

tions:

v̂∗n(y)=

[
22/3

2b1/3

(
Ai′ (ξn)

)2]−1/2

Ai
(
(2b)1/3y+ ξn

)
, (A12)
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where Ai′(z) is the derivative of Ai(z). The coefficient of
Ai(z) in Eq. (A12) guarantees that:

〈v̂∗n, v̂
∗
n〉 =

∞∫
0

(
v̂∗n(y)

)2dy = 1.

Note that here the upper bound of the integral is∞ [and notL
as in Eq. (A5)] since the trapped wave modes, Ai(z), vanish5

at infinity. The form of v̂∗n given in Eq. (A12) is employed in
Sect. 3 to determine the coefficient an in Eq. (A9).

A2.2 Large finite domains

Since all Airy wave solutions in Eq. (A9) decay to 0 at
large y, these solutions can be expected to apply at suffi-10

ciently large, finite, y-domains and not only to semi-infinite
domains. Indeed, Paldor and Sigalov (2008), Gildor et al.
(2016), and Yacoby et al. (2023) demonstrate that the trapped
wave theory provides an accurate approximation for the
waves when the domain length, L, is large enough e.g. when:15

L > (2b)−
1
3 (2+ ξn) (A13)

which guarantees that z(y = L) > 2 so Ai(z(y = L)) <
0.035, which is sufficiently small to justify the neglect of
Bi(z). The above constraint on L indicates that the higher
the wave mode, n (and with it, the absolute value of ξn), the20

larger the domain should be for the trapped wave theory to
remain valid. However, this condition completely ignores the
time variable, which may also affect the applicability of the
trapped wave theory in large but finite domains.

The condition (Eq. A13) points to the combined depen-25

dence of the β-effect on the domain extent L andRd. Though
the condition applies to the transition from the harmonic
(i.e. the f -plane) wave solutions to the trapped (Airy) wave
solutions, its implication is wider and the effect of β on the
f -plane dynamics is determined by both L and Rd as was30

shown in Yacoby et al. (2024).

Appendix B: The solutions of η and u

For completeness of presentation, this Appendix provides the
solutions for η and u. We start with the geostrophic adjust-
ment problem in Sect. B1 and proceed to the Ekman adjust-35

ment problem in Sect. B2.

B1 Geostrophic adjustment

In the geostrophic adjustment problem, η and u can be di-
vided into time-independent components (η, u) and time-
dependent components (η′, u′).40

B1.1 Time-independent components

According to Eq. (10), the time-independent components η
and u satisfy the geostrophic balance:

(1+ by)u=−
∂η

∂y
. (B1)

However, an additional equation must be derived to find 45

η and u. The derivation of this additional equation out-
lined here follows the approach presented in Yacoby et al.
(2023). Substituting the continuity equation, Eq. (11), into
the y derivative of Eq. (9) yields:

∂q

∂t
= bv, q =

∂u

∂y
+ (1+ by)η. (B2) 50

Substituting the continuity equation once again but this time
into the y derivative of Eq. (B2), yields:

∂

∂t

(
∂q

∂y
+ bη

)
= 0. (B3)

This conservation equation indicates that the combination of
time-dependent variables within the bracket at time t equals 55

their initial combination. The initial conditions (Eqs. 6–7)
imply:

q(t = 0)=−(1+ by)sgn(y− y′),

and substituting this relation into the time integral of Eq. (B3)
yields: 60

∂2u

∂y2 + (1+ by)
∂η

∂y
+ 2bη =−2(1+ by)δ(y− y′)

− 2bsgn(y− y′). (B4)

The system (Eqs. B1 and B4) can be solved numerically by
imposing the relevant boundary conditions (see discussion in
Yacoby et al., 2023) and utilizing a standard BVP solver.

B1.2 Waves 65

After finding v′, the wave components of u and η, u′ and
η′, can be obtained by substituting v′ into Eqs. (9) and (11),
respectively, and integrating these equations with respect to
time. This results in:

u′ =−(1+ by)
∞∑
n=0

a∗n

ωn
v̂∗n(y)cos(ωnt) (B5) 70

and

η′ =

∞∑
n=0

a∗n

ωn

dv̂∗n
dy

cos(ωnt) (B6)

where:

dv̂∗n
dy
=
π(n+ 1)

L

√
2
L

cos
[
π(n+ 1)

L
y

]
,
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according to the harmonic wave theory, and:

dv̂∗n
dy
= (2b)1/3

[
22/3

2b1/3

(
Ai′ (ξn)

)2]−1/2

Ai′
(
(2b)1/3y+ ξn

)
,

according to the trapped wave theory.

B2 Ekman adjustment

The calculated solutions of v and v′ yields η and u as follows:5

the substitution of v = v+v′ in Eq. (11) and integration with
respect to t yields:

η = η · t + η′ (B7)

where:

η =−
dv
dy
, η′ =−

∞∑
n=0

a∗n

ωn

dv̂∗n
dy

sin(ωnt) . (B8)10

Substituting v = v+ v′ in Eq. (9) yields:

u= u · t + u′ (B9)

in which:

u=
1

1+ by
d2v

dy2 , u′ = (1+ by)
∞∑
n=0

a∗n

ωn
v̂∗n(y)sin(ωnt) . (B10)

The u · t term solves the inhomogeneous part of Eq. (9), i.e.:15

u− (1+ by)v = 1,

which is equivalent to Eq. (13). The u′ component solves the
homogeneous part of Eq. (9), i.e.:

∂u′

∂t
− (1+ by)v′ = 0.

Appendix C: Extension to a two-layer ocean20

In this appendix, we consider the case of a two-layer ocean.
This analytically tractable configuration provides the mo-
tivation for the continuously stratified case discussed in
Appendix D. To this end, the zonally invariant, linearized
RSWE (Eqs. 1–3) are extended to the two-layer system. For25

the top layer of mean depth H1 (with variables denoted by
the subscript 1), the governing equations are:

∂u1

∂t
− f (y)v1 =

τ0

ρ1H1
, (C1)

∂v1

∂t
+ f (y)u1 =−g

∂η

∂y
, (C2)

∂h

∂t
−H1

∂v1

∂y
= 0, (C3)30

where f (y) is given in Eq. (4), η is the free surface displace-
ment and h is the (upward) displacement of the interface that

separates the two layers. The continuity equation (C3) as-
sumes

∣∣∣ ∂η∂t ∣∣∣� ∣∣ ∂h
∂t

∣∣, an assumption referred to as the rigid lid
approximation. For the lower layer (variables denoted by the 35

subscript 2), the equations are:

∂u2

∂t
− f (y)v2 = 0, (C4)

∂v2

∂t
+ f (y)u2 =−g

∂η

∂y
− g′

∂h

∂y
, (C5)

∂h

∂t
+H2

∂v2

∂y
= 0, (C6)

where H2 is the mean thickness of the lower layer and g′ = 40

g(ρ2− ρ1)/ρ2 (where ρ1 and ρ2 are the densities of the up-
per and lower layers, respectively) is the reduced gravity. The
momentum equations (Eqs. C4–C5) assume (ρ2−ρ1)/ρ2�

1 while g ρ2−ρ1
ρ2

is O(1), an assumption referred to as the
Boussinesq approximation. A more detailed derivation of 45

Eqs. (C1)–(C6) can be found in Sect. 9.10 of Gill (1982).
The momentum equations can be combined to elimi-

nate η from the equations, which is achieved by subtracting
Eqs. (C1)–(C2) from Eqs. (C4)–(C5), respectively. The re-
sulting equations are: 50

∂U2-1

∂t
− f (y)V2-1 =−

τ0

ρ1H1
, (C7)

∂V2-1

∂t
+ f (y)U2-1 =−g

′
∂h

∂y
,, (C8)

where:

U2-1 = u2− u1, V2-1 = v2− v1.

A continuity equation that involves V2-1 (instead of v1 or v2) 55

is obtained by adding H−1
1 times (Eq. C3) and H−1

2 times
(Eq. C6), which yields:(

1
H1
+

1
H2

)
∂h

∂t
+
∂V2-1

∂y
= 0,

or:

∂h

∂t
+He

∂V2-1

∂y
= 0, (C9) 60

where

He =
H1H2

H1+H2
.

The two-layer system (Eqs. C7–C9) is similar to the single
layer system (Eqs. 1–3) with two notable differences: (i) the
RHS of Eq. (C7) contains a negative sign, whereas the RHS 65

of Eq. (1) does not. (ii) The two-layer system includes two
mean heights, H1 and H2 (or H1 and He), whereas the one-
layer system includes only one (H ). In other words, the two-
layer system introduces an additional free parameter.
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C1 Nondimensionalization

As in Sect. 2.4, the two-layer system, Eqs. (C7)–(C9), is
nondimensionalized (nondimensional variables are denoted
by asterisks) by scaling the dimensional variables on:

t∗ = f0t,5 (
x∗,y∗

)
=

1
R′d
(x,y), R′d =

√
g′He/f0.

For the geostrophic adjustment problem (where τ0 = 0), we
also define:

h∗ =
1
h0
h,(

U∗2-1,V
∗

2-1
)
=
He

h0

1√
g′He

(U2-1,V2-1) ,10

where h0 the amplitude of the initial interface disturbance
(defined in Sect. D2), while, for the Ekman adjustment prob-
lem (where h0 = 0) we define:

h∗ =
H1

He

ρ1f0
√
g′H1

τ0
h,(

U∗2-1,V
∗

2-1
)
=
ρ1f0H1

τ0
(U2-1,V2-1) .15

With these nondimensional variables, Eqs. (C7)–(C9) be-
come:

∂U∗2-1
∂t∗
− (1+ b′y∗)V ∗2-1 =−δi0, (C10)

∂V ∗2-1
∂t∗
+
(
1+ b′y∗

)
U∗2-1 =−

∂h∗

∂y∗
, (C11)

∂h∗

∂t∗
+
∂V ∗2-1
∂y∗

= 0, (C12)20

where:

b′ =
βR′d
f0

.

Note that although the dimensional two-layer system con-
tains more parameters than the dimensional one-layer sys-
tem, our somewhat cumbersome scaling (compared to that25

employed in Sect. 2.4) guarantees that the non-dimensional
two-layer system contains only one free parameter, exactly
as the non-dimensional single layer system.

Appendix D: Application to simulations with a
3D-OGCM30

In this appendix, we extend the analytical insights from Ap-
pendix C to realistic simulations using the MITgcm, now em-
ployed as a fully 3-dimensional Ocean General Circulation
Model, thereby demonstrating the relevance of our results to
the real ocean.35

Although the MITgcm is not inherently a layered model,
we configure it with 38 vertical layers to represent a simpli-
fied, two-layer physical ocean. The upper and lower physical
layers correspond to groups of numerical layers: the lower
physical layer is initialized at temperature T1, and the upper 40

layer at T2 (see Sect. D2). Section D2 provides a detailed de-
scription of how the numerical layers map onto the physical
layers, clarifying that the “physical layers” serve as a concep-
tual framework for comparison with the two-layer analytical
model of Appendix C, while the numerical layers determine 45

the vertical resolution of the 3D-OGCM. Unlike the analyti-
cal model, which assumes a sharp interface preventing mix-
ing, the 3D-OGCM includes temperature diffusion, allowing
some mixing near the interface (i.e., within the thermocline).

D1 Equations solved 50

The MITgcm is employed here to simulate depth-dependent
flow with density determined only by temperature. Viscous
and diffusive terms are incorporated into the momentum
equations and the temperature advection equation, respec-
tively. Similar to the set-up in Sect. 2, the domain is peri- 55

odic in the zonal direction and bounded in the meridional
direction by walls located at y = 0 and y = L and aligned
parallel to the x-axis. A wind-stress momentum forcing is
applied in the zonal momentum equation. However, in this
multilayer configuration, the forcing term Fwind is applied 60

only to the momentum equation for the surface layer, i.e., it
is set to zero for the interior layers. While the MITgcm model
equations account for x-variations, the initial conditions em-
ployed here (see Sect. D2) and the periodic boundary condi-
tions in the x-direction ensure that no x-variation develops in 65

the simulations (which was verified by our numerical simula-
tions). Thus, although the equations of the MITgcm include
the changes with x, the relevant equations in our problems
assume ∂/∂x = 0. These considerations lead to the follow-
ing set of equations, written in Cartesian coordinates: 70

1. Momentum equations:

Du(t,y,z)
Dt

− f (y)v−Ay
∂2u

∂y2 −Az
∂2u

∂z2 = Fwind, (D1)

Dv(t,y,z)
Dt

+ f (y)u−Ay
∂2v

∂y2 −Az
∂2v

∂z2 =−
1
ρ0

∂p′

∂y
,

(D2)

where

D
Dt
=
∂

∂t
+ v

∂

∂y
75

and Fwind =
τ0

ρ01zs
is applied only to the momentum

equation for the topmost layer. Here, Ay and Az are
horizontal and vertical viscosities, respectively, p is the
pressure and ρ0 is the mean water density (or the refer-
ence density in the equation of state, Eq. D5) and 1zs 80

is the thickness of the model’s topmost layer.
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2. Conservation of mass:

∂η(t,y)

∂t
+
∂V

∂y
= 0, (D3)

where η is the deviation of the sea surface height from
z= 0 and V =

∫
vdz (i.e. V is the vertically integrated

meridional velocity in units of m2 s−1).5

3. Equation for the perturbation pressure, p′:

p′(t,y,z)= gρ0η+

0∫
z

gρ′dz (D4)

separated into a barotropic part (due to variations in η)
and a baroclinic part (due to variations in density
anomaly, ρ′).10

4. Linear equation of state:

ρ′(t,y,z)= ρ− ρ0 =−ρ0α (T − T0) (D5)

where α is the thermal expansion coefficient and T0 is a
reference temperature that determines ρ0.

5. An advection-diffusion equation for the temperature, T :15

DT (t,y,z)
Dt

− κy
∂2T

∂y2 − κz
∂2T

∂z2 = 0 (D6)

where κy and κz are horizontal and vertical diffusivities, re-
spectively. The initial conditions and model parameters are
described in Sect. D2.

D2 Initial conditions and model parameters20

As in the one-layer case discussed in the main text (Sect. 2.3),
we consider two types of initial conditions: one for the
geostrophic adjustment problem and another for the Ekman
adjustment problem. In both problems the ocean is initially
at rest, its surface height, η, is zero and it consists of two lay-25

ers of different temperatures (hence, different densities). The
upper (lower) layer has a temperature of T1 (T2) with T2 < T1
and a mean height of H1 (H2).

In the geostrophic adjustment problem, the forcing term
on the RHS of Eq. (D1) is set to zero and the initial interface30

between the upper and lower layer, h(y,0) is given by:

h(y, t = 0)=−h0sgn(y− y′)−H1,

where h0 is the amplitude of the initial interface displace-
ment. Accordingly, as illustrated in Fig. D1, the initial tem-
perature field is:35

T
(
y < y′,z, t = 0

)
=

{
T1, for −H1+h0 < z ≤ 0,
T2, otherwise, (D7)

T
(
y > y′,z, t = 0

)
=

{
T1, for −H1−h0 < z ≤ 0,
T2, otherwise. (D8)

Figure D1. A schematic illustration of the initial temperature profile
in the geostrophic adjustment problem (Eqs. D7–D8).

while the corresponding initial density anomaly (ρ′) field,
determined only by the temperature according to the linear
equation of state Eq. (D5), is 40

ρ′
(
y < y′,z, t = 0

)
=

{
−ρ0α (T1− T0) , for −H1+h0 < z ≤ 0,
−ρ0α (T2− T0) , otherwise, (D9)

ρ′
(
y > y′,z, t = 0

)
=

{
−ρ0α (T1− T0) , for −H1−h0 < z ≤ 0,
−ρ0α (T2− T0) , otherwise. (D10)

In the Ekman adjustment problem, the initial surface
height disturbance, h0, is set to zero, i.e.: 45

h(t = 0)=−H1.

Thus, the corresponding initial temperature field is simply:

T (z, t = 0)=
{
T1, for −H1 < z ≤ 0,
T2, otherwise.

To avoid confusion between the number of layers in the
ocean and the number of vertical grid cells in the model, we 50

clarify that, although the initial conditions represent a two-
layered ocean, the number of vertical grid cells in the numer-
ical model (which will be termed here “numerical layers”
to distinguish them from the two “physical” ocean layers) is
set to 38. Specifically, in the Ekman adjustment problem, the 55

upper 19 numerical layers were initialized with temperature
T1 (and anomaly density ρ′1), whereas the lower 19 numeri-
cal layers were initialized with temperature T2 (and anomaly
density ρ′2). In contrast, in the geostrophic adjustment prob-
lem, the number of numerical layers for the upper and lower 60

layers were varied for y < y′ and y > y′ to represent an ini-
tial disturbance in the thermocline depth. Specifically, for
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Table D1. Vertical resolution, 1z. The model numerical layers are
numbered from the sea surface (layer #1) to the ocean bottom (layer
#38), with a total ocean depth of 2 km.1z is finer near the interface
between the layers, located at z=−1 km (see Table D2).

Layer number 1z (meters)

1–2, 37–38 200
3–6, 33–36 100
7–9, 30–32 50
10–29 5

y > y′, the upper (physical) layer consists of 23 numerical
layers, whereas for y < y′, it consists of only 15 numerical
layers.

As detailed in Table D1, the grid size in the z-direction,
1z, in the 2 km deep ocean is not uniform, as a much finer5

resolution is required near the interface that separates the two
layers (located 1 km below the surface). According to Ta-
ble D1, a difference of 8 numerical layers in the thermocline
represents a disturbance of 40 m in the depth of the thermo-
cline.10

The model parameters are summarized in Table D2. Note
that

He =
H1H2

H1+H2
= 500m and g′ = g

ρ2− ρ1

ρ2

= g
α (T1− T2)

1−α (T2− T0)
= 0.018,

which implies R′d =
√
g′He/f0 = 30 km. This value is con-15

sistent with the value of Rd used in the 1D solutions pre-
sented in Sect. 4. This consistency ensures that the results
of the current simulations can be directly compared with the
previous results (see Sect. D3). The domain’s meridional ex-
tent was set to L= 1800 km= 60R′d. Since x-variations are20

ignored in the differential system, we set the number of cells
in the x-direction to 4 to ensure the periodicity in x (so the
zonal extent of the domain is 41x, where1x is the grid spac-
ing). To ensure that the signs on the RHS of Eqs. (C7) and (1)
agree with one another we set τ0 in the current simulations to25

be negative (i.e., the wind blows from east to west).

D3 Results

To compare the results of the current, multilayered ocean,
simulations with the previous simulations of a single-layer
ocean, we calculate the vertically-averaged meridional ve-30

locities in each of the two (physical) layers, i.e.:

v1 =
1
H1

0∫
−H1

vdz, v2 =
1
H2

H1∫
−(H1+H2)

vdz,

where v1 and v2 are the vertically-averaged meridional ve-
locities of the upper and lower layers, respectively. Since the

Table D2. The parameters used for the 3D-OGCM. In addition to
the parameters listed in the table, the Rossby radius of deformation,
R′d =

√
g′He/f0, was set to 30 km, and the domain’s meridional

extent, L, is set to 60R′d.

Equation parameters

Gravity, g 9.81 m s−2

Mean/reference density, ρ0 1000 kg m−3

Reference temperature, T0 20 °C
Thermal expansion coefficient, α 2× 10−4 K−1

Coriolis parameter at y = 0, f0 10−4 s−1

Gradient of the Coriolis parameter, β 1.67× 10−11 m−1 s−1

Horizontal viscosity, Ay 500 m2 s−1

Vertical viscosity, Az 10−2 m2 s−1

Horizontal diffusivity, κy 1000 m2 s−1

Vertical diffusivity, κz 10−5 m2 s−1

Wind forcing/initial conditions

Upper layer temperature, T1 24.6 °C
Lower layer temperature, T2 15.4 ° C
Upper layer density anomaly, ρ′1 −0.92 kg m−3

Lower layer density anomaly, ρ′2 +0.92 kg m−3

Upper layer mean height, H1 1 km
Lower layer mean height, H2 1 km

Geostrophic Ekman
adjustment adjustment

Wind stress amplitude, τ0 0 N m−2
−0.05 N m−2

Initial interface amplitude, h0 20 m 0 m
Location of the initial front, y′ L/2 –

Numerical parameters

Time step, 1t 50 s
Meridional grid size, 1y 500 m
Vertical grid size, 1z see Table D1

model comprises 38 numerical layers, v1 (v2) is numerically 35

computed as the average of the meridional velocities in the
upper (lower) 19 layers. To focus on the waves, we subtract
the time averages of v1 and v2 from their time-dependent val-
ues (v1 and v2) i.e., we calculate:

v′1 = v1− v1, v′2 = v2− v2, 40

were:

v1 =
1
tend

tend∫
0

v1dt, v2 =
1
tend

tend∫
0

v2dt,

tend = 60
(

in units of f−1
0

)
.

For the geostrophic adjustment problem we get v1 = 0= v2
which implies v1 = v

′

1 and v2 = v
′

2. 45

The results for the geostrophic adjustment and the Ekman
adjustment problems are depicted in Figs. D2 and D3, re-
spectively. In the figures, v′2 is represented in red, v′1 in blue,
and the difference between them, V ′2-1 = v

′

2− v
′

1, in dashed-
black lines. For comparison with the 1D simulations, the 50
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Figure D2. The meridional velocity for the geostrophic adjustment problem in multilayered ocean simulations. Red: the vertically averaged
velocity of the lower layer, v2. Blue: the vertically averaged velocity of the upper layer, v1. Dashed-black: V2-1 = v2− v1. Solid-black: the
meridional velocity in one-layer ocean simulations, v (duplicates of the solid-black lines shown in Fig. 2). Time, t , is in units of f−1

0 .

solid-black lines in Figs. D2 and D3 duplicates of the solid-
black lines shown in Figs. 2 and 4, respectively. To allow a
comparison between previous and current results, the results
in Figs. D2 and D3 are presented in nondimensional form
(using the scales described in Sect. C1).5

The figures show excellent agreement between V ′2-1 in the
multilayered ocean simulations (dashed black) and v′ in the
simple single-layer ocean simulations (solid black) in both
problems. However, in the geostrophic adjustment problem
(Fig. D2), discrepancies between V ′2-1 and v′ are observed10

near the wave-fronts, where waves with a relatively short
wavelength exist. We hypothesize two reasons for the dis-
crepancies between V ′2-1 and v′: (i) the horizontal viscosity
terms added to the momentum equations in the 3D-OGCM,
Eqs. (D1)–(D2), reduce the energy of short waves in the mul-15

tilayered ocean, resulting in smoother wave-fronts. (ii) To ac-
celerate the multilayered ocean simulations, we significantly
increased 1t and 1y in the 3D-OGCM (compare Table D2
with Table 1). As mentioned in Sect. 4.1, the sharpness of
the wave-fronts decreases as1t and1y increase. In addition20

to the agreement between the single layer and multilayered
simulations, the figures clearly indicate that in both problems
v′1 =−v

′

2 so V ′2-1 = 2v′2 =−2v′1.
We conclude this section with results not shown in the fig-

ures: (i) in both problems, the velocity in the lower layer is 25

uniform with depth. Thus, the velocity at any depth below the
interface equals the vertically averaged velocity of the lower
layer, v′2. (ii) In the geostrophic adjustment problem, the ve-
locity in the upper layer is uniform with depth, as is the veloc-
ity in the lower layer. (iii) In the Ekman adjustment problem, 30

the wind stress (which acts only at the topmost layer) causes
a shear of the flow of the upper layer. We found that the pro-
file of v′(z) in the upper layer depends on the thickness of
the model’s topmost layer, 1zs . However, the vertically av-
eraged velocity v′1 is independent of 1zs since in a thinner 35

grid layer the effect of the wind stress in that layer increases
(the same wind stress is spread over a thinner layer).
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Figure D3. The time-dependent component of the meridional velocity for the Ekman adjustment problem in multilayered ocean simulations.
Red: the vertically averaged velocity of the lower layer, v′2. Blue: the vertically averaged velocity of the upper layer, v′1. Dashed-black:
V ′2-1 = v

′
2− v

′
1. Solid-black: the time-dependent component of the meridional velocity in one-layer ocean simulations, v′ (duplicates of the

solid-black lines shown in Fig. 4). Time, t , is in units of f−1
0 .

Appendix E: Relevance to observations

Due to their relatively fast phase speed, Poincaré waves in
the ocean are harder to observe compared to Rossby waves.
Yet, reports of Poincaré wave observations were documented
in the literature and they have been compared with analyti-5

cal solutions and numerical simulations. For example, inter-
nal Poincaré waves were observed in Lake Ontario following
a storm on 9 August 1972. Simons (1978) analyzed these
observations and showed that both analytical and numerical
solutions in idealized setting exhibit similar characteristics10

to the observed wave-fronts, e.g., the offshore propagation
speed and the periodic recurrence with near-inertial periods.
Simons (1978) also showed that the basic kinematics of the
downwelling front could be simulated using a simple two-
layer model.15

Observations of the fast Poincaré waves require long and
high-resolution in time and, similarly, the distinction be-
tween the mode structure of trapped and harmonic waves

requires high meridional resolution and large meridional ex-
tent, both of which complicate the detection of these waves 20

in the ocean. Presently, observations of Poincaré waves were
reported mainly in lakes, where only harmonic modes can
be detected, e.g., Lake Michigan and Lake Ontario (see, e.g.,
Mortimer, 1977). Indeed, Gill (1982, Sect. 7.3) cites these
observations, emphasizing that the observed Poincaré waves 25

have similar characteristics to the analytical harmonic-wave
solutions of the geostrophic adjustment on the f -plane. Our
results imply that the resemblance between both numerical
and analytical solutions on the f -plane and the observed
waves in Lake Ontario is expected, given that the merid- 30

ional (south-north) extent of Lake Ontario is∼ 80 km, which
should be considered narrow since the results of Figs. 1 and 3
imply that a meridional extent of O(4) radii of deformation
is narrow.

Poincaré waves with frequency near the inertial fre- 35

quency f , known as near-inertial waves, are a dominant
mode of high-frequency variability in the ocean, appearing
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Figure E1. The decrease of the meridional wavelength with t (where t is given in units of f−1
0 ). (a) The blue curves replicate the blue

curves of Fig. 4, i.e., the trapped wave solutions in the Ekman adjustment problem at the indicated times, t . The red dots mark the two
southern nodal points. The distance between the two red dots, D, is used in panel (b) to estimate the meridional wave number, l ≈ π/D.
(b) Dots: the estimated zonal wavenumber π/D as a function of time. Dashed line: a linear regression fit. The slope of the regression line
is 0.0051≈ βRd/f0 = 0.005 which agrees very well with the observed trend reported by D’Asaro et al. (1995). The intersection with the
ordinate is −0.02, indicating that the initial wavelength is 314. A 180° phase shift occurs at t = 4.

as a prominent peak that rises significantly above the Garrett
and Munk (1975) continuum internal wave spectrum (see,
e.g., Alford et al., 2016). These waves are frequently ob-
served in oceans and lakes, such as in the Gulf of Mexico
(Gough et al., 2016), Lake Ontario (Schwab, 1977), Lake5

Michigan (Ahmed et al., 2014), the Gulf of Lions (Millot
and Crépon, 1981), and the northeast Pacific Ocean (D’Asaro
et al., 1995). The distinction between near-inertial trapped
and harmonic modes of these near-inertial waves is compli-
cated by the fact that the frequencies of the n= 0 modes are10

very close to 1, hence to one another. This can be shown by

substituting n= 0 in Eq. (A3) which yields ω2
= 1+(π/L)2

for the harmonic n= 0 mode while substituting n= 0 (i.e.,
ξ0 =−2.338) and b = 0.005 in Eq. (A11) yields ω2

= 1.1
for the trapped wave theory. For L= 10 the two types of 15

n= 0 modes yield identical frequencies and for a larger/s-
maller value ofL the frequency of the harmonic mode is only
slightly smaller/larger than that of the trapped mode.

However, the trapped wave solution can be invoked to re-
produce an observed phenomenon in the ocean – the linear 20

change of the meridional wavenumber with time. The obser-
vations in the Pacific Ocean reported in D’Asaro et al. (1995)
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demonstrate that following a storm the zonal wavenumber
remains constant while the meridional wavenumber changes
linearly with time. Specifically, the meridional wavenumber
decreases at a rate of −βt by, first, decreasing the initial
wavenumber to zero followed by a 180° phase shift in which5

the wavenumber becomes negative and increases its absolute
value linearly with time (see also Alford et al., 2016). This
phenomenon was explained by D’Asaro et al. (1995) using
the following argument: Representing an inertial wave on the
β-plane (where f = f0+βy) as ei(l0y−f t) = ei[(l0−βt)y−f0t]10

suggests that the initial meridional wavenumber l0 becomes
increasingly negative as βt increases. However, this heuris-
tic argument is mathematically inconsistent since the ansatz
ei(l0y−f (y)t) violates the separation of variable that yields the
wave equation for the meridional structure (and the disper-15

sion relation). Indeed, the harmonic wave solutions (red lines
in Figs. 1–4) do not reproduce the linear time variation of the
meridional wavenumber.

In contrast to the harmonic wave solutions, the trapped
wave theory accurately reproduces the linear change of the20

wavenumber. To illustrate this, Fig. E1a revisits the trapped
wave solutions for the Ekman adjustment problem shown in
Fig. 4. The two southern nodal points are highlighted with
red dots and the distance between these points, D, provides
an estimate of the meridional wavenumber – l ≈ π/D. As25

shown in Fig. E1b, the calculated wavenumber increases lin-
early with time. A linear regression analysis yields a slope
of 0.0051, which is in excellent agreement with the the-
oretical value βRd/f0 = 0.005 and the trend observed by
D’Asaro et al. (1995).30

The application of the theoretical results reported here to
observations does not include the meridional structure of the
modes and the wave’s spectrum, since under typical condi-
tions these properties cannot be deciphered in observations.
However, laboratory experiments on a rotating table, similar35

to those reported in Cohen et al. (2010, 2012), can be car-
ried out to verify the applicability of the theoretical results to
carefully designed laboratory experiments.

Code availability. The MITgcm is described in Marshall et al.
(1997) and is available at: https://github.com/MITgcm/MITgcm.40

git (last access: TS2 ). The input files containing the model con-
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