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1. Text S1 Oceanographic characteristics of the Western Pacific

As shown in Fig. 1B, the North Equatorial Current (NEC) in the central western
Pacific is a broad easterly current located between 9°N and 18°N. It is characterized
by high temperature, high salinity, high transparency, and low nutrient content. The
NEC bifurcates off the coast of the Philippines into the poleward-flowing Kuroshio
Current (KC) and the equatorward-flowing Mindanao Current. The KC continues
eastward, becoming the Kuroshio Extension as it interacts with the low-salinity,
high-nutrient waters of the Oyashio Current along Japan’s east coast, forming the
Kuroshio-Oyashio Extension (KOE). In the equatorial Pacific, the Equatorial
Undercurrent flows swiftly eastward, creating a narrow band of saline, oxygen-rich
water. As the region with the most precipitation, highest seawater temperature, and
most active air-sea exchanges, the Western Pacific Warm Pool (WPWP) is crucial to
the global climate system.

As shown in Fig. S1, sea surface temperature (SST) gradually increased from
north to south, with the highest temperatures appearing near the equator. The North
Pacific Subtropical Gyre (NPSG) area, dominated by the NEC, had a higher surface
salinity than the WPWP. The WPWP strongly influences equatorial waters. These
waters also receive heavy rainfall (up to 2 m annually), causing sharp decreases in
surface salinity. The presence of high temperatures, high salinities, and low nutrient
levels at depths of 50 to 250 m near the equator and between 12°N and 22°N were

indicative of the influence of the Equatorial Undercurrent and the North Equatorial
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Subsurface Current (Fig. S2). In higher-latitude seas, the Oyashio Current, carrying
cold, fresh, nutrient-rich water, merges with the warm, saline, oligotrophic Kuroshio
Intermediate Water, creating a distinct demarcation in subsurface temperature, salinity,

dissolved oxygen, and nutrient levels.
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2. Figures: S1-S8

Fig. S1. Horizontal distributions of temperature (a), salinity (b), Chl-a (c), CHCl; (d),
CCls (e), C2HCI; (f), and CH3CCls (g) in surface seawater of the Western Pacific.

Fig. S2. Vertical profiles of temperature, salinity, Chl-a, and nutrients at depths of
0-200 m in the Western Pacific.

Fig. S3. 96 h back trajectories of air masses over the Western Pacific. The ensembled
96 h back-trajectories are within the lower troposphere above 10 m (red lines), above

100 m (blue lines), and above 1000 m (green lines).

Fig. S4. Linear correlations between the atmospheric mixing ratios of SFs and those
of CHCI; (a) and CoHCI; (b) in the Western Pacific.

Fig. S5. Linear correlations between the Chl-a concentration and atmospheric mixing
ratios of CHCIs (a) and C,HCls (b) in the KOE area.

Fig. S6. (a) Interannual variations of wind speed (m/s) and SST (°C) in the study area
and global interannual variability of CCls in 2019. (b) Interannual variability of CCls
for 2019 in the GSN. (c¢) Interannual variability of CCls from October 2020 to
September 2021 in the SDZ. Wind speed data were sourced from the ERAS dataset by
Hersbach et al. (2020), and SST data were derived from ECCO2 cube92 dataset by
Menemenlis et al. (2008). The CCls data for the GSN were obtained from AGAGE
network (https://agage.mit.edu/), and the CCls data for the SDZ were derived from Yi
et al. (2023).

Fig. S7. Relationship between the sea-air fluxes of CH3CCls (a) and CCls (b) and
wind speed and atmospheric concentrations of CH3CClz and CCl4 (points are colored
according to atmospheric concentrations).

Fig. S8. Relationship between the sea-air fluxes of CH3CCls (a) and CCls (b) and



67  wind speed and SST (points are colored according to SST).
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Fig. S1. Horizontal distributions of temperature (a), salinity (b), Chl-a (c¢), CHCIs (d),

CCls (e), CoHCI; (1), and CH3CCls (g) in surface seawater of the Western Pacific.
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82  Fig. S5. Linear correlations between the Chl-a concentration and atmospheric mixing

83 ratios of CHCI3 (a) and CoHCls (b) in the KOE
84 area.
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86  Fig. S6. (a) Interannual variations of wind speed (m/s) and SST (°C) in the study area
87 and global interannual variability of CCls in 2019. (b) Interannual variability of CCls

88 for 2019 in the GSN. (c) Interannual variability of CCls from October 2020 to

89  September 2021 in the SDZ. Wind speed data were sourced from the ERAS dataset by

90 Hersbach et al. (2020), and SST data were derived from ECCO2 cube92 dataset by
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Menemenlis et al. (2008). The CCls data for the GSN were obtained from AGAGE
network (https://agage.mit.edu/), and the CCls data for the SDZ were derived from Yi

etal. (2023).
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wind speed and SST (points are colored according to SST).
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102 3. Table: S1

103 Table S1 Method detection limits (MDL), precision, and atmospheric lifetimes of the

104  selected VCHCs.

Seawater

Compound Atmosphere (pptv) Lifetime *
(pmol L)
Precision Precision
MDL MDL
(%) (%)
CHCl; 0.50 5 0.50 3 178 days
C.HCI3 0.10 3 0.20 9 5.6 days
CH;3CCl3 0.20 6 0.05 5 5 years
CCls 1.00 4 0.10 7 30 years
105 AWMO (2022)
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