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Abstract. Even though tropical cyclones (TCs) are well documented during the intense part of their lifecycle until they start

to evanesce
::::::
weaken, many physical and statistical properties governing them are not well captured by gridded reanalysis or

simulated by earth system models
::::
Earth

:::::::
System

::::::
Models. Thus, the tracking of

:::::::
tracking TCs remains a matter of interest for the

investigation of
::::::::::
investigating

:
observed and simulated tropical cyclones. Two types of cyclone tracking schemes are available.

On the one hand, there are trackers that
:::::
some

::::::
trackers

:
rely on physical and dynamical properties of the TCs and user-prescribed5

thresholds, which make them rigid. They need numerous variables that are not always available in the models. On the other

hand, there are trackers leaning on deep learning which
::::
need, by nature, need large amounts of data and computing power.

Besides, given the number of physical variables needed
::::::
required

:
for the tracking, they can be prone to overfitting, which

hinders their transferability to climate models. In this study ,
:::
This

:::::
study

:::::::
explores

:
the ability of a Random Forest (RF) approach

to track TCs with a limited number of aggregated variablesis explored. Hence, the tracking is considered as a binary supervised10

classification problem of TC-free (zero) and TC (one) situations. Our analysis focuses on the Eastern North Pacific and North

Atlantic basins, for which , respectively, 514 and 431 observed tropical cyclone track records are available from the IBTrACS

database during the 1980-2021 period. For each 6-hourly time step, RF associates TC occurrence or absence (1 or 0) to

atmospheric situations described by predictors extracted from the ERA5 reanalysis. Then
::::::
Hence,

:::
the

:::::::
tracking

::
is

:::::::::
considered

::
a

:::::
binary

:::::::::
supervised

:::::::::::
classification

:::::::
problem

:::
of

:::::::
TC-free

:::::
(zero)

:::
and

:::
TC

:::::
(one)

:::::::::
situations.

:::::
Then,

:
situations with TC occurrences are15

joined for reconstructing
::::::
stitched

::
to
::::::::::
reconstruct TC trajectories. Results show the

::::
good

:
ability and performance of this method

for tracking tropical cyclones over both basins , and good temporal and spatial generalization as well
::::::::::::
generalisation. RF has a

similar TC detection rate as trackers based on TCs’ properties and
:
a significantly lower false alarm rate. RF allows us to detect

TC situations for a range of
::::::
diverse predictor combinations, which brings more flexibility than threshold based

:::::::::::::
threshold-based

trackers. Last but not least, this study shed
:::::
sheds light on the most relevant variables allowing to detect tropical cyclone

:::
for20

::::::
tropical

:::::::
cyclone

::::::::
detection.
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1 Introduction

Tropical cyclones (TCs) are among the most devastating extreme events in terms of casualties and economic losses (Centre

for Research on the Epidemiology of Disasters, 2021; UN Office for Disaster Risk Reduction, 2020). Several conditions are

necessary for their formation. TC genesis requires warm sea surface temperatures to draw its energy from, low wind shear25

and ample humidity to ensure a stable vortex while maintaining the convection and adequate influence from the Coriolis force

combined with a pre-existing low-pressure disturbance in the atmosphere. Thus, a vortex is created around the depression

with strengthening winds, and fuelled by ascending humid air (Emanuel, 2003; Weaver and Garner, 2023). It becomes a self-

sufficient system that continuously draws energy from the ocean until reaching an unfavourable environment or land (the

landfall). Then, the TC loses its energy, which causes its rapid dissipation (Kepert, 2010; Rüttgers et al., 2019).30

Understanding how human-induced climate change influences TC activity remains a challenging scientific issue (Knutson

et al., 2010; Walsh et al., 2016, 2019). Given the incomplete theoretical understanding of TCs and the limited observation

timespan, the study of
::::::
period,

:::::::
studying the changes in their properties relies on model simulations (Knutson et al., 2019, 2020).

Despite the tremendous effort made to increase the resolution of the Earth System Models (around 100 km for the last gener-

ation of models), it is still too low to simulate realistic TCs (Camargo and Wing, 2016; Roberts et al., 2020). Leveraging the35

recent advances in computational resources, a handful of global simulations with atmospheric spatial resolutions between 25

and 50 km are now available and reveal a clear improvement in simulating TCs (Murakami et al., 2015; Walsh et al., 2015;

Roberts et al., 2020; Bourdin et al., 2024).

To study TCs simulated by global climate models, we need algorithms to objectively detect them
:::::
detect

:::::
them

:::::::::
objectively.

Such algorithms, known as TCs
::
TC

:
trackers, are traditionally based on physical and dynamical properties of cyclones (see40

Zarzycki and Ullrich, 2017; Bourdin et al., 2022, and the reference therein for details about different trackers). These algo-

rithms identify tropical cyclone points and connect them to reconstruct TC tracks employing thresholds applied to variables.

Depending on the variables involved in the tracking process, Bourdin et al. (2022) defined two categories of trackers: physics-

based and dynamics-based. Physics-based trackers rely on thermodynamic properties of a tropical cyclone, such as the local

minimum sea-level pressure combined with a warm-core (temperature anomaly or a geopotential thickness). Dynamics-based45

trackers rely on dynamical variables such as vorticity or other derivatives of the velocity. Both usually include an intensity

criterion to discriminate the systems.

The thresholds used in these trackers that are tracking-scheme specific and subjective, and may also depend on the particular

TC formation basin as well as on
:::
and the TC categories (Camargo and Zebiak, 2002; Befort et al., 2020). This may lead to

a potential inability of tracking schemes to generalize
::::::::
generalise to other domains or data from sources other than those used50

to calibrate the thresholds (Raavi and Walsh, 2020). In order to
::
To

:
avoid subjective choice of thresholds and make the tracker

more flexible in identifying cyclonic situations, this study focuses on
::
the

:
data-driven algorithms, the so-called machine learning

algorithms
:::
are

:::
the

:::::
focus

::
of

:::
this

:::::
study. Indeed, these types of algorithms rely on data to identify cyclones based on different

combinations of variables, independent of user prescribed
::::::::::::
user-prescribed

:
thresholds.
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For instance, the detection skills of three machine learning approaches (Decision Trees, Random Forest, Support Vector55

Machines) and a model based on Linear Discriminant Analysis have been compared for satellite data in Kim et al. (2019a).

Machine learning approaches showed better skill hit rates, while the linear approach showed lower false alarm rates. Among

machine learning approaches, neural network based
::::::::::::
network-based

:
deep learning approaches have lately gained attention for

TC detection. They have been implemented through
:::::
Those

:::
are

:::::
based

:::
on segmentation, edge detection, circle fitting, and com-

prehensive decision for satellite images (Kumler-Bonfanti et al., 2020; Wang et al., 2020; Nair et al., 2022). Kim et al. (2019b)60

leveraged a Convolutional Long Short-Term Memory network to detect and forecast hurricane trajectories on Community

Atmospheric Model v5 simulation data.

However, these approaches use satellite and model data that can be biased and are mainly focused
::::::
mainly

:::::
focus

:
on shape

detection in images. As such, they are not comparable to the physics-based trackers previously mentioned, which have been de-

veloped from reanalysis and evaluated with respect to observed data and focus on TC-related physical processes. For instance,65

in Bourdin et al. (2022), trackers were applied to the fifth generation of ECMWF Reanalysis (ERA5, Hersbach et al., 2020) and

evaluated with respect to the observational record of the International Best Track Archive for Climate Stewardship (IBTrACS,

Knapp et al., 2010). In that context, Gardoll and Boucher (2022) and Accarino et al. (2023) have developed convolutional

neural network (CNN) architectures to detect cyclones. They respectively used eight and six 6-hourly variables extracted from

ERA5 in their CNN. The added value of such approaches is the ability to constrain the detection with
::
the

:
cyclone record70

provided by IBTrACS, by associating each set of 6-hourly data field to
::::
fields

:::::
with the occurrence (absence or presence) of a

cyclone (called labelling in machine learning). This makes tracking TCs a supervised classification problem.

The issue with the use of
:::::
using the latter type of algorithms in the case of TC detection is that the number of TC-related

atmospheric situations is very low compared to TC-free situations. These algorithms trained with such data will learn from a

larger diversity of TC-free situations and thus will be more accurate and inclined to rule for TC-free situations and, therefore,75

biased towards them. In addition, neural network based
::::::::::::
network-based algorithms need, by essence, huge

::::
large

:
amounts of

data, which can sometimes be qualified as data greedy. This calls for strategies to equilibrate
:::
the

:
TC/TC-free ratio while

keeping enough data to obtain a robust tuning of the CNN. Gardoll and Boucher (2022) reduced variable fields in the North

Atlantic to 8◦×8◦ windows around the eye of the cyclone for every time step with a TC and sampled for each one of these

windows two TC-free
::::::
images,

:
which drastically reduce the data sample (28,521 images). This potentially leads to overfitting80

and limits the generalizability of the tracker by reducing
::::::::
lowering the diversity of TC-free situations and the spatial variability

of the potential TC location due to the choice
::
of windows around past TC locations. Only binary properties (TC/TC-free) of the

tracker were evaluated in Gardoll and Boucher (2022). Accarino et al. (2023) considered non-overlapping 10◦×10◦ windows

over the whole joint North Pacific and Atlantic basins and rather opted for a data augmentation procedure of TC situations

to reach a 50/50 ratio (425 358 images). Their CNN-based tracker produced comparable performance as
::
to

:
the physics-based85

trackers in terms of TC track detection but generated larger numbers of false alarms, which is not desirable
:::::::::
undesirable. Finally,

this type of method processes large amounts of data, which calls for huge
::::
large

:
computing power (typically GPU

:::::
GPUs in

Gardoll and Boucher (2022) and
:
a
:
High Performance Computing infrastructure in Accarino et al. (2023)). Both studies did not

provide
::::::
Neither

::
of

:::
the

::::::
studies

:::::::
provided

::
a physical interpretation of the performance of the tracker

:::::::
tracker’s

::::::::::
performance.
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In this study, the objective is to leverage and adapt a well-known and proven method, the Random Forest (RF, Breiman,90

2001), to a TC tracking problem by associating a given atmospherical
::::::::::
atmospheric situation described by a limited set of

predictors to the presence or the absence of TCs. This choice has been made by considering computing cost, the need for

several meteorological variables, and the ultimate goal of such a tracker being the tracking of TC in future climate simulations.

Indeed, having many variables implies potential overfitting and impeded interpretation of the results and lower transferability to

future climate simulations. Random forest provides interpretation means and lower computational costs. Higher data frugality95

will be achieved by considering simple variable statistics instead of entire variable fields, which will potentially improve the

transferability of the tracking to climate simulations.

The paper is organized as follows: Section 2.1 describes the datasets used and its pre-processing. The RF-based tracker,

the experimental setup and the evaluation metrics are described in Section 2.2. Section 3 presents the results of the tracker

developed in this paper. Sensitivity tests are provided in Section 4 and Section 5 gives a summary of the main conclusions from100

this work, while also sketching relevant perspectives.

2 Material and Method

2.1 Data

This section describes the data sets on which this study is based.

2.1.1 International Best Track Archive for Climate Stewardship, IBTrACS105

In this study, the
:::
The

:
IBTrACS “since 1980” set (Knapp et al., 2018) was retrieved

::
in

:::
this

:::::
study. In the following, two basins

are going to be considered: the eastern North Pacific (ENP) and the North Atlantic (NATL) (cf. blue contours in Fig. 1a)). In

these basins, the .
::::

The
:
U.S. National Hurricane Center

::::::
Centre (NHC) is responsible for reporting

::::::
reports tropical cyclones’

best tracks . In total,
::
for

:::::
these

:::::
basins.

:::::
First,

:::::::::::
extratropical

:::::::
cyclones

:::
are

:::
not

:::::::::
considered

::
in

::::
this

:::::
study.

:::
Our

:::::
study

::::::
basins

:::
are

::::::
limited

::
to

:::::
30◦N.

:::::
Thus,

:::::
only

::::
TCs

:::
are

::::::::::
considered,

:::
and

:::::::::
transitions

:::
to

::::::::::
extratropical

::::::::
cyclones

:::
are

::::
not.

::::
For

:::
TC

:::::::
crossing

::::
this

:::::::::
northward110

::::::::
boundary,

::::
only

:::
the

:::::::
portion

::::
lying

::::::
below

:::::
30◦N

::
is

:::::
kept.

:::
The

:
42 cyclonic

::::::
cyclone

:
seasons between 1980 and 2021 (from June

to November in the Northern Hemisphere) are considered. At the time of this study, tracks in 2022 and later are removed,

since some of them are still labelled provisional. Those labelled “spur”are also removed. Track records that are ,
:
not providing

maximum wind and minimum pressureare also removed. Finally, tracks that do not reach
:
,
:::
and

:::
not

:::::::
reaching

:
the Tropical Storm

(TS) stageare also removed. This ,
:::
are

::::::::
removed.

::::
The

::
TS

:::::
stage is decided according to the storm category given by the values of115

the minimum sea level pressure Pmin and the 10 min
::::::::
10-minute near-surface sustained wind u10. Based on Table 2 of Bourdin

et al. (2022), TS stage is reached when Pmin ≤ 1005 hPa and u10 ≥ 16ms−1. Tropical Cyclones (TC) stage is reached when

Pmin ≤ 990 hPa and u10 ≥ 29ms−1. Once processed, the ENP and NATL basins respectively contain 514 and 431 tracks at a

6-hourly timestep.
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Figure 1. a) Eastern North Pacific (ENP) and the North Atlantic (NATL) basins, with the TCs tracks and the associated wind intensity (in

m s−1) used in this study. b) Boxes patching both basin
:::::
basins. Only one out of every two

:::::
second box are pictured for

:
is
:::::
shown

::
to
:::::::
improve

clarityreasons.

2.1.2 ERA5120

Our main objective is to associate climate variables and determine the main drivers that contribute to
::::::
explain

:
the formation

and strengthening of TCs during their lifetime. Hourly estimates of atmospheric variables are provided by
:::::::
available

::
in

:
ERA5

at 0.25◦×0.25◦ from 1979 to the present day. While having similar performances as JRA-55 or NCEP-CFSR for a range of

metrics (Zarzycki et al., 2021; Roberts et al., 2020), ERA5 does not perform any specific assimilation for TCs (Zarzycki et al.,

2021). This motivated
:
,
:::::::::
motivating our choice to use ERA5 to evaluate the tracker developed in this paper. 6-hourly data from125

1980 to 2021 are extracted, consistent with the period of the IBTrACS data. The choice of using 6-hourly data stems from the

overall objective to use the tracker on
::::
track

:::
TC

::
in

:
climate model simulations, whose output is very rarely provided at

::::::
outputs

::
are

::::::
rarely

::
at

:
a higher temporal resolution. Five variables have been

::
are

:
extracted from ERA5:

– the mean sea level pressure, MSLP (in hPa),

– the 10-m wind intensity, UV10 (in m s−1),130

– the total column water vapour, TCWV (in kg m−2),

– the relative vorticity at 850 hPa pressure level, RV850 (s−1),
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– the geopotential thickness between 300 and 500 hPa pressure level, THZ300_Z500 (in m).

These variables
:::
are

::::::::
described

::
in

:::::
Table

:::
S1

::
of

:::
the

:::::::::::::
supplementary

:::::::
material.

::::::
These

::::::::
variables have been selected based on their

ability to characterize
::::::::::
characterise specific physical properties of TCs and on their wide availability in climate model simula-135

tions
:
’ output. In particular, TCs have a warm core, with the most intense winds found close to the surface. TCs are structured

with an eye at the centre, an eyewall, and spiral convective rainbands
:::
rain

::::::
bands around them. TCs are driven by diabatic

processes, meaning that their energy comes from extracting oceanic moisture that releases latent heat once condensed in the

upper troposphere. Considering this, MSLP characterizes
::::::::::
characterises

:
the spatially coherent low-pressure structure (the eye

and the eyewall), UV10 the strong surface wind, TCWV the moister
:::::::
moisture

:
and the potential for rain, RV850 the TC vortex140

and THZ300_Z500 the upper-level warm core associated with the local depression in the TCs.

2.1.3 Data-set preparation

Several steps are followed to prepare the data. First, both basins are patched by 20◦×10◦ overlapping boxes (see shaded blue

boxes in Fig. 1b)), totalling 20 and 16 boxes respectively for ENP and NATL. This is done in order to deal with cases where

two or more TCs occur at the same time in a given basin. Then, for every box, a vector of zeros and ones is constructed : every145

timestep,
:
as

:::::::
follows:

:
a box containing an IBTrACS point reaching TS intensity (Pmin ≤ 1005 hPa and u10 ≥ 16ms−1) is coded

1, and 0 otherwise
::
at

::::
every

::::::::
timestep. Thus, the TC tracking problem is handled as a binary classification problem.

Then, ERA5 predictors associated to
:::
with

:
these binary vectors are built as follows: instead of considering the whole variable

field within a box, only four statistics of that field are considered: minimum, mean, maximum and standard deviation. Thus,

for a given timestep, the atmospheric situation within a box is described by a set of 20 predictors (5 climate variables × 4150

statistics). Those predictors are labelled with the physical variable name attached to the statistic corresponding suffix (min,

mean, max, sd). For instance, MSLPmin, MSLPmean, MSLPmax and MSLPsd are obtained for MSLP. Finally, for a given

basin, the binary vector and the associated set of predictors of every box are concatenated and standardized
::::::::::
standardised

:
(
:::
i.e.

::::::
centred

:::
and

:::::::
divided

::
by

:::
the

:::::::
standard

:::::::::
deviation). A table, with about 600 000 and 490 000 rows, are

:
is
:
respectively obtained for

ENP and NATL.155

::
No

::::::
formal

::::
test

:::
has

::::
been

:::::::::
performed

::
to

:::::::::::
demonstrate

:::
that

:::::
using

:::::
these

::::
four

::::::::::
single-value

::::::::
statistics

::::::
instead

::
of

:::
the

:::::
whole

:::::
field

::
in

::
the

::::
box

::::
was

:::::
better.

:::::
Since

::::
only

:::
the

::::::::
presence

::
or

:::::::
absence

::
of

:
a
:::
TC

::::::
within

:::
one

::::
box,

:::::::::
regardless

::
of

:::
its

:::::::
position,

::
is

::::::
sought,

:::::
these

::::
four

:::::::
statistics

:::::::::::
summarising

:::
the

::::::
spatial

:::::::
structure

:::
are

::::::::
preferred

::
to

::::::::
describe

:::
the

:::::
whole

::::::::
20◦×10◦

::::
box.

:::::::::::
Furthermore,

:::
the

::::::
ERA5

::::::
spatial

::::::::
resolution

::
is

:::::
0.25◦,

::::::::
resulting

::
in

::::
3200

::::::::::
grid-points

:::
per

:::
box

:::
for

::::
each

:::::::
physical

::::::::
variable.

:::::
Using

:::::
16000

:::::::::
predictors

::
to

::::::
predict

:
a
::::::
single

:::::::
outcome

::::
does

:::
not

:::::
seem

:::::::::
reasonable.

:
160

2.2 Methods

In this section, the description of (i) the random forest based TC tracker and the experimental set-up of the calibration/validation/test,

(ii) the reconstruction of TC tracks, (iii) the evaluation metrics and (iv) the tracker used as benchmark are given.
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2.2.1 Ensemble Random Forest for unbalanced data and experimental set-up

Random Forest (RF, Breiman, 2001; Hastie et al., 2009) is a supervised machine-learning algorithm based on generating an165

ensemble ("forest"
::::::
“forest”) of decision trees grown in parallel, referred to as bagging in machine learning. Each decision tree

in the forest separates the target variable into homogeneous groups according to a sequence of if-else decision rules applied to

the predictors. In our binary classification framework, each new separation according to a decision rule between the nodes have

:::
has been performed via maximal impurity reduction, using the Gini index as an impurity function (Breiman et al., 1984). A

random subset of data is provided for each tree (the in-the-bag dataset), and a random subset of covariates is tried at each node170

in each tree, bringing robustness to the classification. In this paper, such an implementation of RF is provided by the R package

“ranger” (Wright and Ziegler, 2017) and follows the approach developed in Malley et al. (2012) to obtain the probabilities of a

diagnosis of diabetes or appendicitis given sets of medical tests. Each classification tree gives a probability on the 0/1 class of

a datum by taking the majority vote in a terminal node. The average of the tree probability estimate gives the forest
:::::::::
probability

::
of

:::
the

::::
trees

::
is
::::

the
:::
RF probability estimate for class occurrence for each datum. All the hyperparameters are set to default175

values.
::
A

:::::::::
grid-search

::
is
:::::::::
performed

:::
on

:::
the

:::::
three

:::
key

::::::::::
parameters:

:::
(i)

:::
the

::::::
number

:::
of

:::::
trees,

:::
(ii)

:::
the

:::::::
random

::::::
number

:::
of

:::::::
features

:::::::::
considered

::
to

:::::::
perform

:::
the

:::
best

::::
split

::
to
:::::
grow

:::
the

::::
trees

::::
and

:::
(iii)

:::
the

:::::::
minimal

::::
size

::
of

:::
end

::::::
nodes

:::
(not

:::::::
shown).

:::::::
Results

::::::
showed

::::
that

::
the

::::::
impact

:::
of

:::
the

::::::::::::::
hyperparameters

::
is

::::
quite

::::::::
minimal,

::::
and

::
no

:::::::::::
configuration

:::
of

:::
the

::::::::::::::
hyperparameters

::::::
yielded

:::::::::::
significantly

:::::
better

::::::
results.

:::::::::
Therefore,

:::
the

::::::::::::::
hyperparameters

::::
were

:::
set

::
to

:::
the

:::::::
default

::::::
values:

:::
500

:::::
trees,

::
4
::::::::
randomly

::::::
chosen

:::::::
features

:::
to

:::::::
perform

:::
the

:::
best

::::
split

::::
and

:
a
:::::::
minimal

:::
end

:::::
node

:::
size

:::
of

:::
10.180

In the case of TC tracking, an imbalanced data problem presents itself. Indeed, the class “presence of TC” is under-

represented with only 2.1% (resp. 2.6%) of the data for NATL (resp. ENP). This results in low-performing RFs due to two

phenomena: (i) successive partitioning of the data when growing the decision trees causes them to ‘see’
:::
’see’

:
fewer and fewer

of the rarer class, thus fitting more and more to the majority class (“absence of TC”); and (ii) interactions between covariates

can go unlearned by the decision trees due to the sparseness of the data induced by partitioning (He and Garcia, 2009). Kuhn185

(2013) discussed resampling methods that can resolve class imbalances, but there is little consensus on the best approach.

Siders et al. (2020) compared different approaches and showed that combining the subsampling of the majority class with an

ensemble of random forest (ERF), i.e., the use of multiple random forest
:::::
forests

:
with different subsampling of that majority

class,
:
gave the best performance.

In this study, the ERF approach is leveraged to tackle the class imbalance issue. The subsampling of the majority class is per-190

formed by setting the number of zeros as n times the number of ones. Several setups are tested with n ∈ {10,15,20,25,30,35}
and referred to as ’n-times’ setup

:
, and one setup is referred to as ’FULL’ without subsampling. In order to

::
To

:
evaluate the

effect of the subsampling, for each n, 100 RFs are performed. Three experiments are set for each basin:

1. Calibration experiment: one calibration
::::::
training

:
of the ERF is made using the whole data during the 1980-2021 period

and
::::::::
validated

::::
over

:::
the

::::
same

::::::
period

:::::
where

:
all the tracks are sought to be reconstructedfrom it,195

2. Validation experiment: a 6-fold cross-validation (see Fig. 2) where yellow years within each fold (35 years) are used to

calibrate
::::
train

:
the ERF. The validation is performed over tracks reconstructed for all the validation years (in blue) from

7



the six folds, allowing to validate ERF over the whole 1980-2021 period. This cross-validation is chosen to minimize

:::::::
minimise

:
the effect of any potential trend and interannual variability in the TC statistics (frequency, intensity) and the

changes in IBTrACS data quality. Most of the ERF evaluations will rely on this experiment.200

3. Test experiment: from the calibration
::::::
training

:
performed over the whole time period for a given

:::::
period

::
in

:::
the

:::::::::
calibration

:::::::::
experiment

:::
for

::::
ENP

::::::
(resp.

::::::
NATL)

:
basin, the TC tracks over the other basin are reconstructed

:::::
NATL

::::::
(resp.

:::::
ENP)

:::
are

:::::::::::
reconstructed

::::
over

:::
the

::::
same

::::::
period. This is done to evaluate the generalizability of ERF.

Depending on the experiment, setup and basin, the training of one RF took between 1 and 10 minutes when performed on

a laptop with an 11th Gen Intel®Core(™) i7-1165G7 @ 2.80GHz with height cores and 16 Go RAM and between 30 seconds205

and less than 3
::::
three

:
and a half minutes when performed on a computing node Intel®Xeon®CPU E5-2650 v2 @ 2.60GHz

with 16 cores and 65 Go of RAM (8 Go would be sufficient).

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

FOLD06
FOLD05
FOLD04
FOLD03
FOLD02
FOLD01

calibration validation 6−FOLD cross−validation

Figure 2. Scheme of the ‘Validation experiment’: 6-fold cross-validation scheme over the 1980-2021. Yellow years are used for the calibration

and blue for validation. One out of six years are
:
is used for validation, making seven out of 42 per fold.

2.2.2 Track reconstruction and matching

In a given box, if RF gives
:::
ERF

:::::
gives

:
a
:
probability of TC above 0.5, the location of the TCs is estimated by the position of the

minimum of MSLP in that box. From there, tracks are reconstructed from one TC location to the next. 24 hours
:::::::
24-hour gaps210

within a radius of 450 km are allowed during the reconstruction. A track is kept only if it lasts at least 24h.
:::::::
Different

:::::::::
thresholds

:::::
below

:::
and

::::::
above

:::
0.5

::::
have

:::::
been

:::::
tested

::::
(not

:::::::
shown).

::::
The

:::::
result

::::
was

::
(i)

::::
that

:::
the

::::::
higher

:::
the

::::::::
threshold,

:::
the

::::::
lower

:::
the

::::::
ability

::
to

:::::
detect

:::
TC

:::
and

:::
(ii)

::::
that

:::
the

:::::
lower

:::
the

::::::::
threshold,

:::
the

::::::
higher

::
the

:::::
false

::::::
alarms.

::::
This

:::::::::
behaviour

:::
was

:::::::::::
quasi-linear,

::
so

:::
we

:::::
chose

:::
0.5

::
to

::
be

:::::::::
performant

::
to

::::::
detect

:::::
while

:::::
having

::
a
:::
low

:::::
false

:::::
alarm

::::
rate.

:::
One

::::
can

:::::
adapt

:::
this

::::
level

:::::::::
according

::
to

:::
the

::::::
desired

:::::::::::
applications.

The track-matching procedure used in this study is similar to the one in (Bourdin et al., 2022). Let us consider, at time ti,215

a point di of a detected track D. It is associated to
:::
with

:
the closest points of a given observed track O at each time ti that is

located closer than 300 km (with a possibility that such a point does not exist).
::
In

:::::::::::::::::
Bourdin et al. (2022)

:
,
:
a
:::::::::
sensitivity

:::::::
analysis

:::
was

:::::::::
conducted

::
on

:::
the

::::
300

:::
km

:::::::
distance

::::
limit

::
in

::::::::
appendix

::
D.

::
In

:
a
::::::::
nutshell,

:
it
::::
was

:::::
shown

::::
that

:::::
results

:::
are

:::
not

::::::::
sensitive

::
to

:::
this

:::::
limit,

:::
and

:::
300

:::
km

::::
was

:::::::
selected

::
as

::
a

:::::::::
reasonable

:::::
value. Points of O that have been associated with any point of track D is

:::
are denoted

as OD-paired. It is composed of NOD elements. There are four possibilities:220
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1. NOD=0: None of the points of D has been paired to a point in O
:
, and D is considered to be a false alarm (FA),

2. NOD>0 and all the points in OD-paired belong to the same observed track O: D is a match for O and considered a hit

(Hit),

3. NOD>0 and all the points in OD-paired belong to multiple observed tracks: D is a match for the observed track having

the largest number of paired points and considered a hit (Hit),225

4. None of the points of a given O has been matched: O is a miss (Miss).

To complete the matching, a
:
A
:
final treatment is performed

::
to

::::::::
complete

:::
the

:::::::
matching: if an observed track is paired with two

or more detected tracks, these detected tracks are merged into a single track. It happens when parts of the same observed tracks

are detected separately due to the filtering consisting in
:
of

:
coding 0 every timesteps

:::::::
timestep

:
in the observation IBTrACS that

do not reach TS intensity.230

2.2.3 Evaluation metrics and analysis

The first evaluated aspect is the performance of ERF in terms of binary classification. For that, the Matthews correlation coef-

ficient (MCC, Matthews, 1975) is used as a measure of the quality of binary (two-class) classifications. It has been introduced

by Yule (1912) and its values range from -1 to +1. A score of 1 represents a perfect prediction, 0 an average random prediction,

and -1 an inverse prediction. The MCC is particularly useful when the classes are imbalanced, as it accounts for the imbalance235

in the calculation. It is similar to the Pearson correlation coefficient in its interpretation. The MCC is more informative than

other metrics in evaluating binary classification because it takes into account the balance ratios of the four categories of the

contingency (or confusion) matrix: true positives (TP), true negatives (TN), false positives (FP), false negatives (FN) (Chicco

and Jurman, 2020). The MCC is computed from the confusion matrix (see Table A1):

MCC=
TP ×TN −FP ×FN√

(TP +FP)(TP +FN )(TN +FP)(TN +FN )
.240

The second aspect evaluated is the ability of ERF to reproduce observed TC tracks. Once all tracks are labelled Hit, Miss,

and FA two detection skills metrics are defined, the Probability of Detection (POD, sometimes referred to as “Hit Rate”) and

the False Alarm Rate (FAR): POD= Hit
Hit+Miss ; FAR = FA

FA+Hit . POD and FAR are expressed in %, and good performance

is achieved when POD is high and FAR is low.

Another aim of this paper is to provide some physical interpretation for
::
to the presence or absence of a TC given a certain245

atmospherical
::
an

::::::::::
atmospheric situation. Breiman (2001) proposed to evaluate the importance of a predictor variable (or feature)

Xj for predicting Y (here the probability) by adding up the weighted impurity decreases pt∆i(st, t) for all nodes t where Xj

is used, averaged over all trees ϕm (for m= 1, ...,M
:::::::::::
m= 1, ...,M ) in the forest:

Importance(Xj) =
1

M

M∑
m=1

∑
t∈ϕm

1(jt = j) [p(t)∆i(st, t)] ,
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where p(t) is the proportion Nt
N of samples reaching node t, jt denotes the identifier of the predictor used for splitting node250

t and ∆i(st, t) is the impurity decrease at split st . For each one of the 20 predictors, the feature importance is then the

contribution in % of each variable to the total reduction of impurity.

Then the idea is to determine the importance of each predictor in the prediction of every single outcome (all zeros and ones)

by RF. This is performed by computing the SHapley Additive exPlanation (or SHAP) values with the method proposed by

Lundberg et al. (2020) with an implementation for tree-based algorithms provided in the R package “treeshap” (Komisarczyk255

et al., 2023). The general idea of SHAP values is to explain each outcome of RF as a sum of
:::
the effect φi of each predictor

Xi. The SHAP value is φi, which stems from a concept introduced in cooperative game theory (Shapley, 1951). The idea

is to determine the average contribution of a predictor to a specific prediction (here
:
,
:
a probability) to every combination of

predictors. This can be written as follows:

φi =
1

# predictors
×

∑
combinations
excludingXi

marginal contribution of Xi to combination
# combinations excluding Xi of this size

.260

Once the SHAP values φi for all predictors Xi and for every outcome of the RF forest are computed, SHAP-based partial

dependence plots are obtained by plotting φi against Xi. These plots will help to interpret the presence of TCs given an

atmospherical
:::::::::
atmospheric

:
situation described by a set of predictors Xi and explore the evolutions

:::::::
evolution

:
of TC probability

according to the evolutions
::::::::
evolution of predictor Xi.

2.2.4 UZ algorithm265

For comparison purposes, we use the UZ algorithm, which is a physics-based detection scheme developed in Zarzycki and

Ullrich (2017) and implemented in TempestExtremes (Ullrich et al., 2021). It was shown in Bourdin et al. (2022) to have good

detection scores , and in particular a
:::
with

::
a
::::::::::
particularly low False Alarm Rate. The UZ scheme is based

::::
relies

:
on a 2-step

procedure. The first step is the detection step , where
::
to

:::::::
identify candidate TC pointsare identified. These candidates are MSLP

local minima associated with an upper-level warm core, which is measured by the geopotential thickness between 300 and 500270

hPa pressure level. The second step is the stitching step , where candidates are stitched together into
:
to

::::
link

:::::::::
candidates

::::
and

:::::::::
reconstruct tracks. The tracks must be associated with a maximum wind speed of at least 10 m/s over at least 54h. For more

technical details, the reader is redirected to (Zarzycki and Ullrich, 2017; Ullrich et al., 2021; Bourdin et al., 2022).

3 Results

3.1 Zero class subsampling choice275

As mentioned in the method section 2.2.1, random forest is subject to bias toward
::::
being

::::::
biased

::::::
toward

:::
the majority (here,

:
zero)

class when applied to unbalanced data. In this section, the results of ERF for different subsampling over the NATL basin are

used to select the best one. Figure 3 shows the Validation experiment boxplots of MCC, POD and FAR metrics of the tracks

obtained for the 100 RFs of ERF for the validation years for different subsampling of zeros. The purple markers are the metric

10



values for tracks obtained for the average of the probabilities given by the 100 RFs. The MCCs
:::
The

::::::
MCCs

:::
for

:::
the

:::::::::
validation280

:::::::::
experiment, given in the top panel of Figure 3, are quite similar for the different sub-samplings. It ranges from a little below

0.74 for the FULL setting to a little above 0.75 for the 20-times setting, with very little difference between the 15-times and

25-times setting
::::::
settings.

0.735

0.740
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Figure 3. Validation experiment boxplots of MCC (top), POD (middle) and FAR (bottom) obtained over validation years obtain
::::::
obtained

:
for

the 100 RFs of different ERF with different subsampling of
::::::
non-TC

:::::::
situations

:
(
::
i.e. zeros), for NATL basin.

::
The

:::
top

::
and

::::::
bottom

:::::
fences

:::
are

::::::
situated

:
at
:::

1.5
:::::
times

:::
the

:::::::::
interquartile

::::
range

:::::
from

::
the

::::
box,

:::
and

:::
the

::::
dots

::
are

:::
the

:::::
values

::::::
beyond

::::
these

::::::
fences.

:::
The

::::::
orange

:::
line

::::::::
represents

:::
the

:::::
median

:::::
value. Violet symbol

::::::
symbols represent the metrics for the tracks obtained from the average of the probabilities given by the 100 RFs

of ERF.

POD and FAR metrics
:::
for

:::
the

::::::::
validation

::::::::::
experiment are respectively given in the middle and bottom panels of Figure 3. The

POD decreases almost linearly from 85% to 73% from the ’10-times’ to the ’FULL’ setting. Similarly, the FAR also decreases285

from 18% to 5%. This indicates that a good ability of detecting
:
to

::::::
detect

:
TCs goes along with a high level of generating

false alarm
:::::
alarms. This also explains the similar MCC metrics for the different settings, indicating some sort of compensation
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between the four categories of the confusion matrix. The subsampling ’25-times’ setup has the medium performance, with

POD around 78% and FAR around 8% (see Fig. 3), is chosen.

The other result drawn from Figure 3 it
:
is that the effect of the sampling of zeros given an n-times setup on MCC, POD,

:
and290

FAR is very marginalconsidering the very ,
::::::::::
considering

:::
the narrow boxplots. It means that even though the tracks reconstructed

from the average probability obtained from the 100 RFs are used in the following of this study, a lower number of RFs would

be sufficient.

3.2 ERF detection analysis

a)

b)

c)

d)

Figure 4. ERF-based TC tracks reconstructed over validation year 2017 for the NATL for the ’25-times’ setup. a) Harvey, b) Irma, c) Jose

and d) Maria.

Figure 4 shows four example
::::::::
examples of TC tracks reconstructed over the NATL basin for the validation year 2017, from295

the average probability obtained from the 100 RFs with the ’25-times’ setup. Similar reconstructed tracks for the ENP basin

with
:
a similar ERF setup are shown in Figure S1 of the supplementary material. TC tracks reconstructed from ERA5 with ERF

are very close to the observed tracks from IBTrACS
:
, even though the trajectories have very different shapes. Note the long gap

in the Harvey cyclone (Fig. 4a) ) is due to the filtering consisting in
::
of selecting only the time steps reaching TS intensities

(see Sect. 2.1.1). Table 1 gives the POD and FAR metrics for the tracks reconstructed from average probability from ERF for300

calibration, validation,
:
and test experiments for the ’25-times’ setup for both basins. For the validation experiment, POD are

respectively of
:::::
PODs

:::
are

::::::::::
respectively

:
77.5% and 77.8% for ENP and NATL basins. FAR are respectively of 8.7% and 7.9%

for ENP and NATL basins. Note that for
:::
For calibration experiments, POD are above 90% and FAR is around 2% for both

basins.
::::
Note

::::
that

:::
the

:::::
choice

:::
of

::::::::
validation

::::
data

::::
(one

::::
year

:::::
every

::
6
::::::
years)

::
in

:::
the

:::::::::::::
cross-validation

:::::::
scheme

::
in

:::
the

:::::
study

::::
was

::::
only

12



Table 1. POD and FAR for tracks reconstructed from average probability from ERF for calibration, validation,
:
and test experiments for the

’25-times’ setup and for UZ in %. Multi-basin refers to POD and FAR from ERF applied to both ENP and NATL basins under
::
the ’25-times’

setup discussed in Sect. 4.1. The right part of the table
:
, referred to as ’Ablation experiments’, gives the POD and FAR of

::
for ERF experiments

conducted with a reduced number of predictors discussed in Sect. 4.2

Main experiments Ablation experiments

ENP NATL ENP NATL

POD FAR POD FAR POD FAR POD FAR

Calibration 91.1 2.0 93.6 2.3 89.7 4.1 89.5 3.6

Validation 77.5 8.7 77.8 7.9 77.2 11.9 76.7 13.2

UZ 76.4 24.1 78.4 15.0 - - - -

Test
NATL (calib.) ENP (calib) NATL (calib) ENP (calib.)

76.6 15 68.4 7.8 73.5 15.5 69.3 15.5

Multi-basin

Calibration 91.8 3.1 90.9 2.4 90.5 5.5 87.8 3.1

Validation 79.2 9 74.8 5.3 78.1 13.7 70.1 8.3

:::
one

:::::::::
possibility

::::::
among

::::::
others.

::
A

:::
test

::::
(not

:::::::
shown),

::::
with

:
a
::::::
6-fold

:::::::::::::
cross-validation

::::::
scheme

:::
in

:::::
which

::::::::
validation

:::::
years

:::
are

:::::::
stacked305

::::::::::::::::::::::
(1980-1986,· · · ,2015-2021),

:::::::
yielded

::::::
similar

::::::
results

::
for

:::
the

:::::::::
validation

:::::::::
experiment

::::
and,

::::::
results

:::
are

::::
even

:::::
better

:::::
when

::::
only

::
the

::::
last

::::
fold,

::::
with

:::
the

::::
latest

:::::::::
validation

:::::
years

:::::::::::
(2015-2021),

:
is
::::::::::
considered.

:
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Figure 5. Statistical properties of IBTrACS (purple), ERF-detected TC tracks: Hit (blue) and FA (red) and ERF-missed tracks: Miss (green).

a) TC tacks duration histograms, b) Boxplot of ERF-based average probabilities for associated to
:::
with

:
each time steps

:::
step

:
of Hit, FA

:
, and

Miss tracks.

In the following, the statistical and physical properties of the detected tracks are investigated. Figure 5 a) shows the track

duration histograms for the observed, ERF-detected tracks (Hit and FA) and missed tracks. ERF-based Hits have a
:

duration
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distribution quite similar to IBTrACS tracks, but with substantial differences for short duration tracks (1 to 3 days). These310

short duration tracks have
:::::::::::
short-duration

::::::
tracks

::::
have

::
a typically short lifespan and are of lower intensity. This discrepancy

is supported by the Miss tracks duration distribution , which are mainly short durations
::::::
duration

::::::::::
distribution

::
of

:::::
Miss

::::::
tracks,

:::::
which

::
is

::::::
mainly

::::::::::::
short-duration

:
tracks (the majority of them last between 2 and 4 days). False alarm

:::::
alarms

:
are also of the

same durations
:::::::
duration. Differences in probabilities of TCs given by ERF associated with every time step of Hit, FA, and Miss

of tracks are then investigated. Figure 5b ) show that probabilities associated to
:::::
shows

:::
TC

::::::::::
probabilities

::::::::::::
conditionally

::
on

:::
its315

:::::::
labelling

::
as

::::
Hit,

:::::
Miss,

::
or

:::
FA.

:::::::::::
Probabilities

:::::::::
associated

::::
with Hit tracks (median above 0.9) are substantially different compared

to those associated to
:::
with

:
FA (median a

:
little above 0.6). This means that even if FA tracks are detected (probability >0.5) by

ERF, FA are less likely to happen than Hits. Miss tracks are associated with very low probabilities, meaning they are completely

missed by ERF
::::
while

::::::
having

::::
been

::::::::
recorded

::
in

::::::::
IBTrACS.
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Figure 6. Physical properties of IBTrACS (purple), ERF-detected TC tracks: Hit (blue) and FA (red) and ERF-missed tracks: Miss (green).

a) histograms of minimum sea level pressure
:::::::
maximum

::::::
surface

::::
wind

:
[in hPa

:
m
::::
s−1], b) histograms of maximum surface wind

:::::::
minimum

::
sea

::::
level

:::::::
pressure [in m s−1

:::
hPa] and c) the scatterplot

:::::
scatter

:::
plot

:
of maximum surface wind against minimum sea level pressure. Vertical

lines indicate the TC intensity classification Saffir-Simpson Hurricane Scale thresholds of 10 min sustained wind. Horizontal lines indicate

pressure thresholds based on Klotzbach et al. (2020).
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In order to
::
To

:
investigate how these different tracks diverge in nature, the maximum wind and minimum sea level pressure320

associated to
::::
with these different types of tracks are considered. Figure 6c ) shows the scatterplot

:::::
shows

:::
the

::::::
scatter

:::
plot

:
of

maximum surface wind against minimum sea level pressure associated to
:::
with

:
every timestep of observed, detected (Hit and

FA) and missed tracks. Figure 6 a ) and b )
:::
and

::
b

:
respectively give the associated

::::::::
maximum

:::::
wind

::::
and sea level pressure

and maximum wind histograms. In general, and as already pointed out in Bourdin et al. (2022) and Dulac et al. (2024), the

wind-pressure relationship in ERA5 is different from the one in the observations (purple dots versus the rest). Detected TCs325

are weaker than observed ones. In particular, Hit tracks barely reach category 4 when considering ERA5 minimum sea level

pressure, and it is even worse when considering ERA5 maximum wind
:
: Hit tracks barely reach category 3. In addition, these

figures also provide insight on
:::
into

:::
the FA and Miss tracks. Miss tracks are, for the majority of them, associated in ERA5 with

minimum pressure above 1005 hPa and maximum wind below 16 m s−1,
:
which are the TS intensity threshold. It means that

these tracks are missed because ERA5 is failing to represent these TCs correctly. Concerning FA tracks when examining Figure330

6 a-c), the maximum winds and minimum pressure are located around 16 m s−1 and 1005 hPa pressure,
:
which are again the

threshold for TS intensity. Thus, these FA tracks may be related to the uncertainty of ERF
:
, which associates an atmospheric

situation to
::::
with

:
a TC even though none has been observed.

Figure 7 shows Miss and FA tracks distributed over
::
the

:
NATL basin and the associated ERF-based average probability, the

minimum pressure and the maximum wind. Miss tracks are distributed over the entire domain and confirm the results of Figures335

5 and 6 in terms of low probability and intensity
::
in

:::::::
Figures

:
5
::::
and

:
6. However, one track shows high probability, intense wind

and low pressure and is pictured in reddish colours in the three left-hand side panels of Fig. 7. This track illustrates one small

drawback of dividing the basin into 20◦×10◦ overlapping boxes: ERF is only able to
:::
can

::::
only detect one TC at a time within a

box. However, it is possible that two TCs
:::
two

::::
TCs

::::
may

:
happen at the same time within one box. Figure 8 shows the IBTrACS

track of the TC IRIS spotted in Figure 7 and the stronger TC HUGO occurring at the same time. The probability, the pressure
:
,340

and the wind associated to
:::
with

:
the missed TC IRIS in Figure 7 are actually those of the strong TC HUGO. The FA tracks are

rather
::::::
mostly distributed at the edge of the domain. In particular, they are located in areas where TCs are typically weaker:

the main
::::::
primary

:
development region (eastern part of the domain between 10◦N and 20◦N) where TC

::::
TCs are developing,

and coastal areas where they disappear. This can be related to the uncertain aspect of these tracks that are yielded by lower

probabilities.345

Similar figures for the ENP basin are given in Figures S2 to S5 of the supplementary material and give similar conclusions as

for the NATL basin. The major difference being
:
is
:
that the distinction in terms of intensity between Hit and FA is less obvious

based on ERA5. The wind-pressure relationship basin in ERA5 compared to the observation is even worse for ENP,
:
where

TCs barely reach category 2 intensity for
::
the

:
wind and pressure scale. The median probability of Hit and FA tracks are

:
is
:
closer

(0.8 vs 0.65) and yield
:::::
yields

:
a higher FAR ratio. Even though the majority of FA tracks are associated with wind and pressure350

around 16 m s−1 and 1005 hPa, some of them present more intense values. One hypothesis may be that these tracks have not

been recorded in IBTrACS.
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Figure 7. Average probability (top row), minimum sea level pressure, Pmin [in hPa] and maximum wind U10max [in m s−1] for Miss tracks

(left column) and FA tracks (right column). Colours are saturated for Pmin and U10max.

3.3 Physical interpretation

In this section, the contribution of the different predictors to the detection of TCs is analysed to provide physical insights

into the presence or absence of a TC. Figure 9 represents the boxplot of the gini-based feature importances from the 100 RFs355

of the ERF for the calibration experiment and the ’25-times’ setup for both basins. The figure shows that ,
:::::
shows

::::
that for

both basins, the six variables with the largest feature importance are the same: RV850sd, MSLPmin, UV10max, RV850max,

THz300_z500max and TCWmax
:::::::::
TCWVmax. These predictors are physically well-founded in explaining the presence of a

cyclone. RV850sd characterizes
::::::::::
characterises

:
the singularity of the vortex within a box: the higher it is, the more the TC

vorticity stands out from the vorticity of the rest of the area within a box. It is more important than the RV850max, with is the360

fourth most important variable. Then, UV10max and MSLPmin are the following most important variable
:::::::
variables. This makes
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Figure 8. Example of TC IRIS that has been missed by ERF due to the presence of a stronger TC HUGO and the associated Pmin [in hPa].
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Figure 9. Boxplot of gini-based
::::::::
Gini-based feature importances

::::
from

:::
the

:::
100

:::
RFs

:
of

::
the

:
ERF for the calibration experiment and the ’25-

times’ setup for a) ENP and b) NATL.

sense, since they are respectively associated to
:::::::::
associated

::::
with the strong surface winds and the location of the cycloneeye

::
’s

:::
eye,

::::::::::
respectively. The following variable

:::::::
variables are the TCWVmax and THz300_z500max. The former reflects the potential

for rain and the moisture lifted by the TC, the latter characterizes
:
;
::
the

:::::
latter

:::::::::::
characterises the upper-level warm core associated

to
::::
with the TC. Note that the order of importance is slightly different between the basins. For instance, maximum wind is more365

important than sea level pressure for
::
the

:
NATL basin, while it is the opposite for

:::
the ENP basin. It may be the result of

:::::
result

::::
from the different wind-pressure relationships between both basins (see Fig. 6c ) and Fig. S3 c)

:::
S3c

:
of the supplementary.).

TCWVmax is less important in explaining the presence of
::
the

:
TC situation for

:::
the ENP basin.

Feature importance is interesting to quantify
:::::::
quantifies

:
the average contribution of a given predictor in discriminating TC

from non-TC situations. However, it would be interesting to determine the contribution for each predictor over
::
of

::::
each

::::::::
predictor370
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Figure 10. Partial dependence plot for top six predictors a)-f) obtained for one of the 100 RFs of the calibration experiment and the ’25-times’

setup for
::
the NATL basin. Contour lines indicate the density of the scatter plot between one predictor and the associated SHAP values. Yellow

and blue characterize
:::::::::
characterise, respectively,

:
the density of the zeros (probability<0.5) and the ones (probability>0.5) population. Vertical

and horizontal lines
:
, respectively,

:
indicate the median of the predictors and the associated SHAP values for both population

::::::::
populations. The

distributions of the predictors and SHAP values are also given conditionally to both population
:::::::::
populations.
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::
to each outcome of an RF.

::::::
Indeed,

:::
we

:::::
want

::
to

:::::::
evaluate

:::
the

:::::
ability

:::
of

:::
RFs

::
to

:::::
learn

:::
the

::::::::
relevance

::
of

::::
each

::::::::
predictor

::
to

:::::
drive

::::
each

:::::::::
TC/non-TC

:::::::::
prediction.

:
This is provided by the SHAP-based partial dependency plots shown in Figure 10 for

::
the NATL basin.

This figure pictures the relationship between the six top predictors (according to feature importance) and their respective

SHAP values. Note that given the large computing timenecessary for SHAP values , there are only computed for
:::::::::
computing

::::
time,

::::::
SHAP

:::::
values

:::
are

:::::::::
computed

:::
for

::::
only one RF among the 100 RFs of the calibration experiment and the ’25-times’ setup.375

These partial dependence plots are probably very similar for the 100 RFs
:
,
:
given the small dispersion of the MCC, POD and

FAR performances’ metrics (see Fig. 3) and feature importance (see Fig. 9). Let us consider the partial dependency plot in

panel a) of Figure 10. On the abscissa is given the physical range of RV850sd and the associated SHAP values on the ordinate.

It shows the contribution of RV850sd given its value to the probability value of TC occurrence.

The partial dependence show a clear distinction
:
is
:::::::
distinct between the “zero” and the “one” populations

:
, with marginal380

overlap. For the zeros, the SHAP values are always very close to 0
:
, while for the ones,

:
the SHAP values always steeply

increase when the associated predictor increases (except MSLPmin, SHAP values increase when it decreases). For these six

predictors, SHAP values tend to reach at
:
a
:

cap value after the predictors reach a certain level, and they even decrease for

MSLPmin and UV10max. This means that the contribution of these predictors in discriminating TC from non-TC situations

does not change when a certain intense valueis reached
:::::::
reaching

:::
an

::::::
intense

:::::
value. This figure also shows us that TC situations385

can occur for a very large range of values and , therefore, potentially very diverse combinations of these predictor values.

This advocates for TC tracking approaches that bring more flexibility than threshold-based approaches. Similar results can

be drawn based on the Figure S6 of the supplementary material for the ENP basin. This analysis highlights the advantages of

using Random Forest (RF) over traditional trackers that rely on sequential thresholding
::
the

:::::::::
sequential

:::
use

::
of

:::::::::
thresholds, as most

variables exhibit nonlinear interdependencies.390

3.4 Comparison with UZ

POD and FAR for UZ in both basins are reported in Table 1. POD are quite close to those of ERF (Validation experiment) with

1% lower POD for ENP (76.4%) and less than 1% higher (78.4%) for NATL. However, FAR, which reach
::::::
reaches 24.1% in

the ENP and 15% in the NATLamount to almost respectively ,
::::::::
amounts

::
to

::::::
almost three and two times the ERF scores, which

not desirable. In order to
::
is

::::::::::
undesirable.395

::::::
Figures

:
5
::
to
::
7
::::
have

::::
been

::::::::::
reproduced

:::
for

:::
UZ

:::
and

::::
both

::::::
basins.

::::
They

:::::
have

::::
been

:::::
added

::
to

:::
the

::::::::::::
supplementary

:::::::
material

::
as

:::::::
Figures

::
S7

::
to
:::::

S12.
:::::
Panel

:
b
:::

of
::::::
Figure

:
5
::::

and
:::
the

::::
two

:::
top

::::::
panels

::
of

::::::
Figure

::
7,
::::::::

showing
:::
the

:::::::::
probability

:::::::::
associated

::::
with

::::
the

::::::
tracks,

:::
are

::::::::
irrelevant

::
for

::::
UZ.

:::
For

::::
both

::::::
basins,

:::
the

:::::
track

::::::::
properties

::::::::
obtained

::::
from

:::
UZ

:::
are

::::::
similar

::
to

:::::
those

:::::::
obtained

::::
with

::::
ERF

::::
(see

:::::
Figs.

:::
S7,

:::
S8,

:::
S10

::::
and

:::::
S11).

::::
The

::::
main

:::::::::
difference

::::::
resides

::
in

:::
the

:::::::::
properties

::
of

:::::::
missed

:::::
tracks.

::::::
These

:::::
tracks

:::
are

::::::::
similarly

:::::
short

:::
but

:::::
more

:::::::
frequent

:::
and

:::::::
slightly

::::
more

:::::::
intense

::::::
(higher

:::::::::
maximum

::::
wind

::::
and

:::::
lower

:::::
SLP).

:::::::::
Properties

::
of

::::
FAs

:::
are

::::::
similar

:::
for

:::
UZ

:::
and

:::::
ERF

::
in400

::
the

::::::
NATL

:::::
basin.

:::
In

:::
the

::::
ENP

:::::
basin,

::::
FAs

::::
from

::::
UZ

:::
are

::::::::::
significantly

:::::
more

:::::::
frequent

:::
and

:::::::
intense

::::
than

:::
the

:::
FAs

:::::::::
generated

::
by

:::::
ERF.

:::
The

::::::
spatial

::::::::::
distribution

::
of

:::::
Miss

:::
and

:::
FA

:::
of

:::
the

:::
UZ

::::::
tracker

::
is
::::
also

::::::
similar

:::
to

:::
that

:::
of

::::
ERF

::::
(Fig.

:::
S9

::::
and

:::::
S12).

::::
Miss

::::::
tracks

:::
are

:::::::::
distributed

::::
over

::
the

::::::
entire

::::::
domain

::::
with

::::
low

:::::::
intensity,

::::
and

:::
FA

:::::
tracks

:::
are

::::::
mostly

::::::
located

::
in

:::
the

:::::::
primary

:::::::::::
development

:::::
region

::::
and

::::::
coastal

:::::
areas,

:::::
where

::::
TCs

:::
are

:::::::
typically

:::::::
weaker.
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::
To

::::::
further

:
explore the similarities and differences between UZ and ERF, Figure 11 shows the number of tracks that are405

common for observations (IBTrACS, IB) and tracks that are detected by ERF (Validation experiment and ’25-times’ setup) and

UZ. A large portion of
::
the

:
tracks of IBTrACS are detected by both UZ and ERF (335/252 for ENP/NATL basins),

:
and some

tracks are only detected by UZ (28/31 for ENP/NATL basins) or ERF (27/22 for ENP/NATL basins). In total,
::
the

:
Hit numbers

are similar in both methods. UZ produces a larger number of FA
::::
more

::::
FAs (115/50 for ENP/NATL basins) than ERF (41/31

for ENP/NATL basins). Finally, there are no common FA
:::
FAs

:
between ERF and UZ. This means the FA appear for different410

reasons in the two methods.
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Figure 11. Number of tracks in common between observed tracks (IBTrACS, IB) and detected tracks from ERF and UZ for the following

case: all three datasets, two out of the three and tracks specific to a dataset for the Validation experiment and ’25-times’ setup. a) ENP and b)

NATL basins.

4 Sensitivity test

4.1 Need for regional tracker

In this study, ERF has been applied separately for each basin, which is uncommon in the literaturein which, usually.
:::::::

Usually,

the tracking algorithm is applied over multiple basins (Bourdin et al., 2022; Accarino et al., 2023). This has been done in order415

to test the spatial generalizability of the ERF approach. This ability of ERF is based on the test experiment, which consists

in
::
of reconstructing the tracks of the ENP basin using the ERF fitted for the calibration experiment (’25-times’) setup for the

NATL basin and vice versa (see sect. 2.2.1). Table 1 reports the FAR and POD for these test experiments. POD and FAR are

respectively 76.6% and 15% for
:::
the ENP basin and 68.4% and 7.8% for

::
the

:
NATL. In the case of ENP, the test POD is similar

to the validation one, while
::
the

:
FAR is degraded. It is the opposite for NATL. This shows a certain specificity of the TC tracking420

according to the basin, which may stem from different factors. For instance, the latitudinal distribution of the cyclones are
::
is

quite different between both basin: for
:::::
basins:

:::
for

:::
the

:
ENP basin, TC tracks are mostly located between 10◦N and 20◦N (see

Fig. 1) while they are distributed all over the basin for NATL. Thus, this may involve different processes between TC in NATL

and ENP. Differences of
::
in

:
feature importance in Figure 9 between both basin

:::
the

:::
two

::::::
basins

:
may be an illustration of that.
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This can also be due to the differences of
:
in

:
the quality of TC representation between both basin

::
the

::::
two

:::::
basins

:
in ERA5. For425

example, differences in the wind-pressure relationship between both basin
:::::
basins

:
illustrate this quality difference (see Fig. 6c

) and Fig. S3 c)
:::
S3c).

In order to
::
To highlight the need for

:
a
:
regional tracker, ERF has been carried out under the ’25-times’ setup for the data pooled

from both basins, referred to as ’Multi-basin’. Table 1 gives the POD and FAR for calibration and validation experiments.

Compared to basin-specific experiments, the performances are close, with slightly better POD and slightly worse FAR for
:::
the430

ENP basin. In contrast, it is the opposite for NATL basin
:::
the

:::::
NATL

:::::
basin,

:
with larger differences. The better performance for

the ENP basin can be explained by the higher weight it holds
::
its

::::::
higher

::::::
weight on the ERF training, given its larger data size

(see Sect. 2.1.3) and the small total number of TCs. The results remainnevertheless ,
:::::::::::
nevertheless,

:
better than UZ (see Tab.

1). It is therefore up to the user to decide if either one ERF for all basins or one specific ERF for each basin is necessary by

considering if the loss of performance of
::
the

:
Multi-basin ERF compared to the regional ERF is acceptable or not.435

4.2 Ablation experiment

An ablation experiment is conducted in order to get a more parsimonious ERF by reducing the number of predictors. Based on

the feature importance (Fig. 9), the top six predictors are kept (see Sect. 3.3). Such a model is expected to generalize
::::::::
generalise

better, have a smoother behaviour when looking at partial dependencies, and be potentially more intrinsically interpretable.

In this section, the Calibration and Validation (for regional and Multi-basin) and Test (for regional) experiments have been440

performed under the ’25-times’ setup. The right part of Tab. 1 gives the POD and FAR of all experiment performed
::::
from

:::
all

::::::::::
experiments

::::::
carried

:::
out

:
with a reduced number of predictors. For all experiments, POD

:::::
PODs are only slightly reduced but

remain very close to the POD without the ablation. Interestingly, FAR
:::::
FARs are more strongly degraded (sometimes doubled)

with the ablation. This means that predictors with lower feature importance control FA, indicating us
:::
that

::::
we

:::::
ought

:
to be

cautious when removing predictors. SHAP-based partial dependency plot for
::::
plots

:::
for

:::
the validation experiment are given in445

Figure S7 and S8
::::::
Figures

:::
S13

::::
and

::::
S14 for the Validation experiment and both basins. In general, these figures are similar to

the one
:::::
those of ERF performed with the full set of predictors. The only difference is the better distinction between “zero” and

“one” populations, which can result from the higher FA rate.

::
To

:::::::
explore

::::
how

:::::
many

::::::::
variables

:::
can

:::
be

:::::::
removed

:::::::
without

:::::::::::
deteriorating

:::
the

:::::::::::
performance

::
of

:::
the

:::::::
tracker,

::
a

:::::::
recursive

:::::::
feature

:::::::::
elimination

:::
on

:::
the

::::::
6-fold

:::::::::::::
cross-validation

::::::
set-up

:::::::::
(validation

::::::::::
experiment)

::::
has

::::
been

:::::::::
performed.

::
It
:::::::

consists
:::

of
::::::::::
eliminating

:::
the450

::::
least

::::::::
important

:::::::
variable

::
at

::::
each

::::::::
iteration.

:::
The

::::::
results

::::
(not

::::::
shown

::::
here)

:::::
show

:::
that

:::
the

:::::::::::
performance

::
of

::::
ERF

:::::::
remains

::::::
stable

::::
until

::
we

:::::::
remove

:::
12

::
to

:::
14

::::::::
variables,

::::::
which

:::::::
roughly

::::::::::
corresponds

::
to

:::
the

:::::::
number

:::
of

::::::::
variables

:::
we

::::
kept

:::
for

:::
the

:::::::::
sensitivity

::::
test.

::::
The

::::::::
exception

::::::
resides

::
in

:::::
FAR,

:::::
which

::::::
shows

:
a
::::
50%

:::::::
increase

:::::
when

:::
we

:::::::
remove

::
no

:::::
more

::::
than

:
6
:::::::::
variables,

:::::::::
confirming

:::
the

::::
role

::
of

:::
the

::::
least

::::::::
important

::
in

:::::::::
controlling

:::
the

::::
false

:::::::
alarms.
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5 Summary and perspectives455

In this study, we used random forest for tracking tropical cyclones in the eastern North Pacific and North Atlantic basins over

the 1980-2021 period by associating atmospheric situations described by five climatic predictors extracted from ERA5 to
::::
with

observational IBTrACS records of tropical cyclones. More precisely, the tracking problem in this paper was equivalent to per-

forming binary classification over imbalanced data containing substantially more TC-free situations than TC. This imbalance

problem was addressed by combining an ensemble of random forests with the subsampling of TC-free situations. Before ap-460

plying this method, the amount of data fed to it was reduced by considering four statistics of each predictor instead of its whole

field (minimum, mean, maximum and standard deviation). In addition, basins were patched by overlapping boxes. In this way,

our approach was able to learn the characteristics related to the presence of the TC inside a box, regardless of its position, and

:
.
:
It
:
allowed us to detect cyclones occurring at the same time

:::
that

:::::
occur

::::::::::::
simultaneously

:
within one basin or in both basins (for

the multi-basin experiments).465

Our data-driven ERF tracker showed good performances for detecting TC tracks: In validation, POD/FAR of 77.5%/8.7%

and 77.8%/7.9% were obtained for the ENP and the NATL basins,
:
respectively. Compared to the physics-based UZ tracker,

used as
:
a
:
benchmark in this study, ERF showed similar POD but better (i.e., lower) FAR. UZ was chosen because it was the

most accurate among the physics-based trackers (Bourdin et al., 2022), and it was also better than other data-driven trackers

(e.g., the deep learning approach in Accarino et al., 2023). ERF has the advantage to require
::
of

::::::::
requiring low computing power470

(see Sect. 2.2.1). Tracks detected by ERF have similar duration frequencies to IBTrACS tracks, except for short (2 to 4 days)

and lower intensity tracks (see Figs. 5 and 6). Missed and false alarm tracks are mainly short tracks (1 to 3 days). Detected TCs

have weaker intensity in ERA5 than in IBTrACS, due to ERA5 systematically under-estimating
:::::::::::::
underestimating TC intensity.

So much so that it is likely that some cyclones are missing because they were reanalysed
:
as

:
too weak to be detected. False

alarm tracks are very close to the tropical storm intensity thresholds and thus illustrate the uncertainties of ERF. These tracks475

are located in developing and landfall areas of cyclones, where their signal is less clear and more uncertain.

For both basins, the six most important variables for detecting the presence of TCs are the same and characterize
::::::::::
characterise

the main physical and thermodynamic properties of TC
:::
TCs. The order of importance differs between the basins, highlighting

potential specificities in the TC patterns and processes depending on the basin. Relying on the SHAP-based partial dependency

plots, we showed that TC can be detected through potentially very diverse combinations of predictor values, which .
::::
This

:
brings480

more flexibility than physics-based approaches that need user-prescribed thresholds.

Two aspects of our ERF trackers were then tested: the spatial generalizability of ERF, and the possibility to reduce the

number of predictors. When the tracking was performed in one basin based on an ERF calibration performed on the other basin

(resp. on both basins): (i) for ENP,
:
the POD is similar (resp. improved) and the FAR is degraded (resp. similar),

:
and (ii) for

NATL
:
, the POD is degraded (resp. degraded) and the FAR is similar (resp. improved). This shows an overall good ability for485

spatial generalizability of ERF,
:
while showing potential need for regional tracking that can stem from the specificities of TC

tracks and the differences of
::
in ERA5 quality between both basins. The ablation experiment showed that reducing the number
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of predictors according to their feature importance does not change (or only very marginally) the POD, but strongly degrades

the FAR for all experiments. This showed a certain control on false alarm
::::
over

::::
false

::::::
alarms of the removed predictors.

As future work, the next focus will be on extending the tracking for all the basins at
:
a
:
global scale. Some tests will also be490

necessary to choose the minimum number of RF (lower than 100) and to determine which predictors control FAs and which

predictors to remove without degrading the performance of the tracker. From there, the major challenge will be to apply ERF to

Earth System Models from the Coupled Model Intercomparison Project phase 6 (CMIP6, Eyring et al., 2016) and, in particular,

to the subset of CMIP6 simulations from the High Resolution Model Intercomparison Project (HighResMIP, Haarsma et al.,

2016). Indeed, HighResMIP simulations are better in simulating TCs,
:

and their tracking has already been done with other495

physics-based trackers (Roberts et al., 2020).

The primary target will be to apply the ERF tracker calibrated from ERA5 directly to HighResMIP simulations without any

new ERF calibration. This raises the question of the transferability of
::
the

:
ERF calibrated from ERA5 to the models. This issue

is two-fold: first, is there a need for bias correction? And second, will ERF be transferable to future climate projections given

the climate change signal? The first question will deal with the possibility of the
:
a
:
mismatch between the models and ERA5,500

preventing ERF to detect
::::
from

::::::::
detecting

:
cyclones. The second one will address the possibility that the climate change will

induce non-stationarity
::::::::::::
nonstationarity strong enough to prevent ERF from detecting cyclones.

Multiple applications can be foreseen. For instance, we will be able to study the statistical and physical properties of TCs

detected under climate change. More precisely, we will be able to compare them to the cyclones detected by physical-based

trackers and evaluate the complementary added-value
:::::
added

:::::
value brought by the flexility

::::::::
flexibility

:
of ERF for detecting505

cyclones. Furthermore, thanks to the partial dependency plots, the differences in the relation between the predictors and the

TC presence probability between
:::
for the models and ERA5 will be evaluated

:::::
thanks

::
to

:::
the

::::::
partial

::::::::::
dependency

::::
plots. Another

application can be dedicated to climate change attribution studies by comparing the properties of TCs in simulations realized

::::::
realised

:
under controlled emission scenarios and future climate scenarios.

Ultimately, we would like to make our method widely available. Hence, efforts will be made to make it easy-to-use through510

an
::::
easy

::
to

:::
use

:::::::
through open-source software.

Data availability. ERA5 data are available on the Copernicus Climate Change Service Climate Data Store (CDS, https://cds.climate.copernicus.

eu/datasets/reanalysis-era5-pressure-levels?tab=download, last access: April 2024). The IBTrACS database is provided by NOAA, National

Centres for Environmental Information, https://www.ncei.noaa.gov/products/international-best-track-archive (last access: April 2024).
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Table A1. Confusion Matrix

Prediction

0 1

Observations
0 TN FP

1 FN TP

true positives (TP), true negatives (TN),

false positives (FP), false negatives (FN)
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