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Abstract. Diffusion and crystal growth are common processes in nature and can be observed in rocks that have experienced 

high temperatures. Information about these processes is stored in the composition profiles of minerals. Diffusion can either 

occur within single crystals or across mineral interfaces. In the case of intercrystalline ion exchange, composition profiles 10 

across the interfaces are always discontinuous and may exhibit sharp compositional gradients. The compositional discontinuity 

and the associated gradients require an accurate treatment for the interface boundary condition. Here, we present a software 

package (MovingBoundaryMinerals.jl) that is openly available. In this package, we use an adaptive finite element method to 

describe the diffusion-couple equilibrium by taking into account the moving boundary separating the two phases. In addition, 

we utilize an adaptive grid approach to resolve the concentration gradients accurately at the interface region. This approach 15 

allows modelling a wide range of applications from mineral diffusion, simple ion exchange between diffusion couples, and 

diffusion-limited growth. The package has been tested versus variable available analytical solutions for diffusion and growth 

and several benchmark cases are presented. Finally, our package can be used to model concentration gradients in 

growing/dissolving/diffusing crystals in the framework of diffusion chronometry and geospeedometry. This approach can 

provide thermal/time constraints in various geologic phenomena. 20 

1 Introduction 

Crystal growth and diffusion are very common processes in nature. High-temperature rocks (igneous or metamorphic) often 

show evidence of relatively fast growth of crystals (e.g., Baronnet, 1993; Hollister, 1966). A particular feature of fast-growing 

crystals, of variable composition (solid solutions), is the creation of chemical concentration gradients (e.g., Hollister, 1966; 

Watson and Müller, 2009). Once formed, gradients in concentration will induce diffusion fluxes at relatively high temperatures 25 

(e.g., Chakraborty, 2006, 2008; Chakraborty and Dohmen, 2022; Costa et al., 2008, 2020). While concentration gradients are 

not limited to cases of fast growth, they can develop during changes in pressure (𝑃) and temperature (𝑇) (Lasaga, 1983; Ozawa, 

1984). In the latter case, the chemical elements redistribute through the mutual boundary and the final concentration gradients 

may not reflect the peak conditions or even mineral equilibrium (Ozawa, 1983; Spear, 1991). Thus, understanding the chemical 
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redistribution of elements during prograde (increasing T) or retrograde (decreasing T) rock evolution is essential for the correct 30 

interpretation of geological data. 

Diffusion in petrogenetic minerals is a relatively slow process that typically operates in the range of years to millions of years 

(e.g., Chakraborty, 2008). This fact has led to the development of inverse diffusion models to constrain timescales and cooling 

rates in igneous and metamorphic rocks (e.g., Goldstein and Short, 1967; Hartley et al., 2016; Lasaga, 1983; Nakamura, 1995; 

Ozawa, 1984). A particular challenge of such models is the choice of boundary conditions since we often have cases where: 35 

a) the composition needs to change as a function of 𝑃-𝑇 (e.g., Lasaga, 1983; Ozawa, 1983, 1984), b) the boundary is moving 

as a response to crystal growth/resorption (e.g., Burg and Moulas, 2022), or c) both cases apply (e.g., Kelly et al., 2011; Kohn, 

2009). The challenge lies on the fact that composition is discontinuous at the mineral interface, and therefore, the mineral 

couple cannot be modelled assuming a smooth concentration profile (e.g., Lindström et al., 1991).  

At present, most of the models that have been used in the literature assume an moving interface and/or a fixed concentration 40 

as an interface condition (e.g., Chakraborty and Ganguly, 1992; Lasaga, 1983; Lindström et al., 1991). Although suitable in 

many cases, the previous assumptions limit our ability to model mineral growth and resorption processes in a realistic manner. 

In order to model the mineral growth/resorption, we need to consider the Moving Boundary Problem that accounts for the 

simultaneous growth/resorption and diffusion in materials (e.g., Crank, 1975). Having an efficient manner to model crystal 

growth and diffusion will allow for better time constraints in metamorphic and magmatic evolution of rocks (e.g., Liu et al., 45 

2025; Skora et al., 2006). Last but not least, moving boundary models can be used to quantify the effects of kinetic fractionation 

during crystal growth in slow-diffusing magmas (e.g., Albarede and Bottinga, 1972; Marschall et al., 2013; Watson and Müller, 

2009). Therefore, the applications of considering the coupled growth/diffusion find variable applications in many fields of 

petrology/geochemistry. 

Outside the field of geosciences, the moving boundary problem has been used for numerous applications and models (e.g., 50 

Garcia et al., 1995) and many modelling approaches exist in the literature. However, in this work, we present a new software 

package (MovingBoundaryMinerals.jl) that has been developed in a self-consistent manner that allows accounting for the 

simultaneous diffusion, growth/dissolution, and their limiting cases. Our package has been written in the Julia Programming 

language (Bezanson et al., 2017), that is suitable for continuous integration and further development. 

Our paper is organised as follows, we initially present all the mathematical methods used to solve the diffusion-couple problem 55 

whether the interface of the two phases moves or not. Furthermore, we introduce our strategy for the numerical treatment of 

sharp compositional gradients, as they typically develop in diffusion-couple problems. In addition, we proceed with showing 

various calculated examples that have known analytical solutions and can serve as benchmarks for our class of problems. Apart 

from those benchmarks, we include three calculated examples that can be widely applicable in petrologic applications and can 

be modelled efficiently with MovingBoundaryMinerals.jl. Finally, our results are discussed in view of their implications in 60 

geological processes. 
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2 Methods 

Our software package can handle several different cases of diffusion couples. Diffusion within the diffusion couple can be 

modelled with a moving boundary or a fixed boundary. The software is created in a general way and can be adapted to various 

petrologically-relevant cases. In this section, we focus on describing the main equations solved and the methodology that was 65 

followed. More details on the derivation of the following equations can be found in Appendices A-B. Compositional changes 

due to diffusion within materials such as crystals or reservoirs are given by Fick's second law (Eq. 1), 
𝜕𝐶
𝜕𝑡
= 𝜕

𝜕𝑥
(𝐷 𝜕𝐶

𝜕𝑥
)             (1) 

where 𝐶 is the composition (per mass or per mol) that depends on time and space 𝐶(𝑥, 𝑡) and 𝑥 is the spatial distance in m. In 

this formulation, we consider cases where composition is not coupled to stress and density (e.g., Tajčmanová et al., 2021; 70 

Zhong et al., 2017). Time is described using 𝑡 in s and 𝐷 the diffusion coefficient in m2/s, which can be a function of pressure 

(𝑃), temperature (𝑇) or composition (𝐶). In our package, we consider only cases where the diffusion does not depend on 

composition. Equation (1) is a case for a cartesian coordinate frame in one dimension (1D). However, due to symmetry, Eq. 

(1) can be modified to account for spherical or cylindrical geometries (Eq. 2). The code can be used to model planar (𝑛 = 1), 

cylindrical (𝑛 = 2) and spherical (𝑛 = 3) geometries by solving the following equation: 75 

𝑥𝑛−1 𝜕𝐶
𝜕𝑡
= 𝜕

𝜕𝑥
(𝐷𝑥𝑛−1 𝜕𝐶

𝜕𝑥
)            (2) 

In the framework of the software package, 𝐷 can be described by a) a constant value or b) the Arrhenius relationship (Eq. 3), 

using 𝐷0 as the pre-exponential factor, 𝐸𝑎  the activation energy in J/mol, 𝑅 is the universal gas constant in J/mol/K and 𝑇 the 

absolute temperature (in K):  

𝐷 =  𝐷0𝑒
−𝐸𝑎𝑅𝑇            (3) 80 

The moving boundary velocity 𝑣𝑎 represents the growth velocity of a crystal in m/s, 

𝑣𝑎 =  
𝑑𝑆
𝑑𝑡

             (4) 

where 𝑆(𝑡) is the position of the interface. In cases where the crystal is being consumed, 𝑣𝑎 is negative. 

2.1 Numerical solution of the diffusion equation 

Many programs exist which apply various numerical methods to solve diffusion equations (e.g., Chen et al., 2024; Girona and 85 

Costa, 2013; Hesse, 2012; Moulas, 2023; Moulas and Brandon, 2022; Mutch et al., 2021; Stroh et al., 2024). In this package, 

we have combined known techniques to create a general code, which can handle a wide range of initial conditions and produces 

accurate results in a timely manner. For this purpose, we implemented the Galerkin-Finite-Element-Method (FEM; e.g., 

Hughes, 1987) to solve for Eq. (2) in 1D. Within each element, Eq. (2) is discretized and solved as the main diffusion equation. 

The details for modelling the main diffusion equation and the numerical treatment of the moving boundary are given in the 90 

following sections. 
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2.1.1 Finite element discretization and solution of the diffusion problem 

We discretize the spatial domain using regular or an adaptive grid. Linear shape functions 𝑁(𝑥) are used to describe the 

numerical solution within an element in the domain [𝑥𝑖, 𝑥𝑖+1] (Eqs. 5). The shape functions are given by the following forms. 

𝑁𝑖(𝑥) = 1 − 𝑥−𝑥𝑖
𝑥𝑖+1−𝑥𝑖

            (5a) 95 

𝑁𝑖+1(𝑥) =
𝑥−𝑥𝑖

𝑥𝑖+1−𝑥𝑖
            (5b) 

The local (per element) implicit system of equations can be expressed in a matrix-vector form as follows: 

[𝑴
∆𝑡
+ 𝑲] {

𝐶𝑖
𝑗

𝐶𝑖+1
𝑗 } =  [𝑴

∆𝑡
] {
𝐶𝑖
𝑗−1

𝐶𝑖+1
𝑗−1}           (6) 

where 𝐶𝑖
𝑗  is the unknown composition (or concentration) at point 𝑖  and time step 𝑗 and ∆𝑡  is the timestep used for time 

integration. The mass matrix 𝑴, and the stiffness matrix 𝑲 are defined as follows: 100 

𝑴 = ∫ 𝑥𝑛−1 [ 𝑁𝑖𝑁𝑖 𝑁𝑖𝑁𝑖+1
𝑁𝑖+1𝑁𝑖 𝑁𝑖+1𝑁𝑖+1

] 𝑑𝑥𝑥𝑖+1
𝑥𝑖

         (7a) 

𝑲𝑗 = ∫ 𝐷𝑗𝑥𝑛−1 [
𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑖+1
𝜕𝑥

𝜕𝑁𝑖+1
𝜕𝑥

𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑖+1
𝜕𝑥

𝜕𝑁𝑖+1
𝜕𝑥

] 𝑑𝑥𝑥𝑖+1
𝑥𝑖

        (7b) 

The advantage of this notation is that the integrals are evaluated analytically and the matrices 𝑲, 𝑴 are symmetric. The 

resulting expressions represent the solution of the local system of equations. Assembling all expressions into the global system 

of equations, the resulting equation (Eq. 8): 105 

𝑳𝑔{𝐶𝑖
𝑗} = 𝑹𝑔,            (8) 

where 𝑳𝑔 is the global left-hand-side matrix and 𝑹𝑔 is the global right-hand-side vector. The subscript 𝑔 refers to the global 

system of equations. The matrices/vectors 𝑳𝑔 and 𝑹𝑔 are assembled in a standard manner. 

2.2 The diffusion-couple problem 

The previous models describe diffusion processes within a single phase. We extend the previous approach by considering two 110 

subdomains 𝐴, 𝐵 that indicate the phases on the left and right side of the model domain. This means that 𝑥 ∈ [0, 𝐿] where 𝐿 is 

the total model size, whereas 𝑥𝐴 ∈ [0, 𝑆] and 𝑥𝐵 ∈ [𝑆, 𝐿], leading to 𝑥 = 𝑥𝐴⋃𝑥𝐵. Phases 𝐴, 𝐵 may represent mineral/melt or 

mineral/mineral equilibria. The numerical (spatial) resolution in both materials is defined by the used in the beginning of the 

model and the user can chose a different numerical resolution for each domain separately. 

2.2.1 Mesh generation and adaptive grid 115 

During interphase exchange, sharp compositional gradients may develop across the mutual interface. We have thus added the 

option to refine the numerical grid close to the interface. The degree of grid refinement is controlled by the variable 𝑀𝑅 where 

𝑀𝑅 = 1.0 in the case of the regular grid and 𝑀𝑅 > 1.0 for the case of grid refinement close to the interface. Here, the grid is 
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constructed from a vector containing 𝑘 spatial increments. The sum of all increments ∆𝑥𝑖 is the total length 𝐿̂ of the respective 

material (𝐿𝐴 or 𝐿𝐵), where 𝑖 in Eq. (9) refers to the number of increments, respectively. 120 

𝐿̂ =  ∑ ∆𝑥𝑖𝑖=𝑘
𝑖=1              (9) 

In the case of refinement, the sequential change in ∆𝑥 is determined by a scaling factor 𝛼.  

∆𝑥𝑖+1 = 𝛼∆𝑥𝑖            (10) 

Equations (9) and (10) define the following linear system of equations and allow us to solve for ∆𝑥𝑖:  

[
 
 
 
 
 
1 1 1
−𝛼 1 0
0 −𝛼 1

1 … 1
0 … 0
0 … 0

0 0 −𝛼
… … …
0 0 0

1 … 0
… … …
0 −𝛼 1]

 
 
 
 
 

[
 
 
 
 
 
∆𝑥1
∆𝑥2
∆𝑥3
∆𝑥4
…
∆𝑥𝑘]

 
 
 
 
 

=  

[
 
 
 
 
 𝐿̂0
0
0
…
0]
 
 
 
 
 

            (11) 125 

where 𝑘 is the index of the last increment in a given diffusion domain (𝐴 or 𝐵). To calculate 𝛼, we need to define the ratio 

between a material’s first and last spatial increment. We can apply this ratio using the variable 𝑀𝑅 as follows (for material 𝐴 

or 𝐵):  

𝑀𝑅 =
∆𝑥𝑘
∆𝑥1

             (12) 

To proceed with the mesh refinement at the interface, we chose that 𝛼 consistently with Eq. (12) for the material on the left 130 

side of the model domain (𝛼𝐴). However, to ensure numerical stability, we require that both materials have ∆𝑥𝑖 that is almost 

equal across the interface. That is: 

∆𝑥𝑘𝐴 ≈  ∆𝑥1𝐵             (13) 

By considering this requirement and Eq. (9), the parameter 𝛼 is not anymore “free” for the right side (𝛼𝐵) of the domain and 

needs to be solved for. The solution of 𝛼𝐵 can be obtained by solving the following non-linear equation: 135 

∑ ∆𝑥𝑖𝐵𝑘
𝑖=1 = ∆𝑥𝑘𝐴(1 + 𝛼𝐵 + (𝛼𝐵)2 + ⋯+ (𝛼𝐵)𝑛𝑥𝐵−1) =  ∆𝑥𝑘𝐴 ∙

1−(𝛼𝐵)𝑛𝑥𝐵−1

1−𝛼𝐵
= 𝐿𝐵     (14) 

that is solved using the Newton method until the residual is smaller than 10−8.  The numerical resolution (nodes) of the two 

domains is specified using 𝑛𝑥 (𝐴 or 𝐵). Note that in Eq. (14) we have used the following relation: 

(1 + 𝛼 + 𝛼2 +⋯+ 𝛼𝑛−1) =  1−𝛼
𝑛−1

1−𝛼
          (15) 

where the limit is taken for the case where 𝛼 ≠ 1 and 𝑛 is a positive integer. By following this approach, we ensure that the 140 

interface numerical fluxes (that depend on Δ𝑥) are calculated consistently across the interface. 

2.2.2 Determination of the interface composition 

The diffusion coupling of the two materials leads to an increase in the number of unknowns in the global system of equations. 

Subsequently, we need to implement two additional equations to describe the two, inner boundary conditions for the interface. 

These equations come from the mass exchange across the interface. In other words, even if the solution may be discontinuous 145 
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at the interface (i.e., for cases of different phases 𝐴, 𝐵), their mass exchange should be consistent with mass conservation. To 

demonstrate this point we initially consider the case where the boundary does not move, and the two phases can only have ion-

exchange equilibria. This limiting case is similar to the cases considered by Lasaga (1983) and Ozawa (1983, 1984). In 

addition, at the interface-equilibrium limit, the composition at the interface is given by the distribution coefficient 𝐾𝐷 (Eq. 16). 

The distribution coefficient is generally 𝑃-𝑇 dependent, and therefore, can change over time (i.e., during the cooling and 150 

exhumation of rocks). In general, the distribution coefficient is given by the following form. 

𝐾𝐷(𝑡) =
𝐶𝑘+1
𝐴 |

𝑥=𝑆−

𝐶1
𝐵|𝑥=𝑆+

             (16) 

Equation (16) can be rearranged to describe the composition of the last point at the left side (𝐶𝑘+1𝐴 ). Finally, an additional 

equation is needed to specify 𝐶1𝐵 at the right side. This equation can come from the flux balance across the interface (Appendix 

B; Eqs. B3 & B4).  155 

𝜌𝐵𝐷𝐵 𝜕𝐶
𝐵 

𝜕𝑥
|
𝑥=𝑆+

= 𝜌𝐴𝐷𝐴 𝜕𝐶
𝐴 

𝜕𝑥
|
𝑥=𝑆−

           (17) 

where 𝜌 represents the density of the material (see Appendix B for more details). 

2.3 Including growth – a moving boundary problem 

For the cases where we have growth/consumption of a phase, the velocity of the interface 𝑣𝑎 may not be zero. In that case, the 

flux condition (Eq. 17) needs to be modified in order to account for the mass that is exchanged during the reaction. The velocity 160 

can be either assigned or calculated following the Stefan condition (c.f. Appendix B): 

(𝜌𝐵𝐶𝐵|𝑥=𝑆+ − 𝜌𝐴𝐶𝐴|𝑥=𝑆−)𝑣𝑎 = −𝜌𝐵𝐷𝐵
𝜕𝐶𝐵 
𝜕𝑥
|
𝑥=𝑆+

+ 𝜌𝐴𝐷𝐴 𝜕𝐶
𝐴 

𝜕𝑥
|
𝑥=𝑆−

        (18) 

However, the Stefan condition requires the knowledge of the composition of the coexisting phases at thermodynamic 

equilibrium. By including the moving interface as described below, our package can be used to model growth and dissolution 

reactions between two phases simultaneously with diffusion. In case where the interface velocity is assigned by the user, 𝑣𝑎 165 

should be positive for growth (from 𝐴 to 𝐵) and negative when phase 𝐴 is consumed at the expense of 𝐵. In these cases, the 

interface equilibrium compositions (𝐶𝐴|𝑥=𝑆−  and 𝐶𝐵|𝑥=𝑆+) can be estimated by Eq. (16) together with the Stefan condition 

(Eq. 18). Alternatively, if both equilibrium compositions are known from phase-diagram sections, then 𝐶𝐴|𝑥=𝑆−  and 𝐶𝐵|𝑥=𝑆+ 

can be used to determine the growth/resorption velocity (𝑣𝑎) via the Stefan condition (Eq. 18). At this point we would like to 

highlight that the equilibrium composition of 𝐶𝐴|𝑥=𝑆−  and 𝐶𝐵|𝑥=𝑆+  can be obtained by classic binary phase diagrams for 170 

magmatic or metamorphic rocks (Fig. 1). This approach has the advantage that the movement of the interface slows down once 

the neighboring crystals have negligible compositional gradients at the equilibrium limit. 
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Figure 1: Schematic drawings of a) magmatic and b) metamorphic binary phase-diagram sections. Such diagrams can be utilized to 
predict the equilibrium composition of the coexisting phases in Eq. (18).  175 

 

2.3.1 Regridding procedure and moving boundary treatment 

For cases with non-zero interface velocity, the interface needs to move according to the reaction velocity 𝑣𝑎. To include this 

effect, we advect the interface at each step before the solution of the diffusion equation. In this case, the mutual interface moves 

by a distance  𝜅1∆𝑥𝑎𝐴 = 𝑣𝑎∆𝑡𝑎𝑑𝑣 , where 𝜅1  is a constant smaller than 1.0 (here 0.99). The choice of 𝜅1is made to avoid 180 

numerical instabilities. Since we are considering a fully implicit approach for the diffusion problem (Eq. 6), our diffusion 

timestep can be larger than the traditional CFL condition. However, keeping it smaller than ~50 times ∆𝑡𝑑𝑖𝑓𝑓 =

∆𝑥𝑘𝐴
2/max (𝐷𝐴, 𝐷𝐵) seems to provide stable results and accurate time integration. However, in cases where ∆𝑡𝑎𝑑𝑣 < ∆𝑡𝑑𝑖𝑓𝑓 , 

we consider ∆𝑡𝑎𝑑𝑣  as the appropriate timestep. In cases where 50.0 ∙ ∆𝑡𝑑𝑖𝑓𝑓 ≤ ∆𝑡𝑎𝑑𝑣 , we use 50.0 ∙ ∆𝑡𝑑𝑖𝑓𝑓 ∙ 𝐶𝐹𝐿  as a 

maximum timestep, where 𝐶𝐹𝐿 is a number smaller than 1.0. The previous choice of parameters can change according to the 185 

requirements of the problem. 

Having a suitable timestep ∆𝑡 allows the movement of the boundary by 𝑣𝑎∆𝑡 which augments the computational grid by one 

point in order to be able to resolve the new interface exactly. With the augmented new interface location, we can implement 

the boundary conditions by using the appropriate interface compositions together with the Stefan condition. The final system 

of equations (including diffusion and interface boundary conditions) can be solved with standard linear solvers. The previous 190 
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approach will lead in the net increase of the computational grid points, and it is not computationally efficient. For this reason, 

we apply a regridding procedure where we interpolate the previously calculated solution in a new grid that keeps the number 

of computational points and the numerical resolution constant. The regridding approach utilizes the interpolation via Piecewise 

Cubic Hermite Interpolating Polynomials (PCHIP; Kahaner et al., 1989). This interpolation approach seems to provide better 

results when it comes to overall mass conservation compared to simple linear or high-order polynomial interpolation. In 195 

summary, the combination of regridding together with PCHIP interpolation maintains accuracy and it is computationally 

efficient since it does not increase the size of the problem during the calculations. 

2.3.2 Total mass-balance formulation  

The previous approach in modelling the moving boundary utilizes Stefan condition (Appendix B) to ensure that mass balance 

is conserved at the interface. In cases where the diffusivity of one of the materials is much larger than the other (i.e., 𝐷𝐵 ≫200 

𝐷𝐴), and the mass flux at the outer boundaries is zero, then we can assume that material 𝐵 is homogenized much faster if the 

timestep of the process is significantly larger than the characteristic diffusion time 𝑑𝑥2/𝐷𝐵 . In that limiting scenario, we can 

use a predefined growth velocity 𝑣𝑎 and the total mass balance to construct a closed system of equations. The total mass content 

𝑀𝑇 in our model is the sum of the masses of phases 𝐴, 𝐵 and can be calculated via the following form: 

𝑀𝑇 = 𝑀𝐴 +𝑀𝐵 = ∫ 𝜌𝐴𝐶𝐴(𝑡, 𝑉(𝑥))𝑑𝑉𝑉(𝑆)
0 + ∫ 𝜌𝐵𝐶𝐵(𝑡, 𝑉(𝑥))𝑑𝑉𝑉(𝐿)

𝑉(𝑆)        (19) 205 

where 𝑉(𝑥) is the appropriately chosen volume function (planar, cylindrical, spherical) used to calculate the total mass amount 

and 𝑆 is the location of the interface as before. In the case of Eq. (19) 𝐶 represents the mass fraction, for the cases when 

concentrations are used, 𝜌𝐴, 𝜌𝐵 can be set to unity. The previous equation is solved using the trapezoid rule at every timestep 

together with a distribution coefficient as shown in Eqs. (16 & 18). 

3. Computational results and benchmarks 210 

In the following parts we present some calculated examples as results. In addition, we have considered some limiting cases 

that have known analytical solutions. For each example, we first describe the specific model configuration followed by the 

presentation of the results. The package contains more examples than we present here 

(https://github.com/AnStroh/MovingBoundaryMinerals.jl; visit the GitHub repository for more information; Zenodo: Stroh et 

al., 2025). Detailed information on the respective input parameters can be found in the corresponding Tables.  215 

3.1 Intracrystalline diffusion 

The first two examples, A1 and A2, consider the limiting case of pure intracrystalline diffusion, as for example in linear-, 

trace-element diffusion in crystals at constant P-T conditions. Example A1 assumes an initial profile created by a combination 

of five harmonic functions (eigenfunctions) in a homogenous material, a planar geometry and outer boundary conditions where 
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the composition is constant (Dirichlet) through time. In this example, the diffusion coefficient 𝐷 is considered constant. Table 220 

1 summarizes all input values. The analytical solution of the diffusion profile is given by: 

𝐶(𝑥, 𝑡) = ∑ 𝑒𝑥𝑝 (−𝑚
2𝜋2𝐷𝑡
𝐿2

) 𝐴𝑚 sin (
𝑚𝜋𝑥
𝐿
)𝑚           (20) 

and the initial conditions can be evaluated by setting 𝑡 to zero in Eq. (20). Figure 2 shows a comparison between the analytical 

solution and the numerical model considering a single phase. The results show the agreement between the analytical and the 

numerical solutions. 225 

 
Table 1: Summary of all input parameters for example A1. The parameters have the same names as in the code. 

Parameter Unit Value Description 

𝐴𝑚𝑝 - [12; 0.5; 3; -2; 1] Amplitude of the eigenfunctions (𝐴𝑚 in Eq. (20)) 

𝐵𝐶𝑜𝑢𝑡 - [1     1] Outer boundary conditions [left    right] (0: Neumann, 1: Dirichlet) 

𝐶𝐹𝐿 - 0.99 Courant–Friedrichs–Lewy coefficient (to reduce diffusion timestep) 

𝐷𝑖 m2/s 2.65·10-18 Diffusion coefficient (𝐷 in the main text) 

𝐿 m 0.005 Total length of the modelling domain (𝐿 in the main text) 

𝑛 - 1 Geometry factor (1: planar, 2: cylindrical, 3: spherical; 𝑛 in Eq. (2)) 

𝑛𝑚𝑜𝑑𝑒𝑠 - [1; 2; 5; 7; 12]  Number of eigenfunction included in the sum (𝑚 in Eq. (20)) 

𝑟𝑒𝑠 - 500 Numerical resolution (number of nodes) (𝑛𝑥 in the main text) 

𝑡_𝑡𝑜𝑡 Myr 10-3 Total time of the simulation (𝑡 in the main text) 
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 230 
Figure 2: Example A1: Simple intracrystalline diffusion within a planar crystal. The initial profile (dashed black line) and the 
analytical solution (red dots) were calculated using Eq. (20). The numerical solution is presented as the blue solid line. 

 

Example A2 has a similar model configuration as example A1. However, in this case, we consider a spherical geometry with 

zero as initial condition and unity at the outer boundary (Dirichlet condition). The innermost boundary condition (at 𝑥 = 0) is 235 

of Neumann type (with no flux) due to the symmetry of the problem. Table 2 shows all input parameters needed to calculate 

A2. Figure 3 displays the resulting numerical solution and the corresponding analytical solution of the composition profile. 

Both solutions give the same result. The analytical solution for the example A2 can be found in Crank (1975; chapter 6.3.1) 

and it is summarized in the following Eqs. (21 & 22): 

𝐶(0, 𝑡) = 1 + 2∑ (−1)𝑖𝑒𝑥𝑝 (−𝑖
2𝜋2𝐷𝑡
𝐿2

)∞
𝑖=1           (21) 240 

𝐶(𝑥, 𝑡) =  1 + 2𝐿
𝜋𝑥
∑ (−1)𝑖

𝑖
𝑠𝑖𝑛 (𝑖𝜋𝑥

𝐿
) 𝑒𝑥𝑝 (−𝑖

2𝜋2𝐷𝑡
𝐿2

)∞
𝑖=1         (22) 

where Eq. (21) provides the solution for the centre of the crystal (𝑥 = 0) and Eq. (22) provides the solution for 𝑥 > 0. 
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Table 2: Summary of all input parameters for example A2. The parameters have the same names as in the code. Descriptions of 
previously defined parameters can be found in table 1. 245 

Parameter Unit Value Description 

𝐵𝐶𝑜𝑢𝑡 - [0     1]  

𝐶𝐹𝐿 - 0.5  

𝐶𝑖𝑛𝑓 - 1.0 Composition at the right outer boundary (𝐶𝑘+1𝐴 ) 

𝐶𝑠𝑡𝑎𝑟𝑡 - 0.0 Composition at the left outer boundary (𝐶1𝐴); center of the crystal (𝑥 = 0) 

𝐷𝑖 m2/s 2.65·10-18  

𝐿 m 0.001  

𝑛 - 3  

𝑟𝑒𝑠 - 500  

𝑡_𝑡𝑜𝑡 Myr 10-3  

 

 
Figure 3: Example A2: Simple intracrystalline diffusion in a spherical crystal. The initial profile (dashed black line) shows a 
homogeneous sphere with initially a different surface concentration (at 𝒙 = 𝟏. 𝟎). The numerical solution is presented as the blue 
solid line, while the red dots depict the analytical solution. 250 
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3.2 Intercrystalline diffusion (diffusion couple)  

The previous models show the comparison of analytical solutions with the numerical solutions for a homogeneous material. 

In our models, we are mostly interested on the intercrystalline exchange and the concentration gradients that develop across 

materials with different properties. The method for solving the intercrystalline exchange is described in the Methods section 

and will not be repeated here. 255 

A simple test that we can use to check for the accuracy of our diffusion-couple approach is to consider a diffusion couple in 

spherical geometry where the two domains (𝐴 and 𝐵) are treated separately but have identical diffusivities and their interface 

composition is given by Eq. (16) at the limit where 𝐾𝐷 = 1.0 (example B1). We can consider that the initial condition is zero 

for all domains and we can set the outer boundaries (at 𝑥 = 0 and 𝑥 = 1.0) as in the example A2. Under these assumptions, 

the analytical solution described in Eqs. (21 & 22) is applicable. The parameters for the model configuration are given in Table 260 

3. Note that to resolve any compositional gradients across the interface we can choose to refine the grid at the interface region. 

Figure 4 shows that the analytical solution matches the numerical solution and indeed it remains continuous at the interface as 

a consequence of setting 𝐾𝐷 = 1.0. 

 

Table 3: Summary of all input parameters for example B1. The parameters have the same names as in the code. Descriptions of 265 
previously defined parameters can be found in Tables 1-2. 

Parameter Unit Value Description 

𝐵𝐶𝑜𝑢𝑡 - [0     1]  

𝐶𝐹𝐿 - 0.3  

𝐶𝑙_𝑖 - 0.0 Composition at the left outer boundary (𝐶1𝐴) 

𝐶𝑟_𝑖 - 1.0 Composition at the right outer boundary (𝐶𝑘+1𝐵 ) 

𝐷𝑖 m2/s [2.65·10-18     2.65·10-18] Diffusion coefficients for the two materials (𝐷𝐴,𝐷𝐵 in the main text) 

𝐾𝐷 - 1.0 Distribution coefficient (𝐾𝐷(𝑡); defined in 𝐾𝐷_𝑎𝑟 in the code) 

𝑀𝑅𝑒𝑓𝑖𝑛 - 15.0 Refinement factor (𝑀𝑅 in the main text) 

𝑛 - 3  

𝑟𝑒𝑠 - [50            75] Numerical resolution of [𝐴    𝐵] 

𝑟ℎ𝑜 - [1.0           1.0] Normalized densities of [𝐴    𝐵] (𝜌𝐴, 𝜌𝐵  in the main text) 

𝑅𝑖 m [0.0005     0.001] Positions of [𝑆    𝐿] 

𝑡_𝑡𝑜𝑡 Myr 10-3  

𝑉_𝑖𝑝 m/s 0.0 Interface velocity (𝑣𝑎 in the main text) 
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Figure 4: Example B1: Intercrystalline diffusion within a spherical diffusion couple. Both parts have the same material properties, 270 
whereby the blue and orange lines refer to the left and the right side. The initial profile (dashed black line) shows an initially 
homogeneous sphere with a different surface concentration (𝒙 = 𝟏. 𝟎). The analytical solution is indicated using red dots. The 
interface position can be recognized by the dashed-dotted grey line at 𝒙 = 𝟎. 𝟓. 

 
In a similar approach as for the example B2, we can calculate an example where the diffusion coefficient changes through time 275 

following Eq. (3). The specific model parameters for this example are given in Table 4. In such a way, we can test for the 

accuracy of the time-integration scheme in our model. To proceed, we will consider an example where the temperature cools 

down with a constant rate from 1273 K to 1073 K within two thousand years. The previous cooling path defines a function 

𝑇(𝑡) that can be used to express the diffusivity as a composite function of time (𝐷(𝑇(𝑡))). For such problems Crank (1975) 

provides an analytical solution using a time-transformation technique (Crank, 1975; chapter 7). The time-transformation 280 

technique can be used to convert the non-isothermal problem into an isothermal one by calculating the following integral: 

𝜁(𝑡) =  ∫ 𝐷̃𝑡0 (𝑡′)𝑑𝑡′            (23) 

where 𝐷̃(𝑡) = 𝐷(𝑇(𝑡)) and 𝑡 is time. Then, the solution of the time-dependent problem reduces to the solution of the following 

diffusion equation: 
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𝜕𝐶
𝜕𝜁
= 𝜕

𝜕𝑥
(𝜕𝐶
𝜕𝑥
)            (24) 285 

for which, analytical solutions exist as shown in the previous examples and in the literature (e.g., Perchuk and Philippot, 2000). 

In our case (example B2) we consider the analytical solution given by Eqs. (21 & 22) at the limit where 𝑡 =  𝜁 and 𝐷 = 1.0. 

The integral in Eq. (23) is solved numerically using the trapezoidal rule. Figure 5 shows that the solutions obtained numerically 

(via direct time integration) and analytically (via time transformation) are matching. 
 290 

Table 4: Summary of all input parameters for example B2. The parameters have the same names as in the code. Descriptions of 
previously defined parameters can be found in Tables 1-3. 

Parameter Unit Value Description 

𝐵𝐶𝑜𝑢𝑡 - [0     1]  

𝐶𝐹𝐿 - 0.3  

𝐶𝑙_𝑖 - 0.0  

𝐶𝑟_𝑖 - 1.0  

𝐷0 m2/s [2.75·10-6        2.75·10-6] Pre-exponential factor for the two materials (𝐷0𝐴, 𝐷0𝐵  in the main text) 

𝐷𝑖 m2/s [-1                   -1] Indicates the use of the Arrhenius equation to calculate 𝐷 

𝐸𝑎1 J/mol 292879.6767 Activation energy for phase 𝐴 (𝐸𝑎𝐴 in the main text) 

𝐸𝑎2 J/mol 292879.6767 Activation energy for phase 𝐵 (𝐸𝑎𝐵 in the main text) 

𝐾𝐷 - 1.0  

𝑀𝑅𝑒𝑓𝑖𝑛 - 15.0  

𝑛 - 3  

𝑅 J/mol/K 8.314472 Universal gas constant (𝑅 in the main text) 

𝑟𝑒𝑠 - [50            75]  

𝑟ℎ𝑜 - [1.0           1.0]  

𝑅𝑖 m [0.0005     0.001]  

𝑇_𝑎𝑟 K 1273 - 1073 
Temperature array to determine the cooling path (together with  
𝑡_𝑎𝑟); current temperature 𝑇 

𝑡_𝑡𝑜𝑡 Myr 2.0·10-3  

𝑉_𝑖𝑝 m/s 0.0  
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Figure 5: Example B2: Diffusion within a spherical diffusion couple for the case of time-evolving diffusivity. Both parts have the 295 
same material properties and 𝑲𝑫 = 𝟏. The blue and orange lines refer to the left and the right side. The initial profile (dashed black 
line) shows an initially homogeneous sphere with a different surface concentration. The numerical solutions are presented as blue 
and orange solid lines, while the red dots depict the analytical solution. 

 

3.3 Crystal growth 300 

In the previous examples, we showed cases where the interface is not moving (𝑣𝑎 = 0.0). Our package can also be used to 

simulate crystal growth/dissolution. In the case where the diffusion of the growing solid is significantly smaller compared to 

its surrounding (𝐷𝐴 << 𝐷𝐵 ), then we can approximate the composition distribution as a case of Rayleigh fractionation 

(Hollister, 1966). The previous assumption seems appropriate when large crystals grow within a fluid or a fine-grained, fast-

diffusing matrix. To model this limit we also considered the case where the diffusion timescale is much smaller than the 305 

reaction timescale. The ratio of the two timescales defines the Peclet number as shown below (e.g., Burg and Moulas, 2022; 

their Appendix B): 
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𝑃𝑒 =
𝑑𝑡𝑑𝑖𝑓𝑓
𝑑𝑡𝑎𝑑𝑣

= 𝑑𝑥∙𝑣𝑎
𝐷

            (25) 

where 𝑑𝑥  in Eq. (25) indicates the material replaced/formed by the reaction. In that limit, the analytical expressions for 

Rayleigh fractionation reduce to: 310 

𝐶𝐵

𝐶0
𝐵 = (1 −

𝑀𝐴

𝑀0
𝐴)

𝐾𝐷−1
            (26) 

𝐶𝐴 = 𝐾𝐷 ∙ 𝐶𝐵            (27) 

Equations (26) and (27) describe the boundary compositions of the finite reservoir and of the solid during the crystallization. 

However, because of the relatively slow diffusivity of the solid, the boundary composition of the solid is preserved as part of 

the chemical zonation. Thus, we can use Eqs. (26 & 27) to test our code at the limit where the diffusivity of the two materials 315 

is different, and the growth process is much faster compared to the diffusion in the slowest phase. In this case, we considered 

the instantaneous interface equilibrium (Eq. 16) and the flux balance using the Stefan condition (Eq. 18) to form a closed 

system of equations. Example B4 shows the good agreement between the analytical and numerical solution of the 

compositional distribution in the case of a growing crystal with a finite growth velocity (Fig. 6). Table 5 summarizes the input 

parameters of the model.  320 

 
Table 5:  Summary of all input parameters for examples B4 and C1. The parameters have the same names as in the code. Non-
dimensional parameters are used. Descriptions of previously defined parameters can be found in Tables 1-4. 

Parameter Value 

𝐵𝐶𝑜𝑢𝑡 [0     0] 

𝐶𝐹𝐿 0.4 

𝐶𝑙_𝑖 0.5 

𝐶𝑟_𝑖 0.005 

𝐷𝑖 [1.0·10-4     1.0·104] 

𝐾𝐷 100.0 

𝑀𝑅𝑒𝑓𝑖𝑛 50.0 

𝑛 3 

𝑟𝑒𝑠 [80              120] 

𝑟ℎ𝑜 [1.0             1.0] 

𝑅𝑖 [1.0·10-2     1.0] 

𝑡_𝑡𝑜𝑡 0.35 

𝑉_𝑖𝑝 1.0 
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 325 

Figure 6: Example B4: Spherical crystal growth due to Rayleigh fractionation in a growth and diffusion couple with 𝑫𝑨 << 𝑫𝑩. (a) 
The blue solid line depicts the composition of the growing crystal, while the solid orange line shows the composition within the melt 
reservoir. The grey dashed-dotted line presents the interface position in the concentration profile. The distribution coefficient is 
considered constant 𝑲𝑫 = 𝟏𝟎𝟎. (b) Numerical and analytical solution of the solid interface as a function of the solid fraction.  

 330 

Another limiting case that can be modelled is the case where 𝐷𝐴 << 𝐷𝐵 but, this time, the growth of phase 𝐴 and the diffusion 

process in 𝐵 are of similar timescales (example B5). In the case where the growing crystal (𝐴) is much smaller than the 

surrounding (𝐵) we can use the analytical solution of Smith et al. (1955) for the segregation of an alloy from an impure melt 

in a planar geometry (Eqs. 28 & 29). This solution considers the growth of a crystal in an infinite medium and has already 

been applied to analyse results of kinetic disequilibrium processes including diffusion of trace elements within a crystal-melt 335 

system (Watson and Müller, 2009). Equation (28) predicts the concentration within the reservoir (for 𝑥̂ > 0). 
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𝐶𝐵(𝑥̂, 𝑡) = 𝐶𝐵(𝑥̂, 0)

{
  
 

  
 
1 + (1−𝐾𝐷)

2𝐾𝐷
𝑒𝑥𝑝 (− 𝑣∙𝑥

𝐷𝐵
) ∙ 𝑒𝑟𝑓𝑐 (

√ 1
𝑡∙𝐷𝐵

(𝑥−𝑣∙𝑡)

2
) − 1

2
𝑒𝑟𝑓𝑐 (

√ 1
𝑡∙𝐷𝐵

(𝑥+𝑣∙𝑡)

2
) + (1−𝐾𝐷)

2
…

∙ ( 1
(1−𝐾𝐷)

− 1
𝐾𝐷
) 𝑒𝑥𝑝 (−(1 − 𝐾𝐷)

𝑣
𝐷𝐵
(𝑥̂ + 𝐾𝐷𝑣 ∙ 𝑡)) ∙ 𝑒𝑟𝑓𝑐 (

√ 1
𝑡∙𝐷𝐵

(𝑥+(2𝐾𝐷−1)𝑣∙𝑡)

2
)
}
  
 

  
 

    (28) 

where 𝑒𝑟𝑓𝑐( ) is the complementary error function and 𝑥̂ is related to the spatial coordinate as follows: 

𝑥̂ =  𝑥 − 𝑆            (29) 

Our calculated example B5 shows an excellent agreement between the numerical and analytical solutions. Model parameters 340 

for example B5 can be found in Table 6.  

 
Table 6: Summary of all input parameters for example B5. The parameters have the same names as in the code but in this case, non-
dimensional parameters are used. Descriptions of previously defined parameters can be found in Tables 1-5. 

Parameter Value 

𝐵𝐶𝑜𝑢𝑡 [0     0] 

𝐶𝐹𝐿 0.8 

𝐶𝑙_𝑖 0.1 

𝐶𝑟_𝑖 100.0 

𝐷𝑖 [1.0·10-5     1.0·101] 

𝐾𝐷 0.001 

𝑀𝑅𝑒𝑓𝑖𝑛 10.0 

𝑛 1 

𝑟𝑒𝑠 [100            160] 

𝑟ℎ𝑜 [1.0             1.0] 

𝑅𝑖 [1.0·10-2     10.0] 

𝑡_𝑡𝑜𝑡 0.4 

𝑉_𝑖𝑝 1.0 
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 345 
Figure 7: Example B5: Growth of a crystal from a melt in a planar geometry. a) Compositional profile of the growing crystal and 
the adjacent melt. The solid blue and orange lines show the diffusion couple. The black dashed line depicts the initial compositional 
profile, while the dashed-dotted grey line refers to the current position of the interface. The analytical solution of Smith (1955) is 
shown in red dots. b) Detailed view of the compositional profile of the melt showing modelled and analytical values. 

 350 

In the case of crystal growth in a fast-diffusing medium, instead of the Stefan condition (Eq. 18), we can use the total mass 

balance (Eq. 19) to form a closed system of equations (example C1). In that case, the outer boundary conditions should be set 

to Neumann to prevent mass loss/gain during the process. The result of such a model is shown in Fig. 8 and the parameters 

used are the same as in Table 5. Figure 8 closely resembles Fig. 6 in the sense that it also compares well with the analytical 

solution for Rayleigh fractionation. 355 
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Figure 8: Example C1: As in Fig. 6 (Example B4) but calculated using the total mass balance constraint (Eq. 19). 

 

3.4 Simultaneous crystal growth/resorption and diffusion 

The previous calculated examples show the limiting cases where at least one of the processes considered (growth or diffusion) 360 

was very fast compared to the others. In many natural examples, these processes may occur at the comparable rates. In the 

following examples we consider three different cases where diffusion and growth/resorption occur simultaneously. Examples 

B6 and B7 consider the cases of growth and resorption of phase 𝐴 using the Stefan condition (Eq. 18) with a prescribed 

interface velocity (𝑣𝑎). Example C2 is similar to B7, but for the case where the total mass-balance constraint (Eq. 19) is used 

in the calculation of the inner boundary conditions. All examples are calculated using non-dimensional quantities and only the 365 

relative ratios of diffusivities/reaction rates are important. 

Although in our examples reaction velocity is considered constant, natural reaction rates do not have to remain constant and 

can change according to temperature, reaction overstepping etc. Therefore, having a method that can consider arbitrary rates 

for the reaction rate allows the extension of our formulation to more elaborate cases. Furthermore, the distribution coefficient 

https://doi.org/10.5194/egusphere-2025-2511
Preprint. Discussion started: 23 June 2025
c� Author(s) 2025. CC BY 4.0 License.

nowitis clear itwasn'tbefore



21 
 

does not have to remain constant in time either. In the following examples, we consider cases where the distribution coefficient 370 

changes with time. 

The first example that is considered in this section is example B6. In this example, the diffusivity of the two materials is similar, 

but not identical. In addition, we consider that the reaction velocity is positive (𝑣𝑎 > 0), leading to the growth of 𝐴 at the 

expense of 𝐵, whereas the distribution coefficient reduces from 50.0 to 25.0. The initial condition for both phases is considered 

homogeneous as in the equilibrium limit. More details on the model configuration can be found in Table 7. Figure 9 shows the 375 

evolution of the model after some time. The results of the simulation show that small compositional gradients develop on the 

side of the matrix (𝐵). Additionally, the original growing crystal (𝐴) exhibits evidence of chemical zoning that are qualitatively 

very similar to cases of pure growth (Figs. 6 & 8). Note that the “core” composition of 𝐴 is distinctively different compared to 

the initial condition. 

Figure 10 shows a case where the reaction velocity is negative (𝑣𝑎 < 0; resorption of 𝐴). The parameters in this example are 380 

almost identical to the parameters used in example B6. The main differences in this case (B7) are, i) the negative reaction 

velocity, ii) the initial size of crystal 𝐴, iii) the distribution coefficient reduces from 20.0 to 10.0. More details on the parameters 

are found on Table 8. The compositional gradients at the side of the matrix are also observed in this case, however, the 

compositional gradients at the side of the consuming crystal are very pronounced, as it is expected for very compatible elements 

(e.g., Burg and Moulas, 2022; Kohn and Spear, 2000). Finally, Fig. 11 shows an example (C2) almost identical to the previous 385 

one (B7). The only difference in this case is that the boundary condition is solved via the total mass balance constraint (Eq. 

19). The results are similar and converge to the results shown in Fig. 10.  
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Table 7: Summary of all input parameters for example B6. The parameters have the same names as in the code but in this case, non-
dimensional parameters are used. Descriptions of previously defined parameters can be found in Tables 1-6. 390 

Parameter Value 

𝐵𝐶𝑜𝑢𝑡 [0     0] 

𝐶𝐹𝐿 0.4 

𝐶𝑙_𝑖 0.1 

𝐶𝑟_𝑖 0.02 

𝐷𝑖 [0.001     0.005] 

𝐾𝐷 50.0 - 25.0 

𝑀𝑅𝑒𝑓𝑖𝑛 5.0 

𝑛 3 

𝑟𝑒𝑠 [100    100] 

𝑟ℎ𝑜 [1.0     1.0] 

𝑅𝑖 [1.0     10.0] 

𝑇 1273 - 1073 

𝑡_𝑡𝑜𝑡 3.0·102 

𝑉_𝑖𝑝 5.0·10-3 
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Figure 9: Example B6: Growth of a spherical crystal in a diffusion couple (𝒗𝒂 > 𝟎). The solid blue and orange lines represent the 
composition in the diffusion couple after some finite time. The grey dashed-dotted line shows the current position of the interface, 
while the black dashed line represents the initial position of the interface. 395 
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Table 8: Summary of all input parameters for examples B7 and C2. The parameters have the same names as in the code but in this 
case, non-dimensional parameters are used. Descriptions of previously defined parameters can be found in Tables 1-7. 

Parameter Value 

𝐵𝐶𝑜𝑢𝑡 [0     0] 

𝐶𝐹𝐿 0.005 

𝐶𝑙_𝑖 0.1 

𝐶𝑟_𝑖 0.002 

𝐷𝑖 [0.001     0.005] 

𝐾𝐷 20.0 – 10.0 

𝑀𝑅𝑒𝑓𝑖𝑛 10.0 

𝑛 3 

𝑟𝑒𝑠 [200    250] 

𝑟ℎ𝑜 [1.0     1.0] 

𝑅𝑖 [5.0     10.0] 

𝑇 1273 - 1073 

𝑡_𝑡𝑜𝑡 3.0·102 

𝑉_𝑖𝑝 -5.0·10-3 

 400 

 

https://doi.org/10.5194/egusphere-2025-2511
Preprint. Discussion started: 23 June 2025
c� Author(s) 2025. CC BY 4.0 License.



25 
 

 
Figure 10: Example B7: Similar to B6 (Fig. 9) but with negative reaction velocity (𝒗𝒂 < 𝟎). More details on the parameters used can 
be found at Table 8. The mass balance at the interface was calculated using the local flux balance (Eq. 18). 
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 405 
Figure 11: Example C2: Same as in Fig. 10 (example B7). The mass balance at the interface was calculated using the total mass 
balance (Eq. 19). 

 

3.5 Diffusion-controlled crystal growth 

In all previous examples, we have considered cases where the reaction velocity (𝑣𝑎) was prescribed. In many natural cases, 410 

this velocity can be predicted if the thermodynamic properties of the two phases are known. One such case is the case of 

diffusion-limited growth where the reaction velocity is predicted from the equilibrium compositions of the interface (Balluffi 

et al., 2005; p. 504; Rubinsteĭn, 1971; p. 52). In that case, the equilibrium compositions in Eq. (18) can be evaluated from 

thermodynamic models (e.g., phase diagrams) and the velocity can be obtained by solving Eq. (18) with respect to 𝑣𝑎. As a 

working example, we consider a simplified case of olivine crystallization (example D1). In this example olivine is growing 415 

out of a melt that can be described using a binary component. In this case we consider 𝑋𝐹𝑒 (Fe/(Mg+Fe) – molar ratios) to 

describe the compositional evolution of the system. We have used Perplex (Connolly, 2005) to create a temperature-
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composition (𝑇-𝑋) phase-diagram section at constant pressure. The compositional variables can be fit using the following 

explicit forms 

𝐶𝐴(𝑇)|𝑥=𝑆− =  −6.46464 ∙ 10−7 ∙ 𝑇2 + 0.00102 ∙ 𝑇 + 0.80653      (30) 420 

𝐶𝐵(𝑇)|𝑥=𝑆+ =  2.60617 ∙ 10−6 ∙ 𝑇2 − 0.01002 ∙ 𝑇 + 9.79428       (31). 

where 𝑇 is the temperature in K and 𝐶 should be the composition expressed in molar ratios. In this approach we prescribe a 

starting temperature, a final temperature and a cooling interval where the cooling rate is calculated and is considered constant. 

The initial composition of the phases is considered homogeneous. The directional diffusion coefficient (in m2/sec) of olivine 

are calculated following the formulas provided by Dohmen and Chakraborty (2007a, b): 425 

log10(𝐷001) = log10(𝐷0) − (𝐸𝑎 + (𝑃 − 105) ∙ ∆𝑉)(2.303 ∙ 𝑅𝑇)−1 + 3 ∙ (𝑋𝐹𝑒 − 0.14)    (32) 

log10(𝐷100) = log10(𝐷010) =  log10(𝐷001) − log10(6.0)       (33) 

𝑃 is the pressure in Pa, ∆𝑉 refers to the volume change in m3/mol and 𝐷001𝐴 , 𝐷010𝐴 , 𝐷100𝐴  are the diffusion coefficients related to 

the different crystallographic axis of olivine. Equation (32) shows that the diffusion coefficient depends on composition, thus 

making the solution of the diffusion problem non-linear. Here, we linearize the problem by taking an average value of 𝑋𝐹𝑒 in 430 

olivine. This is justified since, for the coupled problem, the difference in diffusivity between olivine and melt is orders of 

magnitude larger compared to the changes caused by the compositional dependence in olivine. Having Eqs. (32 & 33), the 

effective directional diffusion coefficient is calculated following Crank (1975; p. 7).  

𝐷𝐴 = 𝐷001𝐴 cos2(𝛼) + 𝐷010𝐴 cos2(𝛽) + 𝐷100𝐴 cos2(𝛾)        (34) 

The diffusivity of the silicate melt (phase 𝐵) is approximated by the formula given by Zhang and Cherniak (2010; p. 332 their 435 

Eq. 19). 

𝐷𝐵 = 𝑒𝑥𝑝 (−7.92 − 26222
𝑇
)          (35) 

The remaining of the model parameters are given in Table 9. 

The results of this model show that, with decreasing temperature, olivine is crystallized as expected, and compositional 

gradients evolve close to the interface. However, because of the significantly larger diffusivity of the melt, the compositional 440 

gradients at the side of the melt (𝑥 > 𝑆) are much smaller than within the crystal. 

 

 

 

 445 

 

 

 

 

 450 
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Table 9: Summary of all input parameters for example D1. Descriptions of previously defined parameters can be found in Tables 1-
8. 

Parameter Unit Value References Description 

𝑎𝑙𝑝ℎ𝑎 ° 0  Angle from [001] (𝛼 in the main text) 

𝐵𝐶𝑜𝑢𝑡 - [0     0]   

𝑏𝑒𝑡𝑎 ° 90  Angle from [010] (𝛽 in the main text) 

𝐶𝐹𝐿 - 5.0   

𝑐𝑜𝑒𝑓𝑓 - 

Path: 

“examples/Examples_phase_diagram/C

oefficients_Reaction_lines.csv” 
 

 
Relative path to the file with the 

coefficients for Eqs. (30 & 31) 

𝐶𝑜𝑚𝑝𝐼𝑛𝑡 - 0.25  Composition of interest  

𝐷0 m2/s 5.38·10-9 
Dohmen and Chakraborty 

(2007a, b) 
 

𝑑𝑒𝑙𝑡𝑎𝑉 m3/mol 7.0·10-6  Volume change (∆𝑉 in the main text) 

𝐸𝑎 J/mol 226000  
Activation energy olivine (𝐸𝑎𝐴  in the 

main text) 

𝑒𝑞_𝑣𝑎𝑙𝑢𝑒𝑠 - 
[0.806532   0.00101858   -6.46464·10-7 

 9.79428      -0.0100212    2.60617·10-6] 
 Coefficients for Eq. (30 & 31) 

𝑔𝑎𝑚𝑚𝑎 ° 90  Angle from [100] (𝛾 in the main text) 

𝑀𝑅𝑒𝑓𝑖𝑛 - 5.0   

𝑛 - 1   

𝑃 Pa 106  
Pressure (isobaric) ( 𝑃  in the main 

text) 

𝑅 J/mol/K 8.314472   

𝑟𝑒𝑠 - [50      50]   

𝑅𝑖 m 0.0001   

𝑡_𝑡𝑜𝑡 days 30    

𝑇𝑠𝑡𝑎𝑟𝑡 K 1400.0+273.0  Starting temperature of the simulation 

𝑇𝑠𝑡𝑜𝑝 K 1350.0+273.0  Final temperature in the simulation 

 

Figure 12 shows the results of diffusion-limited olivine growth. The Fig. 12a displays the compositional profile. The iron 

content increases in both phases, while the left phase, olivine, grows out of melt. This is consistent with the evolution in the 455 

phase diagram section (Fig. 12b). Figure 12b shows part of an isobaric phase-diagram section. The blue and red curves 

determine the liquidus and the solidus, which define the equilibrium composition of the melt and the olivine at the interface. 

During the whole simulation, the concentrations at the interface agree between the modelled data and the phase diagram 

indicating the evolution of the binary system. 
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 460 

 
Figure 12: Example D1: Diffusion-limited crystal growth of olivine. a) Compositional profile of the diffusion couple, where the blue 
line refers to olivine and the red line depicts the melt. b) Equilibrium boundary compositions. The coloured dashed lines show the 
exact composition of both materials at the interface at the end of the model. The grey dashed line shows the final temperature in the 
model.  465 

4. Discussion and Conclusions 

We have presented MovingBoundaryMinerals.jl, a new software package, that can be used to model diffusion-controlled 

growth/resorption in mineral couples. The software has been written fully in Julia, it is openly available and allows for 

continuous integration. Our package can be used in various cases where mineral couples react, either via simple, exchange 

reactions or via mineral replacement (e.g., Eiler et al., 1992; Skora et al., 2006; Spear, 1991). The package utilizes the finite 470 

element method with adaptive grid close to the interface of the diffusion couple. This approach offers improved resolution 

close to interface where the compositional gradients are sharper. We have tested the package versus various end-member cases 

that have known analytical solutions. Our results show good agreement with the calculated benchmarks and a good match of 

the numerical and analytical solutions close to the interface boundaries (Figs. 2 to 8).  
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In addition, we have presented calculated examples of diffusion/growth processes that are of petrological relevance (Figs. 9 to 475 

12). In particular, Fig. 9 shows a case where simultaneous growth and diffusion produces a chemically zoned crystal which 

preserves some of its chemical zonation. The preserved zonation is the combined effect of growth and diffusion, and it is not 

related to the original zoning. However, we emphasize the result of this example since similar, bell-shaped profiles are typically 

used to infer prograde growth of metamorphic porphyroblasts (e.g., garnet) when diffusion is limited (e.g., Gaidies et al., 2008; 

Hollister, 1966). Our package can thus be used to test the former hypothesis and quantify the diffusion extend that occurred 480 

simultaneous or after mineral growth. Figures 10 to 11 show two similar cases of mineral resorption that causes an element 

enrichment at the edge of the mineral being consumed. Such observations are very common in the metamorphic and magmatic 

petrology literature and can be used to infer effective cooling rates or element partitioning (e.g., Bindeman and Melnik, 2016; 

Burg and Moulas, 2022; Chu et al., 2018; Spear, 2014). However, the results also depend on the diffusion properties of the 

matrix. By implementing two approaches, one using the local-mass-balance (Fig. 10) and one using the total-mass-balance 485 

constraint (Fig. 11), we can consider cases where the diffusivity of the matrix is not infinitely fast. These approaches allow the 

modelling minerals being consumed in finite geochemical reservoirs. As a third example, we have presented a calculated case 

of olivine crystallization during cooling at conditions where diffusion in olivine is not negligible (Fig. 12). Our approach 

follows the classical Stefan problem and considers the cases of diffusion-limited growth. This approach was chosen since it 

converges to the right equilibrium limit can be used in modelling the diffusion of a growing crystal in the laboratory or in 490 

nature. Note that, in these examples, the diffusion coefficients were considered to be composition independent, future additions 

in this package can include non-linear diffusion and interface kinetic processes that are not resolved in this work. 
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Appendix A: Derivation of diffusion and mass-balance relationships used in this study 

The derivation of many equations used in this work is summarized in the following part. The following derivations largely 

follow the classic derivations described in De Groot and Mazur (1984). For a homogeneous substance (in 1 dimension) the 495 

conservation of mass reads: 
𝜕𝜌
𝜕𝑡
+ 𝜕(𝜌𝑣)

𝜕𝑥
= 0            (A1) 

where 𝜌 is the total density in kg/m3, 𝑡 is time in s, 𝑣 is the velocity in the 𝑥 direction (in m/s) and 𝑥 is the spatial coordinate 

in m. For a multicomponent phase, having 𝑛 different diffusing species, Eq. (A1) can be formulated for each species. The 

density of any species 𝑖 relates to the total density as follows (e.g., De Groot and Mazur, 1984; their Eq. 6): 500 

𝜌 =  ∑  𝜌𝑖𝑛
𝑖=1             (A2) 

For a non-reacting medium, the conservation of species 𝑖 becomes: 
𝜕𝜌𝑖
𝜕𝑡
+ 𝜕(𝜌𝑖𝑣𝑖)

𝜕𝑥
= 0            (A3) 

where 𝑣𝑖 is the macroscopic velocity of the species 𝑖 in the Eulerian reference frame. Summing up Eq. (A3) for species 𝑖 from 

1 to 𝑛, leads to Eq. (A1). The latter though requires that 𝑣 is the barycentric velocity of the phase, that is: 505 

𝑣 =  ∑  𝑛
𝑖=1 (𝐶𝑖𝑣𝑖)            (A4) 

where 𝐶𝑖 is the weight fraction (dimensionless) of the species 𝑖 in the solution. By defining the macroscopic diffusive flux of 

species 𝑖 with respect to the barycentric velocity, we can write Eq. (A3) as follows: 
𝜕𝜌𝑖
𝜕𝑡
+ 𝜕(𝜌𝑖𝑣)

𝜕𝑥
+ 𝜕(𝜌𝑖(𝑣𝑖−𝑣))

𝜕𝑥
= 0          (A5) 

At this point, we can apply the product rule to the second term of Eq. (A5) to obtain the following relationship: 510 
𝜕𝜌𝑖
𝜕𝑡
+ 𝑣 𝜕𝜌𝑖

𝜕𝑥
+ 𝜌𝑖

𝜕𝑣
𝜕𝑥
+ 𝜕(𝜌𝑖(𝑣𝑖−𝑣))

𝜕𝑥
= 0          (A6) 

where the previous can be written in a more compact form (using Lagrangian notation) as follows: 
𝑑𝜌𝑖
𝑑𝑡
= −𝜌𝑖

𝜕𝑣
𝜕𝑥
− 𝜕𝛷𝑖

𝜕𝑥
           (A7) 

where 𝛷𝑖 represents the mass-diffusion flux with respect to the barycentric velocity (Kuiken, 1994; his Eq. 4.55), and it is 

defined as follows: 515 

𝛷𝑖 = 𝜌𝑖(𝑣𝑖 − 𝑣)            (A8) 

At the Fickean limit, the flux is related to the concentration gradient, that can be reduced to: 

𝛷𝑖 =  −𝐷𝑖
𝜕𝜌𝑖
𝜕𝑥

            (A9) 

with 𝐷𝑖  being a positive constant (diffusion coefficient). By making use Eqs. (A7 to A9), Eq. (A6) can be written as: 
𝑑𝜌𝑖
𝑑𝑡
+ 𝜌𝑖

𝜕𝑣
𝜕𝑥
+ 𝜕𝛷𝑖

𝜕𝑥
= 0           (A10) 520 

In addition, at the limit where the macroscopic velocity is zero (no advection), and the volumetric deformation is negligible, 

the previous reduces to the following familiar form: 
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𝜕𝜌𝑖
𝜕𝑡
= 𝐷𝑖

𝜕2𝜌𝑖
𝜕𝑥2

            (A11) 

which is the classic form of the diffusion equation with 𝜌𝑖 having units of mass per volume (kg/m3). In the same limit, where 

volumetric deformation is negligible the previous reduces to Eq. (1) of the main text: 525 
𝜕𝐶𝑖
𝜕𝑡
= 𝐷𝑖

𝜕2𝐶𝑖
𝜕𝑥2

            (A12) 

where 𝐶𝑖 represents the weight fraction of the species involved, such equations are trivially used in petrological literature for 

single/multicomponent diffusion (e.g., Guo and Zhang, 2016). As a final note we would like to emphasize that, given the 

model assumptions (i.e., that the volumetric deformation is negligible), Eq. (A12) is equally valid if mol fractions are used. 

However, the latter should be used consistently with the original data that were used to fit the diffusion coefficient 𝐷𝑖 . 530 

Appendix B: Derivation of the flux balance conditions at the interface 

Solving for the inner boundary condition of our diffusion couple requires that any imbalance in the boundary fluxes across the 

materials is balanced by the Stefan condition (e.g., Rubinsteĭn, 1971; his Eq. 2.3.57). This requires that: 

(𝜌𝐵𝐶𝐵|𝑥=𝑆+ − 𝜌𝐴𝐶𝐴|𝑥=𝑆−)𝑣𝑎 = −𝜌𝐵𝐷𝐵
𝜕𝐶𝐵 
𝜕𝑥
|
𝑥=𝑆+

+ 𝜌𝐴𝐷𝐴 𝜕𝐶
𝐴 

𝜕𝑥
|
𝑥=𝑆−

        (B1) 

where 𝐴, 𝐵 indicate the phase at the left or right side respectively, 𝑣𝑎 is the reaction velocity (Eq. 4) and we have omitted the 535 

component subscripts for clarity. The previous equation holds for any component 𝑖 and it is similar to the Stefan condition in 

heat flow problems (Rubinsteĭn, 1971). Note that in cases of simple ion-exchange equilibrium, where the velocity of the 

interface is zero, the previous simplifies to: 

𝜌𝐴𝐷𝐴 𝜕𝐶
𝐴 

𝜕𝑥
|
𝑥=𝑆−

= 𝜌𝐵𝐷𝐵 𝜕𝐶𝐵 
𝜕𝑥
|
𝑥=𝑆+

           (B2) 

which can be also written as: 540 

𝐷𝐴 𝜕𝐶
𝐴 

𝜕𝑥
|
𝑥=𝑆−

= 𝜌𝐵

𝜌𝐴
𝐷𝐵 𝜕𝐶𝐵 

𝜕𝑥
|
𝑥=𝑆+

            (B3) 

At the limiting case where the densities of the materials are equal, close to the interface, the previous reduces to the classic 

expressions used in the literature (e.g., Lasaga, 1983; Ozawa, 1983). Note that Eq. (B3) indicates that even if the densities of 

the two phases are not the same, it is the density ratio (𝜌𝐵/𝜌𝐴) that acts as a prefactor to the diffusivity of one of the two phases 

(here 𝐷𝐵). Density ratios in natural silicate minerals/melts hardly exceed the range 0.5-2.0 and most of the times are in the 545 

range of 0.8-1.2. This range is well beyond the accuracy of diffusion coefficient estimates for the same materials which are 

typically within an order of magnitude (e.g., Dohmen and Chakraborty, 2007). Considering the previous uncertainties, Eq. 

(B3) can be simplified to the following expression: 

𝐷𝐴 𝜕𝐶
𝐴 

𝜕𝑥
|
𝑥=𝑆−

= 𝐷𝐵 𝜕𝐶
𝐵 

𝜕𝑥
|
𝑥=𝑆+

              (B4) 

In the case where the interface velocity 𝑣𝑎 is not zero, the Stefan condition (Eq. B1) can be used to solve for 𝑣𝑎. 550 
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𝑣𝑎 = (−𝜌𝐵𝐷𝐵
𝜕𝐶𝐵 
𝜕𝑥
|
𝑥=𝑆+

+ 𝜌𝐴𝐷𝐴 𝜕𝐶
𝐴 

𝜕𝑥
|
𝑥=𝑆−

) (𝜌𝐵𝐶𝐵|𝑥=𝑆+ − 𝜌𝐴𝐶𝐴|𝑥=𝑆−)−1       (B5) 

The previous expression requires that the equilibrium composition at the interface is known from equilibrium thermodynamics. 

In addition, the previous condition guarantees that the interface stops moving at the thermodynamic-equilibrium limit. In such 

a way our approach avoids unphysical behaviors of continuous phase growth/resorption. 

Code availability  555 

The current version of MovingBoundaryMinerals.jl is available from the project website 
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