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Abstract

Volatile chlorinated hydrocarbons (VCHCs), key ozone-depleting substances
and greenhouse gases, depend on oceanic emission and uptake for their
atmospheric budget. However, data on VCHCs in the Western Pacific remain
limited. This study investigated the distribution and sources of VCHCs (CHCl;,
CHCI3, CCly, and CH3CCls) in the Western Pacific during 2019-2020. Elevated
seawater concentrations of CHCl3 and CoHCl; in the Kuroshio-Oyashio Extension
were driven by mesoscale eddies, enhancing primary productivity, while CCls and

CH;CCl;  concentrations were mainly influenced by atmospheric inputs.
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Atmospheric concentrations of VCHCs decreased from coastal to open ocean areas,
with terrestrial air masses contributing significantly. Additionally, positive
saturation anomalies and correlations with chlorophyll-a indicated the marine
biological source for atmospheric CHCl; and C;HCIs. However, the atmospheric
concentration variability of these gases was not fully consistent with oceanic
emissions indicators (saturation anomalies and sea—air fluxes) and showed strong
correlations with terrestrial tracers, indicating that land-derived atmospheric
transport primarily influenced atmospheric CHCIl; and CoHCls. The estimated
sea—air flux indicated that the Western Pacific acted as a source for CHCl; and
C,HCIs but a sink for CCls and CH3CCls, with the potential to absorb 14.3 £ 6.8%
of CCly emissions from Eastern China, 5.6 + 2.5% from Eastern Asia, and 2.1 +
1.1% of global emissions. Additionally, this region accounted for 6.3 £ 2.8% of the
global oceanic absorption of CCls. These findings underscore the Western Pacific's
key role in regulating atmospheric CCls concentrations and mitigating its
accumulation in Eastern Asia, providing essential data for global VCHCs emission

and uptake estimates.
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Introduction

Volatile halocarbons (VHCs) are ozone-depleting substances and
greenhouse gases (Abrahamsson et al., 1995; Abrahamsson and Edkahl, 1996). As
an important component of VHCs, volatile chlorinated hydrocarbons (VCHCs) are
believed to be important carriers of chlorine to the stratosphere. Among them,
carbon tetrachloride (CCly), chloroform (CHCIs), methyl chloroform (CH3CCls),
and trichloroethene (C;HCl3) account for an estimated 11% of the total organic
chlorine in the troposphere (WMO, 2022). Long-lived compounds such as CCl4
and CH3CCls;, which have atmospheric lifetimes exceeding six months, are
well-mixed in the troposphere except where there are local sources. They are
major contributors to both the greenhouse effect and ozone depletion, and their
usage and emissions are subject to regulation under the Montreal Protocol (1987).
In contrast, short-lived species such as C;HCls and CHCI; are classified as
halogenated very short-lived substances (VSLSs), with typical atmospheric
lifetimes of less than six months (WMO, 2007), and are currently not regulated

under the Montreal Protocol. Nevertheless, a significant portion of VSLSs and
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their degradation products reach the stratosphere, with over 80% of chlorinated
VSLSs estimated to reach these altitudes (Carpenter et al., 2014). Although present
at low concentrations, VSLSs exert disproportionately large impacts on radiative
forcing and climate through ozone depletion, particularly due to their breakdown
in the lower atmosphere, which is more sensitive to climate change (Hossaini et al.,
2015, 2017; An et al., 2023; Saiz-Lopez et al., 2023).

The oceans, acting as source and sink of VCHCs (C2HCls;, CHCls, CCly4, and
CH3CCls), play a significant role in the biogeochemical cycling of VCHCs (Blake
et al., 2003; Karlsson et al., 2008; Butler et al., 2016). CHCl; and CoHCI; in the
oceans come from both anthropogenic and natural sources (Abrahamsson and
Edkahl, 1996; Moore, 2003; Karlsson et al., 2008; He et al., 2013c). Previous
studies have revealed that marine microalgae (Scarratt et al., 1999; Lim et al.,
2018), macroalgae (Gschwend et al., 1985; Abrahamsson et al., 1995), and various
other marine organisms (Khan et al., 2011) act as natural sources of CHCI3 and
C,HCIs. The tropical diatoms, the cyanobacterium Synechococcus and the
chlorophyte Parachlorella, and purple sulfur bacteria, have been shown to produce
CHCI3 (Scarratt et al., 1999; Plummer et al., 2002; Lim et al., 2018). Moreover,
CHCI; emissions have also been found in regions like the Antarctic tundra (Zhang
et al., 2021), Dead Sea landscapes (Shechner et al., 2019), and coastal wetlands
affected by sea level rise (Jiao et al., 2018), entering the ocean via land runoff and
atmospheric deposition. Abrahamsson et al. (1995) argued that C;HCl3 emissions
from algae to the atmosphere are present in non-negligible amounts within the
global atmospheric chlorine budget. Anthropogenic emissions of CHCIz mainly
come from its use as a raw material in refrigerant hydrochlorofluorocarbon-22

(HCFC-22) production and as a byproduct of the water chlorination and bleaching
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processes in the pulp and paper industry (McCulloch, 2003). C;HCI; is also
emitted from its use as a solvent and as feedstock in producing HFCs and other
chemicals (Chipperfield et al., 2020). Notably, while the Montreal Protocol
regulates the use of HCFC-22 in dispersive applications, demand for the
refrigerant as a feedstock in the manufacture of fluoropolymers is surging (Say et
al., 2020). These anthropogenic CHCI3 and C,HCI; ultimately enter the ocean
through land runoff and atmospheric deposition, especially in coastal and estuarine
regions (Yokouchi et al., 2005). In contrast, oceanic CH3CCl3 and CCly are largely
from anthropogenic sources (Butler et al., 2016; WMO, 2022). As a primary
component of cleaning agents, dry-cleaning solvents, and degreasing agents,
CH3CCl; previously saw widespread use (Wang et al., 1995). CCl4 was previously
extensively used in chlorine gas production, industrial bleaching, organic chemical
solvents, and fire extinguisher production (Rigby et al., 2014). Moreover, these
two gases are used as solvents and feedstock chemicals in producing HFCs and
other chemicals (Chipperfield et al., 2020). Although their usage is banned in the
Montreal Protocol (1987) and its amendments and adjustments, unregulated
emissions persist from specific manufacturing activities. For example, Liang et al.
(2016) and Sherry et al. (2018) showed that CCls production is linked to
non-feedstock emissions associated with chloromethane and perchloroethylene
manufacturing facilities. They also demonstrated that up to 10 Gg yr! of CCly
emissions may be produced by unreported, unintentional release during chlorine
production, including emissions from chlor-alkali plants and their use in industrial
and domestic bleaching. Additionally, Li et al. (2024) identified potential CCl4
sources in eastern China, including the manufacture of general-purpose machinery,

raw chemical materials, and chemical products.
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Substantial spatial and temporal variabilities characterize the distributions of
VCHCs in oceans, with higher concentrations in estuaries than nearshore zones,
and higher concentrations in nearshore zones than in the open ocean. These
distributions are mainly influenced by anthropogenic emissions from terrestrial
sources (Yokouchi et al., 2005; Bravo-Linares et al., 2007; Liang et al., 2014) and
by the biological processes of algae in nearshore zones (Christof et al., 2002;
Karlsson et al., 2008; Yang et al., 2015). In addition, the distributions of VCHCs
are related to various factors, including source strength, season, topography, tides,
and water masses (Yang et al., 2015; Liu et al., 2021). Previous studies have
pointed out that land-based inputs have significant impacts on the distributions of
marine VCHCs because VCHCs from human activities exceed marine emissions
(Lunt et al., 2018; Fang et al., 2019; An et al., 2021; Yi et al., 2023). For example,
persistent large emissions of CCls from Eastern Asia, accounting for
approximately 40% of global emissions (Lunt et al., 2018), coincided with a global
increase in CCls mole fractions between 2010 and 2015, as noted by Fang et al.
(2019). This growth, notably driven by eastern China, has potential implications
for Antarctic ozone layer recovery. However, according to the latest data from
WMO (2022), the CCl4 emissions from eastern China showed a significant decline
from 2016 to 2019, dropping from 11.3 £ 1.9 Gg yr'! in 2016 to 6.3 = 1.1 Gg yr!
in 2019. Similarly, An et al. (2023) reported a decline in CHCl3 emissions from
China, which peaked at 193 Gg yr'! in 2017 and decreased to 147 Gg yr'! by 2018,
where, as of 2020, it has remained relatively constant. Yu et al. (2020)
demonstrated a successful reduction in China CH3CCl3 emissions from 1.6 Gg yr!
in 2007 to 0.3 Gg yr! in 2013, demonstrating compliance with the Montreal

Protocol. Despite these declines in VCHCs emissions, Eastern Asia continues to be
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an important source of global VCHCs emissions (WMO, 2022).

The Western Pacific exerts a profound influence on sea—air exchanges and the
global biogeochemical cycles of materials (Tsunogai, 2002; Shi et al., 2022). The
dynamic western boundary currents, equatorial Pacific circulation systems, and the
expansive Western Pacific Warm Pool play pivotal roles in vertical water mass
transport and material’heat exchange between the equatorial and subtropical
Pacific regions (Hu et al.,, 2015). These oceanic processes likely impact the
variations in emissions of VCHCs in the Western Pacific. Additionally, owing to
its proximity to land, encompassing regions such as the Philippines and Japan,
atmospheric vertical diffusion and pollutant transport from land may significantly
influence atmospheric VCHCs levels over the Western Pacific (Lunt et al., 2018).
While a few studies have observed seawater and atmospheric VCHCs in the
Western Pacific (Quack and Suess, 1999; Liu et al., 2021), comprehensive data on
atmospheric and seawater VCHCs in the Western Pacific remain scarce.
Consequently, substantial uncertainties persist in estimates of oceanic sources and
sinks of VCHCs (Blake et al., 2003; Butler et al., 2016). A noticeable research gap
exists concerning our understanding of VCHCs in the Western Pacific.
Furthermore, the lack of comprehensive knowledge regarding the biogeochemical
factors that control VCHCs concentrations and sea—air fluxes produces
uncertainties in global emission estimates.

In this study, a comprehensive field investigation was carried out in the
Western Pacific with two primary objectives. Firstly, the study aimed to
understand how oceanic physical and biogeochemical processes influence the
distributions and emissions of these climatic VCHCs by examining various

sources. Secondly, the study sought to ascertain the influence of the Western
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Pacific on the levels of volatile VCHCs in the atmosphere, evaluating whether it
acts primarily as a source or sink of these VCHCs. Investigating the distributions
of VCHCs in both the seawater and the atmosphere, along with determining their
sea—air fluxes, is essential for evaluating their potential impacts on the global
halogen cycle.

2 Materials and methods

2.1 Study area

Our measurements were conducted on board the R/V "Dongfanghong 3" from
October 31 to December 1, 2019, and the R/V "Science" from October 3, 2019, to
January 5, 2020. A total of 65 stations were surveyed across the study region (Fig.
la), where seawater samples were collected at all stations and atmospheric
samples obtained at 41 stations. Each station provided three replicate surface
seawater samples and one atmospheric sample. The Western Pacific survey area
was divided into the Kuroshio-Oyashio Extension (KOE), North Pacific
Subtropical Gyre (NPSG), and Western Pacific Warm Pool (WPWP) based on
oceanographic features, including seawater temperature, salinity, nutrient
concentrations, and Chl-a concentrations observed in this study (Fig. S1 and Fig.
S2). Details of the classification criteria are given in the Supplementary
Information (Text S1).

The cruises encompassed a broad geographic range, extending from coastal to
open-ocean areas and from tropical to subtropical latitudes. Data were collected
along multiple transects, summarized here along two primary directions: the
South-North (S-N) direction (from 1°S to 40°N) and the East-West (E-W)
direction (from 130°E to 165°E). The circulation patterns of the Western Pacific,

depicted in Fig. 1b, are intricate and encompass multiple oceanic currents,
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including the Oyashio Current (OC), the North Equatorial Current (NEC), the
North Equatorial Counter Current (NECC), the Mindanao Current (MC), and the
Kuroshio Current (KC). This intricate marine circulation system and the intense
ocean-atmosphere interactions bestow the Western Pacific with a pivotal role in
oceanic environmental changes, water mass exchanges, nutrient and heat transport,
global biogeochemical cycles, and climatic transitions (Hu et al., 2020). Further,
with the planet's largest warm pool and most robust tropical convection, the
WPWP area is a critical player in global sea—air substance exchange.
Meteorological patterns in this area are also significantly influenced by the
Indo-Australian monsoon (Wang et al., 2004; Li et al., 2019). Thus, the combined
forces of the NEC-MC-KC system and the region's distinct meteorological
conditions inevitably modulate the biogeochemical cycling of VCHCs in both
seawater and the atmosphere.
2.2 Analysis of VCHC:s in air

Atmospheric samples were collected by 3 L pre-evacuated stainless-steel
Summa polished canisters (SilconCan, Restek Co., Ltd) that were pre-cleaned to
measure VCHCs concentrations at ambient pressure. These sampling canisters
underwent an intensive cleaning process using an automated cleaning system
(Nutech 2010 DS) prior to sample collection. Previous studies have shown that
VCHCs remain stable in rigorously pre-cleaned Summa canisters for more than 3
months (Yokouchi et al., 1999; Yokouchi et al., 2013; Yu et al., 2020). To avoid ship
exhaust contamination, sampling was conducted upwind on the ship's top deck
during low-speed transit. All atmospheric samples were analyzed within 3 months
after the collection. Meteorological parameters such as wind speed and direction

were recorded by shipboard sensors at a height of 10 m above the sea surface.
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The atmospheric concentrations of VCHCs were determined using a
three-stage cold-trap preconcentrator (Nutech 8900DS) coupled with a gas
chromatography—mass spectrometry (GC-MS) system (Agilent 7890A/5975C).
Chromatographic separation was achieved on a DB-624 capillary column (60 m X
0.25 mm x 1.4 um film thickness) in selective ion monitoring (SIM) mode. Prior
to injection, samples (400 mL) were preconcentrated using the three-stage
cold-trap system, effectively removing interfering components such as H>O and
COy. Target compounds were quantified using a multipoint external calibration
method. Calibration curves were established with a 100 ppbv mixed standard gas
(Spectra Gases, USA), which was dynamically diluted with ultra-high-purity
nitrogen using a mass-flow—controlled dilution system (Nutech 2202A; accuracy
+1%) to achieve pptv—low ppbv concentration levels. Six concentration gradients
were prepared, and the diluted standards were analyzed following the same
procedures as the field samples. The calibration results showed correlation
coefficients for all target compounds are > 0.996. According to the US EPA (2019)
procedure, the method detection limits (MDL) of the target compounds ranged
from 0.10 to 1.0 pptv. MDL is defined as 3.143 x standard deviation of seven
replicates of the low concentration standard gases (5 x the expected MDL), where
3.143 represents the t-value at 99% confidence level. Precision in this study was
assessed from seven replicate measurements of standard gas samples prepared at
environmentally relevant concentrations, with relative standard deviations (RSD)
consistently below 7% for all target compounds (Table S1). This method has been
validated through comparisons with the China Meteorological Administration
Meteorological Observation Centre for independent analysis using an

AGAGE-traceable Medusa-GC/MS system (Zhang et al., 2017; Yu et al., 2020; An

10



235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

et al, 2021). Furthermore, it is consistent with previously published
methodologies (Zhang et al., 2010; Zheng et al., 2013; Yi et al., 2021; Li et al.,
2024). Detailed analytical procedures and data processing methods are provided in
the Supplementary Information (Text S2 and Text S3).
2.3 Analysis of VCHC:s in seawater

Surface seawater (5 m) was collected using a 12 L Niskin sampler equipped
with a temperature-salinity-depth probe (CTD) for concurrent temperature and
salinity measurements. Samples were transferred into 100 mL airtight glass
syringes without headspace, stored in the dark at 4 °C, and analyzed within 4 h of
collection. To minimize compound concentration changes, Samples for VCHCs
were analyzed immediately onboard using a cold trap purge-and-trap gas
chromatograph equipped with an electron capture detector (GC-ECD, Agilent
6890A). Briefly, seawater samples (100 mL) were transferred to a purge-and-trap
apparatus and purged with high-purity nitrogen at a flow rate of 60 mL min™' for
14 min. The purged VCHCs were sequentially passed through glass tubes
containing magnesium perchlorate (MgClO4) and sodium hydroxide (NaOH) for
drying and CO; removal, followed by enrichment onto a trap column (length: 30
cm; diameter: 0.8 mm) immersed in liquid nitrogen. After trapping, the trap was
subsequently heated with boiling water, and the desorbed gases were introduced
into the GC using high-purity nitrogen. Separation was performed on a DB-624
capillary column (60 m % 0.53 mm % 3.0 um film thickness) with the following
temperature program: 45 °C (hold 10 min), ramp to 200 °C at 15 °C min!, and
hold for 5 min. The inlet and detector temperatures were 110 °C and 275 °C,
respectively, and the carrier gas (ultrapure N,) flow rate was 2.1 mL min™'.

Identification and quantification of the VCHCs in seawater were based on

11
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retention times and liquid standards purchased from 02si in the US (purity > 99%).
The liquid standards were diluted twice with methanol (Merck, Darmstadt,
Germany, suitable for purging and analysis) to obtain the desired standard
concentrations. Using the same analytical method as for the surface seawater
samples, the deep seawater (5000 m) was purged with high-purity N> to remove
the background VCHCs, and standard curves were established by diluting VCHCs
standards in series (correlation coefficients > 0.995). The detection limits for target
compounds in this method ranged between 0.05 pmol L' and 0.50 pmol L' with a
relative standard deviation of 3% to 9% (He et al., 2013b, 2013c).
2.4 Determination of chlorophyll a (Chl-a) in seawater

For the analysis of Chl-a, seawater samples (500 mL) were vacuum-filtered
through a 0.7 pum Whatman GF/F glass fiber filter (diameter: 47 mm) and stored in
the dark at -20 °C. Upon transport to the laboratory, the samples were extracted in
the dark with 10 mL of 90% acetone for 24 h and centrifuged at 4000 rpm for 10
min. The supernatant was then analyzed using a fluorescence spectrophotometer
(F-4500, Hitachi), achieving a detection limit of 0.01 pug L.
2.5 Calculation of sea—air fluxes and saturation anomalies

The sea—air fluxes of VCHCs, denoted by F (nmol m d!), were calculated
according to the following equation.

F =l (Cy - CJ/H) (1)

Where k., (m d) is the gas exchange constant. C,, and C, are the concentrations
of VCHCs in surface seawater and the atmosphere, respectively. H is the
dimensionless Henry's Law constant, calculated as the equation of seawater
temperature (7, in Kelvin). Specifically, the H values for CHCI3 and C;HCl; were

derived from seawater-based temperature—H parameterizations reported by Moore
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(2000). The H value for CCls was obtained from the seawater-based equation of
Hunter-Smith et al. (1983). For CH3CCls, the temperature dependence was taken
from the freshwater measurements of Schwardt et al. (2021) and subsequently
adjusted to seawater conditions using the Sechenov "salting-out" relationship, with
the salting-out coefficient (ks) reported by Gossett (1987). The corresponding

equations are:

H(CHCls) = exp (13.10 - 4377 T )
H(CoHCL) = exp (14.88 - 4624 T) 3)
H(CCly) = exp (11.27 - 3230 T) (4)

H(CH3CCl3) = exp (459.80 - 23465 T! - 66.96 Ln(T)) 1.305 (5)

k. 1s calculated using the following equation by Wanninkhof (2014):

kw=0.251 u? (Sc / 660) 12 (6)
Where u is the wind speed and Sc is the Schmidt constant. The Sc values of
VCHCs were calculated using the equation proposed by Khalil et al. (1999):
Sc=335.6 M2 x (1-0.065¢+0.002043 2 -2.6 x 107 £) (7)
where ¢ (°C) represents the temperature of the surface seawater and M is the
molecular weight of VCHCs.

Saturation anomalies 4 (%) were calculated as the departure of the observed
dissolved amount from equilibrium with air according to the following equation
(Kurihara et al., 2010).

A% =100 (Cy- C#/H) / CJ/H (8)

A positive saturation anomaly implies a net flux from the ocean to the air.

The uncertainty of the sea—air fluxes obtained in this study arises from both
systematic and random measurement errors. Propagation of error analysis was

conducted to quantify the uncertainty of the calculated sea—air fluxes, following
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the method outlined by Shoemaker et al. (1974).
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The precision of VCHCs measurements was under 9%, determined based on

repeated sample injections. The overall error was calculated at approximately 20%,
primarily due to the value of 20% from Wanninkhof (2014) for uncertainty in .,
influenced by wind speed and Sc variabilities. Also, while a single Henry's Law
calculation was done, there is uncertainty in both the determination of H and the
temperature dependence. Thus, the error of the flux estimate in this study was
determined to be > 20%.
2.6 Data analysis

The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT)
model, provided by the National Oceanic and Atmospheric Administration
(NOAA) (http://www.arl.noaa.gov/ready.php), was employed to generate 96 h
backward trajectories for air masses. The Matlab software was used to compile
and analyze all survey station back trajectories. The TrajStat module for the
Meteolnfo software was applied for trajectory analysis, enabling the clustering of
trajectories based on geographic origins and historical paths identified in a
previous study (Squizzato and Masiol, 2015). Following convention (Byc¢enkiené
et al., 2014; Liu et al., 2017), these trajectories were initialized 100 m above sea
level. Meteorological data were obtained from the Global Data Assimilation
System (GDAS) dataset (http://ready.arl.noaa.gov/archives.php).
3 Results and discussion
3.1 Variability of the overlying atmospheric VCHCs concentrations

The atmospheric mixing ratios of the four VCHCs over the Western Pacific

14


http://www.arl.noaa.gov/ready.php
http://ready.arl.noaa.gov/archives.php

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

are summarized in Fig. 2, Fig. 3, and Fig. S3. The results indicated that the
distributions of the selected VCHCs were correlated with both source strength and
prevailing meteorological conditions. To clarify the drivers behind the observed
concentration fluctuations and spatial patterns, the trace gases were classified into
two groups based on their molecular lifetimes (Table S1).

3.1.1 CCly and CH3CCl;

Atmospheric concentrations of CCly and CH3CCls over the Western Pacific
varied from 75.8 to 83.7 pptv (mean: 78.8 pptv) and from 1.6 to 2.4 pptv (mean:
2.0 pptv), respectively (Fig. 3 and Fig. S3). The concentration of CCls was similar
to the average background mixing ratio of 78.5 pptv in the Northern Hemisphere
during a survey from October 2019 to January 2020, as reported by the AGAGE
network (https://agage.mit.edu/). However, it was considerably lower than the
concentrations reported by Blake et al. (2003) for the Pacific Ocean (108.7 pptv)
from February 24 to April 10, 2001, the measurements by Zhang et al. (2010) in
2007 for the Pearl River Delta region (116 pptv), those by Ou-Yang et al. (2017) in
2015 for the Mt. Fuji Research Station in Japan (84 pptv), and by Zheng et al.
(2019) in 2015 at the Yellow River delta in China (109 pptv). Similarly, the mean
CH3CCls concentration in this study (2.0 pptv) exceeded the average background
mixing ratio of 1.67 pptv in the Northern Hemisphere during a survey from
October 2019 to January 2020 (https://agage.mit.edu/). However, the level
reported here was lower than the concentration reported by He et al. (2013c) for
the East China Sea (9.1 pptv) from May 2 to 9, 2012. Similarly, it was
considerably lower than those reported by Blake et al. (2003) for the Pacific Ocean
(132 pptv) from February 24 to April 10, 2001. It was also lower than the observed

concentrations in the Pearl River Delta region (53 pptv) from October 25 to
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December 1, 2007, by Zhang et al. (2010); the Mt. Fuji Research Station in Japan
(4.0 pptv) from August 12 to August 17, 2015, by Ou-Yang et al. (2017); and the
Yellow River Delta region, Northern China (2.8 pptv) from June 8 to July 9, 2017,
by Zheng et al. (2019). These discrepancies likely reflect temporal variability in
emissions and changes in the global burden, as well as differences in the sampling
locations. Most samples in this study were collected in regions less influenced by
continental outflow, resulting in relatively low concentrations.

Figure 3 shows the spatial distributions of atmospheric mixing ratios of CCl4
and CH3CCls. Significant enhancements were observed at nearshore stations (e.g.,
P1-4, P1-5, P1-7, P1-8 and EQI12). CCls concentrations in these stations were
4-6% higher than the regional average, exceeding its analytical precision threshold
of 30 (3.3%, Table S1). These enhancements exhibited clear spatial consistency,
systematically concentrated in nearshore areas influenced by continental air
masses (Fig. lc and Fig. 3). Moreover, the elevated levels coincided with
enhanced concentrations of the independent anthropogenic tracer SFs (Ni et al.,
2023), further corroborating their origin from continental pollution outflows. This
result is also consistent with previous studies reporting that elevated CCls and
CH3CCls levels are primarily concentrated in coastal regions (Blake et al., 2003;
Zhang et al., 2010).

In this study, the highest atmospheric concentrations of CCls and CH3CCls
were recorded at station P1-4 near Japan. Backward trajectory cluster analysis (Fig.
Ic and Fig. S4) indicated that approximately 13% of the air masses originated
from short-range transport along the eastern coast of Japan, while the remaining
87% were associated with long-range transport from Siberia and Northeast China

and subsequently passed over the eastern coast of Japan. Although Siberia and
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Northeast China are not typical source regions for halocarbons, previous studies
have shown that air masses from these regions may mix with pollution plumes
from East Asian industrial areas during long-range transport (Stohl et al., 2002;
Blake et al., 2003; Liang et al., 2004; Chang et al., 2022), which could lead to
elevated VCHCs concentrations at downwind observation stations. This is
corroborated by reports of CCls pollution events at the Shangdianzi (SDZ)
regional background station in Northern China (117.17°E, 40.65°N, Fig. 1a), with
peak mixing ratios reaching 151 pptv (Yi et al., 2023). As anthropogenic
compounds, CCls and CH3CCls are primarily emitted from industrial activities,
including chloromethane and perchloroethylene production (Liang et al., 2016;
Sherry et al., 2018), as well as unreported releases from chlorine and bleaching
processes (estimated up to 10 Gg yr'). Furthermore, Zheng et al. (2019) and
Ou-Yang et al. (2017) reported elevated CCls and CH3CCl3 levels in China and
Japan, respectively. Lunt et al. (2018) identified continued CCls emissions from
Eastern Asia. Collectively, these findings suggested that continental air mass
transport was likely the dominant factor driving the elevated CCls and CH3CCl3
levels observed at station P1-4 during the study period. In contrast, the lowest
CCly and CH3CCl; concentrations were observed at station P1-24, where all
affecting air mass trajectories came from the Pacific Ocean (Fig. 1c and Fig. S4),
indicating the influence of clean marine background air (Fig. 1c).
3.1.2 CHCI; and C;HCl3

The atmospheric mixing ratios of CHCl; and C;HCIl3 over the Western Pacific
ranged from 6.0 to 29.4 pptv (mean: 12.4 = 5.7 pptv) and from 1.1 to 3.4 pptv
(mean: 2.0 + 0.7 pptv), respectively. The concentration of CHCI3 measured in the

current work was similar to the average background mixing ratio of 11.82 pptv
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measured in the Northern Hemisphere during the survey period from October 2019
to January 2020, as reported by AGAGE network (https://agage.mit.edu/).
However, it was lower than values reported from other areas, such as in a Western
Pacific marginal sea—the South Yellow Sea—from May 2 to 9, 2012 (27.3 pptv;
He et al., 2013c¢), the Mt. Fuji Research station of Japan from August 12 to August
17,2015 (39 + 11 pptv; Ou-Yang et al., 2017), and the Yellow River Delta region,
Northern China, from June 8 to July 9, 2017 (283 pptv; Zheng et al., 2019). The
measurements of C;HCl3; were lower than in areas close to land sources, such as
the South Yellow Sea from May 2 to 9, 2012 (27.3 pptv; He et al., 2013c) and the
Yellow River Delta region, Northern China, from June 8 to July 9, 2017 (20 pptv;
Zheng et al., 2019). This difference could be attributed to the surveyed area being
a relatively open sea, where the dilution effect by air from the marine boundary
layer (MBL) is more pronounced. Furthermore, the air in the study area is more
photochemically aged, leading to lower observed values of C2HCls.

Spatially, elevated concentrations of atmospheric CHCIl; and CoHCI3 were
detected in nearshore regions, such as the KEO area and stations EQ12, E130-15,
and E130-18 (Fig. 2 and Fig. 3). Both CHCI; and C,HCI3 showed significant
correlations with SFe (r = 0.56, n = 38, p < 0.01 and r = 0.54, n = 38, p < 0.01,
respectively; Fig. S5). The result indicated that the high concentrations of these
two gases in the atmosphere mainly originated from anthropogenic input, as SFs is
an important indicator of terrigenous sources. The 96-h backward trajectory cluster
analysis revealed that the KEO region is affected by air masses originating from
Siberia, Northeast China, Korea, and Japan (Fig. 1c¢). While Siberia and Northeast
China themselves are not recognized as major VCHCs source regions, the

long-range air masses from these areas may have entrained polluted plumes during
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their transport (Section 3.1.1). Indeed, surrounding regions are known to be
significant emitters: Feng et al. (2019) reported a marked rise in China's CHCl3
emissions in recent years, and An et al. (2023) further showed that emissions
peaked at 193 Gg yr! in 2017 before declining to 147 Gg yr! in 2018 and
remaining stable thereafter, with eastern China consistently identified as a major
contributor. Moreover, Ou-Yang et al. (2017) observed high atmospheric CHCl3
mixing ratios (39 £ 11 pptv) at the Mt. Fuji research station, Japan, in 2015; and in
2017, the highest annual mean CHCI3 (43 + 18 pptv) was recorded at the Gosan
station (GSN, 127.17°E, 33.28°N, 72 m above sea level, a regional baseline station;
Fig. 1a) on Jeju Island, South Korea. Furthermore, industrial activities are known
sources of CHCIz and CoHCl3 (Montzka et al., 2011; Oram et al., 2017; Zheng et
al., 2019). Thus, the elevated CHCl; and C;HCl; observed in the KEO region were
likely related to terrestrial air mass transport and subsequent mixing with polluted
plumes during their transit.

In addition to terrestrial contributions, positive saturation anomalies of CHCl3
and C,HCls in surface seawater (Fig. 4) indicated supersaturation, suggesting the
oceanic emissions as a potential source of atmospheric CHCl; and C;HCls.
Previous studies have reported that substantial amounts of CHCl3; and C,HCl; are
released from marine macroalgae and microalgae (Abrahamsson et al., 1995;
Abrahamsson et al., 2004a; Chuck et al., 2005; Ekdahl et al., 1998; Lim et al.,
2018) and subsequently transferred to the atmosphere via sea—air diffusion.
Consistent with this, atmospheric CHCl3; and C;HCIl; exhibited significant positive
correlations with Chl-a levels in the study area (r = 0.83 and 0.58, p<0.01, n=41;
Fig. S6), supporting a potential biological contribution. Nevertheless, atmospheric

levels of CHCIz and CoHCl3 were not fully consistent with oceanic emissions
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indicators (saturation anomalies and sea—air fluxes). In the KOE region, where
atmospheric mixing ratios and Chl-a were elevated, their saturation anomalies
were relatively low compared to other regions (Fig. 4), and estimated sea—air
fluxes showed no significant enhancement (Fig. 5). Moreover, strong correlations
between atmospheric concentrations of CHCI3 and C,HCl; with terrestrial tracers
(CCl4, CH3CCl3, and SFs; Fig. S6 and Fig. S7) suggested shared terrestrial sources
or common atmospheric processes. Collectively, these results indicate that
although marine biological production contributes to CHCl3 and C;HCl; emissions,
terrestrial transport was the dominant factor controlling their atmospheric
variability in the study region.
3.2 Regional characteristics of seawater VCHCs and their driving factors

The seawater distributions of CHCIs, C;HCls, CCls, and CH3CCls are shown
in Fig. 2. Seawater CHCl;, C;HCI3, CCls, and CH3CCls exhibited significant
regional variability in the Western Pacific. Surface seawater concentrations of
CHCI3, C,HCl3, CCls, and CH3CCls in the KOE region were higher than those in
the NPSG and WPWP (Fig. 2).
3.2.1 Kuroshio-Oyashio Extension

The KOE area is characterized by a complex hydrography, with sharp
meridional gradients in temperature and salinity due to the convergence of the
warm, saline KC and the cold, less saline OC (Fig. 2). Moreover, the KC
transports warm seawater northward, where it cools and blends with the
nutrient-rich OC (Wan et al., 2023; Xu et al., 2023). The resulting upward flux of
nutrients induced by the mesoscale eddies from the Kuroshio and the Kuroshio

Extension replenish the upper ocean in the KOE with a substantial nutrient supply

20



483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

(Fig. S2). This, in turn, enhances primary productivity in the surface seawater, as
evidenced by the elevated Chl-a concentrations observed here (Fig. 2 and Fig. S2).

The higher surface seawater concentrations of CHCl3 and C;HCl3 in the KOE
are likely attributable to a combination of factors, including phytoplankton activity,
terrestrial air mass transport, and physical conditions. Given the proximity of the
KOE region to land, atmospheric CHCl; and C;HCl; might have been augmented
by inputs from long-distance land-based air masses originating from land (as
discussed in Section 3.1). Additionally, the lower surface seawater temperature
(SST) in this region facilitated the dissolution of CHCI3 and C,HCI3, while high
atmospheric concentrations of these compounds from long-distance land transport
could have helped to replenish the CHCI3 and C,HCIs in the surface seawater.
However, the positive saturation anomalies of CHCl; and C;HCl; were observed
in the KOE (Fig. 4). In addition, elevated seawater concentrations of CHCI3 and
C,HCls, corresponding to high Chl-a concentrations in the KOE region (Fig. 2),
could be indicative of the influence of emissions from phytoplankton. Previous
studies have demonstrated that phytoplankton blooms significantly contribute to
the production of these compounds (Abrahamsson et al., 1995; Abrahamsson et al.,
2004b; Chuck et al., 2005; Roy et al., 2011; Lim et al., 2018). In particular,
diatoms and prymnesiophytes have been identified as dominant microalgal groups
releasing CHCI; (Roy et al., 2011; Lim et al., 2018). In the Northwest Pacific,
diatoms and dinoflagellates are prevalent, with diatoms thriving in the
nutrient-rich Oyashio region (Wang et al., 2022), further supporting the biogenic
origin of CHCl3 and CoHCIl; in this area. Taken together, the observed positive
saturation anomalies (Fig. 4), together with the short atmospheric lifetimes of

these compounds (< 6 months; WMO, 2022), indicated that in situ phytoplankton

21



508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

emissions exert a stronger control on seawater concentrations of CHCI; and
C,HCIs than terrestrial atmospheric inputs.

In contrast, CCl4 and CH3CCl3 exhibited negative saturation anomalies in the
KOE region (Fig. 4). Given that both gases are primarily of anthropogenic origin
(Wang et al., 1995; Rigby et al., 2014), their elevated seawater concentrations in
this region (Fig. 2) are likely attributable to long-range atmospheric transport from
land. Moreover, the relatively low SST in the KOE might further enhance their
solubility, reinforcing this undersaturation (Fig. 4). Collectively, these results
highlight the dominant influence of atmospheric inputs in controlling the
distribution of seawater of CCls and CH3CCl; in the KOE.

3.2.2 North Pacific Subtropical Gyre

In contrast to the KOE, the NPSG lies at the center of the subtropical gyre
and is strongly influenced by a deep nutricline (Fig. la and Fig. 1b). It is
characterized by high temperature and salinity but persistently low nutrient
concentrations, as regional hydrographic conditions restrict the upward flux of
nutrients through vertical transport (Xu et al., 2023; Fig. S2). Nutrient
replenishment occurs primarily via vertical eddy diffusion, which is generally
insufficient to sustain high productivity (Gupta et al., 2022). Consequently, the
surface waters remain chronically nutrient-deficient, and the NPSG is often
regarded as an oceanic desert with limited biological standing stocks. Figure 2
shows that concentrations of CHCl;, C;HClI3, CCls, and CH3CCl; in the NPSG
were lower than in the KOE, likely because the NPSG is located far from land (Fig.
la) and has a high SST (Fig. 2). Additionally, the Chl-a levels and nutrients were
considerably lower in the NPSG than in the KOE region (Fig. S2). This suggested

that the reduced release of CHCI3 and CoHCI3 from phytoplankton could have also
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contributed to the lower concentrations of these gases observed in the NPSG.
Previous studies have confirmed that nutrient limitation reduces phytoplankton
abundance, thereby lowering halocarbon production and emissions
(Smythe-Wright et al., 2010; Liu et al., 2021).
3.2.3 Western Pacific Warm Pool

The WPWP is distinguished by strong stratification and a prominent barrier
layer formed by heavy precipitation, which enhances surface-layer stability and
restricts vertical nutrient transport (Qu and Meyers, 2005; Xu et al., 2023). Despite
the abundance of subsurface nutrients, the presence of a shallow mixed layer and
thick barrier layer limits nutrient exchange with the euphotic zone (Fig. S2). These
conditions constrain primary productivity and, together with high SST, lead to
relatively low surface seawater concentrations of CHCI3 and C;HCls, comparable
to those observed in the NPSG (Fig. 2). However, seawater concentrations of CCls
and CH3CCls were relatively elevated near the equatorial WPWP (Fig. 2). This
pattern likely reflected the proximity to landmasses such as Papua New Guinea,
where terrestrial inputs via riverine runoff and atmospheric transport contribute to
enhanced concentrations of these compounds in surface seawater (Fig. 1c¢).
3.2.4 Correlations between VCHCs in seawater

CHCIls and CoHCI3 were found to be supersaturated in seawater, with previous
studies suggesting that they primarily originate from biological processes within
the ocean rather than relying solely on atmospheric inputs (Section 3.2.1). The
strong positive correlation between CHCI3 and C,HCl3 in seawater (r = 0.71, p <
0.01, n = 65; Fig. S8) supported the idea that these compounds share a similar
production mechanism, specifically emissions from biological processes. In

contrast, CCl4 and CH3CCl3 were undersaturated in seawater and primarily entered
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the ocean through atmospheric deposition, meaning that their concentrations in
seawater were more influenced by atmospheric inputs (Section 3.2.1). Moreover,
despite the supersaturation of CHCIl3 and C;HCIl; in seawater and the
undersaturation of CCls and CH3CCls, these four compounds still exhibited
significant linear correlations in their concentrations (Fig. S8), suggesting that they
were influenced by similar oceanic and atmospheric processes. This correlation
likely reflected partially overlapping sources, such as riverine input and
atmospheric transport (Fogelqvist, 1985; He et al., 2013a, 2013b). Additionally,
oceanic physical processes, such as water mass mixing, diffusion, and vertical
movement, played a crucial role in the distribution of gases in seawater (Doney et
al., 2012). The synchronous influence of these processes on VCHCs might have
been the reason for the linear correlation and similar distribution patterns observed
for these four VCHCs in seawater. Specifically, in the Western Pacific, the unique
hydrodynamic conditions significantly influenced the distribution patterns of
CHCI3, CoHCI3, CCl4, and CH3CCls. Major ocean currents, such as the Kuroshio
and Oyashio, created zones of convergence and divergence that enhanced vertical
and horizontal mixing, transporting gases from deeper waters to the surface and
redistributing them across different regions, affecting their concentrations and
distribution. Additionally, mesoscale eddies contribute to the diffusion of gases
within the water column, resulting in gases from different sources (biogenic and
atmospheric deposition) being more uniformly distributed in seawater
(McGillicuddy Jr, 2016; Xu et al., 2023)."
3.3 Sea-air fluxes and saturation anomalies of VCHCs

The saturation anomalies and sea—air fluxes of CHCl;, C,HCl;, CCly, and

CH3CCl; were estimated based on their simultaneously measured seawater and
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atmospheric concentrations, as outlined in Section 2.5 (Fig. 4 and Fig. 5). The
saturation anomalies of CHCIl3; and CoHCI3 were positive, whereas CCls and
CH3CCls exhibited negative saturation anomalies at most stations of this study
(Fig. 4). Moreover, the mean sea—air fluxes (range) for CHCl3;, C;HCl3, CCl4, and
CH3CCl3 were 23.96 (0.10-121.98), 7.18 (0.02-29.76), -0.73 (-3.44-0.00), and
-0.02 (-0.18-0.07) nmol m d!. These results indicated that CHCl3 and C;HCls
were in a state of supersaturation in the surface seawater, leading to their emission
into the overlying atmosphere. In contrast, CCl4 and CH3CCl3; were undersaturated
within the surface seawater and were assimilated from the overlying atmosphere.
Hence, we tentatively concluded that the Western Pacific was a source of CHCl3
and C,HCls and a sink for CCls and CH3CCls during the cruise periods.

Compared to the marginal sea of the Western Pacific, this study's estimates of
CHCIl3; and CoHCI3 emission and CCls and CH3CCl3 uptake were lower (Yang et
al., 2015; He et al., 2017; Wei et al., 2019). For example, the average flux of
CHCIl3 and C,HCI;s in this study was significantly lower than those reported in the
northern Yellow Sea and Bohai Sea by He et al. (2017) (C.HCls: 162.6 nmol m=
d!), Wei et al. (2019) (CHCls: 177.5 nmol m d!, C,HCl3: 99.5 nmol m d!), He
et al. (2019) (C,HCls: 59.4 nmol m? d'!), and Yang et al. (2015) (CHCls: 183.4
nmol m d-'). Compared with the average fluxes of CCls (-21.3 nmol m? d!) and
CH3CCl; (-6.8 nmol m? d!') in the South Yellow Sea and East China Sea as
reported by Yang et al. (2015), the average fluxes of CCly and CH3CCls in this
study were lower. Although there were significant differences in sea—air fluxes
compared with the marginal sea of the Western Pacific, both indicated that the
ocean is a source of CHCl; and C;HC]l; in the atmosphere, but a sink of CCls and

CH;CCls.
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As shown in Fig. 5 and Fig. 6, the fluxes of CHCl; and C;HCls in the Western
Pacific exhibited considerable spatial variability and generally corresponded with
wind speeds. For instance, high fluxes of CHCIl3; and C,HCI; at station P1-6
coincided with high wind speeds, while the low CHCI3 and CoHCls fluxes at
station E130-15 coincided with low wind speeds. However, as shown in Fig. 6, at
a given wind speed, the fluxes were low due to low seawater concentrations of
CHCIl; and C,HCIs. Thus, seawater concentrations also had a large influence on
the spatial variability of the sea—air fluxes of CHCl; and C;HCIs. The air-sea
fluxes of CCly and CH3CCls were also higher at stations with high wind speeds
(Fig. 5 and Fig. 6). Similarly, Butler et al. (2016) found that the air-sea exchange
rate was the primary driver of oceanic uptake of CCls, mainly driven by wind
speed. However, the highest air-sea fluxes of CCls and CH3CCls were observed at
station P1-2, which had the highest equilibrium solubility (ratio of atmospheric
concentration to Henry's Law constant) (Fig. 5). Moreover, at a given wind speed,
the fluxes of CCly and CH3CCls were lower where their atmospheric
concentrations were lower and where SST was higher (Fig. 6). Therefore, the
spatial variability of sea—air CCls and CH3CCl; fluxes were not only affected by
wind speed but were also related to atmospheric CCls and CH3CCl3 concentrations
and SST. A similar investigation observed a comparable relationship between
sea—air fluxes, wind speed, and atmospheric concentration while examining the
distribution of SFe in seawater (Ni et al., 2023).

It should be noted that the sea—air flux estimates of CHCl3, C;HCls, CCly, and
CH3CCl; presented in this study are derived exclusively from autumn and winter
cruise observations, and thus may not fully represent their annual averages due to

seasonal variability. The spatiotemporal patterns of sea—air fluxes are primarily
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governed by the concentrations of VCHCs in the atmosphere and seawater, SST,
and wind speed. In particular, seawater concentrations of CHCl3 and C,HCls are
strongly modulated by biological activity (Section 3.2), while both SST and wind
speed exhibit pronounced seasonal variations (Fig. 7a). Moreover, according to
AGAGE data (https://agage.mit.edu/), the interannual variability of global
atmospheric CCls in 2019 was 2%, with variability at GSN sites of 3% (Fig. 7b),
whereas global atmospheric CH3CCls varied by 13% (Fig. 7c). During the
observation period (October—December 2019), mean atmospheric CCl4
concentrations at both GSN sites and the global scale were approximately 1%
lower than their respective annual means, while the global CH3CCl3 concentration
was about 6% lower (Fig. 7c). These results suggest that atmospheric CCls levels
in the Western Pacific were likely close to the annual mean during this period,
whereas CH3CCls levels were possibly somewhat lower. In addition, SST and
Chl-a in the study region during the observation period were broadly consistent
with their annual means, whereas wind speeds were on average 6% higher (Fig. 7a;
Tang et al., 2022). Consequently, the sea—air fluxes of CHCl3;, C;HCI3, and CCl4
reported in this study are likely somewhat higher than the annual mean, primarily
due to the elevated wind speeds during the cruises.

In the Western Pacific (130°E-180°E, 0°—40°N, area: 2.17 x 107 km?), the
estimated annual oceanic uptake of CCly was 0.9 Gg yr!. The associated
uncertainty was quantified by combining the 95% confidence interval, derived
from the standard error of fluxes within the study region, with the inherent >20%
systematic uncertainty of flux estimates. The resulting uptake range is 0.5-1.3 Gg
yr'!, with an overall uncertainty of 0.4 Gg yr!. Given that fluxes during the

observation period were likely higher than annual averages, the annual CCl4
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uptake estimated in this study may be slightly overestimated. Moreover,
considering that elevated SST reduces gas solubility, strengthens ocean
stratification, and alters wind patterns, future warming of the western Pacific is
expected to diminish the oceanic sink capacity for CCls.
3.4 The role of the Western Pacific in regulating Eastern Asia CCl4

Eastern Asia, particularly eastern China, was a major source of global CCl4
emissions, significantly contributing to the global CCls burden (Lunt et al., 2018).
The primary emission sources included the manufacture of general-purpose
machinery, the production of CH3Cl, CH,>Cl,, CHCI3, and C,Cls, which generate
CCly as a byproduct, as well as the use of CCls as a raw material and processing
agent in the chemical manufacturing industry (Park et al., 2018; Li et al., 2024).
Although CCls emissions from eastern China declined significantly by nearly 45%
between 2016 and 2019, Eastern Asia remained a major source of atmospheric
CCls (WMO, 2022). Our study suggested that CCls emissions from Eastern Asia
may have been a significant source of atmospheric CCls in the Western Pacific
(Section 3.1). The Western Pacific, as a sink for East Asian CCly, played a key role
in regulating atmospheric CCls concentrations. Based on our estimates (Section
3.3), the estimated oceanic absorption of CCls in the Western Pacific (0.9 £ 0.4 Gg
yr'') accounted for 14.3 + 6.8% of the Eastern China emissions (6.3 = 1.1 Gg yr!
in 2019; WMO, 2022), 5.6 &+ 2.5% of the emissions from Eastern Asia (16 (9-24)
Gg yr'! on average between 2009 and 2016; Lunt et al., 2018), and 2.1 + 1.1% of
the total global emissions (global emissions were 44 + 14 Gg yr''; WMO, 2022).
Furthermore, the estimated oceanic absorption of CCls in the Western Pacific
accounted for 6.3 + 2.8% of the global oceanic absorption (14.4 Gg yr!; Butler et

al., 2016). These data indicated that the Western Pacific as a sink of CCly was
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crucial for regulating atmospheric CCls concentrations and mitigating the
accumulation of CCls in the atmosphere of Eastern Asia. This result was consistent
with Butler et al. (2016), further confirming the critical role of the Western Pacific
in the global CCl4 cycle and emphasizing the ocean's indispensable role as a sink
for atmospheric CCls. Notably, despite the estimate originating from a region with
relatively little anthropogenic influence, the absorption capacity of the Western
Pacific indicates it can significantly contribute to reducing global CCls levels. This
finding also aligned with Yvon-Lewis and Butler (2002), who demonstrated that
oceans could effectively remove substantial quantities of CCls from the
atmosphere.

Additionally, a substantial body of prior data has indicated there is a CCl4
deficit in deep ocean waters, especially in regions characterized by low oxygen
levels (Krysell et al., 1994; Tanhua and Olsson, 2005). Recent studies have
observed widespread undersaturation of CCls in the surface waters of the Pacific,
Atlantic, and Southern Oceans, suggesting the oceans consume a substantial
amount of atmospheric CCls and that biological sinks for CCls may exist in the
surface or near-surface waters of the oceans (Butler et al., 2016; Suntharalingam et
al., 2019). These findings further supported the role of oceans as a CCls sink and
provided important insights for future oceanic environmental management and
pollution control.

4 Conclusions

This study investigated the seawater and atmospheric concentrations, sea—air
fluxes, sources, and control factors of VCHCs in the Western Pacific during
October 2019 and January 2020. As summarized from Figure 8, the presence or

absence of upwelling, whether the upwelling carries nutrients, and the transport of
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terrestrial inputs govern the biogeochemical characteristics of surface seawater in
the Western Pacific, thereby influencing the concentrations and distributions of
climatically relevant VCHCs. Specifically, the mesoscale eddies in the KOE
region induced upwelling, bringing nutrient-rich subsurface water to the surface.
This upwelling supplied ample nutrients to the surface seawater, enhancing
phytoplankton growth and organic matter photoreactions. These processes
potentially enhanced the production of CHCIl; and C,HCIls, resulting in high
seawater concentrations of these compounds in the KOE. In contrast, the lower
seawater concentrations of CHCI3 and C,HCl; in the NPSG and WPWP were
attributed to the oligotrophic subsurface seawater in the NPSG and the suppression
of upward nutrient and organic matter fluxes due to a robust barrier layer in the
WPWP. The elevated seawater concentrations of CCls and CH3CCls observed in
the coastal area were caused by atmospheric inputs, seawater temperatures, and
upwelling. Atmospheric mixing ratios of CCls and CH3CCl; over the Western
Pacific were predominantly determined by atmospheric inputs from land, as
revealed through backward trajectory analysis. However, the atmospheric
concentration of CHCI3 and CoHCIs in the study area was likely influenced by a
combination of atmospheric transport from the continent and ocean emissions,
with continental air mass transport potentially contributing more significantly. The
preliminary estimation indicated that approximately 2.2 £ 1.1% of global CCly
emissions were absorbed by the Western Pacific. Our study also showed that 14.3
+ 6.8% of CCls emitted from Eastern China and 5.6 + 2.5% of Eastern Asia CCly
emissions could be absorbed by the Western Pacific, highlighting its crucial role in
regulating atmospheric CCls4 concentrations and mitigating accumulation in the

Eastern Asia atmosphere. In light of these findings, we tentatively propose that the
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capacity of the ocean to act as a sink for CCls may warrant reevaluation. The
global oceanic uptake of CCls and CH3CCl3 and emissions of CHCI3 and CoHCl3
could have an influence on their global abundances and impact atmospheric
chemistry. Future studies should prioritize expanded temporal and spatial
observations to better constrain these processes and improve climate predictions.
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FIGURE CAPTIONS
Fig. 1. (a) Locations of sampling stations (orange diamonds represent atmospheric
sampling stations; SDZ: Shangdianzi background station; GSN: Gosan station).
VCHCs data for the GSN were obtained from AGAGE network
(https://agage.mit.edu/), and for the SDZ were derived from Yi et al. (2023). (b) A
schematic map of the major currents of the Western Pacific. (¢) Cluster analysis of
96-h backward trajectories for different stations over the Western Pacific. The
ensemble 96-h back-trajectories were within the lower troposphere above 100 m.
Fig. 2. Latitudinal distributions of SST, salinity, and Chl-a, and surface seawater
and atmospheric concentrations of CCls, CHCl3;, CH3CCl3, and CoHCl3, along with
wind speed in the Western Pacific.
Fig. 3. Distributions of CCls, CH3CCl3, CHCI3, and CoHCl; in the marine
atmospheric boundary layer of the Western Pacific.
Fig. 4. Saturation anomaly of CCls, CH3CCl3, CHCl3, and C,HCls in the Western
Pacific.
Fig. 5. Sea—air fluxes of CCly, CH3CCl3, CHCI3, and CoHCIs, along with wind
speeds in the Western Pacific.
Fig. 6. Relationships between sea—air fluxes of VCHCs and wind speed, SST, and
VCHCs concentrations in seawater and the atmosphere.
Fig. 7. (a) Interannual variations of wind speed, SST, and Chl-a concentration in
the study area during 2019. (b) Interannual variability of CCls at the GSN site in
2019 compared with the global mean. (c¢) Interannual variability of CH3CCls at the
global scale in 2019. Wind speed data were obtained from the ERAS reanalysis
(Hersbach et al., 2020), SST data from the ECCO2 cube92 dataset (Menemenlis et

al., 2008), and Chl-a data from the NASA Ocean Biology Processing Group
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(2022). Atmospheric CCls and CH3CCl3 data were obtained from the AGAGE
network (https://agage.mit.edu/). Shaded areas indicate the cruise sampling
periods.

Fig. 8. Schematic diagram of key processes and factors controlling the production,

distribution, and sea—air interactions of VCHCs in the Western Pacific.
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96-h backward trajectories for different stations over the Western Pacific. The
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wind speed in the Western Pacific.
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the study area during 2019. (b) Interannual variability of CCls at the GSN site in

2019 compared with the global mean. (c) Interannual variability of CH3CCls at the

global scale in 2019. Wind speed data were obtained from the ERAS reanalysis

(Hersbach et al., 2020), SST data from the ECCO2 cube92 dataset (Menemenlis et

al., 2008), and Chl-a data from the NASA Ocean Biology Processing Group

(2022). Atmospheric CCly and CH3CCl; data were obtained from the AGAGE

network (https://agage.mit.edu/). Shaded areas indicate the cruise sampling
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1168  Fig. 8. Schematic diagram of key processes and factors controlling the production,

1169  distribution, and sea—air interactions of VCHCs in the Western Pacific.
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