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Abstract: 13 

This study integrates process-based hydrological modeling and empirical CO₂ flux modeling at a daily 14 

temporal resolution to evaluate how peatland hydrology influence CO₂ emissions under scenarios of 15 

rewetting and climate change. 16 

Following the calibration of a three-dimensional transient groundwater flow model for a peat-17 

dominated catchment, daily groundwater table dynamics were simulated to represent hydrological 18 

conditions in drained peat soils. These simulations were coupled with an empirical CO₂ flux model, 19 

developed from a comprehensive daily dataset of groundwater table depth, temperature, and soil CO₂ 20 

flux measurements. The empirical CO2 flux model captures a clear temperature-dependent response of 21 

soil CO₂ emissions to variations in groundwater table depth. 22 

By applying this coupled modeling framework, we quantified CO₂ emissions at daily timescales. The 23 

results demonstrate that incorporating both temperature sensitivity and high-resolution temporal 24 

variability in water level significantly influences projections of CO₂ fluxes. Especially the co-occurrence 25 

of elevated air temperature and low groundwater table significantly influence CO2 emissions under 26 

scenarios of rewetting and climate change. These insights highlight the importance of including 27 

changing climate conditions in future peatland management strategies for emission inventories. 28 

The study illustrates the value of combining detailed hydrological simulations with emission models. It 29 

also emphasizes the need for detailed monitoring of greenhouse gas emissions across multiple sites 30 

and the development of robust empirical models that can be generalized and spatially upscaled.  31 
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Introduction 33 

Drained peatlands are widely accepted as being net greenhouse gas (GHG) sources and rewetting of 34 

peatlands is considered an effective means of overall net GHG emission reduction (Leifeld et al., 2019). 35 

The depth of the groundwater table below the surface i.e. the water table depth (WTD) largely 36 

controls the annual emissions of carbon dioxide (CO2) and methane (CH4) from organic soils, where 37 

deeper WTD results in CO2 emissions and a shallow WTD increases CH4 emissions (Evans et al., 2021). 38 

Despite triggering CH4 emissions, rewetting of organic soils will still lead to a net long-term reduction 39 

of GHG emissions (Günther et al., 2020). However, current estimates of GHG emissions from drained 40 

and rewetted peatlands are still quite uncertain due to a lack of long-term monitoring and simplified 41 

modeling approaches. 42 

Commonly adopted methodologies for estimating contribution of organic soils in national GHG 43 

inventories (Arents et al., 2018; Evans et al., 2021; Koch et al., 2023; Tiemeyer et al., 2020) are based 44 

on empirical response functions between long-term annual mean WTD estimates from data-driven 45 

machine learning (ML) models (Bechtold et al., 2014; Koch et al., 2023) and observed net ecosystem 46 

GHG budgets (Tiemeyer et al. 2020). Those methodologies allow regional upscaling and integration 47 

into national emission estimates. 48 

However, significant variability in the observed net ecosystem carbon balance (NECB) used to derive 49 

the empirical relationship can be attributed to site-specific factors, including intra-annual (seasonal) 50 

WTD and temperature dynamics (Tiemeyer et al., 2020) caused by fluctuating climate. The current 51 

GHG inventory methods are not suited to account for extremes such as drought and flooding that have 52 

a profound, but temporally limited (days, weeks or months) impact on WTD. Especially the frequency 53 

and severity of droughts can have major impacts on the CO2 emissions as WTD increases together with 54 

temperature (Olefeldt et al., 2017). Therefore, temperature changes also directly impact GHG 55 

emissions, as soil CO₂ and CH4 production are temperature sensitive. Currently, the impact of short-56 

term compound events (e.g., simultaneous warm and dry conditions (Zscheischler et al., 2020) on 57 

annual CO₂ emissions from peat soil is little known. Such events can lead to consequences like a deep 58 

groundwater table, highlighting the need for improved understanding of how climate variability and 59 

long-term change (Olefeldt et al., 2017) affect future CO₂ emissions from both drained and rewetted 60 

peatlands. 61 

For Denmark, it is generally expected that, as a result of climatic changes, annual mean WTD will 62 

decrease (water tables closer to surface). However, this decrease in annual mean WTD is primarily 63 

attributed to an decrease in WTD during the wetter winter months, while warmer future summers are 64 

anticipated to experience minimal decrease or even increase in summer WTD (water tables deeper 65 

below the surface) and more prolonged periods with increased WTD (Henriksen et al., 2023; 66 

Seidenfaden et al., 2022). 67 

The ML and statistical models of annual mean WTD (Bechtold et al., 2014; Koch et al., 2023) utilized in 68 

current national GHG inventories (Gyldenkærne et al., 2025; Koch et al., 2023; Nielsen et al., 2025b; 69 

Tiemeyer et al., 2020) effectively reflect the spatial variability at the national scale, but most current 70 

ML WTD models are temporally invariant and account for neither inter-annual (between-year) 71 

variability nor seasonal or intra-annual variability in WTD or temperature. . To establish WTD-CO2 72 

relations at intra-annual time scales, capable of capturing the impact of short-lived extreme events 73 

such as droughts and inundations, WTD time series at these finer temporal resolutions are required. 74 

For this, process-based transient 3D hydrological models capable of integrating unsaturated-saturated 75 

flow models to predict spatial and temporal variability of WTD are highly useful. Combined with the 76 

WTD-CO2 relation we claim these model outputs can be used to calculate the CO2 emissions on daily, 77 

seasonal, and inter-annual timescales. 78 
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Such hydrological models provide the potential for improving our estimation of peatland hydrology 79 

and thereby the spatio-temporal WTD variability. Improved representation of temporal variability of 80 

WTD are needed for refining the current and future GHG estimates that cannot be derived using the 81 

simple application of IPCC default emission factors (IPCC, 2014). Process-based hydrological models 82 

offer the opportunity to assess the effect of different management strategies and environmental 83 

conditions, such as rewetting and climate change. 84 

Process-based hydrological models are increasingly being applied to study dynamics of peatland 85 

hydrology (Mozafari et al., 2023). For instance, Land Surface Models (LSM) (Bechtold et al., 2019; 86 

Largeron et al., 2018; Shi et al., 2015; Yuan et al., 2021) are employed to analyze the soil–plant–87 

atmosphere exchange processes of water, energy and carbon. However, most LSM’s rely on a 88 

simplified conceptual representation of hydrologic processes and are characterized by coarse spatial 89 

scales. 90 

Of the studies applying fully integrated unsaturated-saturated flow models for peatland hydrology, 91 

some focus on site or field- scale models (Friedrich et al., 2023; Haahti et al., 2015; Java et al., 2021; 92 

Stenberg et al., 2018) while others apply the models at catchment scale (Ala-aho et al., 2017; Duranel 93 

et al., 2021; Friedrich et al., 2023; Jutebring et al., 2018; Lewis et al., 2013). A catchment scale 94 

approach with water balance closure is particularly important for climate change impact predictions, 95 

since the boundary conditions to the peatlands will also be affected by climate change. Similarly, the 96 

use of catchment scale models is important because impact evaluations of peatland management 97 

scenarios, such as rewetting, can also include impacts on streamflow and groundwater levels in 98 

neighboring areas. 99 

The objectives of this study were to 1) estimate current and predict the future hydrology and soil CO2 100 

emissions in a Northern European drained peatland and 2) investigate the role of rewetting and 101 

climatic extremes on annual CO2 emissions. To achieve these objectives, we used a transient 102 

physically-based hydrological 3D model to predict daily WTD for a case study area, the Tuse Stream 103 

catchment, representing a typical degraded Danish peatland. Secondly, we developed an empirical soil 104 

CO2 flux (fCO2) model based on coupled CO2 flux, WTD and temperature observations for a similar 105 

Danish peatland (Nielsen et al., 2025a), capable of making daily predictions. Combining the 106 

mechanistic hydrological model and the empirical emission model enabled the estimation of daily soil 107 

CO₂ fluxes under current conditions as well as scenarios of rewetting and future climate, while 108 

accounting for the impact of climatic variability and extremes. 109 

Data and methodology 110 

Study area 111 

Tuse Stream catchment is located on the island of Zealand in the eastern part of Denmark (Figure 1a). 112 

The total area encompasses 107 km2 of which 19 km2 are peat soil. The areal extent of peat soil was 113 

determined using a national map of organic soils (Adhikari et al., 2014). The largest continuous peat 114 

area within the catchment is a 13 km2 drained fen located in a river valley (Figure 1c) in the low-lying 115 

part of the catchment. The peat soil area is primarily used for agriculture. In small parts of the area, 116 

the drainage has been stopped to restore the natural hydrologic regime. The measured peat layer 117 

thickness extends from 0.4 to 3.5 meters, below which alluvial sand deposits are typically found. 118 

Generally, the deeper geology in the area can be characterized as clay-dominated glacial till deposits. 119 

The catchment is characterized by flat topography, with the southern part of the catchment being 120 

hillier. The climate conditions are humid and temperate. The catchment receives about 737 mm of 121 

precipitation per year (1990-2024) and has an annual mean temperature of 9°C (Scharling, 1999a, b). 122 
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 123 

Figure 1: a) Location of Tuse Stream catchment and the Vejrumbro site, b) topography and stream network of Tuse Stream 124 
catchment, masl: meter above sea level, c) location of organic soil and observation wells in the Tuse Stream catchment. 125 

Shallow WTD in the drained organic soils is monitored in 22 groundwater wells (2-3.5 meters deep) 126 

(Figure 1c). The wells are fully screened and WTD is automatically logged with pressure transducers at 127 

an hourly basis (aggregated to daily values) and verified with manual measurements. All WTD data are 128 

available in the Danish National Well Database (Jupiter, 2025). In this study, we define the water table 129 

depth (WTD) as positive when located below the surface and negative when above the surface. 130 

Monitoring data includes additional point measurements and timeseries of groundwater head from 99 131 

deep wells installed in mineral soils throughout the catchment (Figure 1c). In the model setup, water 132 

extraction in 40 abstraction wells is included based on data from the Danish National Well Database in 133 

May 2020 (Henriksen et al., 2020) and implemented as yearly mean abstraction evenly distributed on 134 

the daily model timesteps. Daily discharge is monitored at the catchment outlet at Tuse Stream (Figure 135 

1b). 136 

Hydrological modelling 137 

The focus of the hydrological modelling in this study is to adequately simulate shallow groundwater 138 

levels and their dynamics for the peatland area in the Tuse Stream catchment. The fen peatland in 139 

Tuse Stream catchment is largely fed by groundwater discharge from the upstream catchment, 140 

emphasizing the need to develop a coupled groundwater surface water model at catchment scale. In 141 

addition, the objective of utilizing the model for climate change impact assessments requires a 142 

catchment scale approach with a deep groundwater component to represent changes in groundwater 143 

and surface water discharge to the peatland as well as changes in the boundary conditions. The 144 

catchment scale approach also facilitates the combined calibration and evaluation of the total water 145 

balance and peatland WTD by constraining the model with observed streamflow at the outlet as well 146 

as peatland groundwater level dynamics.   147 

The model is set up as a transient, distributed, coupled surface-groundwater model and executed 148 

within the hydrological modeling framework MIKE SHE (DHI, 2022; Graham and Butts, 2005). MIKE SHE 149 

combines full 3D groundwater flow coupled with a gravity flow module in the unsaturated zone, 2D 150 

overland flow and 1D river flow routing in streams (DHI, 2019) (Figure S1). The simplified gravity flow 151 

module for unsaturated flow assumes a uniform vertical gradient and ignores capillary forces but 152 

provides a suitable solution for the time varying recharge to the groundwater table based on 153 

precipitation and evapotranspiration (DHI, 2022). 154 

The model is a modified sub-model of the National Hydrological Model of Denmark (DK-model), 155 

developed at the Geological Survey of Denmark and Greenland (GEUS) (Henriksen et al., 2020; Stisen 156 

et al., 2019). The geological model is interpreted in a horizontal 100 meter grid. The numerical model is 157 
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calibrated in the same 100 meter resolution, with the saturated zone consisting of 11 computational 158 

layers of varying thickness. The top model layer has a uniform thickness of 2 meters, which is also 159 

applied to the peat layer areas. The bottom level of the groundwater model is defined by the 160 

prequaternary chalk that underlies the Island of Zealand, which in the Tuse Stream catchment is 161 

located in a depth of approximately 150-250 meters below surface. 162 

The time-varying constant head boundary conditions at the sub-model boundary are defined from the 163 

operational National Hydrological Model setup (Henriksen et al., 2020). The observed forcing data of 164 

precipitation, temperature and reference evapotranspiration are provided by the Danish 165 

Meteorological Institute (DMI) as gridded daily data in 10 km resolution for precipitation and 20 km 166 

resolution for evapotranspiration and temperature (Scharling, 1999a, b; Stisen et al., 2011). The model 167 

employs a maximum timestep of one day, at which the meteorological variables are fed into the 168 

model. The model was provided with a hotstart file from an initial model run. 169 

Spatial and temporal distributions of root depth and LAI are based on classes (Figure S2 and Table S1) 170 

where the peat, forest, agricultural and open nature land use classes have yearly cycles of LAI and root 171 

depth (Figure S3). Likewise, soil type is spatially distributed (Figure S2) and based on the three classes 172 

peat, sand and clay (Table S2). In the vertical direction, the soil columns in the unsaturated zone 173 

module are divided into 40 cells from top to bottom; 30x0.1m, 5x1m and 5x5m. Technically, the 174 

unsaturated zone is parameterized to 33 m depth, but during simulation limited to the top of the 175 

simulated groundwater table. We implemented uniform vertical water retention characteristics of 176 

peat, while clay and sand water retention characteristics were defined separately for the depths 0-30 177 

cm (horizon A), 30-70 cm (horizon B) and >70 cm (horizon C). Soil parameterization is freely adapted 178 

from (Børgesen et al., 2009) and detailed in Table S3. 179 

MIKE SHE allows incorporation of drainage systems, representing both artificial and natural drains. The 180 

drainage system bypasses the slow water movement in aquifers by providing a short-cut from e.g. the 181 

agricultural field to the nearest stream. The amount of water routed by drains from the saturated zone 182 

to local surface water bodies is calculated using a linear reservoir model, where the difference 183 

between groundwater head and drain level is multiplied by a drain time constant (dt). The drain level is 184 

defined by a drain depth (dd) set relative to surface level. Hence, drainage in any given model cell only 185 

occurs if the simulated groundwater level exceeds the drainage level (DHI, 2022). The drain time 186 

constant and drainage depth in each model grid cell are distributed across the model domain 187 

according to the five land use classes (Figure S2 and Table S1). 188 

The model parameter sensitivity analysis and subsequent calibration prioritized parameters affecting 189 

the shallow WTD in the peat soil and the overall water balance in the catchment. A list of model 190 

parameters can be seen in Table S3. Parameter values not included in the calibration process are 191 

obtained from the National Hydrological Model parametrization. 192 

Calibration method 193 

We used the Pareto Archived Dynamically Dimensioned Search (PADDS) algorithm (Asadzadeh and 194 

Tolson, 2013) available within the optimization toolkit Ostrich (Matott, 2019). PADDS is a multi-195 

objective optimizer and obtains the pareto front across multiple objective function groups, enabling 196 

post-weighting of individual objective functions. Throughout the calibration routine, Ostrich minimized 197 

the weighted sum of squared error (WSSE) of each of the objective function groups. The PADDS 198 

algorithm was run with the user settings of maximum 1000 iterations. The period 2010-2013 was used 199 

as a calibration spin-up period and the model performance was evaluated for the 2014-2023 200 

calibration period.  201 
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Calibration was performed against three objective function groups: KGEWTD_modified, rspatial and 202 

KGEqMEheadMEamp. The KGEWTD_modified objective group is used to optimize the model performance with 203 

respect to the WTD in peatlands. KGE is the Kling-Gupta Efficiency and consists of three terms: the 204 

Pearson correlation coefficient r, a term representing the measure of variability α and a bias term β. In 205 

KGE, β is a unitless measure of the bias specified as the ratio between the sum of simulated and 206 

observed values (β = ∑sim/∑obs). As we use KGE to optimize the WTD (and not hydraulic head), the 207 

operational sign can be both negative (water table above surface/inundation) and positive (water 208 

table below surface), violating the idea of optimizing β as the ratio of sums of values with possibly 209 

alternating operational signs. Therefore, we are using KGEWTD_modified where β is replaced by the mean 210 

error (ME) (Table 1). This modification requires that the order of magnitude of the MEWTD is 211 

comparable to the errors on the other terms in KGE. In our case this is ensured by the fact that the 212 

mean observed WTD values range between approximately 0.3-0.6 m, resulting in MEWTD values 213 

typically below 0.5 m. Alternatively, the MEWTD term could be scaled within the KGEWTD equation. 214 

The calibration using the KGEWTD_modified as objective function group aims at achieving the best overall 215 

agreement between simulated and observed WTD. However, during first calibration experiments, we 216 

found that this objective function group primarily focuses on the temporal dynamics of WTD. To 217 

improve the representation of the spatial variability of the mean WTD, the correlation coefficient 218 

(rspatial) was included as an additional objective function group (Table 1). 219 

KGEqMEheadMEamp is an objective function group that combines three performance criteria: the Kling-220 

Gupta Efficiency performance criterion for discharge (KGEq), the mean error of hydraulic head in 221 

deeper aquifers (MEhead) and the mean error of annual amplitude of hydraulic head in the deeper 222 

aquifers (MEamp). For a detailed description of the implementation of MEamp as objective function see 223 

(Henriksen et al., 2020). This objective function group was included to optimize the overall water 224 

balance and streamflow dynamics expressed through the discharge at the catchment outlet (KGEq), to 225 

match the general water level in the deeper aquifers across the catchment (MEhead), and to match the 226 

natural seasonal variations in hydraulic head (MEamp). As the metrics of KGEq, MEhead and MEamp are 227 

combined into one objective function group, we need to weigh the observations, to ensure that KGEq, 228 

MEhead and MEamp affect the objective group of KGEqMEheadMEamp approximately equally. This was done 229 

based on WSSE from a model run with initial parameter values. 230 

Table 1: Objective functions metrics. KGE stands for Kling-Gupta Efficiency. 231 

Objective 
function 
group 

Observations 
No. of 
observa-
tion wells 

Metric Abbreviation Equation Range 
Optimum 
value 

KGEWTD_modifie

d 

Daily WTD in 
shallow wells 
(in peat) 

22 
Modified 
KGE on WTD 

KGEWTD_modifie

d 

1 − √ (𝑟𝑊𝑇𝐷 − 1)2 + (𝛼𝑊𝑇𝐷 − 1)2  + (𝑀𝐸𝑊𝑇𝐷)2 
 

Where, MEWTD =  
1

𝑛
∑ 𝑊𝑇𝐷𝑠𝑖𝑚𝑖

− 𝑊𝑇𝐷𝑜𝑏𝑠𝑖
𝑛
𝑖=1  

[-ꚙ;1] 1 

rspatial 

Mean WTD 
over the 
calibration 
period  

22 

Spatial 
correlation 
of the mean 
WTD 

rspatial 𝑟(𝑊𝑇𝐷𝑠𝑖𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , 𝑊𝑇𝐷𝑜𝑏𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) [-1;1] 1 

KGEqMEhead

MEamp 

Discharge 1 
KGE on 
discharge 

KGEq 1 − √(𝑟𝑞 − 1)
2

 + (𝛼𝑞 − 1)
2

+  (𝛽𝑞 − 1)
2

  [-ꚙ;1] 1 

Hydraulic 
head in deep 
wells (in 
mineral soil) 

66 
Mean error 
on hydraulic 
heads 

MEhead 
1

𝑛
∑ ℎ𝑒𝑎𝑑𝑠𝑖𝑚𝑖 − ℎ𝑒𝑎𝑑𝑜𝑏𝑠𝑖

𝑛

𝑖=1

 [-ꚙ;ꚙ] 0 
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8 

Mean error 
on yearly 
amplitude of 
hydraulic 
heads 

MEamp 
1

𝑛
∑ 𝐴𝑠𝑖𝑚𝑖

− 𝐴𝑜𝑏𝑠𝑖

𝑛

𝑖=1

 [-ꚙ;ꚙ] 0 

WTD: water table depth [m], q: discharge [m/s], head: hydraulic head [m], A: amplitude [m] 232 

A local sensitivity analysis based on initial parameter values from Table S4 was performed and values 233 

of composite scaled sensitivity (CSS) were obtained. Selection of free calibration parameters were 234 

based on the criterion that parameters were included if their CSS was larger than 0.05*CSS of the 235 

parameter with the highest CSS. The resulting 11 free parameters are indicated with grey in Table S4. 236 

Other parameters were kept at the values listed in Table S4 or tied to the calibration parameters.  237 

Hydrological simulations of historical and future climate  238 

The calibrated hydrological model was run for the historical simulation period of 1990-2023 using 239 

observed climate forcing data (Scharling, 1999a, b; Stisen et al., 2011). Future hydrological projections 240 

are derived from simulations using the hydrological model forced by climate model projections, 241 

including precipitation, air temperature (Tair), and potential evapotranspiration. The resulting impacts 242 

on groundwater levels, as simulated by the hydrological model, are evaluated. We used 17 climate 243 

models (Table S5) with the Representative Concentration Pathway 8.5 (RCP8.5), which represents the 244 

RCP scenario (2.6-8.5) leading to the highest emissions and strongest impact of climate change. The 245 

climate model outputs are generated and bias corrected by Pasten-Zapata et al. (2019), and the Global 246 

and Regional Circulation (GCM, RCM) models originate from the Euro-CORDEX project (Jacob et al., 247 

2014). 248 

The climate simulations cover three 30-year periods: the reference period (1991-2020), the mid-249 

century (2041-2070) and the end-century (2071-2100). All 51 climate simulations (17 climate models × 250 

3 periods) were first run using the initial potential head from the national model climate simulations 251 

(Henriksen et al., 2020). Subsequently, they were rerun using the mean potential head for the 252 

respective 30-year period as the initial potential head. 253 

Empirical CO2 emission models 254 

Implementation of annual CO2 emission model 255 

Recent studies established a functional relationship between the annual net ecosystem carbon balance 256 

(NECB) for CO2 and the mean annual WTD (Koch et al., 2023; Tiemeyer et al., 2020) by fitting a 257 

nonlinear Gompertz function. Like in Koch et al. (2023) and Tiemeyer et al. (2020), this study considers 258 

NECB as only CO₂ fluxes, excluding methane (CH₄) and other carbon exports such as dissolved or 259 

particulate organic carbon. We apply the WTD functional relationship for CO2 from Koch et al. (2023), 260 

which is fitted to Danish flux data, and refer to it as the Annual WTD model. The Annual WTD model 261 

demonstrates a systematic relationship in which CO₂ flux from NECB increases with annual WTD in the 262 

interval between 7 cm and 50 cm, above which an asymptotic level of 10 Mg CO₂-C ha⁻¹ yr⁻¹ is reached 263 

(Koch et al., 2023). The Annual WTD model is therefore not sensitive to changes in WTD deeper than 264 

approximately 50 cm. At WTD levels less than 7 cm, the Annual WTD model suggests CO₂ uptake; 265 

however, this element is not included in our analysis which only models CO2 emission.   266 

Derivation and implementation of daily CO2 emission model 267 

For our empirical model to predict daily soil CO2 fluxes (fCO2) we assume that the WTD dependent 268 

NECB (Tiemeyer et al. 2020, Koch et al. 2023) is driven mainly by the response of soil respiration to 269 

WTD and Tair, as gross primary photosynthesis (GPP) and aboveground autotrophic respiration is 270 

mostly dependent on light availability and plant phenology (Rodriguez et al., 2024). This allows scaling 271 

to match the NECB magnitude but maintains integrity in the regulation of WTD on soil CO2 fluxes.  272 
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Using a unique and comprehensive coupled dataset (Nielsen et al., 2025a) of daily mean net soil CO2 273 

fluxes, Tair and WTD for six spatial replicate measurement points, we develop a coupled temperature 274 

and WTD dependent empirical soil CO2 flux model, hereafter referred to as the Daily WTD-Tair model. 275 

The model essentially scales the WTD-fCO2 relation to Tair. The dataset Nielsen et al. (2025a) is from a 276 

drained fen, called Vejrumbro (Figure 1), with similar characteristics (soil type, climate, land use 277 

history) as the peat area in the Tuse Stream catchment (see methodological details in Nielsen et al. 278 

(2025a). The soil net CO2 fluxes, WTD and Tair were measured automatically for one year (2022-2023) 279 

(Nielsen et al., 2025a) and we used a subset of fluxes measured for six spatial replicates 5-6 times per 280 

day, resulting in a dataset of 10950 – 13140 individual fluxes covering 365 days (Nielsen et al., 2025a). 281 

Implementation of CO2 flux models 282 

Spatially distributed net soil CO₂ fluxes are calculated at a 100-meter scale across the 13 km² 283 

contiguous peatland area (Figure 1) with the Annual WTD model and the Daily WTD-Tair model, 284 

respectively, using WTD at a 100-meter scale (hectare scale) and a uniform Tair. Afterwards the 285 

spatially distributed soil CO2 fluxes are aggregated to represent the spatial mean of the 13 km² 286 

peatland area. 287 

First, we applied the Annual WTD model and the Daily WTD-Tair model for the historical simulation 288 

period of 1990-2023, using spatiotemporal distributed WTD from the calibrated hydrological model. 289 

Afterwards, the empirical CO2 models are utilized on each of the 17 climate projections for Tair and 290 

WTD. Daily Tair for the Tuse Stream catchment peatland area is taken directly from the 17 bias 291 

corrected climate projections, while daily spatial WTD is a model output from the 17 hydrological 292 

simulations, when running the hydrological model with the forcing data (precipitation, temperature 293 

and evapotranspiration) from the 17 climate projections. Thereby, we are able to quantify the 294 

variability in soil CO2 flux among the 17 climate projections for each of the simulation periods and 295 

among the 30 years within each of the simulation periods. 296 

Design and application of rewetting scenarios 297 

For impact evaluations of peatland management scenarios, such as rewetting, on the annual CO2 298 

emissions, we define three rewetting scenarios: A, B and C. These scenarios are implemented through 299 

controlled modifications of the simulated WTD in peatland grid cells. This method of representing 300 

rewetting scenarios does not involve structural modifications to the hydrological model and assumes 301 

changes in WTD without accounting for process-based feedback mechanisms within the coupled 302 

surface–subsurface hydrological system. Therefore, the rewetting scenarios cannot be interpreted as 303 

real-life management practices. All rewetting scenarios were applied for 1990 to 2023, representing 304 

the climatology for this period and generating 34-year time series of rewetted WTD. 305 

The scenarios are meant to illustrate different rewetting impacts on WTD, representing wetter winters 306 

(A), uniform shift in WTD (B) and wetter summers (C), but all with the same long-term mean WTD. In 307 

Scenario A, the daily groundwater table is elevated when it is above the long-term (34-year) mean 308 

water table resulting in unchanged water table levels during summer but an increase in winter. 309 

Scenario B uniformly raises the water table by a constant scalar, while Scenario C applies the same 310 

scalar increase to water table while simultaneously reducing the annual amplitude by half. The 311 

modifications of the simulated WTD are implemented using the following equations: 312 

𝑊𝑇𝐷𝑖𝑟𝑒𝑤𝑒𝑡 𝐴
= {

𝑊𝑇𝐷𝑖, 𝑖𝑓 𝑊𝑇𝐷𝑖 ≥ 𝑊𝑇𝐷̅̅ ̅̅ ̅̅ ̅

𝑊𝑇𝐷𝑖 + 2.5 ∙ (𝑊𝑇𝐷̅̅ ̅̅ ̅̅ ̅ − 𝑊𝑇𝐷𝑖), 𝑖𝑓 𝑊𝑇𝐷𝑖 < 𝑊𝑇𝐷̅̅ ̅̅ ̅̅ ̅
  [2]  313 

 314 

𝑊𝑇𝐷𝑖𝑟𝑒𝑤𝑒𝑡 𝐵
= 𝑊𝑇𝐷𝑖 − (𝑊𝑇𝐷̅̅ ̅̅ ̅̅ ̅ − 𝑊𝑇𝐷𝑟𝑒𝑤𝑒𝑡 𝐴

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)     [3] 315 
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 316 

𝑊𝑇𝐷𝑖𝑟𝑒𝑤𝑒𝑡 𝐶
= 𝑊𝑇𝐷𝑟𝑒𝑤𝑒𝑡 𝐵

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 0.5 ∙ (𝑊𝑇𝐷𝑖𝑟𝑒𝑤𝑒𝑡 𝐵
− 𝑊𝑇𝐷𝑟𝑒𝑤𝑒𝑡 𝐵

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  [4] 317 

 318 

where 𝑊𝑇𝐷𝑖𝑟𝑒𝑤𝑒𝑡 𝐴
, 𝑊𝑇𝐷𝑖𝑟𝑒𝑤𝑒𝑡 𝐵

 and 𝑊𝑇𝐷𝑖𝑟𝑒𝑤𝑒𝑡 𝐶
 is the daily WTD in a grid cell for rewetting 319 

scenario A, B and C, respectively. WTDi is the daily WTD in a grid cell from the calibrated hydrological 320 

model. 𝑊𝑇𝐷̅̅ ̅̅ ̅̅ ̅ is the long-term (34-year) mean WTD in a grid cell from the historical period of the 321 

calibrated hydrological model. 𝑊𝑇𝐷𝑟𝑒𝑤𝑒𝑡 𝐴
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑊𝑇𝐷𝑟𝑒𝑤𝑒𝑡 𝐵

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are long-term (34-year) mean WTD in a 322 

grid cell from the rewetting scenario A and B, respectively.  323 

Bootstrapping means of future climate CO2 emissions 324 

We applied a bootstrap resampling approach to estimate the uncertainty in the mean values of soil 325 

CO2 flux. Specifically, we resampled the means over the 17 climate models, each containing 30 annual 326 

values, with replacement. This process was repeated 10,000 times to construct bias-corrected and 327 

percentile-based 95% confidence intervals around the bootstrapped means. 328 

  329 
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Results  330 

Hydrological model  331 

Calibration of the hydrological model 332 

The model calibration, running 1000 model evaluations based on three objective function groups, 333 

using Ostrich ParaPADDS optimizer with 40 parallel model executions, took ~24 hours on a Xeon Et-334 

4850 @2,20 GHz Server. The calibration resulted in 203 non-dominated solutions forming a three-335 

dimensional pareto front. Figure 2 presents scatterplots of the three objective functions, illustrating 336 

the trade-offs between them. Especially, there is a clear trade-off between the two objective functions 337 

addressing temporal dynamics (KGEWTD) and spatial dynamics (rspatial), as illustrated in Figure 2a. 338 

The number of non-dominated solutions and the trade-offs illustrate that several parameter sets can 339 

be considered and that an ensemble of parameter sets could be selected. For the purpose of further 340 

analysis and climate change impact assessments, however, we select one balanced solution from the 341 

non-dominated solutions, through a stepwise procedure. First, a pre-screening was performed with 342 

performance criteria for WTD of KGEWTD larger than 0.6, for discharge of KGEdischarge larger than 0.6 and 343 

for hydraulic head in deeper wells of ±1 m, for MEhead and MEamp, respectively. Afterwards, the 344 

balanced parameter set was selected as the solution with the highest spatial correlation (rspatial).  345 

The selection procedure was designed to prioritize accurate simulation of the temporal dynamics of 346 

peatland WTD, while maintaining strong performance across additional objective functions and 347 

maximizing spatial correlation accuracy. Initial calibration efforts indicated that achieving a KGEWTD 348 

value greater than 0.6 was necessary to ensure an adequate alignment between the simulated and 349 

observed WTD time series. 350 

 351 

Figure 2: Scatterplots of WSSE (weighted sum of squared errors) for the three objective function groups in the calibration. 352 
Pareto front for 1000 model evaluations. 353 

Hydrological model performance 354 

Model performance metrics for the selected solution are summarized in Table 2. The q_head_amp 355 
objective function is separated into individual contributions from the metrics KGEq, MEhead and MEamp. 356 
Additionally, Table 2 shows the three metrics which make up the modified KGEwtd: rwtd, αwtd and MEwtd. 357 
In general, the model performs well with a KGEwtd in peat of 0.64, a KGEq of 0.63, a MEhead for the deep 358 
wells of 0.75 m and a MEamp for the deep wells of 0.51 m for the selected solution. However, the 359 
correlation coefficient for the spatial variability (rspatial) is poor with a value of 0.06. The model 360 
optimization achieves solid metrics on all the three components of KGEwtd. The mean bias of WTD 361 
across all shallow peatland observation wells (MEwtd) is only 8 cm (Table 2).  362 
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Table 2: Hydrological model performance 363 

Name of metric Abbreviation Unit Selected 
solution 

Modified KGE on WTD 𝐾𝐺𝐸𝑊𝑇𝐷𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
 - 0.64 

 

Correlation coefficient WTD rWTD - 0.83 

Measure of variance αWTD - 0.14 

Mean error of WTD MEWTD m 0.08 

Spatial correlation of the mean WTD rspatial - 0.06 

KGE on discharge KGEq - 0.63 

Mean error on the hydraulic heads MEhead m 0.75 

Mean error on amplitude of the hydraulic heads MEamp m 0.51 

 364 

Though the model obtains a relatively small mean error, it largely underestimates the spatial variability 365 

in WTD. The observed mean WTD variability across the 22 monitoring wells (SD = 16.5 cm) is 366 

considerably higher than that observed in the simulations (SD = 6.8 cm). Even though the model 367 

performance on KGEWTD was generally good, it proved difficult to reproduce the spatial variation in 368 

mean WTD.  369 

To investigate the underestimation of spatial variability in WTD, we analyzed several spatial variables 370 

considered relevant for explaining the observed variability in WTD: peat thickness, topography and 371 

proximity to water bodies. However, no clear correlation was found between these spatial variables 372 

and the mean observed WTD or model bias, as all had a correlation coefficient smaller than 0.34. See 373 

Table S6. 374 

Historical simulations of water table depth 375 

The simulated WTD, generated by the calibrated hydrological model driven by historical climate for the 376 

period 1990-2023, adequately represent both the observed seasonal patterns of WTD and their short-377 

term responses to precipitation events. Figure 3 shows the time series of WTD from two individual 378 

monitoring wells as a typical example of the temporal match between observed and simulated WTD. 379 

 380 

Figure 3: Example of observed and simulated timeseries for water table depth (WTD) for monitoring wells dgu no. 198.1218 381 
and dgu no. 197.796. Including metrics for these wells.  382 
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Meteorological climate predictions 383 

Changes in precipitation, temperature and evapotranspiration patterns in future climate projections 384 

for Denmark generally indicate an increase in both temperature and annual precipitation. Table 3 385 

presents the mean air temperature, mean annual precipitation and mean potential evapotranspiration 386 

derived from the 17 climate projections across the three simulation periods. 387 

Table 3: Mean ± SD (n=17) of annual air temperature, precipitation and potential evapotranspiration from the 17 climate 388 
models during the three simulation periods.  389 

 Unit Reference 
period 
(1991-2020) 

Mid-century 
period 
(2041-2070) 

End-of-century 
period 
(2071-2100) 

Mean annual air temperature ◦C 8.9 ± 0.7 10.6 ± 0.8 12.1 ± 0.8 

Mean annual precipitation mm yr-1 780 ± 121 837 ± 130 906 ± 152 

Mean annual potential evapotranspiration mm yr-1 621 ± 25 678 ± 27 727 ± 27 

 390 

Hydrological climate predictions 391 

Climate simulations using the hydrological model indicate a decreasing trend in mean annual WTDs 392 

(Table 4), resulting in a shallower annual mean groundwater table in future climate conditions. Both 393 

summer and winter mean WTDs are projected to be closer to the surface, suggesting generally wetter 394 

conditions. The mean annual amplitude of WTD remains unchanged under future climate scenarios 395 

(Table 4), indicating that there is no greater seasonal drawdown of the water table during summer, 396 

although the duration of the drawdown period may be extended. 397 

Table 4: Statistics of WTD when using the hydrological model for climate simulations. Mean ± SD (n=17) over the 17 climate 398 
models during the three simulation periods. Summer is June, July and August, Winter is December, January and February. The 399 
amplitude is based on the monthly means of WTD to avoid outliers. 400 

 Unit Reference 
period (1991-
2020) 

Mid-century 
period 
(2041-2070) 

End -of-century 
period 
(2071-2100) 

Mean annual WTD cm 31 ± 1 27 ± 2 24 ± 3 

Mean summer WTD cm 47 ± 1 40 ± 3 34 ± 3 

Mean winter WTD cm 18 ± 2 14 ± 4 10 ± 3 

Mean annual WTD amplitude cm 51 ± 2 50 ± 4 52 ± 4 

 401 

Derivation of empirical daily soil CO2 flux model 402 

An analysis of the Vejrumbro dataset indicated a clear temperature dependency on the relation 403 

between soil CO2 flux (fCO2) and WTD. The Vejrumbro dataset was resampled to daily means of WTD, 404 

Tair and soil CO2 flux across the six spatial replicate measurement points omitting data from days with 405 

less than 24 flux measurements. This resulted in a dataset with 231 daily observations for each of fCO2, 406 

WTD and Tair distributed evenly over a year. Traditionally, empirical emission models for ecosystem 407 

respiration (Reco) are fitted to soil temperature. However, due to the strong linear relationship 408 

between daily soil temperature and daily air temperature at the Vejrumbro site (r = 0.96, p-value < 409 

0.001) (Figure S4), Tair was used as a proxy for soil temperature when fitting the Daily WTD-Tair model.  410 

This use of air temperature also facilitates upscaling and omits the need for projecting soil 411 

temperatures under climate change scenarios. 412 

To investigate how the WTD-fCO2 relation scales with temperature, we binned daily soil CO2 flux into 413 

five temperature intervals: <4°C (n=39), 4-8°C (n=32), 8-12°C (n=52), 12-16°C (n=70) and >16°C (n=38) 414 

and applied a linear regression model (y=ax) with the intercept constrained at zero within each 415 

temperature bin. The regressions were constrained to pass through the origin, reflecting the 416 
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assumption that soil CO₂ flux is zero when the WTD is zero. Thereby, the relationship between fCO2 417 

and WTD within each temperature bin was modeled using a linear regression of the form: 418 

fCO2 = a · WTD     [5] 419 

where fCO2 represents soil CO2 flux [Mg CO2-C ha-1 day-1], a denotes the fitted slope and WTD is water 420 

table depth [cm], with positive values indicating depths below the surface.  421 

This analysis revealed an increasing slope, i.e. sensitivity of soil CO2 flux to changes in WTD, with rising 422 

temperature (Figure S5 and Figure 4a), indicating that the WTD- fCO2 slope (a) can be modelled as a 423 

linear function of temperature (Tair) (Figure 4b): 424 

a = b · Tair + c    [6] 425 

Combining these relationships yields a simple model of the soil CO2 flux: 426 

fCO2 = b · Tair · WTD + c · WTD  [7] 427 

where Tair [◦C] is the temperature, b [Mg CO2-C ha-1 day-1 cm-1 ◦C-1] and c [Mg CO2-C ha-1 day-1 cm-1] are 428 

empirical constants. 429 

 430 

Figure 4: Left: linear models of soil CO2 flux vs. water table depth (WTD) in air temperature bins. The thicker segment of the 431 
line represents the range of data used to derive the fitted model. n is the number of daily observations of soil CO2 flux in each 432 
temperature bin. r is Person correlation coefficient. Raw data behind the linear regressions can be seen at Figure S5. Right: 433 
Slope (incl. uncertainty) (of the linear fit of soil CO2 flux versus WTD) versus observed mean temperature in each temperature 434 
bin. 435 

Having established a suitable form of the empirical soil CO2 flux equation, we used nonlinear least 436 

squares fit to estimate the b and c parameters based on the daily soil CO2 flux, Tair and WTD (without 437 

temperature bins). This method minimizes the residual sum of squares between the observed soil CO2 438 

flux and the Daily WTD-Tair model. The resulting fitted model demonstrated a significant correlation to 439 

the observed data (r = 0.78, p-value < 0.001, RMSE = 0.021 Mg CO2-C ha-1 day-1) (Figure S6) with daily 440 

soil CO₂ flux increasing in response to rising WTD and Tair (Figure S7). The fitted empirical constants are 441 

as follows: b = 8.32·10-5 Mg CO2-C ha-1 day-1 cm-1 ◦C-1, c = 3.33·10-4 Mg CO2-C ha-1 day-1 cm-1. 442 

The Daily WTD-Tair model predicts the highest soil CO2 flux under conditions of simultaneously high Tair 443 

and WTD, where a high WTD refers to a water table located furthest below the surface (dry 444 

conditions). The multiplicative Daily WTD-Tair model demonstrated a moderate fit to the soil CO2 flux 445 

data, with a R² of 0.61. To assess the individual contributions of the predictor variables, we also 446 
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computed the R² between CO2 flux and Tair and WTD separately. This was done using a constructed 447 

dataset that included all combinations of WTD and Tair within the model range. This resulted in R2 448 

values of 0.34 for Tair and 0.54 for WTD (Table S7). These values reflect the explanatory power of each 449 

variable in isolation. 450 

Despite the significant variability in the observed net ecosystem carbon balance (NECB) used for the 451 

Annual WTD model (Figure 5) it is considered to represent a robust mean as it is based on multiple 452 

sites and years for Danish and German conditions. Compared to the Annual WTD model both the 453 

measured soil CO2 flux (12.9 Mg CO2-C ha-1 yr-1 (green circle)) and the Daily WTD-Tair simulated soil CO2 454 

flux (13.6 Mg CO2-C ha-1 yr-1 (not shown)) at Vejrumbro are above the corresponding fitted value of 455 

NECB (8.7 Mg CO2-C ha-1 yr-1 (orange circle)) based on an annual WTD of 29 cm, but still within the 456 

range of observed NEBCs used for fitting the Annual WTD model (Figure 5). This may be explained by 457 

the methodology of flux measurements at Vejrumbro that did not consider GPP (CO2 uptake) and 458 

therefore are expected to result in higher net CO2 fluxes. In order to align the Daily WTD-Tair model to 459 

the level of the Annual WTD model where GPP is included, a scaling factor based on the above 460 

differences (fscaling = 0.64) was applied to equation 7 to account for lack of GPP in the soil CO2 fluxes 461 

used for empirical model development. Applying this scaling factor, we seek to avoid the risk of 462 

overestimating emissions when applying the Daily WTD-Tair model at other locations.  463 

 464 

Figure 5: The Annual WTD model together with the Danish flux data of annual NECB and WTD data underlaying the model 465 
(Koch et al., 2023). German flux data are included for comparison (Tiemeyer et al., 2020). Colored circles are measured and 466 
calculated soil CO2 flux and NECB for the Vejrumbro dataset, so the colored circles represent the year 2022-2023. 467 

The Vejrumbro dataset used for fitting the Daily WTD-Tair model was limited to a maximum WTD of 47 468 

cm and maximum Tair of 21°C (Figure S7). Outside this range, the predictions of the Daily WTD-Tair 469 

model exhibits increased uncertainty. At the same time, it is generally understood that the upper 470 

portion of the peat layer drives the net CO2 emissions observed at the surface. Therefore, the 471 

extrapolation of WTD in the Daily WTD-Tair model must be constrained. The Daily WTD-Tair model 472 

should be sensitive within a WTD range comparable to the expected daily variation in the Annual WTD 473 

model, which also reaches an fCO2 asymptotic at deeper water tables. In the Annual WTD model, the 474 

Annual NECB reaches 90% of its maximum asymptotic level at a mean annual WTD of 30 cm (Figure 5). 475 

The mean annual WTD results from intra-annual (within year) WTD variation described by the annual 476 

amplitude. The mean annual amplitude (based on monthly means) is 65 cm, across the 22 observed 477 

WTD time series in the Tuse Stream catchment used for calibrating the hydrological model. We 478 

assume that a mean annual WTD of 30 cm originates from an annual WTD variation with a similar 479 
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amplitude. Therefore, we assume that the WTD range of the Daily WTD-Tair model is 30 + 65/2 cm = 480 

62.5 cm. For the Tair range, it is assumed that the sensitivity continues until 25°C, which is a daily 481 

average value very rarely occurring, even in future climate projections. Thus, when applying the Daily 482 

WTD-Tair model, daily WTD values and Tair values were truncated, setting WTD and Tair to 62.5 cm and 483 

25°C, respectively, when exceeding those thresholds. 484 

In both the Daily WTD-Tair model and the Annual WTD model, CO₂ fluxes are constrained so that the 485 

model does not simulate negative fluxes or carbon uptake. Thus, both CO2 flux models exclusively 486 

account for the CO₂ emissions from the peat soil, without representing its potential role as a carbon 487 

sink (Gyldenkærne et al., 2025). 488 

CO2 emissions from peatlands 489 

CO2 emissions throughout the historical simulation period 490 

The long-term mean of the emission factor for the Tuse Stream catchment peat area is 8.0 ± 0.8 Mg 491 

CO2-C ha-1 yr-1 (mean ± SD, n=34) when using the Annual WTD model and 8.8 ± 1.6 Mg CO2-C ha-1 yr-1 492 

(mean ± SD, n=34) when using the Daily WTD-Tair model (Table 5). 493 

Table 5: Long-term mean water table depth (WTD), long-term mean annual WTD amplitude (based on monthly means of WTD 494 
to avoid outliers) and long-term soil CO2 flux, throughout the historical period and the three modified 34-year WTD time series 495 
of rewetting scenarios. Mean ± SD is based on the 34 years of the historical period (1990-2023). 496 

 Unit Historical period 
(1990-2023) 

Rewetting 
scenario A 

Rewetting 
scenario B 

Rewetting 
scenario C 

Mean WTD cm 34 ± 8 14 ± 18 14 ± 8 14 ± 4 

Mean annual WTD amplitude cm 51 ± 11 110 ± 28 51 ± 11 26 ± 5 

CO2 emission from Daily WTD-Tair model 
aggregated to annual 

Mg CO2-C 
ha-1 yr-1 

8.8 ± 1.6 7.7 ± 2.0 5.2 ± 1.5 4.4 ± 0.8 

CO2 emission from Annual WTD model 
aggregated to annual 

Mg CO2-C 
ha-1 yr-1 

8.0 ± 0.8 4.6 ± 3.0 4.3 ± 2.0 4.4 ± 1.2 

 497 

Figure 6 shows Tair, as wells as the spatial mean of WTD and CO₂ emissions across the peatland, as 498 

simulated by the Daily WTD-Tair model and the Annual WTD model during the historical period. The 499 

CO2 emissions calculated with the Daily WTD-Tair model (red line in Figure 6c, 6d) depend on both the 500 

observed daily temperature variability (orange line in Figure 6a) and simulated intra-annual (seasonal) 501 

WTD variability (blue line in Figure 6b), while the CO2 emission calculated with the Annual WTD model 502 

(black points in Figure 6d) only depends on the inter-annual (annual means) WTD (blue points in Figure 503 

6b) and not the temperature. 504 

Inter-annual (between years) variation in CO2 emission is substantially larger when using the Daily 505 

WTD-Tair model (SD = 1.6 Mg C-CO2 ha-1 yr-1) compared to the Annual WTD model (SD = 0.8 Mg C-CO2 506 

ha-1 yr-1) (Figure 6d), as the former captures extreme events, such as periods of high temperature or 507 

deep groundwater tables, as well as compound events involving the simultaneous occurrence of both. 508 

In contrast, the Annual WTD model is insensitive to temperature and the intra-annual (within year) 509 

timing of deep WTD. Moreover, the Annual WTD model imposes an upper limit of 10 Mg CO₂-C ha⁻¹ 510 

yr⁻¹  for annual emissions (Koch et al., 2023) (Figure 5). During the summer of 2018, a compound 511 

extreme event occurred, characterized by both high temperatures and deep groundwater table. The 512 

annual CO2 flux for this year shows a 34% increase when estimated using the Daily WTD-Tair model 513 

compared to the Annual WTD model. This discrepancy arises from the Daily WTD-Tair model's ability to 514 

account for the prolonged duration of concurrent high temperatures and deep groundwater table 515 

conditions throughout the summer (Figure 6d). Conversely, in 2010, the Daily WTD-Tair model 516 

estimates significantly lower annual CO₂ emissions compared to the Annual WTD model (Figure 6d). 517 
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This difference is due to the emission model's ability to account for the effects of prolonged periods of 518 

low temperatures during the autumn and spring of 2010, leading to a mean annual temperature below 519 

the long-term mean, despite summer temperatures being consistent with other years (Figure 6a). 520 

Examples of years with extreme events primarily driven by either WTD or Tair include 1996, which 521 

experienced a significant summer decline in groundwater table (Figure 6b), and 1997, which was 522 

characterized by elevated summer temperatures (Figure 6a). However, neither of these events led to 523 

CO₂ emissions as high as those simulated during the compound event of both high temperatures and 524 

deep water table in 2018 (Figure 6). 525 

 526 

Figure 6: Air temperature (Tair), water table depth (WTD) and soil CO2 emission for the historical simulation period 1990-2023. 527 

CO2 emissions under different rewetting scenarios 528 

The rewetting scenarios represent an adjustment to the WTD simulated by the hydrological model 529 

over the 34-year historical period, thereby reflecting the climatological conditions prevailing during 530 

that time. Across all three rewetting scenarios, the long-term (34-year) mean WTD was raised by 20 531 

cm, from 34 cm to 14 cm below the surface, ensuring a consistent long-term annual mean WTD among 532 

the rewetting scenarios (Table 5). Accordingly, the application of the Annual WTD model for estimating 533 

CO₂ fluxes result in CO₂ emissions between 4.3 ± 1.2 Mg C-CO2 ha-1 yr-1 (mean ± SD, n=34) and 4.6 ± 3.0 534 
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Mg C-CO2 ha-1 yr-1 (mean ± SD, n=34) across all rewetting scenarios (Table 5). The mean annual soil CO2 535 

flux from the three rewetting scenarios, as calculated using the Annual WTD model, are similar but not 536 

identical. This is because the Annual WTD model is applied to each of the 34 individual annual mean 537 

WTD values rather than to a single long-term mean WTD. The SD of CO2 emissions calculated using the 538 

Annual WTD model in scenario C is markedly lower than in rewetting scenario A and B, reflecting the 539 

lower inter-annual (between years) variability in mean annual WTD observed for this scenario (Table 540 

5). 541 

In contrast to the Annual WTD model, the Daily WTD-Tair model captures the simultaneous occurrence 542 

of low groundwater table and high Tair during the summer months. Application of this emission model 543 

indicates that raising the groundwater table during summer months (rewetting scenario C) yields the 544 

greatest reduction potential in soil CO₂ emissions (Table 5), leading to a 50% decrease in the mean 545 

value, from 8.8 ± 1.6 to 4.4 ± 0.8 Mg C-CO2 ha-1 yr-1 (mean ± SD, n=34) (Table 5). In contrast, 546 

management scenarios that primarily target increase in winter water table (rewetting scenario A) 547 

exhibit only marginal emission reduction potential (Table 5). 548 

A visual representation of daily soil CO₂ emissions in relation to mean daily temperature during the 34-549 

year historical period under different WTD conditions (Figure 7) reveals that high summer 550 

temperatures are a key driver of CO₂ emissions. WTD observations from the Tuse catchment peatland 551 

indicate that, during shorter periods in the warm summer months, the WTD can exceed 80 cm (Figure 552 

3). These periods with very low summer water table contribute substantially to total CO2 emissions 553 

(Figure 7).  554 

A rewetting scenario that mainly generates wetter winter conditions (rewetting scenario A) has very 555 

limited CO2 emission reduction. All three scenarios assume that even under rewetting, the peatland 556 

WTD will follow a climate driven seasonality and that obtaining zero WTD in summer periods will be 557 

difficult by classical nature-based solutions. Rewetting scenario C, which features the greatest increase 558 

in summer WTD, achieves the largest reduction in CO₂ emissions (Figure 7). Permanent wet conditions 559 

with WTD at zero would be required to obtain zero CO2 emission with the developed Daily WTD-Tair 560 

model, but under such conditions, methane emissions would also come into play and plant growth 561 

would be severely limited. 562 

 563 

Figure 7: Colormap: Visual representation of the annual distribution of daily surface soil CO2 flux (fCO2, CO2 exchange with 564 
atmosphere) under mean daily temperature during the historical period (1990-2023) and for different water table depths 565 
(WTD). Curves: solid blue line: simulated daily mean WTD during the historical period and corresponding long-term (34-year) 566 
mean WTD, black lines: daily mean WTD for each of the modified 34-year WTD time series of rewetting scenarios (A, B and C) 567 
and the corresponding long-term (34-year) mean WTD. 568 
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CO2 emissions across future climate simulation periods 569 

Figure 8 shows the same variables as Figure 6 but based on a representative climate model simulation 570 

instead of the observed climate record, offering a typical example of the development of temperature, 571 

WTD and soil CO2 flux through the reference, mid-century and end-of-century periods based on the 572 

RCP 8.5 pathway. 573 

The future climate simulations show an increase in both the annual mean temperature and 574 

groundwater levels combined with higher maximum summer temperature (Figure 8a, 8b, Table 3, 575 

Table 4). The bootstrap mean of soil CO2 flux calculated with the Annual WTD model over all climate 576 

models predicts a decreasing trend in soil CO2 flux under future climate conditions (Figure 9a, 577 

horizontal dotted black line in Figure 8d), driven by an inter-annual (between years) mean WTD closer 578 

to surface (Table 4, Figure 8b). However, this decreasing trend is countered by the inclusion of Tair 579 

effects when applying the Daily WTD-Tair model (Figure 9b, horizontal dotted red line in Figure 8c and 580 

8d).  581 

The wider confidence intervals in the mean annual CO2 emissions for the future periods with both CO2 582 

emission model (Figure 9) indicate that the inter-annual (between years) soil CO₂ fluxes become more 583 

variable in future climate. Furthermore, the confidence intervals for the individual periods are wider 584 

for the Daily WTD-Tair (Figure 9b) compared to the Annual WTD model (Figure 9a), which is expected as 585 

variations in Tair and not only WTD is included as with the Daily WTD-Tair model. This demonstrates that 586 

the Daily WTD-Tair model captures extreme events, including periods of high temperature or deep 587 

groundwater table, whether these events occur simultaneously (compound event) or independently. 588 



19 
 

 589 

Figure 8: Example of air temperature (Tair), water table depth (WTD) and soil CO2 flux for future climate simulation with 590 
climate model projection no. 5 (Table S6). 591 

 592 

Figure 9: Boxplot showing the distribution of bootstrap means of soil CO2 emissions according to the Daily WTD-Tair model and 593 
Annual WTD model during future climate. Green triangles and horizontal lines indicate the mean and the median of the 594 
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bootstrap mean, respectively. Boxes show the 25th and 75th percentiles. Whiskers indicate the 95% confidence intervals. 595 
Outliers are not shown. 596 

The results presented in Figure 9 suggest that the impact on CO2 emissions caused by future increases 597 

in Tair and increases in water tables cancel each other out when using the Daily WTD-Tair model. To 598 

investigate this further, we analyze how the combination of Tair and WTD shift between the reference 599 

and the end-of-century periods, despite relatively stable total CO2 emission. 600 

We wish to identify the specific combination of Tair and WTD that are associated with the majority of 601 

the CO2 emission. Due to the non-linear response of soil CO2 flux to environmental drivers in the Daily 602 

WTD-Tair model, a large fraction of total emissions is generated on relatively few days. To quantify this, 603 

we calculated p50, defined as the proportion of days required to account for 50% of the total annual 604 

soil CO₂ flux (fCO2). This was achieved by ranking the daily values of fCO2, WTD, and Tair in ascending 605 

order according to fCO2. Subsequently, the ranked fCO2 values were cumulatively summed to obtain 606 

their percentile distribution (Figure S8). The procedure was first applied to fCO₂, WTD, and Tair data 607 

from the historical simulation period, with the resulting percentile curves shown in Figure S8. Over the 608 

historical simulation period, 50% of the total fCO2 (fCO2, p50) was generated within 22% of the days (p50 609 

= 22%), while the value of fCO2, p50 and corresponding WTDp50 and Tair, p50 are estimated to be 4.15·10-2 610 

g CO₂-C ha⁻¹ day⁻¹, 47 cm and 13.8 °C (Table 6 and Figure S8).  611 

Similar estimates are derived from the three timeslots from the climate models (reference, mid-612 

century and end-of-century climate simulation periods) using the 17 different climate models. For the 613 

future, 50% of the total fCO2 is expected to occur within approximately 21 ± 1 % (mean ± SD, n=17) of 614 

the days (Table 6). The daily soil CO2 flux associated to p50 (fCO2, p50) and p50 are nearly identical 615 

across both the historical and future climate simulations periods (Table 6). As also shown in Figure 9b, 616 

the magnitude and temporal distribution of fCO2 are predicted to remain unchanged in the future. 617 

While the value of fCO2, p50 remains relatively constant around 4·10-2 Mg CO2-C ha-1 day-1 for future 618 

climate periods, the corresponding WTDp50 and Tair, p50 values change as a result of changing climate 619 

moving towards higher temperatures (17 °C) and shallower groundwater table (40 cm). 620 

Figure 10 provides a graphical representation of fCO2 obtained from the Daily WTD-Tair model, with the 621 

colormap illustrating the daily fCO2 corresponding to different combinations of Tair and WTD. The daily 622 

fCO2, p50 (4.15·10-2 g CO₂-C ha⁻¹ day⁻¹ for the historical period (Table 6)) can be achieved through 623 

various combinations of Tair and WTD (dark red dotted line in Figure 10). The values of Tair, p50 and 624 

WTDp50 corresponding to fCO2, p50 for the Tuse Stream catchment peatland are plotted as a dark red 625 

point. As expected, the fCO2, p50 values for the reference periods of the 17 climate models (green 626 

crosses at Figure 10) are closely aligned with that of the historical period. It is evident that the fCO2, p50 627 

values for the end-of-century climate conditions (blue crosses at Figure 10) shift along the direction 628 

indicated by the pink arrow (along the red dotted line), reflecting a trend toward higher temperatures 629 

and lower WTD (i.e. water levels closer to the surface surface). This indicates that the mean daily fCO2 630 

(Table 6) and the long-term fCO2 remains constant in the future (Figure 9b), as a result of a 631 

counterbalance between impacts of rising temperatures and rising groundwater levels.  632 

The pink arrow at Figure 10 illustrates the characteristic impact of climate change in Denmark, 633 

reflecting the concurrent increase in air temperature and shallow groundwater levels (Schneider et al., 634 

2022). In contrast, other regions in Europe are experiencing declining groundwater level trends to 635 

climate change (Wunsch et al., 2022). Consequently, CO2 emissions from peatlands in these regions 636 

are expected to shift in the direction indicated by the yellow arrow in Figure 10, towards considerably 637 

larger emission rates.  638 
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Table 6: p50 is the fraction of days required to reach 50% of the total soil CO2 flux (fCO2). fCO2, p50 is the daily soil CO2 flux 639 
associated with p50. WTDp50 and Tair, p50 are the water table depth (WTD) and air temperature (Tair) corresponding to fCO2, p50, 640 
respectively. Mean ± SD is based on 17 climate model simulations. 641 

  Historical 
simulation period 
 

Climate simulation periods 

  
Unit 

 
(1990-2023) 

Reference period 
(1991-2020) 

Mid-century period 
(2041-2070) 

End-of-century 
period 
(2071-2100) 

p50 % days 22 21 ± 1 21 ± 1 21 ± 1 

fCO2, p50 Mg CO2-C ha-1 day-1 4.15·10-2 4.03·10-2 ± 9.89·10-4 4.00·10-2 ± 3.24·10-3 4.03·10-2 ± 3.65·10-3 
Tair, p50   °C 13.8 14 ± 0.3 15 ± 0.6 17 ± 1.0 

WTDp50   cm 47 46 ± 1 42 ± 3 40 ± 3 

 642 

 643 

Figure 10: Colormap: Visual representation of the Daily WTD-Tair model output, illustrating soil CO2 flux (fCO2) as function of 644 
daily water table depth (WTD) and air temperature (Tair). The dark red dotted line represents combinations of Tair and WTD 645 
that corresponds fCO2 at p50 (fCO2, p50), where p50 is the fraction of days required to reach 50% of the total accumulated fCO2 646 
during the historical period. Green crosses are fCO2, p50 for the reference period of the 17 climate simulations. Purple crosses 647 
are fCO2, p50 for the end-of-century climate simulation period of the 17 climate simulations. The pink and yellow arrows 648 
indicate different future trends in Tair and WTD and the associated trend in CO2 emissions under climate change. Specific to 649 
Denmark, the pink arrow indicates increases in Tair and decrease in WTD, other regions might experience increase in both Tair 650 
and WTD and an associated large increase in CO2 emissions (yellow arrow).  651 
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Discussion 652 

Peatland management under changing climate 653 

In 2023, CO₂ emissions from drained organic soils in croplands and grasslands was estimated to have 654 

accounted for 6.7% of Denmark's total emissions, including those from the Land Use, Land-Use Change 655 

and Forestry (LULUCF) sector (Nielsen et al., 2025b). Returning peatland organic soils to their natural 656 

hydrological state is a cost-effective GHG reduction strategy (IPCC, 2014; Kirpotin et al., 2021; 657 

Tanneberger et al., 2021; Wilson et al., 2016). Therefore, national policies (Regeringen, 2024) and the 658 

European Union’s Nature Restoration Law (Regulation (EU) 2024/1991, 2024) seek to improve the 659 

management of peatlands and achieve climate neutrality targets under the urgent Green Transition 660 

agenda. To mitigate agricultural GHG emissions Danish ministerial agreements were initiated in 2024, 661 

targeting the restoration of 140,000 hectares of peatland (Regeringen, 2024). However, there is a need 662 

to strengthen the scientific evidence for mitigation measures to facilitate cost-effective policies. 663 

Quantitative predictions of fluxes such as the numbers presented in this study, supports prioritization 664 

and design of peatland rewetting strategies by estimating their CO2 emission reduction potentials 665 

accounting for future climate variability impact on CO2 emissions.  666 

Integration of the process-based hydrological model of the Tuse Stream catchment with the 667 

empirically derived Daily WTD-Tair model of soil CO₂ flux developed in this study revealed that emission 668 

simulations at daily timesteps produce greater variability in soil CO₂ fluxes compared to emission 669 

estimates derived from annual WTD means. This increased variability is attributed to the daily model’s 670 

ability to account for short-term compound events, especially the simultaneous occurrence of elevated 671 

air temperatures and low groundwater levels. 672 

More importantly, incorporating temperature dependence and higher temporal resolution into the 673 

CO₂ emissions model significantly alters the projected trends of CO₂ emission under both rewetting 674 

and changing climate conditions.  675 

Nature-based approaches represent the most common real-world rewetting strategies, aiming to 676 

restore peatlands towards their natural hydrological regime. At a minimum, such rewetting requires 677 

terminating tillage activities and eliminating artificial drainage for instance by blocking of drainpipes 678 

and ditches. The rewetting scenarios implemented in this study, represented as simple modifications 679 

to WTD, are not reflective of practical management interventions - except perhaps in a few rare and 680 

costly restoration projects that involve installing artificial impermeable membranes along peatlands 681 

edges (Naturstyrelsen, 2022). However, the outcome of this study can serve as a reference for 682 

discussions on realistic expectations on CO2 emission reductions from rewetted peatlands. 683 

The rewetting analyzed in this study showed how different rewetting scenarios with varying seasonal 684 

amplitudes in WTD suggest significantly different emission reduction potential even with identical 685 

annual mean WTD. The results illustrate that increasing the groundwater table during warm periods is 686 

key to obtaining CO2 emission reductions, whereas rewetting strategies that mainly raise winter water 687 

table without significantly affecting the summer levels offer limited mitigation benefits. This highlights 688 

the importance of not only targeting annual reductions in WTD but particularly designing rewetting 689 

strategies to increase the summer water table and avoid critically low water levels during droughts and 690 

warm periods. Achieving such rewetted conditions may include larger forced control of WTD than 691 

what is currently being practiced for most existing rewetting schemes, where the WTD remain subject 692 

to climate seasonality impact. Such nature-based solutions are not likely to reduce CO2 emissions to 693 

the degree that current emission reduction policies target.  694 

 695 
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Also, projections of CO2 emissions under different climate change scenarios were altered greatly by 696 

introducing temperature sensitivity and enhanced temporal resolution into the CO₂ emissions 697 

modeling framework. Here our results show that, while the projected rise in groundwater tables in 698 

isolation would lead to lower CO2 emissions in future (when using the Annual WTD model), the Daily 699 

WTD-Tair model revealed that anticipated increases in Tair are likely to cancel out these reductions, 700 

resulting in CO2 emissions on a level comparable to current levels. This is an important finding, since it 701 

suggests that increasing temperatures alone will likely increase CO2 emissions, and that water level rise 702 

driven by climate change or rewetting initiatives might just counteract this trend. Rewetting measures 703 

would need to be substantially intensified to ensure climate resilience and achieve meaningful 704 

reductions in CO₂ emissions. Additionally, outside the specific case of Danish peatlands located in a 705 

region that is susceptible to a future wetter climate, other regions might project both increasing 706 

temperatures and lower groundwater tables, and in such cases climate change will significantly 707 

increase emissions without any rewetting. We acknowledge that the chosen Representative 708 

Concentration Pathway (RCP8.5) represents the scenario leading to the strongest impact of climate 709 

change and that additional, milder climate scenarios could have been included. 710 

Hydrological simulation of groundwater levels in peat soil with process-based models  711 

Existing large scale CO2 emission estimates, such as national inventories from organic soils 712 

(Gyldenkærne et al., 2025; Nielsen et al., 2025b), typically combine empirical emission models and 713 

data-driven ML approaches for estimating annual WTD (Bechtold et al., 2014; Koch et al., 2023; 714 

Tiemeyer et al., 2020). These approaches appear robust and suited for upscaling but are limited in 715 

their ability to represent the impact of sub-annual variability in temperature and WTD, which are 716 

issues that become increasingly important when analyzing effects of rewetting and climate change. In 717 

contrast to most data-driven approaches, hydrological models enable a climate-driven representation 718 

of WTD temporal dynamics and the underlying hydrological processes. Moreover, the use of physically 719 

based hydrological models has the distinct advantage of enabling scenario-based analyses, such as the 720 

evaluation of alternative land use strategies and the projection of future hydrological conditions under 721 

climate change scenarios. Utilizing hydrological models that generate high-resolution time series of 722 

WTD, it is possible to quantify impacts of WTD dynamics, including water levels, temporal variability 723 

and seasonal amplitudes, on changes in CO2 emissions. 724 

That said we acknowledge that the rewetting scenarios in the present study are applied using 725 

simplified adjustments to the simulated WTD, rather than being modeled through a detailed, process-726 

based hydrological framework. Ideally, future assessments should apply catchment-scale models to 727 

evaluate peatland management interventions, such as rewetting, thereby enabling analysis of their 728 

broader hydrological impacts, including effects on streamflow and groundwater levels in neighboring 729 

areas. 730 

A unique feature of the present study is that the hydrological model of Tuse Stream catchment is 731 

developed in the same modelling framework as the National Hydrological Model of Denmark 732 

(Henriksen et al., 2020; Stisen et al., 2019). The National Hydrological Model is continuously updated 733 

with new data and operates in near real-time. This integration enables a link between the lessons 734 

learned from the Tuse Stream catchment-scale model and the National Hydrological Model of 735 

Denmark, thereby improving the representation of peatland hydrology and contributing to the 736 

refinement of future national GHG inventories.  737 

As a continuation of this study, we will further investigate the spatial variability of WTD and extent 738 

hydrological model to include additional peatland-dominated catchments. Additionally, we will utilize 739 

the National Hydrological model to simulate WTD across all Danish peatlands. 740 
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Selection, fit and transferability of daily CO2 emission model 741 

Detailed process-based terrestrial ecosystem models that simulate biogeochemical cycles and 742 

vegetation are available (Bona et al., 2020; Oikawa et al., 2017; Wu and Blodau, 2013). Such modelling 743 

schemes rely largely on multiple parameters related to plant and soil biogeochemistry which are not 744 

generally attainable, thereby limiting the possibility to generalize and upscale. 745 

As an alternative a range of empirical models with varying levels of complexity has been developed to 746 

describe ecosystem respiration; however, the most commonly applied formulation is the Lloyd–Taylor 747 

model (Lloyd J., Taylor, 1994), in which temperature acts as the sole independent variable. Structural 748 

complexity in empirical equations is increased through the integration of various other environmental 749 

variables, for example, hydrological variables such as WTD (Rigney et al., 2018). Recent alternative 750 

empirical approaches for estimating CO2 emissions for organics soils include response functions linking 751 

average annual WTD to annual emissions (Arents et al., 2018; Evans et al., 2021; Tiemeyer et al., 2020), 752 

such as the Annual WTD model (Koch et al., 2023) used in this study. 753 

To evaluate alternative empirical emission models alongside our Daily WTD-Tair model, we fitted three 754 

different empirical formulations from Rigney et al. (2018) to the Vejrumbro soil CO2 flux data (Table 755 

S7). Each of the three empirical formulations incorporated both temperature and WTD as independent 756 

variable. The model fitting resulted in R2 values comparable to those obtained from fitting the Daily 757 

WTD-Tair model developed in this study (Table S7). 758 

Studying the explanatory power of each independent variable of WTD and Tair in isolation in the other 759 

empirical emission models, revealed that models in which WTD and Tair are incorporated as additive 760 

terms, rather than as interdependent (e.g., multiplicative) terms (as in eq. 6 and 8 in Rigney et al., 761 

(2018)), often exhibit coefficients of determination (R²) that are excessively dominated by either WTD 762 

or Tair (Table S7). This indicates that such model formulations may inadequately capture the joint or 763 

synergistic effects of these variables on the dependent variable. The challenge likely stems from the 764 

fact that both WTD and Tair exhibit similar seasonal patterns, which may lead the regression to 765 

primarily fit one of the additive terms containing either WTD or Tair. Empirical models that incorporate 766 

WTD and Tair as multiplicative terms (such as equation 7 in Rigney et al. (2018) and the Daily WTD-Tair 767 

model developed in this study) demonstrate a more balanced distribution of explanatory power 768 

between each independent variable (Table S7). Nevertheless, equation [7] in Rigney et al. (2018) 769 

remains predominantly influenced by the Tair component (Table S7). A more balanced distribution of 770 

explanatory power between temperature and WTD is desirable, given that both variables are 771 

recognized as key drivers of soil CO₂ flux dynamics, which is achieved better with the Daily WTD-Tair 772 

than with any of the empirical models in Table S7. 773 

We acknowledge that the Daily WTD-Tair model does not reproduce many of the highest observed fCO2 774 

values (Figure S6 and S7). In addition to identifying a relationship between fCO2 and WTD, which was 775 

used to derive the Daily WTD-Tair model (Figure S5), we studied the temperature sensitivity within 776 

WTD bins to better understand the model’s inability to reproduce the highest observed fCO2 values. 777 

Specifically, we binned the daily fCO2 into four WTD intervals: <20 cm (n=73), 20 to 40 cm (n=37), 30 to 778 

40 cm (n=77) and >40 cm (n=44) (Figure S9). We identified a potential relationship between fCO2 and 779 

temperature within WTD bins (Figure S9). This result is expected given the strong interdependence 780 

among fCO2, temperature and WTD, all of which exhibit comparable seasonal dynamics. The high 781 

observed fCO2 values cannot be captured by a simple empirical model based solely on Tair and WTD, 782 

particularly because both high and low fCO2 occur under similar Tair and WTD conditions (Figure S5, S7 783 

and S9). Consequently, the Daily WTD-Tair model represents a compromise that captures part of the 784 

variability while preserving a realistic mean response. 785 
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In this study, we demonstrate the need for the development of emission models operating on a sub-786 

annual timescale. It highlights the necessity of creating scalable generalized models based on 787 

temperature, WTD and possibly other predictors. The development of such models requires data from 788 

a large number of sites with continuous and temporally dense measurement, in order to integrate 789 

information in a manner similar to models based on annual WTD. We recognize that currently, models 790 

based on annual WTD are likely the most robust for upscaling to national level and current conditions. 791 

The simulated soil CO2 flux at Vejrumbro, estimated using the Daily WTD-Tair model (13.6 Mg CO2-C ha-792 
1 yr-1), aligns well with flux measurements from Danish and German sites (Figure 5). This agreement 793 

suggests a comparable magnitude of emissions across geographically distinct locations of similar 794 

characteristics, such as soil type and land use history. 795 

We acknowledge that the Daily WTD-Tair model is derived from a single dataset, and that other 796 

emission models also provide valid fits of WTD and Tair. Furthermore, we recognize that empirical 797 

emission models are highly dependent on the specific data to which they are fitted. Acknowledging the 798 

limited data behind the Daily WTD-Tair model utilized in this study, the goal has not been to accurately 799 

estimate the peatland emission budget, which will be uncertain due to the reliance on a single site. 800 

However, the objective has been to illustrate the impact and insights gained from applying emission 801 

models at a daily timescale and how this has significant impact on the conclusions that can be made 802 

regarding effects of rewetting and climate change. The decision to utilize the Daily WTD-Tair model for 803 

rewetting and climate modeling scenarios is motivated by the simplicity of the relationship and its 804 

direct derivation from the Vejrumbro data, which clearly demonstrates a temperature-dependent 805 

relationship between soil CO2 flux and WTD. The limited availability of multiple high-temporal-806 

resolution GHG emission datasets broadly restricts the ability to generalize and upscale empirical GHG 807 

emission models at a daily timescale. Therefore, we consider the Daily WTD-Tair model to be the most 808 

reliable option currently available. Future research should validate the performance of emission 809 

models on intra-annual (within years) data with continuous measured CO2 data.  810 

A promising methodology for future applications, as well as for integrating a Tier 3 framework, 811 

involves coupling a process-based hydrological model with process-based emission models or an 812 

empirically derived daily emission model, such as the one developed in this study, to enable detailed 813 

simulations of GHG emissions that capture short-term dynamics and compound environmental effects.  814 

 815 

  816 
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Conclusion 817 

This study demonstrates the feasibility of simulating the temporal dynamics of the peatland water 818 

balance and shallow groundwater table depth (WTD) using a catchment-scale distributed hydrological 819 

model. Accurately modelling shallow WTD is critical for reliable projections of CO2 emissions from 820 

peatlands. We combined simulations of shallow WTD from the calibrated hydrological model with two 821 

empirical CO2 emission models 1) an annual WTD-CO2 relationship and 2) a daily WTD-CO2 model 822 

accounting for the temperature effect on soil CO2 production. This approach was used to estimate net 823 

soil CO2 emissions for the historical period (1991-2020), the mid-century period (2041-2070) and the 824 

end-of-century period (2071-2100). This demonstrated that projections of soil CO₂ emissions are highly 825 

sensitive to the complexity and temporal resolution of the emission model applied. Specifically, 826 

models that incorporate both temperature and WTD dynamics at a daily timescale results in vastly 827 

different conclusion regarding impacts of climate change and rewetting. Regarding climate change 828 

impacts, we show that a daily temperature and WTD based emission model predict increased 829 

emissions due to temperature changes, which can be counter balanced (in the Danish case) or 830 

amplified depending on the future trend in WTD. Our results also demonstrate that rewetting 831 

strategies aimed at raising the groundwater table during the warm summer period offer a CO₂ 832 

emission reduction potential of up to 50%, whereas approaches focused primarily on increasing winter 833 

water table levels result in only marginal reductions. The combination of process-based hydrological 834 

model simulations and a daily-resolution empirical CO2 emission model used in this study captures the 835 

influence of short-term compound climate events—such as simultaneous high temperatures and low 836 

WTD—which substantially alters projected emission trends compared to simpler approaches. Such 837 

refined approaches are essential for developing adaptive, climate-resilient peatland restoration 838 

policies and improving national greenhouse gas inventories. The findings underscore the importance 839 

of moving beyond static, annual WTD thresholds in peatland management by incorporating dynamic 840 

hydrological simulations. Instead, rewetting strategies should prioritize maintaining elevated summer 841 

groundwater table levels to buffer against drought-induced emission peaks.  842 
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