We would like to thank RC1 and RC2 for their thorough reading of our manuscript and for the valuable feedback they provided.

We address all comments in detail below; the corrections made are shown in blue.

General comments

The authors present a study detailing updates to the AROME turbulence, shallow convection, cloud and microphysics schemes in an effort to improve the representation of shallow clouds and turbulent transport in the model. As tools, they choose large eddy simulations of four canonical shallow cloud cases to provide a reference, and test their model changes in a single column version of AROME. The High Tune Explorer is used to optimize the parameter space of the updated model.

How to adequately model turbulence and shallow convection at kilometer (and increasingly sub-kilometer) scales is an unresolved question that urgently needs answering as operational regional forecasting takes place at these higher resolution, fully entering the turbulent gray zone. I therefore find this study, which aims to address this topic in a framework that treats turbulence and shallow convection in a consistent manner, to be timely and appropriate for publication in ACP.

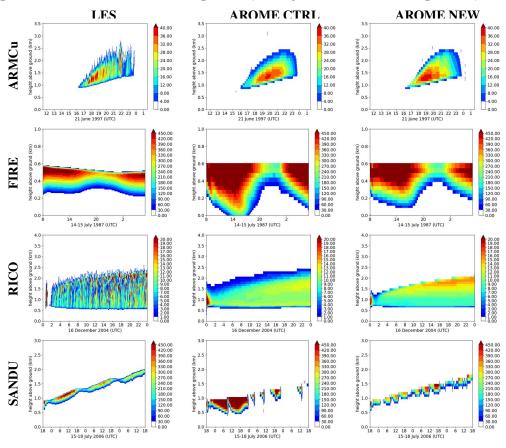
The model changes described consist of several incremental upgrades to existing schemes, rather than entirely new parameterizations, but this is generally the strategy pursued in operational NWP and does not, in my opinion, detract from the study's relevance.

While I think that all the pieces are there, I would like to see the authors restructure and clarify their discussion (see specific comments below).

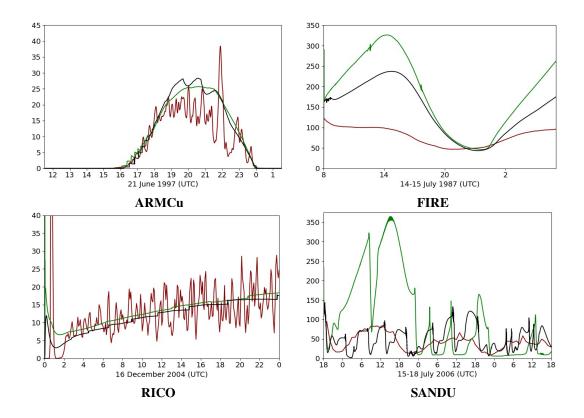
Specific comments

One weakness of the authors' chosen methodology – comparing individual "golden day" LES and SCM simulations – is that model improvements seen for these idealized cases do not always translate into model improvements in the real world where conditions are rarely "ideal". Including the SANDU transition case is a start. I don't mind the authors' strategy of focusing on a single case to demonstrate the individual parameterization upgrades, but I would like to see more emphasis put on demonstrating that the updates discussed in the context of one case are of benefit to all four cases (or not).

We agree that the SCM versus LES methodology has intrinsic limitations. Firstly, as you mentioned, the SCM cases are simulated using a framework of highly idealized conditions, including the stratocumulus-to-cumulus transition. Secondly, and most importantly, it does not account for interactions with the dynamical core of the model, which also provides the parameterized physics with real-world conditions. However, developing parameterizations is numerically expensive in a real 3D model configuration. We have added a sentence in the introduction that clearly states this limitation.


A few places where this is not obvious are:

1. The authors state as a main motivating factor that AROME has large radiative biases associated with low clouds. Together with cloud fraction, the next most important cloud property for the cloud radiative effect is likely the condensate amount. The authors show improved liquid water content for the RICO case (Fig. 7d) from the new cloud scheme, but


we don't see the impact on LWP/cloud condensate for all four cases after the full implementation and parameter optimization (Sec. 4). While doing a radiation evaluation may be outside the scope of this paper, it would still be good to get a clearer picture how CF and LWP combine to potentially improve the radiation bias for the final version of the model. This would close the circle from motivation to conclusion regarding the radiation bias.

We did not focus specifically on the radiation scheme. The bias in the radiative budget has been observed in 3D. Part of this bias was later attributed to low clouds. The next two figures show the cloud water mixing ratio (mg.kg-1) and LWP (g.m-2) for all cases. We have included the LWP figure in Appendix C and a discussion sentence in Section 4. We decided not to include the cloud water mixing ratio figure in the paper because it shows strongly correlated results with the cloud fraction figure in Section 4. As suggested by the reviewer, we have followed his wise advice to loop back in the conclusion to the radiation bias introduced in the introduction section.

And the figure of LWP (included in the manuscript appendices), the red, black and green curves refer to the LES, AROME NEW and AROME CTRL experiments respectively. For the SANDU case, LES originates from the SAM model (see in the next comment for the explanation).

2. Why is the SANDU case not included in Fig. 13? To me, this case is of special interest as it includes both the well-mixed Sc case, as well as an increasingly decoupled Cu under Sc boundary layer towards the end of the simulation. Many models struggle exactly with this "in between" state, and a good performance here would demonstrate promise that the model changes will also lead to improvements in less idealized settings. The SANDU case is not included in any of the in-depth discussions in section 3, so I would like to see more emphasis put on this case at least in the discussion of the final model configuration after the parameter optimization. The total TKE in Fig. 13 would be great, a decomposition as in Fig B1 would be even better, to see if/how the balance of TKE contribution terms shifts as the BL decouples.

As suggested by the reviewer, we have added the SANDU case to the figure showing the TKE evolution in Section 4. However, due to technical issues, we were unable to (re)perform the LES with the Meso-NH model. LES has been performed on this case earlier with other models (SAM, DALES, UCLA and DHARMA), demonstrating a similar development of the decoupled ABL (see in the following figure). We used the SAM model, as this is the one that is closest to the Meso-NH physics. We have clarified the differences between LES in Section 2.1 and added a discussion sentence in Section 4. Furthermore, we plotted the budget contribution to the TKE for the SANDU case in the second figure, but did not include it in the paper due to constraints on the number of figures.

Temporal evolution of the cloud fraction (first line), cloud water mixing ratio (second line), rain water mixing ratio (third line) and TKE (last line) for the SAM (first column), DALES (second column), DHARMA (third column) and UCLA (last column) LES models. Overall, the main difference between these LES appears to be in the representation of precipitation.

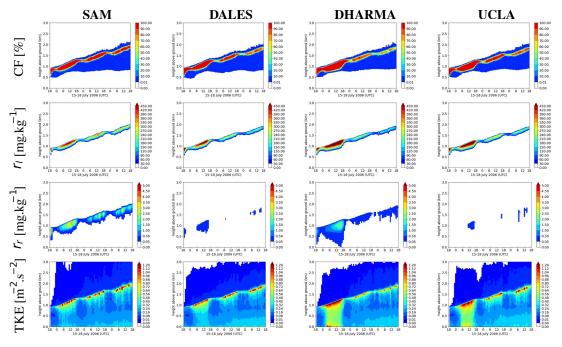
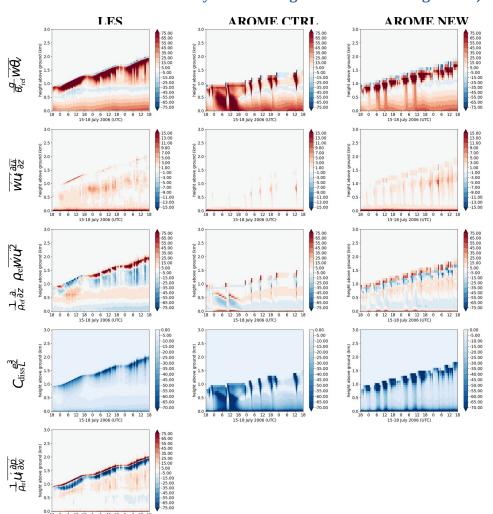
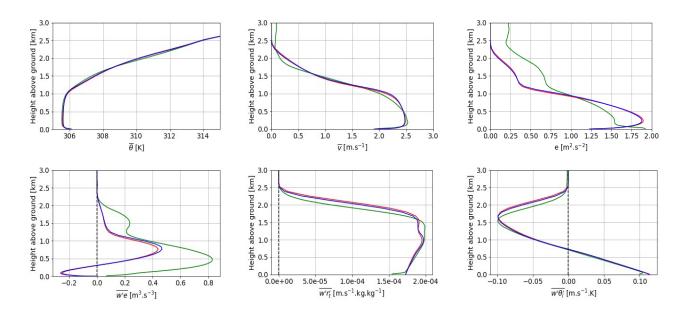




Figure showing TKE sources and sinks (note that the second line color bar scale is 5 times smaller than the others. The layout of the figure is similar to Figure D1).

Additional discussion points:

• Sec. 3.2.1 What is the impact of removing the small updraft fraction assumption? The next figure shows an example of small updraft fraction removal for the ARMCu case, averaged between 19:00 and 21:00 UTC. The green, blue and red curves refer to the LES, AROME NEW and CTRL experiments, respectively. The impact is quite limited (although some authors argue that it does have an impact in real model configurations). For this reason, we decided not to include the figure in the manuscript. However, we added a comment about this weak effect in section 3.2.1.

• It appears that the greatest impact on the diurnal cycle of stratocumulus was due to the limitation on the entrainment (not to exceed detrainment), which was removed as a preliminary step (Eq. 7, Sec. 3.1). The improved diurnal cycle is brought up in a few places as a major outcome of the model upgrades (L12 abstract, L620 conclusion), but receives hardly any discussion throughout the paper. If this fix is considered to be a major improvement, then I think the authors should discuss in a bit more detail how the old limiter impacted the EDMF scheme negatively, and what the MF transport looks like without the limiter. So far, there's exactly half a sentence of explanation on L248. Alternatively, if the authors consider this to be on the level of a bug fix or algorithmic fix then this change should be de-emphasized as a main outcome of this study (though the impact is large enough I'd go with the first option).

This particular change only affects entrainment and detrainment within the cloud layer. The first formulation of the shallow convection scheme originates from Pergaud et al. (2009), who applied the buoyancy sorting mechanism of Kain and Fritsch (1990), which was later modified by Bretherton et al. (2004). However, it includes this specific "modification" without any justification. For stratocumulus boundary layers, this causes the updraft to overshoot too far into the free atmosphere, leading to cloud oscillations. An explanatory sentence has been added to section 3.1. Modifications have

also been made to the abstract and conclusion to emphasize cloud properties rather than the consequences for the diurnal cycle.

Overall, section 5 (Discussion) does not seem to flow as well as the text in other sections, and needs reworking.

- It starts out with the statement that the original AROME did not match LES energy diagnostics well, and specifically that TKE was too weak for the ED component. The text (L567) suggests that this is a known, previously established problem in AROME. While Sec. 3 shows that the TKE budget is improved by the addition of the anisotropic MF contributions, the systematic TKE underestimate is not previously brought up as a starting point (either in the introduction, or in Sec. 3), so the statement comes as a bit of a surprise in Section 5. I think it would be worth bringing up this point earlier in the paper to motivate the work. √ A sentence mentioning the TKE issue has been added in the section 3.3.1.
- In L 574, it is not entirely clear which bias the statement "It is not clear what causes the TKE bias in Fig. 13" refers to − which experiment? Which specific aspect of the bias? Or do they mean "the remaining bias"? √ The main remaining bias is found in the cloud layer for all four ABL cases. The sentence has been corrected.
- L578: I thought the BL89 length scale was replaced by the adaptive Rodier et al. (2017) length scale (3.2.2)? Why is BL89 mentioned here? Also, the impact of changing the length scale isn't discussed anywhere (and should be). √ It was a typo, we have changed "BL89" to "RM17". We are introducing the RM17 length scale in the manuscript because it is included in the physical pack. However, it is difficult to highlight its impact on the cases. We have performed other 1D cases (referred to as the AYOTTES and IHOP dry ABL cases, not shown in the manuscript), which demonstrate improvements in the ABL properties where the AROME mass flux is not triggered. We have revised section 3.3.2.
- L581 "We did not use local lengths so." appears to be an incomplete sentence. √ The sentence has been corrected.

L626: "The model can accurately reproduce cloud fractions, cloud water content and turbulence according to LES conditional sampling diagnostics." I find this too strong a statement, after just pointing out in the previous section that there are still some rather large and unresolved errors in the TKE, for example, and little is shown on the improvements in water content (see above comment). A more appropriate statement might be that "the improved model more accurately reproduces cloud fractions etc. according to LES conditional sampling diagnostics." There is clear improvement, but still some error. $\sqrt{\text{We have softened the force of the word used in the conclusion}}$ (accurately \rightarrow better)

Technical corrections:

- Abstract, first sentence: "... for *the* parameterization of the Atmospheric Boundary Layer (ABL)", or leave out "the" and use plural (Atmospheric Boundary Layers). √
- Typo L25: "One" should be capitalized $\sqrt{}$
- L42: there's a ";" that doesn't belong here before Tan et al. $\sqrt{}$
- L47: mis-spelling of "entrainement" $\sqrt{}$

- L47: It may be advantageous to use the word "lateral" at least once at the beginning of this discussion of entrainment/detrainment to make clearer what type of entrainment is meant (given that top-entrainment for stratocumulus is another place where entrainment is uncertain). ✓ We agree that the definitions of 'entrainment' and 'detrainment' are confusing. To make it clearer, we have added 'lateral'.
- L59: maybe better computationally "expensive" rather than "intensive"? $\sqrt{}$
- L67: "limited-area" sounds better than "area-limited" ✓
- L116: might be good to add here an approximate model layer thickness in the BL √ A sentence has been added.
- Figure 1, and following figures: I find the y-axis (height) on the time-height cross section plots a bit confusing: Sometimes units of metres are used, other times kilometers. For the ARM Cu case, it appears the vertical axis refers to height above mean sea level (or a reference geoid), rather than to height above ground. I would suggest the authors choose consistent units, and show "height above ground" on the y-axis. ✓ The figures y-axis is now showing units of "height above ground [km]". Also, Figure 7 has been corrected.
- Sec. 2.2.5 Liquid water content is referred to as r_c in this section, later on, it is referred to as q_l (caption Fig. 7). Please use a consistent naming convention for the variables. √ We have chosen the mixing ratio variables.
- L316: What is meant by a "nearing environment"? √ The « nearing environment » refers to
 the environment surrounding the plume object of the EDMF decomposition. We have
 revised the sentence.
- Eqn. 16: The second term in the MAX function has a minus sign here, but doesn't in Eqn 4. Is that a typo? √ Yes, we have corrected Eqn 4.
- L320: The sentence "The wet part is further complicated to model." sounds incomplete. Do the authors mean "The wet part is more complicated to model."? ✓ **Yes, we have corrected the sentence.**
- L332: You probably mean "upward part", rather than "upper part"? √ Corrected
- L514: The acronym MUSC isn't introduced anywhere. √ Corrected
- The section numbering in section 4 is confusing. Sec. 4.3 contains only a single sentence. Should 4.4 be a sub-section of 4.3? √ **Corrected**