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Abstract:

This study integrates process-based hydrological modeling and empirical CO, flux modeling at a daily
temporal resolution to evaluate how peatland hydrology influence CO, emissions under scenarios of
rewetting and climate change.

Following the calibration of a three-dimensional transient groundwater flow model for a peat-
dominated catchment, daily groundwater table dynamics were simulated to represent hydrological
conditions in drained peat soils. These simulations were coupled with an empirical CO, flux model,
developed from a comprehensive daily dataset of groundwater table depth, temperature, and soil CO,
flux measurements. The empirical CO; flux model captures a clear temperature-dependent response of
soil CO, emissions to variations in groundwater table depth.

By applying this coupled modeling framework, we quantified CO, emissions at daily timescales. The
results demonstrate that incorporating both temperature sensitivity and high-resolution temporal
variability in water level significantly influences projections of CO, fluxes. Especially the co-occurrence
of elevated air temperature and low groundwater table significantly influence CO, emissions under
scenarios of rewetting and climate change. These insights highlight the importance of including
changing climate conditions in future peatland management strategies for emission inventories.

The study illustrates the value of combining detailed hydrological simulations with emission models. It
also emphasizes the need for detailed monitoring of greenhouse gas emissions across multiple sites
and the development of robust empirical models that can be generalized and spatially upscaled.
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Introduction

Drained peatlands are widely accepted as being net greenhouse gas (GHG) sources and rewetting of
peatlands is considered an effective means of overall net GHG emission reduction (Leifeld et al., 2019).
The depth of the groundwater table below the surface i.e. the water table depth (WTD) largely
controls the annual emissions of carbon dioxide (CO;) and methane (CHs4) from organic soils, where
deeper WTD results in CO, emissions and a shallow WTD increases CH, emissions (Evans et al., 2021).
Despite triggering CH4 emissions, rewetting of organic soils will still lead to a net long-term reduction
of GHG emissions (Ginther et al., 2020). However, current estimates of GHG emissions from drained
and rewetted peatlands are still quite uncertain due to a lack of long-term monitoring and simplified
modeling approaches.

Commonly adopted methodologies for estimating contribution of organic soils in national GHG
inventories (Arents et al., 2018; Evans et al., 2021; Koch et al., 2023; Tiemeyer et al., 2020) are based
on empirical response functions between long-term annual mean WTD estimates from data-driven
machine learning (ML) models (Bechtold et al., 2014; Koch et al., 2023) and observed net ecosystem
GHG budgets (Tiemeyer et al. 2020). Those methodologies allow regional upscaling and integration
into national emission estimates.

However, significant variability in the observed net ecosystem carbon balance (NECB) used to derive
the empirical relationship can be attributed to site-specific factors, including intra-annual (seasonal)
WTD and temperature dynamics (Tiemeyer et al., 2020) caused by fluctuating climate. The current
GHG inventory methods are not suited to account for extremes such as drought and flooding that have
a profound, but temporally limited (days, weeks or months) impact on WTD. Especially the frequency
and severity of droughts can have major impacts on the CO; emissions as WTD increases together with
temperature (Olefeldt et al., 2017). Therefore, temperature changes also directly impact GHG
emissions, as soil CO, and CH4 production are temperature sensitive. Currently, the impact of short-
term compound events e.g., simultaneous warm and dry conditions on annual CO, emissions from
peat soil is little known (Zscheischler et al., 2020). Such events can lead to consequences like a deep
groundwater table, highlighting the need for improved understanding of how climate variability and
long-term change (Olefeldt et al., 2017) affect future CO, emissions from both drained and rewetted
peatlands.

For Denmark, it is generally expected that, as a result of climatic changes, annual mean WTD wiill
decrease (water tables closer to surface). However, this decrease in annual mean WTD is primarily
attributed to a decrease in WTD during the wetter winter months, while warmer future summers are
anticipated to experience minimal decrease or even increase in summer WTD (water tables deeper
below the surface) and more prolonged periods with increased WTD (Henriksen et al., 2023;
Seidenfaden et al., 2022).

The ML and statistical models of annual mean WTD (Bechtold et al., 2014; Koch et al., 2023) utilized in
current national GHG inventories (Gyldenkaerne et al., 2025; Koch et al., 2023; Nielsen et al., 2025b;
Tiemeyer et al., 2020) effectively reflect the spatial variability at the national scale, but most current
ML WTD models are temporally invariant and account for neither inter-annual (between-year)
variability nor seasonal or intra-annual variability in WTD or temperature. . To establish WTD-CO,
relations at intra-annual time scales, capable of capturing the impact of short-lived extreme events
such as droughts and inundations, WTD time series at these finer temporal resolutions are required.
For this, process-based transient 3D hydrological models capable of integrating unsaturated-saturated
flow models to predict spatial and temporal variability of WTD are highly useful. Combined with the
WTD-CO; relation we claim these model outputs can be used to calculate the CO, emissions on daily,
seasonal, and inter-annual timescales.
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Such hydrological models provide the potential for improving our estimation of peatland hydrology
and thereby the spatio-temporal WTD variability. Improved representation of temporal variability of
WTD are needed for refining the current and future GHG estimates that cannot be derived using the
simple application of IPCC default emission factors (IPCC, 2014). Process-based hydrological models
offer the opportunity to assess the effect of different management strategies and environmental
conditions, such as rewetting and climate change.

Process-based hydrological models are increasingly being applied to study dynamics of peatland
hydrology (Mozafari et al., 2023). For instance, Land Surface Models (LSM) (Bechtold et al., 2019;
Largeron et al., 2018; Shi et al., 2015; Yuan et al., 2021) are employed to analyze the soil-plant—
atmosphere exchange processes of water, energy and carbon. However, most LSMs rely on a
simplified conceptual representation of hydrologic processes and are characterized by coarse spatial
scales.

Of the studies applying fully integrated unsaturated-saturated flow models for peatland hydrology,
some focus on site or field-scale models (Friedrich et al., 2023; Haahti et al., 2015; Java et al., 2021;
Stenberg et al., 2018) while others apply the models at catchment scale (Ala-aho et al., 2017; Duranel
et al., 2021; Friedrich et al., 2023; Jutebring et al., 2018; Lewis et al., 2013). A catchment scale
approach with water balance closure is particularly important for climate change impact predictions,
since the boundary conditions to the peatlands will also be affected by climate change. Similarly, the
use of catchment scale models is important because impact evaluations of peatland management
scenarios, such as rewetting, can also include impacts on streamflow and groundwater levels in
neighboring areas.

The objectives of this study were to 1) estimate current and predict the future hydrology and soil CO;
emissions in a Northern European drained peatland and 2) investigate the role of rewetting and
climatic extremes on annual CO, emissions. To achieve these objectives, we used a transient
physically-based hydrological 3D model to predict daily WTD for a case study area, the Tuse Stream
catchment, representing a typical degraded Danish peatland. Secondly, we developed an empirical soil
CO; flux (fCOz) model based on coupled CO; flux, WTD and temperature observations for a similar
Danish peatland (Nielsen et al., 2025a), capable of making daily predictions. Combining the
mechanistic hydrological model and the empirical emission model enabled the estimation of daily soil
CO; fluxes under current conditions as well as scenarios of rewetting and future climate, while
accounting for the impact of climatic variability and extremes.

Data and methodology

Study area

Tuse Stream catchment is located on the island of Zealand in the eastern part of Denmark (Figure 1a).
The total area encompasses 107 km? of which 19 km? are peat soil. The areal extent of peat soil was
determined using a national map of organic soils (Adhikari et al., 2014). The largest continuous peat
area within the catchment is a 13 km? drained fen located in a river valley (Figure 1c) in the low-lying
part of the catchment. The peat soil area is primarily used for agriculture. In small parts of the area,
the drainage has been stopped to restore the natural hydrologic regime. The measured peat layer
thickness extends from 0.4 to 3.5 meters, below which alluvial sand deposits are typically found.
Generally, the deeper geology in the area can be characterized as clay-dominated glacial till deposits.
The catchment is characterized by flat topography, with the southern part of the catchment being
hillier. The climate conditions are humid and temperate. The catchment receives about 737 mm of
precipitation per year (1990-2024) and has an annual mean temperature of 9°C (Scharling, 1999a, b).
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Figure 1: a) Location of Tuse Stream catchment and the Vejrumbro site, b) topography and stream network of Tuse Stream
catchment, masl: meter above sea level, c) location of organic soil and observation wells in the Tuse Stream catchment.

Shallow WTD in the drained organic soils is monitored in 22 groundwater wells (2-3.5 meters deep)
(Figure 1c). The wells are fully screened and WTD is automatically logged with pressure transducers at
an hourly basis (aggregated to daily values) and verified with manual measurements. All WTD data are
available in the Danish National Well Database (Jupiter, 2025). In this study, we define the water table
depth (WTD) as positive when located below the surface and negative when above the surface.
Monitoring data includes additional point measurements and timeseries of groundwater head from 99
deep wells installed in mineral soils throughout the catchment (Figure 1c). In the model setup, water
extraction in 40 abstraction wells is included based on data from the Danish National Well Database in
May 2020 (Henriksen et al., 2020a) and implemented as yearly mean abstraction evenly distributed on
the daily model timesteps. Daily discharge is monitored at the catchment outlet at Tuse Stream (Figure
1b).

Hydrological modelling

The focus of the hydrological modelling in this study is to adequately simulate shallow groundwater
levels and their dynamics for the peatland area in the Tuse Stream catchment. The fen peatland in
Tuse Stream catchment is largely fed by groundwater discharge from the upstream catchment,
emphasizing the need to develop a coupled groundwater surface water model at catchment scale. In
addition, the objective of utilizing the model for climate change impact assessments requires a
catchment scale approach with a deep groundwater component to represent changes in groundwater
and surface water discharge to the peatland as well as changes in the boundary conditions. The
catchment scale approach also facilitates the combined calibration and evaluation of the total water
balance and peatland WTD by constraining the model with observed streamflow at the outlet as well
as peatland groundwater level dynamics.

The model is set up as a transient, distributed, coupled surface-groundwater model and executed
within the hydrological modeling framework MIKE SHE (DHI, 2022; Graham and Butts, 2005). MIKE SHE
combines full 3D groundwater flow coupled with a gravity flow module in the unsaturated zone, 2D
overland flow and 1D river flow routing in streams (DHI, 2019) (Figure S1). The simplified gravity flow
module for unsaturated flow assumes a uniform vertical gradient and ignores capillary forces but
provides a suitable solution for the time varying recharge to the groundwater table based on
precipitation and evapotranspiration (DHI, 2022).

The model is a modified sub-model of the National Hydrological Model of Denmark (DK-model),
developed at the Geological Survey of Denmark and Greenland (GEUS) (Henriksen et al., 2020a; Stisen
et al., 2019). The geological model is interpreted in a horizontal 100 meter grid. The numerical model is

4
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calibrated in the same 100 meter resolution, with the saturated zone consisting of 11 computational
layers of varying thickness. The top model layer has a uniform thickness of 2 meters, which is also
applied to the peat layer areas. The bottom level of the groundwater model is defined by the
prequaternary chalk that underlies the Island of Zealand, which in the Tuse Stream catchment is
located in a depth of approximately 150-250 meters below surface.

The time-varying constant head boundary conditions at the sub-model boundary are defined from the
operational National Hydrological Model setup (Henriksen et al., 2020b). The observed forcing data of
precipitation, temperature and reference evapotranspiration are provided by the Danish
Meteorological Institute (DMI) as gridded daily data in 10 km resolution for precipitation and 20 km
resolution for evapotranspiration and temperature (Scharling, 1999a, b; Stisen et al., 2011). The model
employs a maximum timestep of one day, at which the meteorological variables are fed into the
model. The model was provided with a hotstart file from an initial model run.

Spatial and temporal distributions of root depth and leaf area index (LAI) are based on classes (Figure
S2 and Table S1) where the peat, forest, agricultural and open nature land use classes have yearly
cycles of LAl and root depth (Figure S3). Likewise, soil type is spatially distributed (Figure S2) and based
on the three classes peat, sand and clay (Table S2). In the vertical direction, the soil columns in the
unsaturated zone module are divided into 40 cells from top to bottom; 30x0.1m, 5x1m and 5x5m.
Technically, the unsaturated zone is parameterized to 33 m depth, but during simulation limited to the
top of the simulated groundwater table. We implemented uniform vertical water retention
characteristics of peat, while clay and sand water retention characteristics were defined separately for
the depths 0-30 cm (horizon A), 30-70 cm (horizon B) and >70 cm (horizon C). Soil parameterization is
freely adapted from (Bgrgesen et al., 2009) and detailed in Table S3.

MIKE SHE allows incorporation of drainage systems, representing both artificial and natural drains. The
drainage system bypasses the slow water movement in aquifers by providing a short-cut from e.g. the
agricultural field to the nearest stream. The amount of water routed by drains from the saturated zone
to local surface water bodies is calculated using a linear reservoir model, where the difference
between groundwater head and drain level is multiplied by a drain time constant (dt). The drain level is
defined by a drain depth (dd) set relative to surface level. Hence, drainage in any given model cell only
occurs if the simulated groundwater level exceeds the drainage level (DHI, 2022). The drain time
constant and drainage depth in each model grid cell are distributed across the model domain
according to the five land use classes (Figure S2 and Table S1).

The model parameter sensitivity analysis and subsequent calibration prioritized parameters affecting
the shallow WTD in the peat soil and the overall water balance in the catchment. A list of model
parameters can be seen in Table S3. Parameter values not included in the calibration process are
obtained from the National Hydrological Model parametrization.

Calibration method

We used the Pareto Archived Dynamically Dimensioned Search (PADDS) algorithm (Asadzadeh and
Tolson, 2013) available within the optimization toolkit Ostrich (Matott, 2019). PADDS is a multi-
objective optimizer and obtains the pareto front across multiple objective function groups, enabling
post-weighting of individual objective functions. Throughout the calibration routine, Ostrich minimized
the weighted sum of squared error (WSSE) of each of the objective function groups. The PADDS
algorithm was run with the user settings of maximum 1000 iterations. The period 2010-2013 was used
as a calibration spin-up period and the model performance was evaluated for the 2014-2023
calibration period.
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Calibration was performed against three objective function groups as defined in Table 1.The
KGEwrp_modified Objective group is used to optimize the model performance with respect to the WTD in
peatlands. KGE is the Kling-Gupta Efficiency (Gupta et al., 2009) and consists of three terms: the
Pearson correlation coefficient r, a term representing the measure of variability a and a bias term
(Table 1). In KGE, B is a unitless measure of the bias specified as the ratio between the sum of
simulated and observed values. As we use KGE to optimize the WTD (and not hydraulic head), the
operational sign can be both negative (water table above surface/inundation) and positive (water
table below surface), violating the idea of optimizing B as the ratio of sums of values with possibly
alternating operational signs. Therefore, we are using KGEwrp_modified Where B is replaced by the mean
error (ME) (Table 1). This modification requires that the order of magnitude of the MEwrp is
comparable to the errors on the other terms in KGE. In our case this is ensured by the fact that the
mean observed WTD values range between approximately 0.3-0.6 m, resulting in MEwrp values
typically below 0.5 m. Alternatively, the MEwro term could be scaled within the KGEwrp equation.

The calibration using the KGEwrp_modified @5 Objective function group aims at achieving the best overall
agreement between simulated and observed WTD. However, during first calibration experiments, we
found that this objective function group primarily focuses on the temporal dynamics of WTD. To
improve the representation of the spatial variability of the mean WTD, the correlation coefficient
(rspatial) Was included as an additional objective function group (Table 1).

KGEqMEheadMEamp is an objective function group that combines three performance criteria: the Kling-
Gupta Efficiency performance criterion for discharge (KGEq), the mean error of hydraulic head in
deeper aquifers (MEnead) and the mean error of annual amplitude of hydraulic head in the deeper
aquifers (MEamp). For a detailed description of the implementation of MEamp as objective function see
(Henriksen et al., 2020a). This objective function group was included to optimize the overall water
balance and streamflow dynamics expressed through the discharge at the catchment outlet (KGE,), to
match the general water level in the deeper aquifers across the catchment (MEhead), and to match the
natural seasonal variations in hydraulic head (MEamp). As the metrics of KGEq, MEheas and MEamp are
combined into one objective function group, we need to weigh the observations, to ensure that KGE,,
MEhead and ME.mp affect the objective group of KGEqMEheadMEamp approximately equally. This was done
based on WSSE from a model run with initial parameter values.
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Table 1: Objective functions metrics. KGE stands for Kling-Gupta Efficiency.

- No. of
Objective observa- Optimum
function Observations . Metric Abbreviation Equation Range vapl'ue
rou .
group points
1- \/ (wrp — D* + (awrp — 1)? + (MEyrp)?
Daily WTD in Modified th lati ficient b
KGEwro_modified | Shallow wells 22 KGE on KGEwTp_modified fwro is the Pearson correlation coe |'C|ent 'etween WTDsim [-00;1] 1
K WTD and WTD,ys pr. observation point,
(in peat) Awrp = Stdwrp_sim/Stdwrp_obs »
1
MEwrp = ;Z?:l WTDsimi - WTDobsi
Spatial
Mean WTD patial B
over the correlatio T(WT Dy, WTDps)
I'spatial librati 22 n of the I'spatial ris the spatial Pearson correlation coefficient between [-1;1] 1
ca I. r;tlon mean mean WTDg;,, and mean WTD,s at 22 observation points
perio
WTD
2 2 2
O SR R )
Discharge 1 KF-]E on KGE, rq is the Pearson correlation coefficient between qgm and [-0:1] 1
discharge Gobs:
Qg = stdq_sim/Stdq_obs,
By = SUMg gim/SUMq_obs
Mean 1 &
error on —Z headg;y,; — head,ps; .
KGEqMEhead 66 hydraulic MEhead ni { { [-00;00] 0
eadgm, and head,s are the average groundwater heads
MEamp heads head d head h d head
Hydraulic
head in deep Mean
wells (in error on 1<
mineral soil) yearly ;z Asim; = Aobs;
8 amplitude | MEamp = [-00;00] 0
of Aqim and Agps are the annual amplitudes in groundwater
hydraulic head levels
heads

WTD: water table depth [m], g: discharge [m s!], head: hydraulic head [m], A: amplitude [m]

A local sensitivity analysis based on initial parameter values from Table S4 was performed and values
of composite scaled sensitivity (CSS) were obtained. Selection of free calibration parameters were
based on the criterion that parameters were included if their CSS was larger than 0.05*CSS of the
parameter with the highest CSS. The resulting 11 free parameters are indicated with grey in Table S4.
Other parameters were kept at the values listed in Table S4 or tied to the calibration parameters.

Hydrological simulations of historical and future climate

The calibrated hydrological model was run for the historical simulation period of 1990-2023 using
observed climate forcing data (Scharling, 19993, b; Stisen et al., 2011). Future hydrological projections
are derived from simulations using the hydrological model forced by climate model projections,
including precipitation, air temperature (T.ir), and potential evapotranspiration. The resulting impacts
on groundwater levels, as simulated by the hydrological model, are evaluated. We used 17 climate
models (Table S5) with the Representative Concentration Pathway 8.5 (RCP8.5), which represents the
RCP scenario (2.6-8.5) leading to the highest emissions and strongest impact of climate change. The
climate model outputs are generated and bias corrected by (Pasten-Zapata et al., 2019), and the
Global and Regional Circulation (GCM, RCM) models originate from the Euro-CORDEX project (Jacob et
al., 2014).

The climate simulations cover three 30-year periods: the reference period (1991-2020), the mid-
century (2041-2070) and the end-century (2071-2100). All 51 climate simulations (17 climate models x
3 periods) were first run using the initial potential head from the national model climate simulations
(Henriksen et al., 2020a). Subsequently, they were rerun using the mean potential head for the
respective 30-year period as the initial potential head.
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Empirical CO, emission models

Implementation of annual CO; emission model

Recent studies established a functional relationship between the annual NECB for CO; and the mean
annual WTD (Koch et al., 2023; Tiemeyer et al., 2020) by fitting a nonlinear Gompertz function. Like in
(Koch et al., 2023; Tiemeyer et al., 2020), this study considers NECB as only CO; fluxes, excluding
methane (CH,4) and other carbon exports such as dissolved or particulate organic carbon. We apply the
WTD functional relationship for CO; from (Koch et al., 2023), which is fitted to Danish flux data, and
refer to it as the Annual WTD model. The Annual WTD model demonstrates a systematic relationship in
which CO; flux from NECB increases with annual WTD in the interval between 7 cm and 50 cm, above
which an asymptotic level of 10 Mg CO,-C ha™' yr™'is reached (Koch et al., 2023). The Annual WTD
model is therefore not sensitive to changes in WTD deeper than approximately 50 cm. At WTD levels
less than 7 cm, the Annual WTD model suggests CO, uptake; however, this element is not included in
our analysis which only models CO, emission.

Derivation and implementation of daily CO, emission model

For our empirical model to predict daily soil CO; fluxes (fCO,) we assume that the WTD dependent
NECB (Tiemeyer et al. 2020, Koch et al. 2023) is driven mainly by the response of soil respiration to
WTD and T.ir, as gross primary photosynthesis (GPP) and aboveground autotrophic respiration is
mostly dependent on light availability and plant phenology (Rodriguez et al., 2024). This allows scaling
to match the NECB magnitude but maintains integrity in the regulation of WTD on soil CO, fluxes.

Using a unique and comprehensive coupled dataset (Nielsen et al., 2025a) of daily mean net soil CO;
fluxes, Tair and WTD for six spatial replicate measurement points, we develop a coupled temperature
and WTD dependent empirical soil CO; flux model, hereafter referred to as the Daily WTD-T,;» model.
The model essentially scales the WTD-fCO; relation to Tair. The dataset (Nielsen et al., 2025a) is from a
drained fen, called Vejrumbro (Figure 1), with similar characteristics (soil type, climate, land use
history) as the peat area in the Tuse Stream catchment (see methodological details in (Nielsen et al.,
2025a). The soil net CO; fluxes, WTD and T, were measured automatically for one year (2022-2023)
(Nielsen et al., 2025a) and we used a subset of fluxes measured for six spatial replicates 5-6 times per
day, resulting in a dataset of 10950 — 13140 individual fluxes covering 365 days (Nielsen et al., 2025a).

Implementation of CO; flux models

Spatially distributed net soil CO, fluxes are calculated at a 100-meter scale across the 13 km?
contiguous peatland area (Figure 1) with the Annual WTD model and the Daily WTD-T,ir model,
respectively, using WTD at a 100-meter scale (hectare scale) and a uniform Ta.. Afterwards the
spatially distributed soil CO; fluxes are aggregated to represent the spatial mean of the 13 km?
peatland area.

First, we applied the Annual WTD model and the Daily WTD-T,i model for the historical simulation
period of 1990-2023, using spatiotemporal distributed WTD from the calibrated hydrological model.
Afterwards, the empirical CO, models are utilized on each of the 17 climate projections for Tair and
WTD. Daily T, for the Tuse Stream catchment peatland area is taken directly from the 17 bias
corrected climate projections, while daily spatial WTD is a model output from the 17 hydrological
simulations, when running the hydrological model with the forcing data (precipitation, temperature
and evapotranspiration) from the 17 climate projections. Thereby, we are able to quantify the
variability in soil CO, flux among the 17 climate projections for each of the simulation periods and
among the 30 years within each of the simulation periods.
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Design and application of rewetting scenarios

For impact evaluations of peatland management scenarios on the annual CO; emissions, we define
three rewetting scenarios: A, B and C. These scenarios are implemented through controlled
modifications of the simulated WTD in peatland grid cells. This method of representing rewetting
scenarios does not involve structural modifications to the hydrological model and assumes changes in
WTD without accounting for process-based feedback mechanisms within the coupled surface—
subsurface hydrological system. Therefore, the rewetting scenarios cannot be interpreted as real-life
management practices. All rewetting scenarios were applied for 1990 to 2023, representing the
climatology for this period and generating 34-year time series of rewetted WTD.

The scenarios are meant to illustrate different rewetting impacts on WTD, representing wetter winters
(A), uniform shift in WTD (B) and wetter summers (C), but all with the same long-term mean WTD. In
Scenario A, the daily groundwater table is elevated when it is above the long-term (34-year) mean
water table resulting in unchanged water table levels during summer but an increase in winter.
Scenario B uniformly raises the water table by a constant scalar, while Scenario C applies the same
scalar increase to water table while simultaneously reducing the annual amplitude by half. The
modifications of the simulated WTD are implemented using the following equations:

WTD;, if WTD; > WTD

WTD; = { T WTD
trewet A WTD; + 2.5 (WTD — WTD;), if WTD; < WTD

(2]

WTD;, por 5 = WTD; — (WTD — WTDyeyer 4) [3]
WTDirewet c= WTDyrewer g + 0.5 (WTDirewetB — WTDrewet ) (4]
where WTD; ., .ot a» WTDi,por g A WTD; . o is the daily WTD in a grid cell for rewetting

scenario A, B and C, respectively. WTD; is the daily WTD in a grid cell from the calibrated hydrological
model. WTD is the long-term (34-year) mean WTD in a grid cell from the historical period of the
calibrated hydrological model. WTD,.q\yet 4 and WTD,.o\per g are long-term (34-year) mean WTD in a
grid cell from the rewetting scenario A and B, respectively.

Uncertainty of future CO, emission estimates

We applied a bootstrap resampling approach to estimate the uncertainty in the mean values of soil
CO; flux. Specifically, we resampled the means over the 17 climate models, each containing 30 annual
values, with replacement. This process was repeated 10,000 times to construct bias-corrected and
percentile-based 95% confidence intervals around the bootstrapped means.
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Results

Hydrological model

Calibration of the hydrological model

The model calibration, running 1000 model evaluations based on three objective function groups,
using Ostrich ParaPADDS optimizer with 40 parallel model executions, took ~24 hours on a Xeon Et-
4850 @2,20 GHz Server. The calibration resulted in 203 non-dominated solutions forming a three-
dimensional pareto front. Figure 2 presents scatterplots of the three objective functions, illustrating
the trade-offs between them. Especially, there is a clear trade-off between the two objective functions
addressing temporal dynamics (KGEwrp) and spatial dynamics (rspatiar), as illustrated in Figure 2a.

The number of non-dominated solutions and the trade-offs illustrate that several parameter sets can
be considered and that an ensemble of parameter sets could be selected. For the purpose of further
analysis and climate change impact assessments, however, we select one balanced solution from the
non-dominated solutions, through a stepwise procedure. First, a pre-screening was performed with
performance criteria for WTD of KGEwrp larger than 0.6, for discharge of KGEgischarge larger than 0.6 and
for hydraulic head in deeper wells of 1 m, for MEneaq and MEamp, respectively. Afterwards, the
balanced parameter set was selected as the solution with the highest spatial correlation (rspatia)-

The selection procedure was designed to prioritize accurate simulation of the temporal dynamics of
peatland WTD, while maintaining strong performance across additional objective functions and
maximizing spatial correlation accuracy. Initial calibration efforts indicated that achieving a KGEwmo
value greater than 0.6 was necessary to ensure an adequate alignment between the simulated and
observed WTD time series.

a) 5000 b) c)
1.4 1.4
54500
=12 £ =13 %
8 54000 H
W ] W L®
£1.0 ) £1.0
& o3500 | A
Zo0s8 % Gz s 208
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2500 e =
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WSSE(Modified KGEwrp) WSSE(Modified KGEwrp) WSSE(q_head_amp)

full solution (N=1000) + non-dominated solutions (N=203) (O pre-screening solutions O selected solution

Figure 2: Scatterplots of WSSE (weighted sum of squared errors) for the three objective function groups in the calibration.
Pareto front for 1000 model evaluations.

Hydrological model performance

Model performance metrics for the selected solution are summarized in Table 2. The g_head_amp
objective function is separated into individual contributions from the metrics KGEq, MEheas and MEamp.
Additionally, Table 2 shows the three metrics which make up the modified KGEutd: rwtd, Qwtd and MEutqd.
In general, the model performs well with a KGEwtq4 in peat of 0.64, a KGE, of 0.63, a MEheaq for the deep
wells of 0.75 m and a MEan, for the deep wells of 0.51 m for the selected solution. However, the
correlation coefficient for the spatial variability (rspatial) is poor with a value of 0.06. The model
optimization achieves solid metrics on all the three components of KGEwts. The mean bias of WTD
across all shallow peatland observation wells (MEytq) is only 8 cm (Table 2).
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373 Table 2: Hydrological model performance

Name of metric Abbreviation Unit Selected
solution
Modified KGE on WTD KGEWTDmodified - 0.64
Correlation coefficient WTD rwro - 0.83
Measure of variance awTp - 0.14
Mean error of WTD MEwrp m 0.08
Spatial correlation of the mean WTD I'spatial - 0.06
KGE on discharge KGEq - 0.63
Mean error on the hydraulic heads MEhead m 0.75
Mean error on amplitude of the hydraulic heads MEamp m 0.51

374

375  Though the model obtains a relatively small mean error, it largely underestimates the spatial variability
376 in WTD. The observed mean WTD variability across the 22 monitoring wells (SD = 16.5 cm) is

377  considerably higher than that observed in the simulations (SD = 6.8 cm). Even though the model

378  performance on KGEwrp was generally good, it proved difficult to reproduce the spatial variation in

379 mean WTD.

380 To investigate the underestimation of spatial variability in WTD, we analyzed several spatial variables
381 considered relevant for explaining the observed variability in WTD: peat thickness, topography and
382 proximity to water bodies. However, no clear correlation was found between these spatial variables
383 and the mean observed WTD or model bias, as all had a correlation coefficient smaller than 0.34. See
384  Table S6.

385  Historical simulations of water table depth

386  The simulated WTD, generated by the calibrated hydrological model driven by historical climate for the
387 period 1990-2023, adequately represent both the observed seasonal patterns of WTD and their short-
388 term responses to precipitation events. Figure 3 shows the time series of WTD from two individual

389 monitoring wells as a typical example of the temporal match between observed and simulated WTD.

Monitoring well: dgu no. 198.1218

-20 o 0
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0 wrp = 0.85 10,‘?;
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O i}
o 40 305
E ©
2 60 402
80 50 9
~20 Monitoring well: dgu no. 197.796 0
modified KGEyp = 0.85
0 rwmp = 0.86 1
awrp =-0.0 2
= 20 MEwrp =7 cm 20¢
O —
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E ©
2 60 403
80 50 é
Q.
o = o o -~ S - N~ ‘N ~ ) 1% m n <
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391 Figure 3: Example of observed and simulated timeseries for water table depth (WTD) for monitoring wells dgu no. 198.1218
392 and dgu no. 197.796. Including metrics for these wells.
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Meteorological climate predictions

Changes in precipitation, temperature and evapotranspiration patterns in future climate projections
for Denmark generally indicate an increase in both temperature and annual precipitation. Table 3
presents the mean air temperature, mean annual precipitation and mean potential evapotranspiration
derived from the 17 climate projections across the three simulation periods.

Table 3: Mean * SD (n=17) of annual air temperature, precipitation and potential evapotranspiration from the 17 climate
models during the three simulation periods.

Unit Reference Mid-century End-of-century
period period period
(1991-2020) (2041-2070) (2071-2100)
Mean annual air temperature °C 8.9+0.7 10.6 £ 0.8 12.1+0.8
Mean annual precipitation mm yrt 780 +121 837+130 906 + 152
Mean annual potential evapotranspiration mm yrt 621 + 25 678 + 27 727 + 27

Hydrological climate predictions

Climate simulations using the hydrological model indicate a decreasing trend in mean annual WTDs
(Table 4), resulting in a shallower annual mean groundwater table in future climate conditions. Both
summer and winter mean WTDs are projected to be closer to the surface, suggesting generally wetter
conditions. The mean annual amplitude of WTD remains unchanged under future climate scenarios
(Table 4), indicating that there is no greater seasonal drawdown of the water table during summer,
although the duration of the drawdown period may be extended.

Table 4: Statistics of WTD when using the hydrological model for climate simulations. Mean + SD (n=17) over the 17 climate

models during the three simulation periods. Summer is June, July and August, Winter is December, January and February. The
amplitude is based on the monthly means of WTD to avoid outliers.

Unit Reference Mid-century End -of-century
period (1991- period period
2020) (2041-2070) (2071-2100)
Mean annual WTD cm 31+1 272 243
Mean summer WTD cm 47+1 40+ 3 34+3
Mean winter WTD cm 18+2 14+ 4 10+3
Mean annual WTD amplitude cm 512 504 52+4

Derivation of empirical daily soil CO; flux model

An analysis of the Vejrumbro dataset indicated a clear temperature dependency on the relation
between soil CO; flux (fCO,) and WTD. The Vejrumbro dataset was resampled to daily means of WTD,
Tair and soil CO; flux across the six spatial replicate measurement points omitting data from days with
less than 24 flux measurements. This resulted in a dataset with 231 daily observations for each of fCO,,
WTD and T, distributed evenly over a year. Traditionally, empirical emission models for ecosystem
respiration (Reco) are fitted to soil temperature. However, due to the strong linear relationship
between daily soil temperature and daily air temperature at the Vejrumbro site (r = 0.96, p-value <
0.001) (Figure S4), Tair was used as a proxy for soil temperature when fitting the Daily WTD-T,» model.
This use of air temperature also facilitates upscaling and omits the need for projecting soil
temperatures under climate change scenarios.

To investigate how the WTD-fCO; relation scales with temperature, we binned daily soil CO; flux into
five temperature intervals: <4°C (n=39), 4-8°C (n=32), 8-12°C (n=52), 12-16°C (n=70) and >16°C (n=38)
and applied a linear regression model (y=ax) with the intercept constrained at zero within each
temperature bin. The regressions were constrained to pass through the origin, reflecting the
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assumption that soil CO; flux is zero when the WTD is zero. Thereby, the relationship between fCO,
and WTD within each temperature bin was modeled using a linear regression of the form:

fCO,=a- WTD (5]

where fCO, represents soil CO; flux [Mg CO,-C ha' day], a denotes the fitted slope and WTD is water
table depth [cm], with positive values indicating depths below the surface.

This analysis revealed an increasing slope, i.e. sensitivity of soil CO; flux to changes in WTD, with rising
temperature (Figure S5 and Figure 4a), indicating that the WTD- fCO;slope (a) can be modelled as a
linear function of temperature (Tair) (Figure 4b):

a=b-Tsi+cC [6]
Combining these relationships yields a simple model of the soil CO; flux:
fCO2=b - Tair - WTD + ¢ - WTD [71

where T, [°C] is the temperature, b [Mg CO»-C ha? day? cm-t°C?] and ¢ [Mg CO,-C ha day* cm™] are
empirical constants.

Linear fits of soil CO; flux versus WTD in temperature bins Slope of the linear fits versus mean T,
in each temperature bin
a) 0.10 5 b
— <4°C, n=39, r=0.33 E ol T fit:a = b Tair + C
—4°C to 8°C, n=32, r=0.75 2 0.00200 115 =a5¢
— g° o = - 0 ° o
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Figure 4: Left: linear models of soil CO; flux vs. water table depth (WTD) in air temperature bins. The thicker segment of the
line represents the range of data used to derive the fitted model. n is the number of daily observations of soil CO; flux in each
temperature bin. r is Person correlation coefficient. Raw data behind the linear regressions can be seen at Figure S5. Right:
Slope (incl. uncertainty) (of the linear fit of soil CO; flux versus WTD) versus observed mean temperature in each temperature
bin.

Having established a suitable form of the empirical soil CO; flux equation, we used nonlinear least
squares fit to estimate the b and ¢ parameters based on the daily soil CO; flux, T.r and WTD (without
temperature bins). This method minimizes the residual sum of squares between the observed soil CO;
flux and the Daily WTD-T,r model. The resulting fitted model demonstrated a significant correlation to
the observed data (r = 0.78, p-value < 0.001, RMSE = 0.021 Mg CO,-C ha day?) (Figure S6) with daily
soil CO; flux increasing in response to rising WTD and Tai (Figure S7). The fitted empirical constants are
as follows: b = 8.32:10° Mg CO,-C hatday*cm™°C?, ¢ =3.33:10% Mg CO,-C ha* day* cm™.

The Daily WTD-T,ir model predicts the highest soil CO; flux under conditions of simultaneously high Tair
and WTD, where a high WTD refers to a water table located furthest below the surface (dry
conditions). The multiplicative Daily WTD-T.;; model demonstrated a moderate fit to the soil CO; flux
data, with a R2 of 0.61. To assess the individual contributions of the predictor variables, we also
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computed the R? between CO2 flux and T, and WTD separately. This was done using a constructed
dataset that included all combinations of WTD and Ta;r within the model range. This resulted in R?
values of 0.34 for T, and 0.54 for WTD (Table S7). These values reflect the explanatory power of each
variable in isolation.

Despite the significant variability in the observed NECB used for the Annual WTD model (Figure 5) it is
considered to represent a robust mean as it is based on multiple sites and years for Danish and
German conditions. Compared to the Annual WTD model both the measured soil CO; flux (12.9 Mg
CO,-C hat yr (green circle)) and the Daily WTD-T,;; simulated soil CO, flux (13.6 Mg CO»-C ha yr!(not
shown)) at Vejrumbro are above the corresponding fitted value of NECB (8.7 Mg CO,-C ha yr (orange
circle)) based on an annual WTD of 29 cm, but still within the range of observed NEBCs used for fitting
the Annual WTD model (Figure 5). This may be explained by the methodology of flux measurements at
Vejrumbro that did not consider GPP (CO, uptake) and therefore are expected to result in higher net
CO; fluxes. In order to align the Daily WTD-T,; model to the level of the Annual WTD model where GPP
is included, a scaling factor based on the above differences (fsciing = 0.64) was applied to equation 7 to
account for lack of GPP in the soil CO; fluxes used for empirical model development. Applying this
scaling factor, we seek to avoid the risk of overestimating emissions when applying the Daily WTD-T,;r
model at other locations.
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German flux data
—— Annual WTD model (Koch et al, 2023)
® Annual soil CO; flux measured at Vejrumbro
NECB at Vejrumbro calculated with the Annual WTD model

Figure 5: The Annual WTD model together with the Danish flux data of annual NECB and WTD data underlaying the model
(Koch et al., 2023). German flux data are included for comparison (Tiemeyer et al., 2020). Colored circles are measured and
calculated soil CO; flux and NECB for the Vejrumbro dataset, so the colored circles represent the year 2022-2023.

The Vejrumbro dataset used for fitting the Daily WTD-T,; model was limited to a maximum WTD of 47
cm and maximum Ty of 21°C (Figure S7). Outside this range, the predictions of the Daily WTD-T,
model exhibits increased uncertainty. At the same time, it is generally understood that the upper
portion of the peat layer drives the net CO, emissions observed at the surface. Therefore, the
extrapolation of WTD in the Daily WTD-T;r model must be constrained. The Daily WTD-T,; model
should be sensitive within a WTD range comparable to the expected daily variation in the Annual WTD
model, which also reaches an fCO, asymptotic at deeper water tables. In the Annual WTD model, the
Annual NECB reaches 90% of its maximum asymptotic level at a mean annual WTD of 30 cm (Figure 5).
The mean annual WTD results from intra-annual (within year) WTD variation described by the annual
amplitude. The mean annual amplitude (based on monthly means) is 65 cm, across the 22 observed
WTD time series in the Tuse Stream catchment used for calibrating the hydrological model. We
assume that a mean annual WTD of 30 cm originates from an annual WTD variation with a similar
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amplitude. Therefore, we assume that the WTD range of the Daily WTD-T; model is 30 + 65/2 cm =
62.5 cm. For the T.ir range, it is assumed that the sensitivity continues until 25°C, which is a daily
average value very rarely occurring, even in future climate projections. Thus, when applying the Daily
WTD-T.ir model, daily WTD values and Ta;r values were truncated, setting WTD and Tai- to 62.5 cm and
25°C, respectively, when exceeding those thresholds.

In both the Daily WTD-T,; model and the Annual WTD model, CO, fluxes are constrained so that the
model does not simulate negative fluxes or carbon uptake(Gyldenkzrne et al., 2025).

CO; emissions from peatlands

CO; emissions throughout the historical simulation period

The long-term mean of the emission factor for the Tuse Stream catchment peat area is 8.0 £ 0.8 Mg
CO,-C hat yr! (mean + SD, n=34) when using the Annual WTD model and 8.8 + 1.6 Mg CO»-C ha yr?
(mean % SD, n=34) when using the Daily WTD-T,; model (Table 5).

Table 5: Long-term mean water table depth (WTD), long-term mean annual WTD amplitude (based on monthly means of WTD
to avoid outliers) and long-term soil CO; flux, throughout the historical period and the three modified 34-year WTD time series
of rewetting scenarios. Mean + SD is based on the 34 years of the historical period (1990-2023).

Unit Historical period Rewetting Rewetting | Rewetting
(1990-2023) scenario A scenario B | scenario C

Mean WTD cm 34+8 14+18 14+8 14+ 4
Mean annual WTD amplitude cm 51+11 110+ 28 51+11 265
CO;, emission from Daily WTD-T,; model Ms qu-C 88+16 77420 52415 44408
aggregated to annual halyrl
CO; emission from Annual WTD model Mg CO,-C 8.0+0.8 46430 43420 44412
aggregated to annual halyrl

Figure 6 shows Tair, as wells as the spatial mean of WTD and CO, emissions across the peatland, as
simulated by the Daily WTD-T,;; model and the Annual WTD model during the historical period. The
CO, emissions calculated with the Daily WTD-T,» model (red line in Figure 6c, 6d) depend on both the
observed daily temperature variability (orange line in Figure 6a) and simulated intra-annual (seasonal)
WTD variability (blue line in Figure 6b), while the CO, emission calculated with the Annual WTD model
(black points in Figure 6d) only depends on the inter-annual (annual means) WTD (blue points in Figure
6b) and not the temperature.

Inter-annual (between years) variation in CO, emission is substantially larger when using the Daily
WTD-T,i model (SD = 1.6 Mg C-CO, ha! yr) compared to the Annual WTD model (SD = 0.8 Mg C-CO,
hayr?) (Figure 6d), as the former captures extreme events, such as periods of high temperature or
deep groundwater tables, as well as compound events involving the simultaneous occurrence of both.
In contrast, the Annual WTD model is insensitive to temperature and the intra-annual (within year)
timing of deep WTD. Moreover, the Annual WTD model imposes an upper limit of 10 Mg CO,-C ha™
yr™' for annual emissions (Koch et al., 2023) (Figure 5). During the summer of 2018, a compound
extreme event occurred, characterized by both high temperatures and deep groundwater table. The
annual CO; flux for this year shows a 34% increase when estimated using the Daily WTD-T,i» model
compared to the Annual WTD model. This discrepancy arises from the Daily WTD-T,;; model's ability to
account for the prolonged duration of concurrent high temperatures and deep groundwater table
conditions throughout the summer (Figure 6d). Conversely, in 2010, the Daily WTD-T,;; model
estimates significantly lower annual CO, emissions compared to the Annual WTD model (Figure 6d).
This difference is due to the emission model's ability to account for the effects of prolonged periods of
low temperatures during the autumn and spring of 2010, leading to a mean annual temperature below
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the long-term mean, despite summer temperatures being consistent with other years (Figure 6a).
Examples of years with extreme events primarily driven by either WTD or Tair include 1996, which
experienced a significant summer decline in groundwater table (Figure 6b), and 1997, which was
characterized by elevated summer temperatures (Figure 6a). However, neither of these events led to
CO, emissions as high as those simulated during the compound event of both high temperatures and
deep water table in 2018 (Figure 6).
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Figure 6: Air temperature (Tqi;), water table depth (WTD) and soil CO, emission for the historical simulation period 1990-2023.

CO; emissions under different rewetting scenarios

The rewetting scenarios represent an adjustment to the WTD simulated by the hydrological model
over the 34-year historical period, thereby reflecting the climatological conditions prevailing during
that time. Across all three rewetting scenarios, the long-term (34-year) mean WTD was raised by 20
cm, from 34 cm to 14 cm below the surface, ensuring a consistent long-term annual mean WTD among
the rewetting scenarios (Table 5). Accordingly, the application of the Annual WTD model for estimating
CO; fluxes result in CO, emissions between 4.3 + 1.2 Mg C-CO; ha! yr! (mean * SD, n=34) and 4.6 + 3.0
Mg C-CO; ha? yr! (mean + SD, n=34) across all rewetting scenarios (Table 5). The mean annual soil CO,
flux from the three rewetting scenarios, as calculated using the Annual WTD model, are similar but not
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identical. This is because the Annual WTD model is applied to each of the 34 individual annual mean
WTD values rather than to a single long-term mean WTD. The SD of CO, emissions calculated using the
Annual WTD model in scenario C is markedly lower than in rewetting scenario A and B, reflecting the
lower inter-annual (between years) variability in mean annual WTD observed for this scenario (Table
5).

In contrast to the Annual WTD model, the Daily WTD-T,;ir model captures the simultaneous occurrence
of low groundwater table and high T.ir during the summer months. Application of this emission model
indicates that raising the groundwater table during summer months (rewetting scenario C) yields the
greatest reduction potential in soil CO, emissions (Table 5), leading to a 50% decrease in the mean
value, from 8.8 + 1.6 to 4.4 + 0.8 Mg C-CO; ha? yr! (mean + SD, n=34) (Table 5). In contrast,
management scenarios that primarily target increase in winter water table (rewetting scenario A)
exhibit only marginal emission reduction potential (Table 5).

A visual representation of daily soil CO, emissions in relation to mean daily temperature during the 34-
year historical period under different WTD conditions (Figure 7) reveals that high summer
temperatures are a key driver of CO, emissions. WTD observations from the Tuse catchment peatland
indicate that, during shorter periods in the warm summer months, the WTD can exceed 80 cm (Figure
3). These periods with very low summer water table contribute substantially to total CO, emissions
(Figure 7).

A rewetting scenario that mainly generates wetter winter conditions (rewetting scenario A) has very
limited CO, emission reduction. All three scenarios assume that even under rewetting, the peatland
WTD will follow a climate driven seasonality and that obtaining zero WTD in summer periods will be
difficult by classical nature-based solutions. Rewetting scenario C, which features the greatest increase
in summer WTD, achieves the largest reduction in CO, emissions (Figure 7). Permanent wet conditions
with WTD at zero would be required to obtain zero CO, emission with the developed Daily WTD-Tg;r
model, but under such conditions, methane emissions would also come into play and plant growth
would be severely limited.
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Figure 7: Colormap: Visual representation of the annual distribution of daily surface soil CO; flux (fCO,, CO, exchange with
atmosphere) under mean daily temperature during the historical period (1990-2023) and for different water table depths
(WTD). Curves: solid blue line: simulated daily mean WTD during the historical period and corresponding long-term (34-year)
mean WTD, black lines: daily mean WTD for each of the modified 34-year WTD time series of rewetting scenarios (A, B and C)
and the corresponding long-term (34-year) mean WTD.

CO; emissions across future climate simulation periods
Figure 8 shows the same variables as Figure 6 but based on a representative climate model simulation
instead of the observed climate record, offering a typical example of the development of temperature,
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WTD and soil CO; flux through the reference, mid-century and end-of-century periods based on the
RCP 8.5 pathway.

The future climate simulations show an increase in both the annual mean temperature and
groundwater levels combined with higher maximum summer temperature (Figure 8a, 8b, Table 3,
Table 4). The bootstrap mean of soil CO; flux calculated with the Annual WTD model over all climate
models predicts a decreasing trend in soil CO; flux under future climate conditions (Figure 9a,
horizontal dotted black line in Figure 8d), driven by an inter-annual (between years) mean WTD closer
to surface (Table 4, Figure 8b). However, this decreasing trend is countered by the inclusion of Ta
effects when applying the Daily WTD-T,i» model (Figure 9b, horizontal dotted red line in Figure 8c and
8d).

The wider confidence intervals in the mean annual CO, emissions for the future periods with both CO,
emission model (Figure 9) indicate that the inter-annual (between years) soil CO, fluxes become more
variable in future climate. Furthermore, the confidence intervals for the individual periods are wider
for the Daily WTD-T,;r (Figure 9b) compared to the Annual WTD model (Figure 9a), which is expected as
variations in T, and not only WTD is included as with the Daily WTD-T;r model. This demonstrates that
the Daily WTD-T.ir model captures extreme events, including periods of high temperature or deep
groundwater table, whether these events occur simultaneously (compound event) or independently.
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Figure 8: Example of air temperature (Tq;;), water table depth (WTD) and soil CO; flux for future climate simulation with
climate model projection no. 5 (Table S6).
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Figure 9: Boxplot showing the distribution of bootstrap means of soil CO, emissions according to the Daily WTD-T,;y model and
Annual WTD model during future climate. Green triangles and horizontal lines indicate the mean and the median of the
bootstrap mean, respectively. Boxes show the 25t and 75t percentiles. Whiskers indicate the 95% confidence intervals.
Outliers are not shown.

The results presented in Figure 9 suggest that the impact on CO, emissions caused by future increases
in Tair and increases in water tables cancel each other out when using the Daily WTD-T.; model. To
investigate this further, we analyze how the combination of T, and WTD shift between the reference
and the end-of-century periods, despite relatively stable total CO, emission.

We wish to identify the specific combination of T, and WTD that are associated with the majority of
the CO; emission. Due to the non-linear response of soil CO; flux to environmental drivers in the Daily
WTD-T.ir model, a large fraction of total emissions is generated on relatively few days. To quantify this,
we calculated p50, defined as the proportion of days required to account for 50% of the total annual
soil CO; flux (fCO,). This was achieved by ranking the daily values of fCO,, WTD, and T.i in ascending
order according to fCO,. Subsequently, the ranked fCO; values were cumulatively summed to obtain
their percentile distribution (Figure S8). The procedure was first applied to fCO,, WTD, and Tair data
from the historical simulation period, with the resulting percentile curves shown in Figure S8. Over the
historical simulation period, 50% of the total fCO, (fCO,, p50) was generated within 22% of the days (p50
= 22%), while the value of fCO», pso and corresponding WTD,so and Tair, pso are estimated to be 4.15-10°2
g CO,-Cha'day™, 47 cm and 13.8 °C (Table 6 and Figure S8).

Similar estimates are derived from the three timeslots from the climate models (reference, mid-
century and end-of-century climate simulation periods) using the 17 different climate models. For the
future, 50% of the total fCO; is expected to occur within approximately 21 £ 1 % (mean + SD, n=17) of
the days (Table 6). The daily soil CO; flux associated to p50 (fCO,, ps0) and p50 are nearly identical
across both the historical and future climate simulations periods (Table 6). As also shown in Figure 9b,
the magnitude and temporal distribution of fCO, are predicted to remain unchanged in the future.
While the value of fCO,, ,s0 remains relatively constant around 4-10"2 Mg CO,-C ha day™ for future
climate periods, the corresponding WTDps0 and Tair, pso Values change as a result of changing climate
moving towards higher temperatures (17 °C) and shallower groundwater table (40 cm).

Figure 10 provides a graphical representation of fCO, obtained from the Daily WTD-T,; model, with the
colormap illustrating the daily fCO, corresponding to different combinations of T.i and WTD. The daily
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fCO,, pso (4.15-102 g CO,-C ha™' day™ for the historical period (Table 6)) can be achieved through
various combinations of T, and WTD (dark red dotted line in Figure 10). The values of Tai, psoand
WTDgso corresponding to fCO,, pso for the Tuse Stream catchment peatland are plotted as a dark red
point. As expected, the fCO,, 550 values for the reference periods of the 17 climate models (green
crosses at Figure 10) are closely aligned with that of the historical period. It is evident that the fCO;, ps0
values for the end-of-century climate conditions (blue crosses at Figure 10) shift along the direction
indicated by the pink arrow (along the red dotted line), reflecting a trend toward higher temperatures
and lower WTD (i.e. water levels closer to the surface surface). This indicates that the mean daily fCO,
(Table 6) and the long-term fCO, remains constant in the future (Figure 9b), as a result of a
counterbalance between impacts of rising temperatures and rising groundwater levels.

The pink arrow at Figure 10 illustrates the characteristic impact of climate change in Denmark,
reflecting the concurrent increase in air temperature and shallow groundwater levels (Schneider et al.,
2022). In contrast, other regions in Europe are experiencing declining groundwater level trends to
climate change (Wunsch et al., 2022). Consequently, CO, emissions from peatlands in these regions
are expected to shift in the direction indicated by the yellow arrow in Figure 10, towards considerably
larger emission rates.

Table 6: p50 is the fraction of days required to reach 50% of the total soil CO; flux (fCO,). fCO,, pso is the daily soil CO; flux
associated with p50. WTD,s0 and Tair, pso are the water table depth (WTD) and air temperature (Tqj) corresponding to fCO;, pso,
respectively. Mean * SD is based on 17 climate model simulations.

Historical Climate simulation periods
simulation period
Reference period Mid-century End-of-century
Unit (1990-2023) (1991-2020) period(2041-2070) period
(2071-2100)
p50 % days 22 21+1 21+1 211
fCO2, pso Mg CO,-C ha day? 4.15-1072 4.03-102+9.89-10* | 4.00:102+3.24-10° | 4.03-102 + 3.65-10°3
Tair, pso °C 13.8 14+0.3 15+0.6 17+1.0
WTDpso cm 47 46+ 1 42+3 40+ 3
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Figure 10: Colormap: Visual representation of the Daily WTD-Tq;r model output, illustrating soil CO; flux (fCO2) as function of
daily water table depth (WTD) and air temperature (T,;). The dark red dotted line represents combinations of T and WTD
that corresponds fCO; at p50 (fCO,, ps0), where p50 is the fraction of days required to reach 50% of the total accumulated fCO,
during the historical period. Green crosses are fCO,, ps0 for the reference period of the 17 climate simulations. Purple crosses
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are fCO;, pso for the end-of-century climate simulation period of the 17 climate simulations. The pink and yellow arrows
indicate different future trends in T, and WTD and the associated trend in CO; emissions under climate change. Specific to
Denmark, the pink arrow indicates increases in T, and decrease in WTD, other regions might experience increase in both T
and WTD and an associated large increase in CO, emissions (yellow arrow).
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Discussion

Peatland management under changing climate

In 2023, CO, emissions from drained organic soils in croplands and grasslands was estimated to have
accounted for 6.7% of Denmark's total emissions, including those from the Land Use, Land-Use Change
and Forestry (LULUCF) sector (Nielsen et al., 2025b). Returning peatland organic soils to their natural
hydrological state is a cost-effective GHG reduction strategy (IPCC, 2014; Kirpotin et al., 2021;
Tanneberger et al., 2021; Wilson et al., 2016). Therefore, national policies (Regeringen, 2024) and the
European Union’s Nature Restoration Law (Regulation (EU) 2024/1991, 2024) seek to improve the
management of peatlands and achieve climate neutrality targets under the urgent Green Transition
agenda. To mitigate agricultural GHG emissions Danish ministerial agreements were initiated in 2024,
targeting the restoration of 140,000 hectares of peatland. Moreover, a CO,-eq tax on emissions from
organic peatlands is scheduled for implementation from 2028 (Regeringen, 2024). However, there is a
need to strengthen the scientific evidence for mitigation measures to facilitate cost-effective policies.

Integration of the process-based hydrological model of the Tuse Stream catchment with the
empirically derived Daily WTD-T.r model of soil CO, flux developed in this study revealed that emission
simulations at daily timesteps produce greater variability in soil CO, fluxes compared to emission
estimates derived from annual WTD means. This increased variability is attributed to the daily model’s
ability to account for short-term compound events, especially the simultaneous occurrence of elevated
air temperatures and low groundwater levels.

More importantly, incorporating temperature dependence and higher temporal resolution into the
CO, emissions model significantly alters the projected trends of CO, emission under both rewetting
and changing climate conditions.

Nature-based approaches represent the most common real-world rewetting strategies, aiming to
restore peatlands towards their natural hydrological regime. At a minimum, such rewetting requires
terminating tillage activities and eliminating artificial drainage for instance by blocking of drainpipes
and ditches. The rewetting scenarios implemented in this study, represented as simple modifications
to WTD, are not reflective of practical management interventions - except perhaps in a few rare and
costly restoration projects that involve installing artificial impermeable membranes along peatlands
edges (Naturstyrelsen, 2022). However, the outcome of this study can inform discussions on
requirements and best practices for rewetting and peatland restoration. The study also highlights the
need to monitor or model pre- and post-restoration WTD dynamics in order to develop realistic
expectations regarding CO, emission reductions from rewetted peatlands

The rewetting analyzed in this study showed how different rewetting scenarios with varying seasonal
amplitudes in WTD suggest significantly different emission reduction potential even with identical
annual mean WTD. The results illustrate that increasing the groundwater table during warm periods is
key to obtaining CO, emission reductions, whereas rewetting strategies that mainly raise winter water
table without significantly affecting the summer levels offer limited mitigation benefits. This highlights
the importance of not only targeting annual reductions in WTD but particularly designing rewetting
strategies to increase the summer water table and avoid critically low water levels during droughts and
warm periods. Achieving such rewetted conditions may include larger forced control of WTD than
what is currently being practiced for most existing rewetting schemes, where the WTD remain subject
to climate seasonality impact. Such nature-based solutions are not likely to reduce CO, emissions to
the degree that current emission reduction policies target. Also, projections of CO, emissions under
different climate change scenarios were altered greatly by introducing temperature sensitivity and
enhanced temporal resolution into the CO, emissions modeling framework. Here our results show
that, while the projected rise in groundwater tables in isolation would lead to lower CO, emissions in
22
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future (when using the Annual WTD model), the Daily WTD-T,; model revealed that anticipated
increases in T,ir are likely to cancel out these reductions, resulting in CO, emissions on a level
comparable to current levels. This is an important finding, since it suggests that increasing
temperatures alone will likely increase CO, emissions, and that water level rise driven by climate
change or rewetting initiatives might just counteract this trend. Rewetting measures would need to be
substantially intensified to ensure climate resilience and achieve meaningful reductions in CO,
emissions. Additionally, outside the specific case of Danish peatlands located in a region that is
susceptible to a future wetter climate, other regions might project both increasing temperatures and
lower groundwater tables, and in such cases climate change will significantly increase emissions
without any rewetting. We acknowledge that the chosen RCP8.5 represents the scenario leading to the
strongest impact of climate change and that additional, milder climate scenarios could have been
included.

Hydrological simulation of groundwater levels in peat soil with process-based models

Existing large scale CO; emission estimates, such as national inventories from organic soils
(Gyldenkzerne et al., 2025; Nielsen et al., 2025b), typically combine empirical emission models and
data-driven ML approaches for estimating annual WTD (Bechtold et al., 2014; Koch et al., 2023;
Tiemeyer et al., 2020). These approaches appear robust and suited for upscaling but are limited in
their ability to represent the impact of sub-annual variability in temperature and WTD, which are
issues that become increasingly important when analyzing effects of rewetting and climate change. In
contrast to most data-driven approaches, hydrological models enable a climate-driven representation
of WTD temporal dynamics and the underlying hydrological processes. Moreover, the use of physically
based hydrological models has the distinct advantage of enabling scenario-based analyses, such as the
evaluation of alternative land use strategies and the projection of future hydrological conditions under
climate change scenarios. Utilizing hydrological models that generate high-resolution time series of
WTD, it is possible to quantify impacts of WTD dynamics, including water levels, temporal variability
and seasonal amplitudes, on changes in CO; emissions.

That said we acknowledge that the rewetting scenarios in the present study are applied using
simplified adjustments to the simulated WTD, rather than being modeled through a detailed, process-
based hydrological framework. Ideally, future assessments should apply catchment-scale models to
evaluate peatland management interventions, such as rewetting, thereby enabling analysis of their
broader hydrological impacts, including effects on streamflow and groundwater levels in neighboring
areas.A unique feature of the present study is that the hydrological model of Tuse Stream catchment is
developed in the same modelling framework as the National Hydrological Model of Denmark
(Henriksen et al., 2020a; Stisen et al., 2019). The National Hydrological Model is continuously updated
with new data and operates in near real-time. This integration enables a link between the lessons
learned from the Tuse Stream catchment-scale model and the National Hydrological Model of
Denmark, thereby improving the representation of peatland hydrology and contributing to the
refinement of future national GHG inventories.

As a continuation of this study, we will further investigate the spatial variability of WTD and extent
hydrological model to include additional peatland-dominated catchments. Additionally, we will utilize
the National Hydrological model to simulate WTD across all Danish peatlands.

Selection, fit and transferability of daily CO, emission model

Detailed process-based terrestrial ecosystem models that simulate biogeochemical cycles and
vegetation are available (Bona et al., 2020; Oikawa et al., 2017; Wu and Blodau, 2013). Such modelling
schemes rely largely on multiple parameters related to plant and soil biogeochemistry which are not
generally attainable, thereby limiting the possibility to generalize and upscale.
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As an alternative a range of empirical models with varying levels of complexity has been developed to
describe ecosystem respiration; however, the most commonly applied formulation is the Lloyd—Taylor
model (Lloyd J., Taylor, 1994), in which temperature acts as the sole independent variable. Structural
complexity in empirical equations is increased through the integration of various other environmental
variables, for example, hydrological variables such as WTD (Rigney et al., 2018). Recent alternative
empirical approaches for estimating CO, emissions for organics soils include response functions linking
average annual WTD to annual emissions (Arents et al., 2018; Evans et al., 2021; Tiemeyer et al., 2020),
such as the Annual WTD model (Koch et al., 2023) used in this study.

To evaluate alternative empirical emission models alongside our Daily WTD-T,; model, we fitted three
different empirical formulations from (Rigney et al., 2018) to the Vejrumbro soil CO; flux data (Table
S7). Each of the three empirical formulations incorporated both temperature and WTD as independent
variable. The model fitting resulted in R? values comparable to those obtained from fitting the Daily
WTD-T.ir model developed in this study (Table S7).

Studying the explanatory power of each independent variable of WTD and T, in isolation in the other
empirical emission models, revealed that models in which WTD and Ta.ir are incorporated as additive
terms, rather than as interdependent (e.g., multiplicative) terms (as in eq. 6 and 8 in (Rigney et al.,
2018)), often exhibit coefficients of determination (R?) that are excessively dominated by either WTD
or T.ir(Table S7). This indicates that such model formulations may inadequately capture the joint or
synergistic effects of these variables on the dependent variable. The challenge likely stems from the
fact that both WTD and T.ir exhibit similar seasonal patterns, which may lead the regression to
primarily fit one of the additive terms containing either WTD or T,r. Empirical models that incorporate
WTD and T.ir as multiplicative terms (such as equation 7 in (Rigney et al., 2018) and the Daily WTD-Tg;
model developed in this study) demonstrate a more balanced distribution of explanatory power
between each independent variable (Table S7). Nevertheless, equation [7] in (Rigney et al., 2018)
remains predominantly influenced by the T.i component (Table S7). A more balanced distribution of
explanatory power between temperature and WTD is desirable, given that both variables are
recognized as key drivers of soil CO, flux dynamics, which is achieved better with the Daily WTD-T,;
than with any of the empirical models in Table S7.

We acknowledge that the Daily WTD-T,;; model does not reproduce many of the highest observed fCO,
values (Figure S6 and S7). In addition to identifying a relationship between fCO; and WTD, which was
used to derive the Daily WTD-T.i model (Figure S5), we studied the temperature sensitivity within
WTD bins to better understand the model’s inability to reproduce the highest observed fCO; values.
Specifically, we binned the daily fCO; into four WTD intervals: <20 cm (n=73), 20 to 40 cm (n=37), 30 to
40 cm (n=77) and >40 cm (n=44) (Figure S9). We identified a potential relationship between fCO; and
temperature within WTD bins (Figure S9). This result is expected given the strong interdependence
among fCO,, temperature and WTD, all of which exhibit comparable seasonal dynamics. The high
observed fCO; values cannot be captured by a simple empirical model based solely on T and WTD,
particularly because both high and low fCO; occur under similar T, and WTD conditions (Figure S5, S7
and S9). Consequently, the Daily WTD-T,;; model represents a compromise that captures part of the
variability while preserving a realistic mean response.

In this study, we demonstrate the need for the development of emission models operating on a sub-
annual timescale. It highlights the necessity of creating scalable generalized models based on
temperature, WTD and possibly other predictors. The development of such models requires data from
a large number of sites with continuous and temporally dense measurement, in order to integrate
information in a manner similar to models based on annual WTD. We recognize that currently, models
based on annual WTD are likely the most robust for upscaling to national level and current conditions.
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The simulated soil CO; flux at Vejrumbro, estimated using the Daily WTD-T,i model (13.6 Mg CO,-C ha
Lyr?), aligns well with flux measurements from Danish and German sites (Figure 5). This agreement
suggests a comparable magnitude of emissions across geographically distinct locations of similar
characteristics, such as soil type and land use history.

We acknowledge that the Daily WTD-T,;; model is derived from a single dataset, and that other
emission models also provide valid fits of WTD and Ta;r. Furthermore, we recognize that empirical
emission models are highly dependent on the specific data to which they are fitted. Acknowledging the
limited data behind the Daily WTD-T,;; model utilized in this study, the goal has not been to accurately
estimate the peatland emission budget, which will be uncertain due to the reliance on a single site.
However, the objective has been to illustrate the impact and insights gained from applying emission
models at a daily timescale and how this has significant impact on the conclusions that can be made
regarding effects of rewetting and climate change. The decision to utilize the Daily WTD-T,; model for
rewetting and climate modeling scenarios is motivated by the simplicity of the relationship and its
direct derivation from the Vejrumbro data, which clearly demonstrates a temperature-dependent
relationship between soil CO; flux and WTD. The limited availability of multiple high-temporal-
resolution GHG emission datasets broadly restricts the ability to generalize and upscale empirical GHG
emission models at a daily timescale. Therefore, we consider the Daily WTD-T,;; model to be the most
reliable option currently available. Future research should validate the performance of emission
models on intra-annual (within years) data with continuous measured CO; data.

A promising methodology for future applications, as well as for integrating a Tier 3 framework,
involves coupling a process-based hydrological model with process-based emission models or an
empirically derived daily emission model, such as the one developed in this study, to enable detailed
simulations of GHG emissions that capture short-term dynamics and compound environmental effects.

25



823

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848

849
850

851

852
853

854
855

856

857
858

859
860
861
862

Conclusion

This study demonstrates the feasibility of simulating the temporal dynamics of the peatland water
balance and shallow groundwater table depth (WTD) using a catchment-scale distributed hydrological
model. Accurately modelling shallow WTD is critical for reliable projections of CO, emissions from
peatlands. We combined simulations of shallow WTD from the calibrated hydrological model with two
empirical CO, emission models 1) an annual WTD-CO; relationship and 2) a daily WTD-CO; model
accounting for the temperature effect on soil CO, production. This approach was used to estimate net
soil CO; emissions for the historical period (1991-2020), the mid-century period (2041-2070) and the
end-of-century period (2071-2100). This demonstrated that projections of soil CO, emissions are highly
sensitive to the complexity and temporal resolution of the emission model applied. Specifically,
models that incorporate both temperature and WTD dynamics at a daily timescale results in vastly
different conclusion regarding impacts of climate change and rewetting. Regarding climate change
impacts, we show that a daily temperature and WTD based emission model predict increased
emissions due to temperature changes, which can be counter balanced (in the Danish case) or
amplified depending on the future trend in WTD. Our results also demonstrate that rewetting
strategies aimed at raising the groundwater table during the warm summer period offer a CO,
emission reduction potential of up to 50%, whereas approaches focused primarily on increasing winter
water table levels result in only marginal reductions. The combination of process-based hydrological
model simulations and a daily-resolution empirical CO; emission model used in this study captures the
influence of short-term compound climate events—such as simultaneous high temperatures and low
WTD—which substantially alters projected emission trends compared to simpler approaches. Such
refined approaches are essential for developing adaptive, climate-resilient peatland restoration
policies and improving national greenhouse gas inventories. The findings underscore the importance
of moving beyond static, annual WTD thresholds in peatland management by incorporating dynamic
hydrological simulations. Instead, rewetting strategies should prioritize maintaining elevated summer
groundwater table levels to buffer against drought-induced emission peaks.
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