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Abstract. Even though tropical cyclones (TCs) are well documented during the intense part of their lifecycle until they start
to-evaneseeweaken, many physical and statistical properties governing them are not well captured by gridded reanalysis or
simulated by earth-system-modelsEarth System Models. Thus, the-tracking-of-tracking TCs remains a matter of interest for the
investigation-of-investigating observed and simulated tropical cyclones. Two types of cyclone tracking schemes are available.
On the one hand, there-are-trackers-thatsome trackers rely on physical and dynamical properties of the TCs and user-prescribed
thresholds, which make them rigid. They need numerous variables that are not always available in the models. On the other
hand, there-are-trackers leaning on deep learning whichneed, by nature, need-large amounts of data and computing power.
Besides, given the number of physical variables needed-required for the tracking, they can be prone to overfitting, which
hinders their transferability to climate models. In-this-stady—This study explores the ablhty of a Random Forest (RF) approach
to track TCs with a limited number of aggregated variablesis

elasstfieationproblem-of- FC-free(zero)-and-FCHone)-sitnations. Our analysis focuses on the Eastern North Pacific and North
Atlantic basins, for which ;respeetively;-514 and 431 observed tropical cyclone track records are available from the IBTrACS

database during the 1980-2021 period. For each 6-hourly time step, RF associates TC occurrence or absence (1 or 0) to
atmospheric situations described by predictors extracted from the ERAS reanalysis. Then-Hence, the tracking is considered a
binary supervised classification problem of TC-free (zero) and TC (one) situations. Then, situations with TC occurrences are

joined-for reconstruetingstitched to reconstruct TC trajectories. Results show the good ability and performance of this method

for tracking tropical cyclones over both basins s-and good temporal and spatial generalization-as-wellgeneralisation. RF has a
similar TC detection rate as trackers based on TCs’ properties and a significantly lower false alarm rate. RF allows us to detect
TC situations for arange-of-diverse predictor combinations, which brings more flexibility than thresheld-based-threshold-based
trackers. Last but not least, this study shed-sheds light on the most relevant variables alowing-to-detect-tropical-eyelonefor

tropical cyclone detection.



25

30

35

40

45

50

1 Introduction

Tropical cyclones (TCs) are among the most devastating extreme events in terms of casualties and economic losses (Centre
for Research on the Epidemiology of Disasters, 2021; UN Office for Disaster Risk Reduction, 2020). Several conditions are
necessary for their formation. TC genesis requires warm sea surface temperatures to draw its energy from, low wind shear
and ample humidity to ensure a stable vortex while maintaining the convection and adequate influence from the Coriolis force
combined with a pre-existing low-pressure disturbance in the atmosphere. Thus, a vortex is created around the depression
with strengthening winds, and fuelled by ascending humid air (Emanuel, 2003; Weaver and Garner, 2023). It becomes a self-
sufficient system that continuously draws energy from the ocean until reaching an unfavourable environment or land (the
landfall). Then, the TC loses its energy, which causes its rapid dissipation (Kepert, 2010; Riittgers et al., 2019).

Understanding how human-induced climate change influences TC activity remains a challenging scientific issue (Knutson
et al., 2010; Walsh et al., 2016, 2019). Given the incomplete theoretical understanding of TCs and the limited observation
timespan;-the-stady-of period, studying the changes in their properties relies on model simulations (Knutson et al., 2019, 2020).
Despite the tremendous effort made to increase the resolution of the Earth System Models (around 100 km for the last gener-
ation of models), it is still too low to simulate realistic TCs (Camargo and Wing, 2016; Roberts et al., 2020). Leveraging the
recent advances in computational resources, a handful of global simulations with atmospheric spatial resolutions between 25
and 50 km are now available and reveal a clear improvement in simulating TCs (Murakami et al., 2015; Walsh et al., 2015;
Roberts et al., 2020; Bourdin et al., 2024).

To study TCs simulated by global climate models, we need algorithms to ebjectively-deteet-them-detect them objectively.
Such algorithms, known as FCs-TC trackers, are traditionally based on physical and dynamical properties of cyclones (see
Zarzycki and Ullrich, 2017; Bourdin et al., 2022, and the reference therein for details about different trackers). These algo-
rithms identify tropical cyclone points and connect them to reconstruct TC tracks employing thresholds applied to variables.
Depending on the variables involved in the tracking process, Bourdin et al. (2022) defined two categories of trackers: physics-
based and dynamics-based. Physics-based trackers rely on thermodynamic properties of a tropical cyclone, such as the local
minimum sea-level pressure combined with a warm-core (temperature anomaly or a geopotential thickness). Dynamics-based
trackers rely on dynamical variables such as vorticity or other derivatives of the velocity. Both usually include an intensity
criterion to discriminate the systems.

The thresholds used in these trackers that-are tracking-scheme specific and subjective, and may also depend on the particular
TC formation basin as-weH-as-en-and the TC categories (Camargo and Zebiak, 2002; Befort et al., 2020). This may lead to
a potential inability of tracking schemes to generalize-generalise to other domains or data from sources other than those used
to calibrate the thresholds (Raavi and Walsh, 2020). In-erderte-To avoid subjective choice of thresholds and make the tracker
more flexible in identifying cyclonic situations, this-stady-foeuses-on-the data-driven algorithms;the-so-called-machine learning
algorithms are the focus of this study. Indeed, these types-of-algorithms rely on data to identify cyclones based on different
combinations of variables, independent of user-preseribed-user-prescribed thresholds.
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For instance, the detection skills of three machine learning approaches (Decision Trees, Random Forest, Support Vector
Machines) and a model based on Linear Discriminant Analysis have been compared for satellite data in Kim et al. (2019a).
Machine learning approaches showed better skill hit rates, while the linear approach showed lower false alarm rates. Among
machine learning approaches, neural network-based-network-based deep learning approaches have lately gained attention for
TC detection. They-have-been-implemented-through-Those are based on segmentation, edge detection, circle fitting, and com-
prehensive decision for satellite images (Kumler-Bonfanti et al., 2020; Wang et al., 2020; Nair et al., 2022). Kim et al. (2019b)
leveraged a Convolutional Long Short-Term Memory network to detect and forecast hurricane trajectories on Community
Atmospheric Model v5 simulation data.

However, these approaches use satellite and model data that can be biased and are-mainly-foeused-mainly focus on shape
detection in images. As such, they are not comparable to the physics-based trackers previously mentioned, which have been de-
veloped from reanalysis and evaluated with respect to observed data and focus on TC-related physical processes. For instance,
in Bourdin et al. (2022), trackers were applied to the fifth generation of ECMWF Reanalysis (ERAS, Hersbach et al., 2020) and
evaluated with respect to the observational record of the International Best Track Archive for Climate Stewardship (IBTrACS,
Knapp et al., 2010). In that context, Gardoll and Boucher (2022) and Accarino et al. (2023) have developed convolutional
neural network (CNN) architectures to detect cyclones. They respeetively-used eight and six 6-hourly variables extracted from
ERAS in their CNN. The added value of such approaches is the ability to constrain the detection with the cyclone record
provided by IBTrACS, by associating each set of 6-hourly data field-toe-fields with the occurrence (absence or presence) of a
cyclone (called labelling in machine learning). This makes tracking TCs a supervised classification problem.

The issue with the-ase-of-using the latter type of algorithms in the case of TC detection is that the number of TC-related
atmospheric situations is very low compared to TC-free situations. These algorithms trained with such data will learn from a
larger diversity of TC-free situations and thus will be more accurate and inclined to rule for TC-free situations and, therefore,
biased towards them. In addition, neural network-based-network-based algorithms need, by essence, huge-large amounts of
data, which can sometimes be qualified as data greedy. This calls for strategies to equilibrate the TC/TC-free ratio while
keeping enough data to obtain a robust tuning of the CNN. Gardoll and Boucher (2022) reduced variable fields in the North
Atlantic to 8°x8° windows around the eye of the cyclone for every time step with a TC and sampled for each one of these
windows two TC-free images, which drastically reduce the data sample (28,521 images). This potentially leads to overfitting
and limits the generalizability of the tracker by redueinglowering the diversity of TC-free situations and the spatial variability
of the potential TC location due to the choice of windows around past TC locations. Only binary properties (TC/TC-free) of the
tracker were evaluated in Gardoll and Boucher (2022). Accarino et al. (2023) considered non-overlapping 10° x 10° windows
over the whole joint North Pacific and Atlantic basins and rather-opted for a data augmentation procedure of TC situations
to reach a 50/50 ratio (425 358 images). Their CNN-based tracker produced comparable performance as-to the physics-based
trackers in terms of TC track detection but generated larger numbers of false alarms, which is net-desirableundesirable. Finally,
this type of method processes large amounts of data, which calls for huge-large computing power (typically GPU-GPUs in
Gardoll and Boucher (2022) and a High Performance Computing infrastructure in Accarino et al. (2023)). Both-studies-did-not

provide-Neither of the studies provided a physical interpretation of the petfermanece-of-the-trackertracker’s performance.
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In this study, the objective is to leverage and adapt a well-known and proven method, the Random Forest (RF, Breiman,
2001), to a TC tracking problem by associating a given atmeospherical-atmospheric situation described by a limited set of
predictors to the presence or the absence of TCs. This choice has been made by considering computing cost, the need for
several meteorological variables, and the ultimate goal of such a tracker being the tracking of TC in future climate simulations.
Indeed, having many variables implies potential overfitting and impeded interpretation of the results and lower transferability to
future climate simulations. Random forest provides interpretation means and lower computational costs. Higher data frugality

will be achieved by considering simple variable statistics instead of entire variable fields, which will potentially improve the

transferability of the tracking to climate simulations.

2 Material and Method

2.1 Data

2.1.1 International Best Track Archive for Climate Stewardship, IBTrACS

Tn-this-study;-the-The IBTrACS “since 1980” set (Knapp et al., 2018) was retrieved in this study. In the following, two basins
are going to be considered: the eastern North Pacific (ENP) and the North Atlantic (NATL) (cf. blue contours in Fig. lap—tn
these-basins;—the-. The U.S. National Hurricane €enterCentre (NHC) is—respensibleforreperting-reports tropical cyclones’

best tracks —Ia-total—for these basins. First, extratropical cyclones are not considered in this study. Our study basins are limited
to 30°N. Thus, only TCs are considered, and transitions to extratropical cyclones are not. For TC crossing this northward
boundary, only the portion lying below 30°N is kept. The 42 eyelonie-cyclone seasons between 1980 and 2021 (from June

to November in the Northern Hemisphere) are considered. At the time of this study, tracks in 2022 and later are removed,
since some of them are still labelled provisional. Those labelled “spur”are-alse-removed—Trackrecords-that-are-, not providing
maximum wind and minimum pressureare-also-removed-—Finallytracks-thatde-netreach-, and not reaching the Tropical Storm
(TS) stageare-alse-removed—This-, are removed. The TS stage is decided according to the storm category given by the values of
the minimum sea level pressure P, and the +0-min-10-minute near-surface sustained wind u1¢. Based on Table 2 of Bourdin
et al. (2022), TS stage is reached when P,;, < 1005 hPa and w9 > 16ms—1. Tropical Cyclones (TC) stage is reached when
Pein <990 hPa and u19 > 29ms~!. Once processed, the ENP and NATL basins respectively contain 514 and 431 tracks at a
6-hourly timestep.
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Figure 1. a) Eastern North Pacific (ENP) and the North Atlantic (NATL) basins, with the TCs tracks and the associated wind intensity (in
m s~ ') used in this study. b) Boxes patching both basinbasins. Only ene-eut-of-every two-second box are-pietured-for-is shown to improve

clarityreasons.

2.1.2 ERAS

Our main objective is to associate climate variables and determine the main drivers that eontribute-to-explain the formation
and strengthening of TCs during their lifetime. Hourly estimates of atmospheric variables are provided-by-available in ERAS
at 0.25°x0.25° from 1979 to the present day. While having similar performances as JRA-55 or NCEP-CFSR for a range of
metrics (Zarzycki et al., 2021; Roberts et al., 2020), ERAS does not perform any specific assimilation for TCs (Zarzycki et al.,
2021)—This-metivated-, motivating our choice to use ERAS to evaluate the tracker developed in this paper. 6-hourly data from
1980 to 2021 are extracted, consistent with the period of the IBTrACS data. The choice of using-6-hourly data stems from the
overall objective to use-the-tracker-on-track TC in climate model simulations, whose outputis-veryrarely-provided-at-outputs
are rarely at a higher temporal resolution. Five variables have-been-are extracted from ERAS:

the mean sea level pressure, MSLP (in hPa),

the 10-m wind intensity, UV10 (in m s~ 1),

the total column water vapour, TCWV (in kg m~2),

the relative vorticity at 850 hPa pressure level, RV850 (™D,
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— the geopotential thickness between 300 and 500 hPa pressure level, THZ300_Z500 (in m).

These variables are described in Table S1 of the supplementary material. These variables have been selected based on their
ability to eharaeterize-characterise specific physical properties of TCs and en-their wide availability in climate model simula-

tions’ output. In particular, TCs have a warm core, with the most intense winds found close to the surface. TCs are structured
with an eye at the centre, an eyewall, and spiral convective rainbands—rain bands around them. TCs are driven by diabatic
processes, meaning that-their energy comes from extracting oceanic moisture that releases latent heat once condensed in the
upper troposphere. Considering this, MSLP charaeterizes-characterises the spatially coherent low-pressure structure (the eye
and the eyewall), UV10 the strong surface wind, TCWV the meoister-moisture and the potential for rain, RV850 the TC vortex
and THZ300_Z500 the upper-level warm core associated with the local depression in the TCs.

2.1.3 Data-set preparation

Several steps are followed to prepare the data. First, both basins are patched by 20° x 10° overlapping boxes (see shaded blue
boxes in Fig. 1b)}, totalling 20 and 16 boxes respectively for ENP and NATL. This is done in-erder-to deal with cases where
two or more TCs occur at the same time in a given basin. Then, for every box, a vector of zeros and ones is constructed -every
timestepras follows: a box containing an IBTrACS point reaching TS intensity (Pyin < 1005 hPa and u19 > 16ms 1) is coded
1, and O otherwise at every timestep. Thus, the TC tracking problem is handled as a binary classification problem.

Then, ERAS predictors associated to-with these binary vectors are built as follows: instead of considering the whole variable
field within a box, only four statistics of that field are considered: minimum, mean, maximum and standard deviation. Thus,
for a given timestep, the atmospheric situation within a box is described by a set of 20 predictors (5 climate variables x 4
statistics). Those predictors are labelled with the physical variable name attached to the statistic corresponding suffix (min,
mean, max, sd). For instance, MSLPmin, MSLPmean, MSLPmax and MSLPsd are obtained for MSLP. Finally, for a given
basin, the binary vector and the associated set of predictors of every box are concatenated and standardizedstandardised (i.e.
centred and divided by the standard deviation). A table, with about 600 000 and 490 000 rows, are-is respectively obtained for
ENP and NATL.

No formal test has been performed to demonstrate that using these four single-value statistics instead of the whole field in
the box was better. Since only the presence or absence of a TC within one box, regardless of its position, is sought, these four
statistics summarising the spatial structure are preferred to describe the whole 20°>10° box, Furthermore, the ERAS spatial
resolution is 0.257, resulting in 3200 grid-points per box for each physical variable. Using 16000 predictors to predict a single

outcome does not seem reasonable.

2.2 Methods
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2.2.1 Ensemble Random Forest for unbalanced data and experimental set-up

Random Forest (RF, Breiman, 2001; Hastie et al., 2009) is a supervised machine-learning algorithm based on generating an
ensemble (“ferest™ ‘forest”) of decision trees grown in parallel, referred to as bagging in machine learning. Each decision tree
in the forest separates the target variable into homogeneous groups according to a sequence of if-else decision rules applied to
the predictors. In our binary classification framework, each new separation according to a decision rule between the nodes have
has been performed via maximal impurity reduction, using the Gini index as an impurity function (Breiman et al., 1984). A
random subset of data is provided for each tree (the in-the-bag dataset), and a random subset of covariates is tried at each node
in each tree, bringing robustness to the classification. In this paper, such an implementation of RF is provided by the R package
“ranger” (Wright and Ziegler, 2017) and follows the approach developed in Malley et al. (2012) to obtain the probabilities of a

diagnosis of diabetes or appendicitis given sets of medical tests. Each classification tree gives a probability on the 0/1 class of

a datum by taking the majority vote in a terminal node. The average of-the-tree-probability-estimate-gives-the-forest-probability
of the trees is the RF probability estimate for class occurrence for each datum. Al-the-hyperparameters-are-set-to-default
values—A grid-search is performed on the three key parameters: (i) the number of trees, (ii) the random number of features
considered to perform the best split to grow the trees and (iii) the minimal size of end nodes (not shown). Results showed that
the impact of the hyperparameters is quite minimal, and no configuration of the hyperparameters yielded significantly better
results. Therefore, the hyperparameters were set to the default values: 500 trees, 4 randomly chosen features to perform the

In the case of TC tracking, an imbalanced data problem presents itself. Indeed, the class “presence of TC” is under-
represented with only 2.1% (resp. 2.6%) of the data for NATL (resp. ENP). This results in low-performing RFs due to two
phenomena: (i) successive partitioning of the data when growing the decision trees causes them to “see’~see’ fewer and fewer
of the rarer class, thus fitting more and more to the majority class (“absence of TC”); and (ii) interactions between covariates
can go unlearned by the decision trees due to the sparseness of the data induced by partitioning (He and Garcia, 2009). Kuhn
(2013) discussed resampling methods that can resolve class imbalances, but there is little consensus on the best approach.
Siders et al. (2020) compared different approaches and showed that combining the subsampling of the majority class with an
ensemble of random forest (ERF), i.e., the use of multiple random ferest-forests with different subsampling of that majority
class, gave the best performance.

In this study, the ERF approach is leveraged to tackle the class imbalance issue. The subsampling of the majority class is per-
formed by setting the number of zeros as n times the number of ones. Several setups are tested with n € {10,15,20,25,30,35}
and referred to as 'n-times’ setup, and one setup is referred to as "TFULL’ without subsampling. In-erderto-To evaluate the

effect of the subsampling, for each n, 100 RFs are performed. Three experiments are set for each basin:

1. Calibration experiment: one ealibration-training of the ERF is made using the whole data during the 1980-2021 period
and validated over the same period where all the tracks are sought to be reconstructedfrom-it,

2. Validation experiment: a 6-fold cross-validation (see Fig. 2) where yellow years within each fold (35 years) are used to

ealibrate-train the ERF. The validation is performed over tracks reconstructed for all the validation years (in blue) from



the six folds, allowing to validate ERF over the whole 1980-2021 period. This cross-validation is chosen to minimize
minimise the effect of any potential trend and interannual variability in the TC statistics (frequency, intensity) and the

200 changes in IBTrACS data quality. Most of the ERF evaluations will rely on this experiment.

3. Test experiment: from the ealibration-training performed over the whole time-period-for-a-givenperiod in the calibration
experiment for ENP (resp. NATL) basin, the TC tracks over the ether-basin—arereconstraeted-NATL (resp. ENP) are
reconstructed over the same period. This is done to evaluate the generalizability of ERF.

Depending on the experiment, setup and basin, the training of one RF took between 1 and 10 minutes when performed on
205 alaptop with an 11" Gen Intel®Core(™) i7-1165G7 @ 2.80GHz with height cores and 16 Go RAM and between 30 seconds
and less than 3-three and a half minutes when performed on a computing node Intel®Xeon®CPU E5-2650 v2 @ 2.60GHz

with 16 cores and 65 Go of RAM (8 Go would be sufficient).

calibration  Evalidation 6—FOLD cross-validation
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Figure 2. Scheme of the ‘Validation experiment’: 6-fold cross-validation scheme over the 1980-2021. Yellow years are used for the calibration

and blue for validation. One out of six years are-is used for validation, making seven out of 42 per fold.

2.2.2 Track reconstruction and matching

In a given box, if RF-gives-ERF gives a probability of TC above 0.5, the location of the TCs is estimated by the position of the
210 minimum of MSLP in that box. From there, tracks are reconstructed from one TC location to the next. 24-hetrs-24-hour gaps
within a radius of 450 km are allowed during the reconstruction. A track is kept only if it lasts at least 24h. Different thresholds
215 The track-matching procedure used in this study is similar to the one in (Bourdin et al., 2022). Let us consider, at time ¢;,
a point d; of a detected track D. It is associated to-with the closest points of a given observed track O at each time ¢; that is
located closer than 300 km (with a possibility that such a point does not exist). In Bourdin et al. (2022), a sensitivity analysis
and 300 km was selected as a reasonable value. Points of O thathave-been-associated with any point of track D is-are denoted

220 as Op-paired. It is composed of NOD elements. There are four possibilities:



225

230

235

240

245

1. NOD=0: None of the points of D has been paired to a point in O, and D is considered to be a false alarm (F'A),

2. NOD>0 and all the points in Op-paired belong to the same observed track O: D is a match for O and considered a hit
(Hit),

3. NOD>0 and all the points in O p-paired belong to multiple observed tracks: D is a match for the observed track having

the largest number of paired points and considered a hit (Ht),

4. None of the points of a given O has been matched: O is a miss (Miss).

To-complete-the-matehinga-A final treatment is performed to complete the matching: if an observed track is paired with two
or more detected tracks, these detected tracks are merged into a single track. It happens when parts of the same observed tracks

are detected separately due to the filtering consisting in-of coding 0 every timesteps-timestep in the observation IBTrACS that

do not reach TS intensity.
2.2.3 Evaluation metrics and analysis

The first evaluated aspect is the performance of ERF in terms of binary classification. For that, the Matthews correlation coef-
ficient (MCC, Matthews, 1975) is used as a measure of the quality of binary (two-class) classifications. It has been introduced
by Yule (1912) and its values range from -1 to +1. A score of 1 represents a perfect prediction, 0 an average random prediction,
and -1 an inverse prediction. The MCC is particularly useful when the classes are imbalanced, as it accounts for the imbalance
in the calculation. It is similar to the Pearson correlation coefficient in its interpretation. The MCC is more informative than
other metrics in evaluating binary classification because it takes into account the balance ratios of the four categories of the
contingency (or confusion) matrix: true positives (TP), true negatives (TN), false positives (FP), false negatives (FN) (Chicco

and Jurman, 2020). The MCC is computed from the confusion matrix (see Table Al):

TP x TN — FP x FN

MCC = :
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

The second aspect evaluated is the ability of ERF to reproduce observed TC tracks. Once all tracks are labelled Hit, Miss,
and F'A two detection skills metrics are defined, the Probability of Detection (POD, sometimes referred to as “Hit Rate”) and
. Hit
the False Alarm Rate (FAR): POD = Hitr iiss FAR = m
is achieved when POD is high and FAR is low.

POD and FAR are expressed in %, and good performance

Another aim of this paper is to provide some physical interpretation fer-to the presence or absence of a TC given a-—eertain
atmespherieal-an atmospheric situation. Breiman (2001) proposed to evaluate the importance of a predictor variable (or feature)
X; for predicting Y (here the probability) by adding up the weighted impurity decreases p;A;(s¢,t) for all nodes t where X ;
is used, averaged over all trees ¢, (for m—=1t==Mm = 1,..., M) in the forest:

Importance (X Z Z (e = 7) [p(t) Ai(se,t)],

m 1t€Epm
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where p(t) is the proportion % of samples reaching node ¢, j; denotes the identifier of the predictor used for splitting node
t and A;(st,t) is the impurity decrease at split s; . For each one of the 20 predictors, the feature importance is then the
contribution in % of each variable to the total reduction of impurity.

Then the idea is to determine the importance of each predictor in the prediction of every single outcome (all zeros and ones)
by RF. This is performed by computing the SHapley Additive exPlanation (or SHAP) values with the method proposed by
Lundberg et al. (2020) with an implementation for tree-based algorithms provided in the R package “treeshap” (Komisarczyk
et al., 2023). The general idea of SHAP values is to explain each outcome of RF as a sum of the effect ; of each predictor
X;. The SHAP value is ¢;, which stems from a concept introduced in cooperative game theory (Shapley, 1951). The idea
is to determine the average contribution of a predictor to a specific prediction (here, a probability) to every combination of

predictors. This can be written as follows:

1 marginal contribution of X; to combination
o >

= - .. >< . . . . . .
# predictors —  # combinations excluding X; of this size

combinations

excluding X;

Once the SHAP values ¢; for all predictors X; and for every outcome of the RF forest are computed, SHAP-based partial
dependence plots are obtained by plotting ; against X;. These plots will help to interpret the presence of TCs given an
atmespherieal-atmospheric situation described by a set of predictors X; and explore the evelutiens-evolution of TC probability
according to the evelutions-evolution of predictor X;.

2.2.4 UZ algorithm

For comparison purposes, we use the UZ algorithm, whieh-s-a physics-based detection scheme developed in Zarzycki and
Ullrich (2017) and implemented in TempestExtremes (Ullrich et al., 2021). It was shown in Bourdin et al. (2022) to have good
detection scores ;-and-in-particutar-a-with a particularly low False Alarm Rate. The UZ scheme is-based-relies on a 2-step
procedure. The first step is the detection step s-where-to identify candidate TC pointsare-identified. These candidates are MSLP
local minima associated with an upper-level warm core, which is measured by the geopotential thickness between 300 and 500
hPa pressure level. The second step is the stitching step ;—where-candidates-arestitched-togetherinto-to link candidates and
reconstruct tracks. The tracks must be associated with a maximum wind speed of at least 10 m/s over at least 54h. For more

technical details, the reader is redirected to (Zarzycki and Ullrich, 2017; Ullrich et al., 2021; Bourdin et al., 2022).
3 Results

3.1 Zero class subsampling choice

As mentioned in the method section 2.2.1, random forest is subject to bias-toward-being biased toward the majority (here, zero)
class when applied to unbalanced data. In this section, the results of ERF for different subsampling over the NATL basin are

used to select the best one. Fig
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sThe MCCs for the validation
experiment, given in the top panel of Figure 3, are quite similar for the different sub-samplings. It ranges from a little below

0.74 for the FULL setting to a little above 0.75 for the 20-times setting, with very little difference between the 15-times and
25-times settingsettings.
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Figure 3. Validation experiment boxplots of MCC (top), POD (middle) and FAR (bottom) obtained over validation years ebtain-obtained for
the 100 RFs of different ERF with different subsampling of non-TC situations (i.e. zeros), for NATL basin. The top and bottom fences are

situated at 1.5 times the interquartile range from the box, and the dots are the values beyond these fences. The orange line represents the

median value. Violet symbel-symbols represent the metrics for the tracks obtained from the average of the probabilities given by the 100 RFs
of ERF.

POD and FAR metrics for the validation experiment are respectively given in the middle and bottom panels of Figure 3. The
POD decreases almost linearly from 85% to 73% from the *10-times’ to the "FULL’ setting. Similarly, the FAR also decreases
from 18% to 5%. This indicates that a good ability of-deteeting-to_detect TCs goes along with a high level of generating

false alarmalarms. This also explains the similar MCC metrics for the different settings, indicating some sort-ef-compensation
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between the four categories of the confusion matrix. The subsampling *25-times’ setup has the medium performance, with
POD around 78% and FAR around 8% (see Fig. 3), is chosen.

The other result drawn from Figure 3 itis that the effect of the sampling of zeros given an n-times setup on MCC, POD, and
FAR is very marginaleensidering-the-very-, considering the narrow boxplots. It means that even though the tracks reconstructed
from the average probability obtained from the 100 RFs are used in the following of this study, a lower number of RFs would

be sufficient.

3.2 ERF detection analysis
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Figure 4. ERF-based TC tracks reconstructed over validation year 2017 for the NATL for the *25-times’ setup. a) Harvey, b) Irma, c) Jose
and d) Maria.

Figure 4 shows four example-examples of TC tracks reconstructed over the NATL basin for the validation year 2017, from
the average probability obtained from the 100 RFs with the *25-times’ setup. Similar reconstructed tracks for the ENP basin
with a similar ERF setup are shown in Figure S1 of the supplementary material. TC tracks reconstructed from ERAS with ERF
are very close to the observed tracks from IBTrACS, even though the trajectories have very different shapes. Note the long gap
in the Harvey cyclone (Fig. 4a) )is due to the filtering consisting #-of selecting only the time steps reaching TS intensities
(see Sect. 2.1.1). Table 1 gives the POD and FAR metrics for the tracks reconstructed from average probability from ERF for
calibration, validation, and test experiments for the *25-times’ setup for both basins. For the validation experiment, POD-are
respeetively-of PODs are respectively 77.5% and 77.8% for ENP and NATL basins. FAR are respectively 6£-8.7% and 7.9%
for ENP and NATL basins. Nete-thatfor-For calibration experiments, POD are above 90% and FAR is around 2% for both

basins. Note that the choice of validation data (one year every 6 years) in the cross-validation scheme in the study was onl
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Table 1. POD and FAR for tracks reconstructed from average probability from ERF for calibration, validation, and test experiments for the

’25-times’ setup and for UZ in %. Multi-basin refers to POD and FAR from ERF applied to both ENP and NATL basins under the *25-times’

setup discussed in Sect. 4.1. The right part of the table, referred to as ’ Ablation experiments’, gives the POD and FAR ef-for ERF experiments

conducted with a reduced number of predictors discussed in Sect. 4.2

Main experiments Ablation experiments
ENP NATL ENP NATL

POD FAR | POD FAR POD FAR | POD FAR
Calibration 91.1 2.0 93.6 2.3 89.7 4.1 89.5 3.6
Validation 71.5 8.7 77.8 7.9 77.2 11.9 76.7 132
Uz 76.4 24.1 78.4 15.0 - - - -
Test NATL (calib.) ENP (calib) NATL (calib) ENP (calib.)

76.6 15 68.4 7.8 73.5 15.5 69.3 15.5

Multi-basin

Calibration 91.8 3.1 90.9 2.4 90.5 55 87.8 3.1
Validation 79.2 9 74.8 53 78.1 13.7 70.1 8.3

305 one possibility among others. A test (not shown), with a 6-fold cross-validation scheme in which validation years are stacked
2015-2021
fold, with the latest validation years (2015-2021

1980-1986,- - -

is considered.

ielded similar results for the validation experiment and, results are even better when only the last

100 a)' Hit 1.0 b) ,
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—IBTrACS
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Figure 5. Statistical properties of IBTrACS (purple), ERF-detected TC tracks: Hit (blue) and FA (red) and ERF-missed tracks: Miss (green).

a) TC tacks duration histograms, b) Boxplot of ERF-based average probabilities for-associated to-with each time steps-step of Hit, FA, and

Miss tracks.

In the following, the statistical and physical properties of the detected tracks are investigated. Figure 5 a) shows the track

duration histograms for the observed, ERF-detected tracks (Hit and FA) and missed tracks. ERF-based Hits have a duration
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distribution quite similar to IBTrACS tracks, but with substantial differences for short duration tracks (1 to 3 days). These
short-duration—tracks-have-short-duration tracks have a typically short lifespan and are of lower intensity. This discrepancy
is supported by the Miss s i istribtition——whi ihy— ions-duration distribution of Miss tracks,
which is mainly short-duration tracks (the majority of them last between 2 and 4 days). False alarm-alarms are also of the
same durationsduration. Differences in probabilities of TCs given by ERF associated with every time step of Hit, FA, and Miss
of tracks are then investigated. Figure 5b )-shew-that-probabilities-assoctated-to-shows TC probabilities conditionally on its
labelling as Hit, Miss, or FA. Probabilities associated with Hit tracks (median above 0.9) are substantially different compared
to those associated to-with FA (median a little above 0.6). This means that even if FA tracks are detected (probability >0.5) by

EREF, FA are less likely to happen than Hits. Miss tracks are associated with very low probabilities, meaning they are completely

missed by ERF while having been recorded in IBTrACS.
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Figure 6. Physical properties of IBTrACS (purple), ERF-detected TC tracks: Hit (blue) and FA (red) and ERF-missed tracks: Miss (green).
a) histograms of mintmum-seatevel-pressare-maximum surface wind [in hpaw, b) histograms of maximum-surface-wind-minimum
sea level pressure [in m—s;lleIDNal] and c) the seatterplot-scatter plot of maximum surface wind against minimum sea level pressure. Vertical
lines indicate the TC intensity classification Saffir-Simpson Hurricane Scale thresholds of 10 min sustained wind. Horizontal lines indicate

pressure thresholds based on Klotzbach et al. (2020).
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In-erder-to-To investigate how these different tracks diverge in nature, the maximum wind and minimum sea level pressure
associated to-with these different types of tracks are considered. Figure 6¢ )-shows-the-seatierplot-shows the scatter plot of
maximum surface wind against minimum sea level pressure associated to-with every timestep of observed, detected (Hit and
FA) and missed tracks. Figure 6 a }-and-b—-and b respectively give the associated maximum wind and sea level pressure
and-maximum-wind-histograms. In general, and as already pointed out in Bourdin et al. (2022) and Dulac et al. (2024), the
wind-pressure relationship in ERAS is different from the one in the observations (purple dots versus the rest). Detected TCs
are weaker than observed ones. In particular, Hit tracks barely reach category 4 when considering ERAS minimum sea level
pressure, and it is even worse when considering ERAS5 maximum wind: Hit tracks barely reach category 3. In addition, these
figures also provide insight en-into the FA and Miss tracks. Miss tracks are, for the majority of them, associated in ERAS with

minimum pressure above 1005 hPa and maximum wind below 16 m s~!

, which are the TS intensity threshold. It means that
these tracks are missed because ERAS is failing to represent these TCs correctly. Concerning FA tracks when examining Figure
6 a-c), the maximum winds and minimum pressure are located around 16 m s~! and 1005 hPa pressure, which are again the
threshold for TS intensity. Thus, these FA tracks may be related to the uncertainty of ERF, which associates an atmospheric
situation te-with a TC even though none has been observed.

Figure 7 shows Miss and FA tracks distributed over the NATL basin and the associated ERF-based average probability, the
minimum pressure and the maximum wind. Miss tracks are distributed over the entire domain and confirm the results of Figures
S-and-6-in-terms-of-low probability and intensity in Figures 5 and 6. However, one track shows high probability, intense wind
and low pressure and-is-pictured in reddish colours in the three left-hand side panels of Fig. 7. This track illustrates one small
drawback of dividing the basin into 20° x 10° overlapping boxes: ERF is-onty-able-to-can only detect one TC at a time within a
box. However, itis-possible-thattwo-TCs-two TCs may happen at the same time within one box. Figure 8 shows the IBTrACS
track of the TC IRIS spotted in Figure 7 and the stronger TC HUGO occurring at the same time. The probability, the pressure,
and the wind associated to-with the missed TC IRIS in Figure 7 are actaally-those of the strong TC HUGO. The FA tracks are
rather-mostly distributed at the edge of the domain. In particular, they are located in areas where TCs are typically weaker:
the main-primary development region (eastern part of the domain between 10°N and 20°N) where FC-TCs are developing,
and coastal areas where they disappear. This can be related to the uncertain aspect of these tracks that are yielded by lower
probabilities.

Similar figures for the ENP basin are given in Figures S2 to S5 of the supplementary material and give similar conclusions as
for the NATL basin. The major difference being-is that the distinction in terms of intensity between Hit and FA is less obvious
based on ERAS. The wind-pressure relationship basin-in ERAS5 compared to the observation is even worse for ENP, where
TCs barely reach category 2 intensity for the wind and pressure scale. The median probability of Hit and FA tracks are-is closer
(0.8 vs 0.65) and yield-yields a higher FAR ratio. Even though the majority of FA tracks are associated with wind and pressure
around 16 m s~! and 1005 hPa, some of them present more intense values. One hypothesis may be that these tracks have not

been recorded in IBTrACS.
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Figure 7. Average probability (top row), minimum sea level pressure, Pmin [in hPa] and maximum wind U10max [in m s~ 1] for Miss tracks

(left column) and FA tracks (right column). Colours are saturated for Pmin and U10max.

3.3 Physical interpretation

In this section, the contribution of the different predictors to the detection of TCs is analysed to provide physical insights

into the presence or absence of a TC. Figure 9

both basins, the six variables with the largest feature importance are the same: RV850sd, MSLPmin, UV10max, RV850max,

THz300_z500max and FEWmaxTCW Vmax. These predictors are physically well-founded in explaining the presence of a
cyclone. RV850sd eharaeterizes—characterises the singularity of the vortex within a box: the higher it is, the more the TC
vorticity stands out from the vorticity of the rest of the area within a box. It is more important than the RV850max, with-is-the

fourth most important variable. Then, UV10max and MSLPmin are the following most important variablevariables. This makes
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Figure 8. Example of TC IRIS that has been missed by ERF due to the presence of a stronger TC HUGO and the associated Pmin [in hPa].
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Figure 9. Boxplot of gini-based-Gini-based feature importances from the 100 RFs of the ERF for the calibration experiment and the ’25-
times’ setup for a) ENP and b) NATL.

sense, since they are respectively-associated-to-associated with the strong surface winds and the location of the cycloneeye’s
eye, respectively. The following variable-variables are the TCW Vmax and THz300_z500max. The former reflects the potential
for rain and the moisture lifted by the TC-the-lattercharacterizes-; the latter characterises the upper-level warm core associated
365 to-with the TC. Note that the order of importance is slightly different between the basins. For instance, maximum wind is more
important than sea level pressure for the NATL basin, while it is the opposite for the ENP basin. It may be-the-result-efresult
from the different wind-pressure relationships between both basins (see Fig. 6¢ y-and Fig. $3-¢)-S3c of the supplementary-).

TCWVmax is less important in explaining the presence of the TC situation for the ENP basin.

Feature importance is-interesting-to-quantify-quantifies the average contribution of a given predictor in discriminating TC
370 from non-TC situations. However, it would be interesting to determine the contribution fer-each-predietor-overof each predictor
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Figure 10. Partial dependence plot for top six predictors a)-f) obtained for one of the 100 RFs of the calibration experiment and the *25-times’
setup for the NATL basin. Contour lines indicate the density of the scatter plot between one predictor and the associated SHAP values. Yellow
and blue eharacterize-characterise, respectively, the density of the zeros (probability<0.5) and the ones (probability>0.5) population. Vertical
and horizontal lines, respectively, indicate the median of the predictors and the associated SHAP values for both peputationpopulations. The
distributions of the predictors and SHAP values are also given conditionally to both peputatienpopulations.
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to each outcome of an RF. Indeed, we want to evaluate the ability of RFs to learn the relevance of each predictor to drive each
TC/non-TC prediction. This is provided by the SHAP-based partial dependency plots shown in Figure 10 for the NATL basin.

This figure pictures the relationship between the six top predictors (according to feature importance) and their respective

SHAP values. Note that given the large

time, SHAP values are computed for only one RF among the 100 RFs of the calibration experiment and the *25-times’ setup.
These partial dependence plots are probably very similar for the 100 RFs, given the small dispersion of the MCC, POD and
FAR performances’ metrics (see Fig. 3) and feature importance (see Fig. 9). Let us consider the partial dependency plot in
panel a) of Figure 10. On the abscissa is given the physical range of RV850sd and the associated SHAP values on the ordinate.
It shows the contribution of RV850sd given its value to the probability value of TC occurrence.

The partial dependence show-a-clear-distinetion-is _distinct between the “zero” and the “one” populations, with marginal
overlap. For the zeros, the SHAP values are always very close to 0, while for the ones, the SHAP values always steeply
increase when the associated predictor increases (except MSLPmin, SHAP values increase when it decreases). For these six
predictors, SHAP values tend to reach at-a cap value after the predictors reach a certain level, and they even decrease for
MSLPmin and UV10max. This means that the contribution of these predictors in discriminating TC from non-TC situations
does not change when a-certain-intense-vatueisreachedreaching an intense value. This figure also shows #s-that TC situations
can occur for a very-large range of values and ;-therefere;petentially—very-diverse combinations of these predictor values.
This advocates for TC tracking approaches that bring more flexibility than threshold-based approaches. Similar results can
be drawn based on the-Figure S6 of the supplementary material for the ENP basin. This analysis highlights the advantages of
using Random Forest (RF) over traditional trackers that rely on sequential-thresholdingthe sequential use of thresholds, as most

variables exhibit nonlinear interdependencies.
3.4 Comparison with UZ

POD and FAR for UZ in both basins are reported in Table 1. POD are guite-close to those of ERF (Validation experiment) with
1% lower POD for ENP (76.4%) and less than 1% higher (78.4%) for NATL. However, FAR, which reach-reaches 24.1% in
the ENP and 15% in the NATLameunt-to-almestrespeetively-, amounts to almost three and two times the ERF scores, which
not-desirable—In-orderto-is undesirable.

Figures 5 to 7 have been reproduced for UZ and both basins. They have been added to the supplementary material as Figures
frequent and slightly more intense (higher maximum wind and lower SLP). Properties of FAs are similar for UZ and ERF in

the NATL basin. In the ENP basin, FAs from UZ are significantly more frequent and intense than the FAs generated by ERF.
The spatial distribution of Miss and FA of the UZ tracker is also similar to that of ERF (Fig. S9 and S12). Miss tracks are

distributed over the entire domain with low intensity, and FA tracks are mostly located in the primary development region and
coastal areas, where TCs are typically weaker.
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To further explore the similarities and differences between UZ and ERF, Figure 11 shows the number of tracks that are
common for observations (IBTrACS, IB) and tracks that are detected by ERF (Validation experiment and *25-times’ setup) and
UZ. A large portion of the tracks of IBTrACS are detected by both UZ and ERF (335/252 for ENP/NATL basins), and some
tracks are only detected by UZ (28/31 for ENP/NATL basins) or ERF (27/22 for ENP/NATL basins). In total, the Hit numbers
are similar in both methods. UZ produces a-larger-number-of- FA-more FAs (115/50 for ENP/NATL basins) than ERF (41/31
for ENP/NATL basins). Finally, there are no common FA-FAs between ERF and UZ. This means the FA appear for different

reasons in the two methods.

a) b)
ERF-1B-UZ} | 335 ERF-1B-UZ} | 252
ERF-UZ} 0 ERF-UZ} 0
B-erFf [ ] 27 B-erFf [ ] 22
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Figure 11. Number of tracks in common between observed tracks (IBTrACS, IB) and detected tracks from ERF and UZ for the following
case: all three datasets, two out of the three and tracks specific to a dataset for the Validation experiment and *25-times’ setup. a) ENP and b)

NATL basins.

4 Sensitivity test
4.1 Need for regional tracker

In this study, ERF has been applied separately for each basin, which is uncommon in the literaturein-whieh;-usually. Usually,
the tracking algorithm is applied over multiple basins (Bourdin et al., 2022; Accarino et al., 2023). This has been done in-erder
to test the spatial generalizability of the ERF approach. This ability of ERF is based on the test experiment, which consists
in-of reconstructing the tracks of the ENP basin using the ERF fitted for the calibration experiment ("25-times’) setup for the
NATL basin and vice versa (see sect. 2.2.1). Table 1 reports the FAR and POD for these test experiments. POD and FAR are
respectively 76.6% and 15% for the ENP basin and 68.4% and 7.8% for the NATL. In the case of ENP, the test POD is similar
to the validation one, while the FAR is degraded. It is the opposite for NATL. This shows a certain specificity of the TC tracking
according to the basin, which may stem from different factors. For instance, the latitudinal distribution of the cyclones are-is
quite different between both basin:—fer-basins: for the ENP basin, TC tracks are mostly located between 10°N and 20°N (see
Fig. 1) while they are distributed all over the basin for NATL. Thus, this may involve different processes between TC in NATL
and ENP. Differences of-in feature importance in Figure 9 between beth-basin-the two basins may be an illustration of that.
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This can also be due to the differences of-in the quality of TC representation between both-basin-the two basins in ERAS. For
example, differences in the wind-pressure relationship between both basin-basins illustrate this quality difference (see Fig. 6¢
)-and Fig. $3-€)S3c).

In-erderto-To highlight the need for a regional tracker, ERF has been carried out under the *25-times’ setup for the data pooled
from both basins, referred to as *Multi-basin’. Table 1 gives the POD and FAR for calibration and validation experiments.
Compared to basin-specific experiments, the performances are close, with slightly better POD and slightly worse FAR for the

ENP basin. In contrast, it is the opposite for NATEbasin-the NATL basin, with larger differences. The better performance for

AARAAAANAAAANAANI

the ENP basin can be explained by the-higher-weightit-helds-its higher weight on the ERF training, given its larger data size
(see Sect. 2.1.3) and the small total number of TCs. The results remainnevertheless-, nevertheless, better than UZ (see Tab.

1). It is therefore up to the user to decide if either one ERF for all basins or one specific ERF for each basin is necessary by

considering if the loss of performance of the Multi-basin ERF compared to the regional ERF is acceptable or not.
4.2 Ablation experiment

An ablation experiment is conducted in-erderto get a more parsimonious ERF by reducing the number of predictors. Based on
the feature importance (Fig. 9), the top six predictors are kept (see Sect. 3.3). Such a model is expected to generalize-generalise
better, have a smoother behaviour when looking at partial dependencies, and be potentially more intrinsically interpretable.

In this section, the Calibration and Validation (for regional and Multi-basin) and Test (for regional) experiments have been
performed under the *25-times’ setup. The right part of Tab. 1 gives the POD and FAR of-all-experiment-performed-from all
experiments carried out with a reduced number of predictors. For all experiments, POB-PODs are only slightly reduced but
remain very close to the POD without the ablation. Interestingly, FAR-FARs are more strongly degraded (sometimes doubled)
with the ablation. This means that predictors with lower feature importance control FA, indicating us-that we ought to be
cautious when removing predictors. SHAP-based partial dependency plotfer-plots for the validation experiment are given in
Figure-S7-and-S8-Figures S13 and S14 for the Validation experiment and both basins. In general, these figures are similar to
the-one-those of ERF performed with the full set of predictors. The only difference is the better distinction between “zero” and

“one” populations, which can result from the higher FA rate.

To explore how many variables can be removed without deteriorating the performance of the tracker, a recursive feature
elimination on the 6-fold cross-validation set-up (validation experiment) has been performed. It consists of eliminating the
least important variable at each iteration. The results (not shown here) show that the performance of ERF remains stable until
we remove 12 to 14 variables, which roughly corresponds to the number of variables we kept for the sensitivity test. The
exception resides in FAR, which shows a 50% increase when we remove no more than 6 variables, confirming the role of the
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5 Summary and perspectives

In this study, we used random forest for tracking tropical cyclones in the eastern North Pacific and North Atlantic basins over
the 1980-2021 period by associating atmospheric situations described by five climatic predictors extracted from ERAS to-with
observational IBTrACS records of tropical cyclones. More precisely, the tracking problem in this paper was equivalent to per-
forming binary classification over imbalanced data containing substantially more TC-free situations than TC. This imbalance
problem was addressed by combining an ensemble of random forests with the subsampling of TC-free situations. Before ap-
plying this method, the amount of data fed to it was reduced by considering four statistics of each predictor instead of its whole
field (minimum, mean, maximum and standard deviation). In addition, basins were patched by overlapping boxes. In this way,
our approach was able to learn the characteristics related to the presence of the TC inside a box, regardless of its position;-and
. It allowed us to detect cyclones eeeurring-at-the-same-time-that occur simultaneously within one basin or in both basins (for
the multi-basin experiments).

Our data-driven ERF tracker showed good performances for detecting TC tracks: In validation, POD/FAR of 77.5%/8.7%
and 77.8%/7.9% were obtained for the ENP and the NATL basins, respectively. Compared to the physics-based UZ tracker,
used as a benchmark in this study, ERF showed similar POD but better (i.e., lower) FAR. UZ was chosen because it was the
most accurate among the physics-based trackers (Bourdin et al., 2022), and it was also better than other data-driven trackers
(e.g., the deep learning approach in Accarino et al., 2023). ERF has the advantage to-require-of requiring low computing power
(see Sect. 2.2.1). Tracks detected by ERF have similar duration frequencies to IBTrACS tracks, except for short (2 to 4 days)
and lower intensity tracks (see Figs. 5 and 6). Missed and false alarm tracks are mainly short tracks (1 to 3 days). Detected TCs
have weaker intensity in ERAS than in IBTrACS, due to ERAS systematically under-estimating-underestimating TC intensity.
So much so that it is likely that some cyclones are missing because they were reanalysed as too weak to be detected. False
alarm tracks are very close to the tropical storm intensity thresholds and thus illustrate the uncertainties of ERF. These tracks
are located in developing and landfall areas of cyclones, where their signal is less clear and more uncertain.

For both basins, the six most important variables for detecting the presence of TCs are the same and eharaeterize-characterise
the main physical and thermodynamic properties of FETCs. The order of importance differs between the basins, highlighting
potential specificities in the TC patterns and processes depending on the basin. Relying on the SHAP-based partial dependency
plots, we showed that TC can be detected through potentially very-diverse combinations of predictor values;whieh-, This brings
more flexibility than physics-based approaches that need user-prescribed thresholds.

Two aspects of our ERF trackers were then tested: the spatial generalizability of ERF, and the possibility to reduce the
number of predictors. When the tracking was performed in one basin based on an ERF calibration performed on the other basin
(resp. on both basins): (i) for ENP, the POD is similar (resp. improved) and the FAR is degraded (resp. similar), and (ii) for
NATL, the POD is degraded (resp. degraded) and the FAR is similar (resp. improved). This shows an overall good ability for
spatial generalizability of ERF, while showing potential need for regional tracking that can stem from the specificities of TC

tracks and the differences ef-in ERAS5 quality between both basins. The ablation experiment showed that reducing the number

22



of predictors according to their feature importance does not change (or only very marginally) the POD, but strongly degrades
the FAR for all experiments. This showed a certain control en-false-alarm-over false alarms of the removed predictors.

490 As future work, the next focus will be on extending the tracking for all the basins at a global scale. Some tests will also be
necessary to choose the minimum number of RF (lower than 100) and to determine which predictors control FAs and which
predictors to remove without degrading the performance of the tracker. From there, the major challenge will be to apply ERF to
Earth System Models from the Coupled Model Intercomparison Project phase 6 (CMIP6, Eyring et al., 2016) and, in particular,
to the subset of CMIP6 simulations from the High Resolution Model Intercomparison Project (HighResMIP, Haarsma et al.,

495 2016). Indeed, HighResMIP simulations are better in simulating TCs, and their tracking has already been done with other
physics-based trackers (Roberts et al., 2020).

The primary target will be to apply the ERF tracker calibrated from ERAS directly to HighResMIP simulations without any
new EREF calibration. This raises the question of the transferability of the ERF calibrated from ERAS to the models. This issue
is two-fold: first, is there a need for bias correction? And second, will ERF be transferable to future climate projections given

500 the climate change signal? The first question will deal with the possibility of the-a mismatch between the models and ERAS,
preventing ERF te-deteet-from detecting cyclones. The second one will address the possibility that the-climate change will
induce ron-stationarity-nonstationarity strong enough to prevent ERF from detecting cyclones.

Multiple applications can be foreseen. For instance, we will be-able-to-study the statistical and physical properties of TCs
detected under climate change. More precisely, we will be able to compare them to the cyclones detected by physical-based

505 trackers and evaluate the complementary added-value-added value brought by the flexility-flexibility of ERF for detecting
cyclones. Furthermore, thanks-to-the-partial-dependeney-plots;-the differences in the relation between the predictors and the
TC presence probability betweenfor the models and ERAS will be evaluated thanks to the partial dependency plots. Another
application can be dedicated to climate change attribution studies by comparing the properties of TCs in simulations realized
realised under controlled emission scenarios and future climate scenarios.

510 Ultimately, we would like to make our method widely available. Hence, efforts will be made to make it easy-to-use-through
amn-easy to use through open-source software.

Data availability. ERAS data are available on the Copernicus Climate Change Service Climate Data Store (CDS, https://cds.climate.copernicus.
eu/datasets/reanalysis-era5-pressure-levels?tab=download, last access: April 2024). The IBTrACS database is provided by NOAA, National

Centres for Environmental Information, https://www.ncei.noaa.gov/products/international-best-track-archive (last access: April 2024).
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Table A1. Confusion Matrix

Prediction

0 1
Observations 0 m
1 FN ‘ TP

true positives (TP), true negatives (TN),
false positives (FP), false negatives (FN)
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