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Abstract. In this study, heterodyne detection enables high spectral resolution, which in turn enhances the vertical sensitivity 

of ground-based CO2 measurements. The system’s compact and portable design makes it particularly well-suited for 10 

deployment in field campaigns. An all-fiber coupled laser heterodyne radiometer (LHR), using a wideband tunable external 

cavity diode laser (1520-1580 nm) as local oscillator laser was developed for CO2 measurements. Optimal absorption lines 

and transmission spectra of the LHR was achieved by using a balanced photodetector to suppress the relative intensity noise 

of the local oscillator laser. This work aims to quantify how the LHR contributes to measuring tropospheric CO2 abundances 

in the atmospheric column from the ground. Here, we demonstrate the LHR’s ability to measure CO2 vertical profiles through 15 

an extensive analysis of information content, channel selection, and error budget estimation. This comprehensive analysis 

relies on the radiative transfer model ARAHMIS, developed at the Laboratoire d’Optique Atmosphérique (LOA). Additionally, 

we present a comparison of the LHR with other ground-based instruments, such as the EM27/SUN and the IFS125HR from 

the TCCON network. Furthermore, this work supports ongoing MAGIC (Monitoring of Atmospheric composition and 

Greenhouse gases through multi-Instruments Campaigns) campaigns focused on greenhouse gas monitoring and the validation 20 

of current and future space missions such as MicroCarb and CO2M. 

1 Introduction 

Developing robust and affordable techniques for the accurate measurement of greenhouse gas (GHG) concentrations is 

essential for monitoring their spatiotemporal variability and supporting the study of emission sources, sinks, and atmospheric 

transport processes. Alongside spaceborne instruments such as OCO-2 (Eldering et al., 2017), which offer global coverage and 25 

high GHG column abundance accuracy, there's a growing need for compact, portable, and cost-effective instruments that can 

validate satellite observations but also monitor major GHGs in the atmospheric column. In addition to compactness, high 

mobility and low cost, these devices must have extremely high spectral resolution to meet GHG observation requirements 

(IPCC 2023, AR6 WGI, Ch.1 & Ch. 10). The Bruker IFS125HR Fourier Transform Spectrometer (FTS), with a spectral 

resolution of approximately 0.02 cm-1, is the main instrument used by the Total Carbon Column Observing Network (TCCON) 30 
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(Wunch et al., 2010). However, this spectrometer's limitations for field campaigns hinder its broader use in ground-based 

atmospheric measurements worldwide. The COllaborative Carbon Column Observing Network (COCCON) complements 

TCCON by deploying portable Fourier-transform spectrometers, specifically Bruker’s EM27/SUN instruments. These 

spectrometers are relatively easy to operate and enable measurements in locations inaccessible to larger systems, with a spectral 

resolution of 0.5 cm-1 (Table 3), a trade-off from their compact design which limits the maximum optical path difference. While 35 

their portability allows for flexible deployment, maintaining network-wide consistency and coordination remains a significant 

logistical and technical achievement (Frey et al., 2019). Moreover, several studies have directly compared the performance of 

the high-resolution IFS125HR with the portable EM27/SUN spectrometers, including Pak et al. (2023) and Herkommer et al. 

(2024), showing that CO2 retrievals from the EM27/SUN differ by only about 0.1%, a remarkable result considering its lower 

spectral resolution. In contrast, heterodyne detection offers a cost-effective, highly mobile system that enhances vertical 40 

sensitivity limits and achieves exceptional spectral resolution (Weidmann, 2021). While the overall system cost depends 

significantly on the choice of laser and detector, the prototype LHR developed in this study is approximately 20% of the cost 

of an EM27/SUN, making it a promising complementary tool for targeted ground-based observations. This suggests that 

heterodyne spectro-radiometers could serve as a valuable addition not only to TCCON’s measurements (Palmer et al., 2019), 

but also for the EM27/SUN based COCCON network. While commercially heterodyne spectroradiometers are currently 45 

unavailable, scientific groups worldwide are presenting their achievements in the development and application of these 

instruments in the near-infrared (NIR) spectral range (Zenevich et al., 2020). An all-fiber coupled laser heterodyne radiometer 

(LHR) has been developed at the Laboratoire de PhysicoChimie de l’Atmosphère (LPCA) for measuring carbon dioxide (CO2) 

and water vapor (H2O) concentrations in the atmospheric column (Wang et al. 2023). The LHR uses a broadband tunable 

external cavity diode laser operating between 1520-1580 nm as a local oscillator (LO) laser. To improve signal to noise ratio 50 

in LHR spectra, a balanced photodetector is employed to suppress the laser relative intensity noise (RIN) of the LO laser. 

This study presents the principle of the LHR experimental setup and quantifies its potential for CO2 retrieval. The structure of 

the paper is as follows: Section 2 describes the setup and technical characteristics of the instrument, Section 3 provides a 

detailed explanation of the forward model, state vector, and a complete error analysis. We present in Section 4, a comparison 

with the other FTS instruments for the retrieval of CO2 building on earlier research (El Kattar, Auriol, and Herbin 2020). 55 

Section 7 presents the channel selection methodology employed in this work, which is essential for determining the most 

suitable channels for measurement. The study concludes with a summary of the results and explores future directions, such as 

improving measurement precision, and particularly the CO2 retrieval. 

2 Experimental setup 

The LHR used in the present work, depicted in Figure 1, is designed to measure atmospheric CO2 and H2O concentrations by 60 

measuring their absorptions of the sunlight in the NIR. Solar radiation is captured using a portable solar tracker (STR-21 G; 

EKO Instruments Co., Ltd.), which continuously tracks the sun's position. A mechanical chopper (MC2000B; Thorlabs, Inc.) 
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modulates the sunlight to enable phase-sensitive detection via the lock-in amplifier, isolating the heterodyne signal from low-

frequency noise. This modulated sunlight is combined with light from a tunable external cavity diode laser (TUNICS-BT 3642 

HE CL; NetTest), which serves as the LO. The laser operates at room temperature, with a tunable wavelength range of 1520–65 

1580 nm and a maximum power of 5 mW. A fiber collimator (F810APC-1550, Thorlabs, Inc.) collects sunlight into a 2-meter 

single-mode fiber (SMF-28-J9, Thorlabs, Inc.) and is mounted on the solar tracker with a numerical aperture of 0.24. On sunny 

days, the solar power collected in the single-mode fiber can reach 7.9 μW. The modulated radiation is split by a single-mode 

fiber splitter with a 40:60 beam splitting ratio. The 40% power is measured with a photodetector (PDA20CS-EC; Thorlabs, 

Inc.) to monitor sunlight intensity variation during measurements. The 60% power is mixed with the LO laser for heterodyne 70 

detection. In addition, a balanced amplified photodetector (PDB425C; Thorlab Inc.) is used to reduce laser RIN resulting from 

the LO laser. For this purpose, the LO laser output light is split into two beams with a 50:50 fiber splitter, 50% used to mix the 

sunlight and the other 50% used for balanced detection. The beating signal at radio frequency (RF) from the balanced 

photodetector passes through a band-pass filter with an effective bandwidth of 24–95 MHz. Subsequently, a Schottky diode (a 

square-law detector), is used to extract the absorption signature, which corresponds to the envelope of the RF beat signal. This 75 

type of detector produces an output proportional to the square of the input signal’s amplitude. The electronic bandwidth of the 

detector is BIF = 100 kHz to 2 GHz, enabling effective heterodyne detection. The resulting output signal is then demodulated 

using a lock-in amplifier (LIA-MV-150; FEMTO Inc.). A data acquisition card (DAQ) (USB-6366; NI Inc.) digitizes the 

spectral signal that is then transferred to a laptop for further data processing and retrieval. 

 80 

Figure 1: Schematic of the developed LHR. Each percentage represents the proportion of radiation beams split or combined. 
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To achieve accurate measurements of relative transmittance using the LHR, it is essential to extract spectral signals with a high 

Signal-to-Noise Ratio (SNR). This LHR system is designed to operate in the shot noise–limited regime by optimizing the local 

oscillator laser power, such that the total system noise is dominated by LO-induced shot noise (Sun et al., 2024). Therefore, 85 

the thermal noise can be ignored. Meanwhile, a balanced detector in LHR is used for heterodyne signal detection, eliminating 

the relative intensity noise of the local oscillator laser. A full discussion of the noise model goes beyond the scope of the 

present manuscript and will be addressed in a forthcoming technical paper. 

The SNR for the measurement via coherent detection can be written as follows: 

𝑆𝑁𝑅 =
2𝑇0𝜂√∆𝑓𝜏

2𝜂+exp(ℎ𝜐 𝑘𝑇𝑆⁄ )−1
,           (1) 90 

where 𝜏 is the integration time, ∆𝑓 is the filter bandwidth, 𝑇0 is the transmission efficiency, 𝜂 is the quantum efficiency of the 

photodetector, 𝑇𝑆 is the temperature of the heat source, 𝑘 is the Boltzmann constant, 𝜐 is the wavenumber and ℎ is the Planck 

constant. For a typical sunlight measurement, with an integration time of 100 ms, ∆𝑓 of 52 MHz, 𝑇0 of 1, a quantum efficiency 

of 0.81 (provided by the manufacturer) and 𝑇𝑆 of 6011 K on average, we find an average theoretical SNR of 710 for the spectral 

domain covered by the LHR. The absorption spectra obtained from these measurements are illustrated in Figure 2. The actual 95 

measured SNR is approximately 200, based on a single scan, in contrast to the FTIR measurements where multiple scans are 

averaged. The reduced SNR can be attributed to several factors, primarily the absence of spectral averaging. Additional 

contributors include suboptimal detector performance such as lower-than-expected quantum efficiency, elevated dark current, 

and electronic noise sources including amplifier and digitizer interference. While current measurements yield a lower SNR, 

an SNR of 710 is achievable through additional scan averaging or improved detector performance. We therefore use SNR = 100 

710 to assess the theoretical information content under optimal conditions, which will be targeted in future measurement 

campaigns. 

3 Theory 

In order to determine and evaluate the capacity and the performance of the developed LHR, an information content study (IC) 

is conducted to assess its potential for GHG retrieval and compare it with other well-established techniques for worldwide 105 

observation. 

3.1 The forward model 

To accurately simulate the transmittances observed by the LHR, the line-by-line radiative transfer algorithm ARAHMIS was 

used across a broadband NIR spectrum of 1.567–1.577 µm. The absorption spectrum of gases is derived using the updated 

HITRAN 2020 database (Gordon et al., 2022) , with spectral lines represented by Voigt profiles. The resulting spectrum is 110 

convolved with a Gaussian Instrument Line Shape (ILS), which reflects the optical and detection characteristics of the LHR 
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system. In addition, absorption continua for water vapor (H2O) and carbon dioxide (CO2) are incorporated using the MT-CKD 

model (Clough et al., 2005). The incident solar spectrum is derived from the pseudo-transmittance spectra for direct sunlight 

originating from the center of the solar disk, as provided by Toon (2015), and subsequently interpolated onto the LHR's spectral 

range. The Planck function is calculated across the LHR spectral domain using a custom routine developed at LATMOS 115 

(Meftah et al., 2018), to account for the significant variation in effective brightness temperature with wavenumber. This routine 

is based on the SOLAR-ISS spectrum, a high-resolution solar reference spectrum constructed by combining existing solar 

datasets with SOLAR/SOLSPEC measurements, using well-characterized slit functions. SOLAR-ISS provides an accurate 

representation of solar irradiance during the 2008 solar minimum, particularly across the ultraviolet, visible, and infrared 

regions. Accurate determination of the spectrometer's line-of-sight (LOS) is crucial for determining the spectral absorption of 120 

solar radiation as it propagates through the atmosphere during the retrieval process of gases. To achieve this, the timing and 

duration of each measurement are recorded, allowing the calculation of the Solar Zenith Angle (SZA) using the methodology 

described in Michalsky (1988). 

Measurements are conducted in Dunkirk (51.035°N, 2.369°E) under clear sky conditions in August 2022. The calculations 

depend on the concentration of the target atmospheric profile, along with associated data profile such as temperature, pressure, 125 

and relative humidity, which are obtained from a nearby PTU300 Vaisala radiosonde, with manufacturer-specified 

uncertainties of ±0.2°C for temperature, ±0.3 hPa for pressure, and ±1% for relative humidity. A priori profiles of CO2 and 

H2O used to construct the state vector and prior covariance matrix are derived respectively from the AirCore launches from 

the MAGIC campaigns (see Section 4.1) and the Orléans TCCON station, which is the closest operational site to Dunkirk. 

Figure 2 displays the results of ARAHMIS’s simulation compared to a typical measurement of the mid-infrared band by the 130 

LHR. Additionally, the impact of the solar spectrum, CO2, and H2O is shown, demonstrating the strong consistency between 

the forward model simulation and the LHR measurements under clear-sky conditions. 
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Figure 2: Comparison of measured and simulated LHR transmittance spectra under clear-sky conditions in Dunkirk, for an SZA of 55° and 

a total integration time of 15 minutes. The measured spectrum is shown in black, while the simulated spectra , computed with the line-by-135 

line forward model ARAHMIS, are shown in blue for H2O and in red for CO2. The simulations incorporate the solar pseudo-transmittance 

spectra from Toon 2015in gold. The residuals between the measurement and simulation are plotted in magenta. 

3.2 Theoretical basis of Information Content (IC) 

Following the computation of the forward model, we apply the framework developed by Rodgers (2000), which incorporates 

the optimal estimation theory employed in the retrieval process. This theory has been extensively discussed in prior works 140 

(Herbin et al., 2013) and briefly summarized here. As this study builds on previous research, certain sections are condensed, 

focusing only on essential details. For a comprehensive explanation, please refer to El Kattar, Auriol, and Herbin (2020). 

In this study, the state vector 𝑥 consists primarily of the vertical profile of CO2 volume mixing ratios (VMR) on a fixed altitude 

grid extending from the surface to 40 km at 1 km vertical resolution. Depending on the retrieval scenario, the state vector may 

also include additional parameters, such as a scaling factor for atmospheric temperature. The measurement vector  𝑦 comprises 145 

calibrated radiance spectra derived from observed solar absorption, computed by multiplying the solar spectrum 
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(transmittance) with the SOLAR-ISS spectrum (see Section 3.1). Prior to retrieval, all measured spectra are corrected for 

spectral shift and solar abscissa scale by calibrating against a stable, unsaturated H₂O absorption line. A scaling factor α is 

derived from the observed and theoretical line positions to correct the solar spectral abscissa. This correction is performed 

during preprocessing and is not part of the state vector. 150 

In cases where the atmosphere is divided into discrete layers, the forward radiative transfer equation establishes an analytical 

relationship between the observation set 𝑦 (radiance) and the true atmospheric parameter vector 𝑥 (vertical CO2 concentration 

profiles to be retrieved): 

𝑦 = 𝐹(𝑥; 𝑏) + 𝜀,            (2) 

Here, 𝐹  is the forward radiative transfer function (ARAHMIS code), 𝑏  represents fixed parameters influencing the 155 

measurement (atmospheric temperature, interfering species, viewing angle), and 𝜀 is the measurement error vector. 

The Jacobian matrix 𝐾, also referred to as the weighting function, represents the partial derivatives of the 𝑖th spectral channel 

in the measured spectrum with respect to each (𝑗) element of the state vector: 𝐾𝑖𝑗 = (𝜕𝐹𝑖 𝜕𝑥𝑗)⁄ . 

The gain matrix 𝐺, is defined as the matrix whose rows correspond to the derivatives of the retrieved state with respect to the 

spectral points, as follows: 160 

𝐺 = 𝜕𝑥̂ 𝜕𝑦⁄ = (𝐾𝑇𝑆𝜀
−1𝐾 + 𝑆𝑎

−1)−1𝐾𝑇𝑆𝜀
−1,         (3) 

where 𝑆𝑎 stands for the a priori covariance matrix, reflecting our knowledge of the state space prior to measurement, while 𝑆𝜀 

denotes the covariance matrix encompassing errors from both the measured signal and the forward model. The superscript T 

denotes matrix transposition. 

The averaging kernel matrix 𝐴, which quantifies the sensitivity of the retrieved state to the true state, is given by: 165 

𝐴 = 𝜕𝑥̂ 𝜕𝑥⁄ = 𝐺𝐾,           (4) 

Each row of 𝐴 corresponds to one retrieved parameter and indicates how changes in the true state at various altitudes influence 

the retrieval. At any altitude, the peak of an averaging kernel row marks the altitude of the highest sensitivity, while its full 

width at half maximum (FWHM) estimates the vertical resolution. The Degrees Of Freedom (DOFs) of the signal, given by 

the trace of matrix 𝐴, represents the number of independent pieces of information retrievable from observations. In an ideal 170 

retrieval with an optimal inverse method, the averaging kernel matrix 𝐴 would equal the identity matrix, and the DOFs would 

match the size of the state vector. Hence, each parameter to be retrieved corresponds to a partial degree of freedom, represented 

by the respective diagonal element of 𝐴. 

The posterior error covariance matrix 𝑆𝑥, characterizes the state space post-measurement. This total retrieval error can be 

decomposed into three distinct contributions (Rodgers 2000): 175 

𝑆𝑥 = 𝑆𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 + 𝑆𝑚𝑒𝑎𝑠. + 𝑆𝑓𝑤𝑑.𝑚𝑜𝑑.,         (5) 
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In the above equation, the smoothing error covariance matrix 𝑆𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 captures the vertical sensitivity of the measurements 

to the retrieved profile, with 𝐼 being the unity matrix: 

𝑆𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 = (𝐴 − 𝐼)𝑆𝑎(𝐴 − 𝐼)𝑇,          (6) 

𝑆𝑚𝑒𝑎𝑠. reflects the influence of the measurement error covariance matrix 𝑆𝑚, derived from spectral noise, on the posterior error 180 

covariance matrix 𝑆𝑥. 𝑆𝑚𝑒𝑎𝑠 is calculated from the spectral noise as follows: 

𝑆𝑚𝑒𝑎𝑠. = 𝐺𝑆𝑚𝐺𝑇 ,            (7) 

Finally, 𝑆𝑓𝑤𝑑.𝑚𝑜𝑑. represents the contribution to the posterior error covariance matrix via 𝑆𝑓  the forward model error covariance 

matrix, which accounts for uncertainties in non-retrieved model parameters: 

𝑆𝑓𝑤𝑑.𝑚𝑜𝑑. = 𝐺𝐾𝑏𝑆𝑏(𝐺𝐾𝑏)𝑇 = 𝐺𝑆𝑓𝐺𝑇,         (8) 185 

where 𝑆𝑏 represents the error covariance matrix of the non-retrieved parameters, and 𝐾𝑏 is the Jacobian with respect to the 

non-retrieved parameters. The two matrices, 𝐴 and 𝑆𝑥, together define the information content of the LHR retrieval. 

4 Application 

The IC analysis uses simulated radiance spectra from the current LHR. The initial CO2 vertical concentrations in the state 

vector 𝑥𝑎 follow the criteria in Section 3.1, divided into 40 layers from ground level to 40 km at 1 km intervals. Non-retrieved 190 

parameters, such as water vapor profile, temperature, and SZA, are included as outlined in Section 4.3. A priori values and 

their variability are detailed in Table 1 and discussed in subsequent sections. 

4.1 A priori covariance matrix 

The a priori error covariance matrix 𝑆𝑎 can be evaluated using in-situ data or climatology. We assume firstly that 𝑆𝑎 is a 

diagonal matrix that are common for space-based retrievals (De Wachter et al., 2017), with each diagonal element (𝑆𝑎,𝑖𝑖) 195 

defined as: 

𝑆𝑎,𝑖𝑖 =  𝜎𝑎,𝑖
2  with 𝜎𝑎,𝑖 = 𝑥𝑎,𝑖 .

𝑝𝑒𝑟𝑟𝑜𝑟

100
,          (9) 

where 𝜎𝑎,𝑖  denotes the standard deviation in the Gaussian statistics framework, and the subscript 𝑖 corresponds to the 𝑖th 

parameter of the state vector, and 𝑝𝑒𝑟𝑟𝑜𝑟  is the profile a priori error. The CO2 profile a priori error is derived aligns with prior 

studies using FTS instruments (El Kattar, Auriol, and Herbin 2020). 200 

Nevertheless, the correlation between vertical layers is primarily reflected in the off-diagonal elements of the covariance 

matrix. For this reason, we also employ an a priori covariance matrix: the H2O covariance matrix is constructed using 

climatological data from the TCCON Orléans station for the period 2016–2023 (https://data.caltech.edu/records/gexfp-a3461), 

https://data.caltech.edu/records/gexfp-a3461
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while the CO2 and temperature covariance matrices are derived from publicly available AirCore measurements collected over 

the same period during the MAGIC campaigns (https://data.ipsl.fr/repository/MAGIC/). The use of these two a priori 205 

covariance matrices in the LHR retrieval is presented in the following sections. 

4.2 Measurement error covariance matrix 

The measurement error covariance matrix is calculated based on instrument performance and accuracy, linked to the 

radiometric noise characterized by the SNR (discussed in Section 2). We assume that this matrix is diagonal, with the 𝑖th 

diagonal element computed as: 210 

𝑆𝑚,𝑖𝑖 =  𝜎𝑚,𝑖
2  with 𝜎𝑚,𝑖 =

𝑦𝑖

𝑆𝑁𝑅
,          (10) 

where 𝜎𝑚,𝑖  is the standard deviation of the 𝑖 th measurement (𝑦𝑖 ) in vector 𝑦 , representing the noise equivalent spectral 

radiance. The LHR's theoretical SNR is estimated at ~710, with additional instrument details provided in Table 3. 

4.3 Characterization and accuracy of non-retrieved parameters 

Errors from non-retrieved parameters are complex, primarily arising from water vapor and temperature effects in our scenario 215 

(see Figure 2). We assume vertically uniform uncertainties for both. Notably, water vapor is treated as a non-retrieved 

parameter in this study. 

We set the H2O column uncertainty (𝑝𝐶𝑚𝑜𝑙) at 10% instead of using a profile error. For temperature, we assumed a realistic 

uncertainty of 𝛿𝑇 = 1 𝐾 for each layer, consistent with typical ECMWF assimilation values. The SZA uncertainty is set at 

0.35°, reflecting typical solar angle variations during measurements. These values are summarized in Table 1. 220 

The total forward model error covariance matrix (𝑆𝑓), assumed diagonal, is the sum of contributions from each diagonal 

element, with the 𝑖th diagonal element (𝑆𝑓,𝑖𝑖) expressed as: 

𝑆𝑓,𝑖𝑖 = ∑ 𝜎𝑓,𝑇𝑗,𝑖
2𝑛 𝑙𝑒𝑣𝑒𝑙

𝑗=1 + 𝜎𝑓,𝐻2𝑂,𝑖
2 + 𝜎𝑓,𝑆𝑍𝐴,𝑖

2 ,         (11) 

This section excludes spectroscopic effects like line parameters, line mixing, and continuum errors, which are discussed in 

Section 3.4.2 in relation to the 𝑋𝐺 column estimation. 225 

State vector elements 𝑇  H2O SZA CO2 

A priori profiles AirCore launch 

2022 

ERA5 reanalysis 10/80° AirCore launch 2022 

Diagonal a priori uncertainty 

(𝑝𝑒𝑟𝑟𝑜𝑟) 

1 K per layer 10% 0.35° 1.3%-8% 

Non-diagonal a priori 

uncertainty 

AirCore dataset 

2016-2023 

ERA5 reanalysis 0.35° AirCore dataset 2016-2023 

https://data.ipsl.fr/repository/MAGIC/
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Table 1: State vector parameters where H2O, T and CO2 are profiles and the value of SZA is scalar. 

5. Information Content and Uncertainty Estimation for the LHR 

We perform an information content analysis on the CO2 broadband spectrum. The state vector includes gas concentrations at 

each level from 0 to 40 km, matching FTS and MAGIC instrument altitudes (balloons exceeding 25 km). This setup estimates 

each gas profile individually, with other atmospheric parameters and gas profiles known from ancillary data with specific 230 

uncertainties. Two SZAs, 10° and 80°, are chosen to illustrate the impact of solar optical path on sensitivity (depends on 

viewing geometry). Detailed discussions on averaging kernels and error budgets follow in subsequent subsections. 

5.1 Estimation of Averaging Kernels and error budget 

The left panel of Figure 3a shows the averaging kernel 𝐴 and the right panel shows the total posterior error 𝑆𝑥 for CO2 at a 

10° SZA. Results for 80° SZA are omitted due to similar vertical distributions, though slight differences in amplitude exist. 235 

These variations are discussed to quantify the viewing geometry's impact. 𝐴, derived independently using Section 4 variability, 

reflects the partial degree of freedom at each level. Each colored line represents the row of A at each vertical grid layer. Each 

peak of A represents the partial degree of freedom of the gas at each level that indicates the proportion of the information 

provided by the measurement. Values near 1 indicate measurement-dominated information, while values near 0 suggest prior 

knowledge dominance. Averaging kernels are close to 1 in the first layer and remain significant between 1 and 10 km, 240 

indicating a meaningful improvement of the information, while approaching 0 above 15 km. The measurement offers insights 

into the CO2 levels from the ground up to 20 km, but at higher altitudes, information primarily relies on prior knowledge due 

to reduced sensitivity of these gases in the upper atmosphere. This contrast is clear in the error analysis: the a posteriori total 

error (solid black line) is much smaller than the a priori error (red line) in the lower atmosphere (0-15 km), indicating an 

improved CO2 profile knowledge. Above 15 km, however, the total posterior error equals the prior error, signaling reduced 245 

sensitivity at high altitudes. Additionally, the errors associated with measurement and the forward model's dependence on non-

retrieved parameters are minimal compared to other errors, indicating negligible SNR error. Nevertheless, smoothing error 

outweighs other errors, particularly beyond 20 km, indicating strong reliance on the a priori profile at higher altitudes and 

minimal contribution from measurements. 

To overcome this problem, we conducted a similar study using a non-diagonal a priori covariance matrix (see Section 4.1). 250 

This approach yields a more homogeneous vertical distribution across all layers (left panel, Figure 3b). While the overall 

shape of the error budget remains similar to that of the variance, both the a priori and a posteriori uncertainties are significantly 

reduced. The measurement and forward model errors remain somewhat weak (see Table 2). Notably, although the smoothing 

error is smaller, the increased constraint leads to a greater propagation of smoothing error across vertical layers. This trade-off 

results in a reduced total uncertainty but also leads to lower DOFs. 255 

In Table 2, the DOFs for CO2 are presented for both 10° and 80° angles. The table indicates that, with a diagonal prior 

covariance matrix, four to five partial tropospheric columns for CO2 can be retrieved. As anticipated, the DOFs are slightly 
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higher at 80° due to the longer solar optical path through each layer. The total profile error, derived from the diagonal of 𝑆𝑥, 

is discussed in the next section. Overall, the LHR demonstrates high vertical sensitivity and reduced error in the lower 

atmospheric layers, where satellite instruments typically have limited sensitivity. However, when employing a non-diagonal a 260 

priori covariance matrix, one to two less partial tropospheric column is retrieved, but the error budget estimation is significantly 

improved. This highlights the importance of using a climatological a priori covariance matrix to reduce the errors in retrieved 

partial columns. 

a) 
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b) 265 

Figure 3: Averaging kernels and error budgets for CO2 vertical profiles using the LHR for the a) diagonal a priori matrix and b) non-diagonal 

a priori matrix for a SZA of 10°. The red and solid black lines (in the right panels) stand for the prior 𝑺𝒂 and posterior 𝑺𝒙 errors respectively; 

the smoothing (𝑺𝒔𝒎𝒐𝒐𝒕𝒉𝒊𝒏𝒈), measurement (𝑺𝒎𝒆𝒂𝒔.) and forward model parameter (𝑺𝒇𝒘𝒅.𝒎𝒐𝒅.) errors are dash-dotted, dash-starred and dotted, 

respectively. 

5.2 Estimation and uncertainty of integrated profiles 270 

Similar to the LHR, ground-based instruments such as the IFS125HR (TCCON) and EM27/SUN (COCCON) operate in the 

NIR and derive column-averaged dry-air mole fractions (𝑋𝐺  for gas 𝐺) by observing simultaneously the O2 columns. 𝑋𝐺 is 

computed as the ratio of the gas slant column to the O2 slant column from the same spectrum. Since the LHR is narrow-banded 

and does not cover the absorption lines of O2, a different method is needed to calculate this ratio. Following the NDACC 

network (De Mazière et al., 2018), 𝑋𝐺 is calculated without using oxygen as a reference. Following the method outlined in 275 

Wunch et al., (2010) and used in Zhou et al., (2019), 𝑋𝐺 for CO2 can be calculated as follows: 

𝑋𝐺 =
𝑐𝑜𝑙𝑢𝑚𝑛𝐺

𝑐𝑜𝑙𝑢𝑚𝑛 𝑑𝑟𝑦 𝑎𝑖𝑟
,           (12) 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑑𝑟𝑦 𝑎𝑖𝑟 =
𝑃𝑆

𝑔𝑎𝑖𝑟𝑚
𝑎𝑖𝑟
𝑑𝑟𝑦 − 𝑐𝑜𝑙𝑢𝑚𝑛𝐻2𝑂

𝑚𝐻2𝑂

𝑚
𝑎𝑖𝑟
𝑑𝑟𝑦 ,        (13) 

where 𝑚𝐻2𝑂 and 𝑚𝑎𝑖𝑟
𝑑𝑟𝑦

 are the mean molecular masses of water and dry air, respectively. 𝑃𝑆 is the surface pressure and 𝑔𝑎𝑖𝑟  

the column-averaged gravitational acceleration. Thus, 𝑋𝐺  can be calculated if all necessary parameters are available, 280 
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particularly in field measurements with data from balloons and radiosondes (e.g., temperature, relative humidity, surface 

pressure). It’s important to note that TCCON's method removes systematic errors common to both the target gas and O2 

columns, which is not possible here. In our current LHR configuration, we are not yet able to retrieve O2 columns, as we lack 

a laser source covering the 1.26 μm O2 absorption band. Procuring such a laser is a planned future upgrade to enable direct 

XCO2 retrieval via the CO2/O2 column ratio, consistent with the approach used in TCCON and COCCON. In the absence of 285 

an O2 measurement, we do not currently compute XCO2, and the uncertainty budget is expressed in terms of vertically 

integrated CO2 profile uncertainty, rather than in terms of XCO2. 

The integrated profile uncertainty is calculated by summing the concentration of each layer, weighted by the dry air column. 

Table 2 displays the propagated uncertainties for both zenith angles, comparing results obtained with diagonal and non-

diagonal a priori covariance matrices. At 10°, the total uncertainty decreases from 2.74% (diagonal) to 2.40% (non-diagonal), 290 

while at 80°, it reduces from 2.31% to 1.95%. The lower uncertainty at 80° is attributed to the longer atmospheric path length, 

which improves information distribution across layers. Breaking down the error contributions, smoothing error is the dominant 

source, accounting for 2.5% (diagonal) and 1.72% (non-diagonal) at 10°, and 1.91% (diagonal) and 1.49% (non-diagonal) at 

80°. Measurement errors are smaller but still notable, decreasing from 0.99% to 0.66% at 10°, and from 1.05% to 0.44% at 

80°. Errors due to non-retrieved parameters such as H2O, temperature, and solar zenith angle are minimal when using the non-295 

diagonal covariance matrix (0.015% at 10° and 0.017% at 80°) compared to the diagonal case (0.114% and 0.311%, 

respectively). The DOFs correspondingly decrease when using the non-diagonal matrix, from 4.13 to 2.79 at 10° and from 

5.15 to 2.89 at 80°, reflecting a stronger constraint on the retrieval. It is important to note that spectroscopic uncertainty, which 

is systematic in nature, is not included here due to its complexity. This uncertainty varies across different absorption lines used 

in the retrieval, with values listed in HITRAN. 300 

Error CO2 

SZA 10° 

diag/non-diag 

80° 

diag/non-diag 

Smoothing 2.5/1.72 1.91/1.49 

Measurement 0.99/0.66 1.05/0.44 

Non-retrieved parameters 0.114/0.015 0.311/0.017 

Total 2.74/2.4 2.31/1.95 

DOFs 4.13/2.79 5.15/2.89 

Table 2: The integrated profile errors and DOFs for the CO2 profile for the LHR for the two SZAs and for the two covariance matrices. 

The uncertainties are expressed as percentages (%). 
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6 Comparison with existing networks 

A similar previous study was performed for ground based Fourier Transform spectrometers, including the TCCON's 

IFS125HR, COCCON's EM27/SUN, and another EM27/SUN spectrometer operating in the middle infrared region called 305 

CHRIS (El Kattar, Auriol, and Herbin, 2020), as part of the MAGIC campaigns. Here, we compare these instruments with the 

LHR, but first we present in Table 3 the different characteristics of the various instruments involved in this study. 

 Resolution(cm-1) OPD (cm) CO2 micro-window (cm-1) SNR/integration time 

LHR 0.0047 Fiber-coupled 6338-6378 710/15 mins 

EM27/SUN 0.5 1.8 6173-6390 1080/1 min 

IFS125HR (TCCON) 0.02 45 6300 band ~750/~3 mins 

CHRIS 0.135 4.52 4165-4800 780/100 sec 

Table 3: Instrumental characteristics of the LHR, CHRIS, EM27/SUN and IFS125HR of TCCON. 

The methodology from Section 3.2 is applied: the state vector includes only CO2 concentrations across 0–40 km layers, 

incorporating the SNR and spectral resolution specific to the FTS instruments (see Table 3). A comparison of averaging 310 

kernels (cf. El Kattar, Auriol and Herbin, 2020) with FTS instruments reveals sharper peaks and a more homogeneous vertical 

distribution than CHRIS, EM27/SUN and IFS125HR, suggesting higher sensitivity at higher altitudes though the a posteriori 

error 𝑆𝑥 is significantly reduced in the lower atmosphere. This is further supported by the error budget analysis: the a posteriori 

total error (solid black line) remains distinguishable from the a priori error (red line) even in the higher atmosphere as seen in 

the right panel of Figure 3. This discrepancy is due to LHR's higher spectral resolution compared to FTS instruments, ensuring 315 

continuous enhancement of our understanding along the atmospheric column. 

Table 4 shows the DOFs for CO2 and the total profile error for both viewing angles using the diagonal a priori covariance 

matrices. FTS instruments have DOFs ranging from 2.95 at 10° to 4.23 at 80°, while for the LHR, they're 4.13 and 5.15 

respectively. This means the LHR can retrieve the same number of CO2 partial columns at 10° and an extra column at 80° 

compared to the FTS instruments. Generally, at an 80° angle, the LHR can retrieve one to two additional CO2 columns in the 320 

troposphere, while the profile error remains the same at 10° and improves at 80°. 

 DOFs Error 

 10° 80° 10° 80° 

LHR 2.79 2.4 2.4% 1.95% 

EM27/SUN* 2.37 2.68 1.01% 0.97% 

IFS125HR (TCCON)* 3.28 3.53 0.97% 0.95% 

CHRIS* 2.38 3.08 1.01% 0.94% 

Table 4: DOFs and column errors (%) for CO₂, per instrument and viewing angle. *from the previous study (El Kattar, Auriol, and Herbin 

2020) 
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7 Channel selection 

The time required to obtain one spectrum with the LHR depends on the chosen spectral range and step which can take a long 325 

time (up to 15 mins). To optimize acquisition, we preselect the most informative spectral points, hereafter referred to as 

channels, prior to measurement. Each channel corresponds to an individual wavenumber bin in the radiance spectrum. This 

selection reduces the acquisition time and allows more spectra to be collected which can lead to better daily statistics while 

comparing with satellites. Furthermore, using all channels in retrieval significantly increases computational time and 

systematic errors due to species correlation, complicating the evaluation of the a priori state vector 𝑥𝑎 and the error covariance 330 

matrix 𝑆𝑎 . Channel selection, as described by Rodgers (2000), optimizes retrievals by identifying the subset of channels 

offering the most information from high-resolution infrared sounders. Cooper et al. (2006) and Kuai et al. (2010) present a 

depiction of this process rooted in the Shannon information content which we describe in this section. 

Firstly, an "information spectrum" is constructed to assess the information content concerning the a priori state vector. The 

channel with the highest information content is selected, and the a posteriori covariance matrix is updated to include its 335 

contribution. Using this updated state space, a second channel is chosen to maximize information relative to the new covariance 

matrix. This iterative process continues until the remaining channels' information falls below the measurement noise level. As 

suggested by Shannon information content and Rodgers (2000), it is beneficial to work in a basis where measurement errors 

and prior variances are uncorrelated, enabling comparison of measurement error with prior variability. Thus, the Jacobian 

matrix 𝐾 (see Sect. 3.2), including the baseline, is transformed into 𝐾 using: 340 

𝐾 = 𝑆𝑦
−1 2⁄

𝐾𝑆𝑎
1 2⁄

,            (14) 

where both the a priori and measurement covariance matrices are unit matrices. Rodgers also shows that the number of singular 

values of 𝐾 greater than unity determines the effective rank of the problem, representing independent measurements exceeding 

the noise measurement. 

Let 𝑆𝑖 represent the error covariance matrix for the state space after 𝑖 channels have been selected. The information content of 345 

channel 𝑗 among the remaining unselected channels is expressed as: 

𝐻𝑗 =
1

2
𝑙𝑜𝑔2(1 + 𝑘𝑗

𝑇̃𝑆𝑖𝑘𝑗̃),           (15) 

where 𝑘𝑗̃ is the 𝑗th row of 𝐾. 𝐻𝑗 represents the information spectrum (expressed in bits), used to select the first channel. If 

channel 𝑙 is chosen, the covariance matrix is updated for the next iteration using: 

𝑆𝑖+1
−1 = 𝑆𝑖

−1 + 𝑘𝑙̃𝑘𝑙
𝑇̃ ,           (16) 350 

Channels are selected iteratively until 90% of the total information spectrum 𝐻 is achieved, ensuring the measurement noise 

threshold is not exceeded. 

DOFs CO2 
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 90% 99% 

Number of channels 408 1919 

Percentage of the total number of channels 8.24% 38.78% 

Table 5: Number of selected channels for the DOFs of CO2 and their percentage of the total channels for the LHR. 

After converting 𝐻 to DOFs, we obtained Figure 4, which illustrates the evolution of the CO2 total DOFs as a function of the 

number of selected channels for a SZA of 10°. Initially, in Figure 4, the DOFs show a sharp increase with the first selected 355 

channels, followed by a more gradual rise. Table 5 presents the number of channels needed to achieve 90% and 99% of the 

total information. Out of the 4949 exploitable channels in the LHR, only 8.24% (408 channels) are necessary to reach 90% of 

the retrieved information and 38.78% are needed for 99% of the information. In other words, using selected channels 

corresponding to 90% of the total information content produces results comparable to using all channels, as nearly 92% of the 

information is redundant. 360 

Additionally, in Figure 5, we present the first 100 selected channels ranked by their information content with respect to our 

Jacobian. The first 30 channels are shown in red, channels 31 to 60 in blue, and channels 61 to 100 in green. Notably, the 

information is primarily concentrated around three absorption lines in the range 6362-6365 cm-1. Interestingly, nearly 30% of 

the top 100 channels lie in baseline regions with little to no CO2 absorption. This suggests that, in future acquisitions, the 

combined range can be used to enable faster measurements while preserving a small scan step. These results emphasize the 365 

importance of identifying the best channels for CO2, making the retrieval process easier and more efficient, which is one of 
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the benefits of using a broadband tunable laser. We consider this finding to be one of the most significant outcomes of this 

study. 

1 10 100 1000 10000

0

1

2

3

4
4.13

99%

90%

 

 

D
O

F
S

Number of channels

 

Figure 4: Evolution of the DOFs with the number of selected channels for CO2. 370 
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Figure 5: Micro-window selection for CO2 retrieval. The first 30 channels shown in red, channels 31 to 60 in blue, and channels 61 to 100 

in green. These channels are ranked based on their information content with respect to the CO2 Jacobian. 

8 Conclusions 

In conclusion, this paper presents the measurement capabilities of a new near-infrared laser heterodyne radiometer, which 375 

allows the retrieval of CO2 in the atmospheric column based on ground heterodyne measurement of the sunlight. This spectro-

radiometer has an exceptionally high spectral resolution (0.0047 cm-1) and an exploitable spectral domain ranging from 6338 

to 6378 cm-1. An extensive information content analysis is conducted to evaluate the LHR's potential for CO2 retrieval, using 

two SZAs (10° and 80°) to quantify the impact of solar optical path on information quality. The integrated profile uncertainty 

is estimated, revealing a 2.74% error at 10° with a diagonal a priori covariance matrix and 1.72% when using a non-diagonal 380 

covariance matrix. Furthermore, a comparison has been carried out with the referenced FTS instruments, such as TCCON’s 

IFS125HR and COCCON's EM27/SUN, both widely utilized in satellite validation. The LHR exhibits unique advantages in 

retrieving gas columns with better vertical discretization. It is therefore a promising complementary instrument for local scale 

measurements or for satellite validation. Finally, a channel selection is implemented to eliminate redundant information and 

identify an optimal spectral range to improve daily statistics. 385 
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