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Abstract.  Accurate estimation of convective boundary layer height (CBLH) is vital for weather, climate, 
and air quality modeling. Machine learning (ML) shows promise in CBLH prediction, but input parameter 
selection often lacks physical grounding, limiting generalizability. This study introduces a novel ML 
framework for CBLH inversion, integrating thermodynamic constraints and the diurnal CBLH cycle as 
an implicit physical guide. Boundary layer growth is modeled as driven by surface heat fluxes and 20 
atmospheric heat absorption, using the diurnal cycle as input and output. TPOT and AutoKeras are 
employed to select optimal models, validated against Doppler lidar-derived CBLH data, achieving an R² 
of 0.84 across untrained years. Comparisons of eddy covariance (ECOR) and energy balance Bowen ratio 
(EBBR) flux measurements show consistent predictions (R² difference ~0.011, MAE ~0.002 km). Models 
trained on ARM SGP C1 site ECOR data and tested at E37 and E39 yield R² values of 0.787 and 0.806, 25 
respectively, demonstrating adaptability. Training with all sites’ data enhances C1 ECOR and EBBR 
performance over C1-only training: ECOR (R²: 0.851 vs. 0.845; MAE: 0.198 km vs. 0.207 km), EBBR 
(R²: 0.837 vs. 0.834; MAE: 0.203 km vs. 0.205 km). The interquartile range (IQR) error bars for predicted 
CBLH are consistently narrower than those for DL-derived CBLH, reflecting lower variability in 
predicted CBLH compared to DL-derived CBLH, which is influenced by additional factors. 30 
Transferability across ARM Southern Great Plains sites and seasonal performance during summer (JJA) 
confirm the model’s robustness, offering a scalable approach for improving boundary layer 
parameterization in atmospheric models. 
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1 Introduction  

The convective boundary layer (CBL) is a critical component of the Earth’s atmosphere, governing the 35 
exchange of heat, moisture, and momentum between the surface and the free troposphere (Stull, 1988; 
Garratt, 1994). Accurate estimation of the convective boundary layer height (CBLH) is essential for 
understanding atmospheric processes, including turbulence, pollutant dispersion, and cloud formation 
(Stull, 1988; Seibert et al., 2000). In numerical weather prediction (NWP) and climate models, CBLH 
serves as a key parameter for parameterizing turbulent mixing and convective processes, directly 40 
impacting forecast accuracy and climate projections (Grenier, 2001; Holtslag et al., 2013; Baklanov et al., 
2014). Errors in CBLH estimation can lead to significant biases in surface temperature, humidity, and air 
quality predictions (Vogelezang and Holtslag, 1996; Hu et al., 2010). Consequently, improving CBLH 
predictions has been a priority in atmospheric science, with numerous studies emphasizing its role in 
model performance and data assimilation (Helmis, 2012; Cohen et al., 2015; Wulfmeyer et al., 2016; 45 
Brown et al., 2008; Barlow et al., 2020; Chu et al., 2022a). 
 
While current observational techniques have greatly contributed to the determination of the CBLH, each 
method still presents inherent limitations related to resolution, sensitivity, or applicability under different 
atmospheric conditions. Radiosondes provide direct measurements of temperature and humidity profiles 50 
but suffer from low temporal resolution, typically limited to twice to fourth-daily launches (Seidel et al., 
2010; Liu and Liang, 2010; Lin, 2024). Meteorological towers measure near-surface variables but are 
constrained by their height, rarely capturing the full CBL (Bianco et al., 2011; Emeis et al., 2009). 
Weather radars offer vertical profiles but lack the resolution to resolve fine-scale CBL structures (Heo et 
al., 2003; Compton et al., 2013). Aerosol lidars, while effective for detecting entrainment zones, are often 55 
confounded by residual layers, leading to ambiguous CBLH estimates (Hennemuth and Lammert, 2006; 
Sawyer and Li, 2013; Schween et al., 2014; Luo, 2014). Doppler lidars provide high-resolution velocity 
and backscatter data, enabling precise CBLH retrievals, but their algorithms vary widely (Tucker et al., 
2009; Barlow et al., 2011; Chu et al., 2020). Each method employs different inversion algorithms—such 
as gradient-based, variance-based, or wavelet techniques—each with inherent uncertainties depending on 60 
atmospheric conditions and data quality (Cohn and Angevine, 2000; Hägeli et al., 2000; Lammert and 
Bösenberg, 2006; Compton et al., 2013; Chu et al., 2022b). 
 
Recent advances in machine learning (ML) have revolutionized CBLH prediction by leveraging large 
datasets to model complex atmospheric relationships. Early ML approaches used simple regression 65 
models to estimate CBLH from radiosonde data (Krishnamurthy et al., 2020; Madonna et al., 2021). 
Subsequent studies adopted random forests and neural networks, incorporating inputs from aerosol lidars, 
Doppler lidars, and reanalysis datasets (Liu et al., 2022; Krishnamurthy et al., 2021; Peng et al., 2023; 
Wei et al., 2025; Zhang et al., 2025). For instance, random forest models have been applied to lidar-
derived backscatter profiles (Du et al., 2023; Chu et al., 2025a), while deep neural networks have 70 
integrated reanalysis data for regional CBLH predictions (Ayazpour et al., 2023; Su et al., 2024). Despite 
these advances, most ML models select input parameters empirically, lacking physical constraints, which 
limits their generalizability across diverse sites (de Arruda Moreira et al., 2022; Su et al., 2024; Chu et 
al., 2025a; Macatangay et al., 2025; Stapleton et al., 2025). Few studies have explored physically 
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constrained ML frameworks or evaluated model performance across multiple stations, highlighting a 75 
critical gap in the literature (Krishnamurthy et al., 2021; Su et al., 2024; Wei et al., 2025; Stapleton et al., 
2025). The above discussion and existing literature clearly demonstrate that numerous ML algorithms are 
currently available. Comparing each algorithm to identify the optimal one is highly time-consuming. 
 
Building on these insights, this study introduces an Auto-ML framework that automatically selects the 80 
optimal ML algorithm for CBLH inversion, utilizing Doppler lidar-derived CBLH data and 
thermodynamically constrained input parameters. We incorporate physical principles by assuming CBL 
growth is driven by thermodynamic equilibrium, with surface heat flux and atmospheric heat absorption 
as primary drivers. This approach ensures robust predictions across varying atmospheric conditions and 
sites. To assess the model’s transferability, we evaluate its performance at four sub-sites (C1, E32, E37, 85 
and E39) within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) supersite. 
These locations were selected due to their comprehensive observations of surface heat flux (SHF), latent 
heat flux (LHF), and lower tropospheric stability (LTS). These sites provide a diverse testbed for 
validating the model’s generalizability and its potential to enhance CBLH predictions in atmospheric 
models. 90 
 
This paper is organized as follows: Section 2 describes the data sources and ML methodology, including 
the implicit physical constraints. Section 3 presents the model results, encompassing performance metrics, 
site-to-site comparisons, and contrasts across different seasons and ML approaches. Section 4 discusses 
the findings, their implications for atmospheric model, and future research directions. 95 

2 Data and methods  

2.1 Site description 

This study utilizes data from the ARM SGP facility, a premier research site established by the U.S. 
Department of Energy to investigate land-atmosphere interactions in a continental mid-latitude 
environment (Mather et al., 2016). Located in Oklahoma, USA, the SGP spans a diverse agricultural 100 
landscape, making it ideal for studying CBL dynamics under varying meteorological conditions (Mather 
and Voyles, 2013). We focus on four SGP sites: the central facility (C1) and three extended facilities (E32, 
E37, E39), selected for their comprehensive measurements of surface fluxes and atmospheric profiles. 
The latitude and longitude coordinates of the four sites are shown in Table 1 (Wulfmeyer et al., 2018). 
The C1 site, located near Lamont, Oklahoma, serves as the primary hub, hosting a suite of instruments 105 
including radiosondes, a Doppler lidar, and an Atmospheric Emitted Radiance Interferometer (AERI). 
The extended sites—E37, and E39—are equipped with Eddy Correlation (ECOR) systems for surface 
flux measurements. Additionally, the nearby E14 site (Lamont, Oklahoma; 36.605°N, 97.485°W, 315 m 
elevation), co-located with C1, which we attribute to C1 for consistency. The E32, E39, and E13 (near 
C1) sites employ Energy Balance Bowen Ratio (EBBR) technology to measure heat flux. 110 
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Table 1. Instruments and datasets used in this study. 

Sites 
Latitude 

(°, N) 

 Longitude 

(°, W) 

Altitude 

(m) 
AERI data 

stream 
DL data 
stream 

 ECOR data 
stream 

 EBBR data 

stream 
Other 

C1 36.6073 97.4876 314 sgpaerioe1tu
rnC1.c1. 

sgpdlfptc1
.b1 sgp30qcecorE14.s1. sgp30baebbrE13.c1. 

E14’s ECOR 
or E13’s 

EBBR used as 
C1 

 

E32 36.8193 97.8198 328 sgpaerioe1tu
rnE32.c1. 

Sgpdlfpte3
2.b1 / sgp30baebbrE32.c1. 

E37 36.3104 97.9274 379 sgpaerioe1tu
rnE37.c1. 

Sgpdlfpte3
7.b1 sgp30qcecorE37.s1. / 

E39 36.3735 97.0691 279 sgpaerioe1tu
rnE39.c1. 

Sgpdlfpte3
9.b1 sgp30qcecorE39.s1. sgp30baebbrE39.c1. 

 115 
The distances between the ARM SGP sites are as follows: C1 to E32 is approximately 40 km, C1 to E37 
is approximately 77km, C1 to E39 is approximately 41 km, E32 to E37 is approximately 57km, E32 to 
E39 is approximately 67 km, and E37 to E39 is approximately 77 km. These distances ensure a range of 
spatial variability in surface and atmospheric conditions, enabling robust evaluation of the model’s 
transferability across sites (Turner et al., 2016). The C1 site’s Doppler lidar (DL)  provides high-resolution 120 
vertical velocity and backscatter data, while radiosondes offer 4-th-daily temperature and humidity 
profiles. The AERI at four sites measures downwelling infrared radiance to derive atmospheric stability 
metrics.  

2.2 Data and preprocessing 

The dataset comprises multiple variables critical for CBLH estimation, sourced from the ARM SGP sites 125 
over the period 2016–2019. The DL used are Halo Photonics Stream Line models (1.5 μm wavelength), 
with the C1 site featuring an upgraded Stream Line XR+ model for enhanced signal-to-noise ratio (SNR). 
These lidars provide a vertical resolution of 30 m and a temporal resolution of 1-3s, ensuring detailed 
vertical velocity profiles (Manninen et al., 2019). The CBLH is calculated using Chu et al. (2022a)’s 
algorithm on ARM DL data, utilizing wavelet analysis to account for turbulence eddy size and gravity 130 
wave effects, and applying dynamic thresholds to estimate CBLH from 2-D vertical velocity variance. 
LTS is derived from AERI observations at C1, calculated as the potential temperature difference between 
700 hPa and 1000 hPa (LTS = θ700 – θ1000), validated against radiosonde data (Feltz et al., 2003; Wood et 
al., 2006). Surface fluxes, including SHF and LHF, are obtained from ECOR systems at C1 (via E14), 
E37, and E39, and from the EBBR system at C1 (via E13), E32, and E39. The ECOR systems use eddy 135 
covariance techniques to measure turbulent fluxes, while the EBBR system estimates fluxes via the 
Bowen ratio method, incorporating net radiation, soil heat flux, and temperature-humidity gradients 
(Cook, 2005; Cook, 2011). 
 
Previous studies have shown significant flux discrepancies between ECOR and EBBR beams obtained 140 
through different detection techniques, making them non-interchangeable for direct use (Tang et al., 2019; 
Chu et al., 2022b). Data preprocessing involves quality control to remove outliers and missing values, 
following ARM’s standard protocols (e.g., flagging data with unrealistic values or low SNR).  

https://doi.org/10.5194/egusphere-2025-2490
Preprint. Discussion started: 4 August 2025
c© Author(s) 2025. CC BY 4.0 License.



5 
 

2.3 Machine learning methods 

Machine learning (ML) algorithms have emerged as powerful tools in atmospheric science, enabling the 145 
analysis of complex, non-linear relationships within large datasets to improve predictions of phenomena 
such as CBLH (Schultz et al., 2021). ML methods excel at identifying patterns in atmospheric data, 
enhancing applications like weather forecasting, air quality modeling, and boundary layer 
parameterization by integrating diverse data sources, including ground-based observations and reanalysis 
products (Reichstein et al., 2019). Two prominent ML approaches for regression tasks are decision tree-150 
based methods and neural networks, each offering distinct advantages for atmospheric applications 
(Bauer et al., 2015; de Burgh-Day et al., 2023). 
 
Decision tree-based methods partition data into hierarchical decision nodes, creating a flowchart-like 
structure to predict outcomes based on input features. Advanced ensemble techniques, such as random 155 
forests and gradient boosting, combine multiple trees to improve accuracy and robustness, making them 
well-suited for tasks like CBLH estimation (Breiman, 2001; Chen and Guestrin, 2016). Neural networks, 
conversely, consist of interconnected layers of nodes that learn intricate patterns through backpropagation, 
excelling in capturing non-linear dynamics in atmospheric datasets, such as turbulence or stability 
gradients (Goodfellow et al., 2016). Automated ML frameworks streamline model development by 160 
optimizing architectures and hyperparameters. Prior studies have compared frameworks like AutoKeras 
(Zhong et al., 2024), which automates neural network design, and the Tree-based Pipeline Optimization 
Tool (TPOT), which focuses on tree-based models, finding comparable performance in atmospheric 
applications (Jin et al., 2019; Olson et al., 2016). Considering computational efficiency and the 
adaptability of algorithms to diverse datasets, this study does not simultaneously compare the results of 165 
various machine learning methods. Instead, it focuses on comparing the outcomes of TPOT and 
AutoKeras after their automated selection of optimal models. Specifically, we adopt the TPOT Regressor 
from the TPOT library, which automates the construction and optimization of tree-based pipelines, 
minimizing manual tuning efforts while preserving high predictive accuracy (Olson et al., 2016). 
Similarly, we employ AutoKeras, a neural architecture search framework that leverages Bayesian 170 
optimization and network morphism to automatically design and fine-tune deep learning models, enabling 
efficient and adaptive model selection for complex datasets (Jin et al., 2019; Liang et al., 2024). This 
research employs the automated machine learning frameworks TPOT (version 0.12.2) and AutoKeras 
(version 1.0.20), integrated within a Python 3.9 environment. Development was executed using the 
spyder-kernels package (version 2.4.4), ensuring robust and reproducible computational workflows. To 175 
facilitate reader understanding, the table 2 below provides an overview of commonly supported 
algorithms in TPOT and AutoKeras, along with their descriptions, advantages, applicable scenarios, 
disadvantages, and limitations, supported by relevant references. 
 
 180 
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Table 2. Commonly supported algorithms in TPOT and AutoKeras. 185 
Framework Algorithm Description Advantages Limitations Reference 

TPOT 

Decision Tree 
Regressor 

A tree-based model that splits 
data into branches based on 
feature thresholds to predict 
outcomes. 

Simple, interpretable; 
suitable for small-to-
medium datasets with clear 
feature relationships. 

Prone to overfitting; struggles 
with high-dimensional or 
noisy data. 

Breiman et al. 
(1984) 

Random Forest 
Regressor 

An ensemble of decision trees 
that aggregates predictions to 
reduce variance and improve 
accuracy. 

Robust to overfitting, 
handles non-linear 
relationships well; ideal for 
medium-sized datasets. 

Computationally intensive; 
less interpretable due to 
ensemble nature. 

Breiman (2001) 

Gradient Boosting 
Regressor 
(XGBoost) 

Boosts weak decision trees 
sequentially, optimizing a loss 
function using gradient 
descent. 

High predictive accuracy, 
handles missing data well; 
effective for 
structured/tabular data. 

Requires careful 
hyperparameter tuning; can 
be slow to train on large 
datasets. 

Chen and 
Guestrin (2016) 

Support Vector 
Regressor (SVR) 

Finds a hyperplane that best 
fits the data within a margin, 
using kernel tricks for non-
linearity. 

Effective for small datasets 
with non-linear patterns; 
robust to outliers. 

Scales poorly with large 
datasets; sensitive to kernel 
choice and parameter tuning. 

Drucker et al. 
(1997) 

Linear Regression 
Models the relationship 
between features and target 
using a linear equation. 

Simple, interpretable, fast to 
train; suitable for datasets 
with linear relationships. 

Assumes linearity and 
independence of features; 
performs poorly with non-
linear or noisy data. 

Seber and Lee 
(2003) 

AutoKeras 

Convolutional 
Neural Network 
(CNN) 

A deep learning model with 
convolutional layers to extract 
spatial features from data. 

Excels in image or spatial 
data processing; 
automatically learns 
hierarchical features. 

Requires large datasets and 
computational resources; less 
interpretable. 

LeCun et al. 
(1998) 

Recurrent Neural 
Network (RNN) 

A deep learning model 
designed for sequential data, 
with loops to retain memory 
of past inputs. 

Suitable for time-series or 
sequential data; captures 
temporal dependencies. 

Prone to vanishing gradients; 
computationally expensive 
for long sequences. 

Hochreiter and 
Schmidhuber 
(1997) 

Transformer 

A model using self-attention 
mechanisms to process 
sequential data, often for 
time-series tasks. 

Efficient for long 
sequences, captures global 
dependencies; ideal for 
complex time-series data. 

High computational cost; 
requires large datasets for 
effective training. 

Vaswani et al. 
(2017) 

Multilayer 
Perceptron (MLP) 

A fully connected neural 
network with multiple layers 
to model non-linear 
relationships. 

Versatile for tabular data; 
can approximate complex 
functions with sufficient 
depth. 

Prone to overfitting on small 
datasets; requires careful 
tuning of architecture and 
parameters. 

Hornik et al. 
(1989) 

Residual Network 
(ResNet) 

A deep CNN with residual 
connections to mitigate 
vanishing gradients in deep 
architectures. 

Enables training of very 
deep networks; effective for 
complex pattern recognition 
tasks. 

High computational cost; may 
overfit on small datasets 
without proper regularization. 

He et al. (2016) 

 

2.4 Evaluation metrics 

To assess the performance of the ML model, we use a suite of standard regression metrics, providing a 
comprehensive evaluation of predictive accuracy and error characteristics. Let 𝑦! represent the observed 
CBLH, 𝑦""  the predicted CBLH, and n the number of observations. The following metrics are used: 190 
 
Coefficient of Determination (R²): Measures the proportion of variance in the observed CBLH 
explained by the model, calculated as:  

𝑅# = 1 − ∑ (&!'&"( )#
$
!%&
∑ (&!'&*)#$
!%&

 ,       (1) 
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where 𝑦' = +
,
∑ 𝑦!,
!-+  is the mean of the observed values (Krause et al., 2005; Legates and McCabe, 1999). 195 

The coefficient of determination (R²) quantifies the model's explanatory power by measuring the 
proportion of variance in the observed CBLH that is accounted for by the model predictions. As shown 
in Equation (1), R² compares the sum of squared residuals (SSR) against the total variance in the 
observations (SST). When R² approaches 1, it indicates that the model explains nearly all variability in 
the observed CBLH (SSR ≈ 0), representing a near-perfect fit where predicted values (ŷi) closely match 200 
observations (yi). Conversely, an R² near 0 suggests the model performs no better than simply using the 
mean (ȳ) as a predictor. While useful for goodness-of-fit assessment, we need to notice that high R² values 
alone do not guarantee model validity, as they may be artificially inflated by overfitting or insensitive to 
systematic biases in the predictions.  
 205 
Mean Absolute Error (MAE): Quantifies the average absolute difference between predicted and 
observed CBLH, given by: 

𝑀𝐴𝐸 = +
,
∑ |𝑦! − ŷ!|	,
!-+  ,       (2) 

MAE provides a straightforward measure of prediction error in the same units as CBLH (Willmott and 
Matsuura, 2005). MAE measures the average absolute difference between predicted and true values. It is 210 
used to monitor the model's performance during training and validation but does not directly influence 
the optimization of the model parameters (i.e., it does not affect the minimization of the loss function). 
MAE provides an intuitive metric to reflect the average magnitude of prediction errors. 
 
Mean Squared Error (MSE): Computes the average squared difference between predictions and 215 
observations, defined as:  

𝑀𝑆𝐸 = +
,
∑ (𝑦! − ŷ!)#,
!-+  ,       (3) 

The quadratic nature of Mean Squared Error (MSE) inherently penalizes larger prediction errors more 
severely (Hyndman & Koehler, 2006). AutoKeras optimizes model parameters by directly minimizing 
this loss function to enhance predictive accuracy. In contrast, TPOT utilizes Negative MSE (−MSE), a 220 
transformed version where the sign inversion converts the minimization problem into a maximization 
framework. This approach maintains consistency with scikit-learn's convention where higher scores 
denote superior models, allowing TPOT's automated search to effectively identify configurations that 
maximize -MSE (thereby minimizing the actual MSE).  
 225 
This study primarily focuses on comparing the CBLH across different sites, utilizing the R² and MAE as 
robust metrics to evaluate the performance of machine learning models. These metrics provide a 
comprehensive assessment of model accuracy and predictive reliability, with R² quantifying the 
proportion of variance in CBLH that is explained by the model, and MAE offering a direct measure of 
the average prediction error in physical units. These metrics collectively ensure a thorough evaluation of 230 
the model’s accuracy, bias, and robustness across the ARM SGP sites.  
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2.5 Implicit physical constraints 

2.5.1 Parameter selection based on thermodynamic equilibrium constraints 

Traditional machine learning methods for predicting CBLH typically employ Principal Component 235 
Analysis (PCA) or random combinatorial approaches to select input parameters (Liu et al., 2022). While 
these methods can achieve good predictive performance at specific sites, they lack a physical basis, 
resulting in poor transferability across different sites and limiting their applicability in physical space. To 
address this issue, this study proposes an innovative approach by incorporating the physical foundation 
of thermodynamic equilibrium to optimize parameter selection, thereby developing a CBLH prediction 240 
model that is transferable across sites. As noted by Stull (1988) in his classic textbook, although the 
development of the convective boundary layer is influenced by multiple factors, thermodynamic 
equilibrium is the primary driver of its evolution. Figure 1a illustrates the heat required for CBL growth, 
while Fig.1b depicts the surface heat flux emitted following solar radiation absorption, which together 
determine the CBLH. Additionally, this study builds on the theoretical framework of thermodynamic 245 
equilibrium to quantify the dynamic evolution of the CBLH. Specifically, the relationship is described by 
the following integral expression: 

∫ 𝑤/𝜃0/(𝑡)''''''''''𝑑𝑡1&
1-2 = ∫ 𝑍(𝜃)𝑑𝜃3&

3-3'
 ,      (4) 

where the left-hand side represents the cumulative contribution of surface heat flux over time, and the 
right-hand side describes the amount of heat required to produce the observed temperature profile 250 
variation with height within the boundary layer. This heat conservation relationship jointly determines 
the dynamic evolution of CBLH. This formula provides a solid physical foundation for the model, 
ensuring that parameter selection not only enhances predictive capability but also maintains physical 
consistency across different sites (e.g., C1, E32, E37, E39), thereby overcoming the transferability 
limitations of traditional machine learning approaches. By integrating the thermodynamics information 255 
of the sites, the model can effectively capture the variations in thermodynamic processes across different 
sites, thus improving both prediction accuracy and generalizability.  
 
 

 260 
Figure 1. Graphical approach to estimate Convective Boundary Layer Height (CBLH) thermodynamically by equating heat 
supplied with heat absorbed; Zi is CBLH. (Stull, 1988) 
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Based on the thermodynamic constraints outlined, traditional physical constraint methods can incorporate 
the thermodynamic constraints from Equation 4 into the loss function of machine learning models. This 
approach adds to the MSE the difference between the cumulative energy provided by the heat flux and 265 
the energy required to account for the atmospheric temperature difference, multiplied by an adjustment 
coefficient to optimize the model. However, the selection of this coefficient significantly impacts the 
results, posing challenges to the method's applicability. From the perspective of boundary layer physics, 
Equation 4 provides a robust physical constraint during the development from sunrise to the top of the 
CBL. Nevertheless, after reaching the boundary layer top, the entrainment process in the entrainment 270 
zone must also be considered, where the application of Equation 4 may impose inappropriate constraints. 
The dissipation process, on the other hand, involves distinct physical mechanisms. Additionally, factors 
such as moisture, wind speed, wind direction, and cloud cover introduce complex, nonlinear effects, 
making the direct application of physical constraints highly challenging. 
 275 
This study proposes an innovative approach that combines heat flux with LTS to achieve implicit physical 
constraints. Initially, the cumulative heat flux is decomposed into SHF and LHF, which reflect moisture 
characteristics. Furthermore, instantaneous SHF and LHF can account for the influences of clouds and 
wind. Simultaneously, LTS is calculated as an instantaneous value for each hour, dynamically capturing 
temperature difference variations. To address diurnal and seasonal variations in CBLH, the model 280 
incorporates sunrise and sunset times along with their corresponding timestamps, defining a normalized 
temporal parameter,  
 

SUNPERCENT = (TIME − SUNRISE) / (SUNSET − SUNRISE)  ,                               (5) 
 285 

which represents the proportion of the current time relative to the daylight duration. In summary, this 
study employs physically driven variables for parameter selection—specifically surface heat flux and 
LTS as core inputs—to ensure the model’s physical consistency and transferability. The heat flux is 
further broken down into physical components, including the cumulative sensible heat flux (C_SHF) and 
latent heat flux (C_LHF) since sunrise, as well as the instantaneous sensible heat flux (I_SHF) and latent 290 
heat flux (I_LHF) within a one-hour window, while LTS is taken as an hourly instantaneous value. This 
parameterization effectively captures diurnal variations in solar radiation, enriching the model with more 
comprehensive physical information. 
 

2.5.2 Integrated Diurnal Evolution of the CBL 295 

The current literature on predicting CBLH using machine learning predominantly focuses on discrete, 
moment-to-moment predictions, often overlooking the integrated diurnal evolution of the CBL as a 
unified process. For instance, Chu et al. (2025a) employed ML to estimate CBLH over the Southern Great 
Plains, but this approach centered on individual time steps, neglecting the full diurnal cycle. However, as 
shown in Fig. 2, the diurnal variation of CBLH across five ARM sites reveals distinct site-specific patterns. 300 
The CBLH at each moment evolves continuously from the preceding moment, establishing a dynamic 
and interconnected developmental trajectory. Treating these moments in isolation disrupts this continuity, 
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failing to capture the underlying evolutionary dynamics. Specifically, the peak CBLH values vary across 
the sites, and the morning growth and evening decay phases exhibit notable differences, highlighting the 
critical role of temporal dependencies in boundary layer evolution. While some studies incorporate the 305 
CBLH of the previous moment—or CBLH derived from alternative methods, such as sensible heat flux 
or parcel methods—as an input variable, this approach often overemphasizes the influence of prior CBLH 
values, thereby overshadowing the contributions of other meteorological drivers. For example, Su et al. 
(2020) demonstrated that machine learning models relying heavily on CBLH derived from sensible heat 
flux and parcel methods tend to exhibit excessive dependence on temporal autocorrelation, which 310 
diminishes the model’s sensitivity to key meteorological factors such as heat flux and atmospheric 
stability. Consequently, these methods are limited in their ability to comprehensively predict the diurnal 
variation of CBLH, constraining the scope of their investigations. 
 

 315 
 
Figure 2. Relative Locations of ARM SGP Sites C1, E32, E37, E39, and E41. Top inset: Geographic position of SGP sites in 
Oklahoma; Bottom inset: Diurnal variation of CBLH observed by Doppler lidar across the five sites on 01 September 2018. 

To address these shortcomings, this study adopts the CBLH across the entire diurnal cycle as the training 
target for the machine learning model, treating the boundary layer evolution as a continuous and 320 
interconnected process. This holistic approach enables the model to comprehensively capture the dynamic 
evolution of the boundary layer, from the gradual rise of the CBLH after sunrise, through its midday peak 
accompanied by oscillations, to the rapid decay observed after sunset. By integrating the complete 
developmental trajectory, the model not only better represents the interconnected dynamics of the CBL 
but also accounts for the complex interplay of meteorological drivers that govern its evolution. For 325 
instance, the morning growth phase is heavily influenced by surface heating and turbulent mixing, while 
the midday peak often reflects a balance between entrainment processes at the boundary layer top and 
surface-driven convection. The evening decay phase, on the other hand, is modulated by radiative cooling 
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and the cessation of surface heat fluxes, which vary significantly across different sites due to local land 
surface characteristics and atmospheric conditions. To enhance the model’s predictive capability, we 330 
incorporate time-dependent variables that reflect the diurnal cycle’s progression.  This approach mitigates 
the overreliance on prior CBLH values by ensuring that the model learns the underlying physical 
relationships between CBLH and its meteorological drivers, rather than simply exploiting temporal 
autocorrelation. As a result, the model is expected to improve the accuracy of CBLH predictions across 
the diurnal cycle, offering a more comprehensive understanding of boundary layer dynamics. 335 
 

2.6 Auto-ML model for convective boundary layer height 

We prepared the relevant input parameters and employed the following methodology to enable the 
machine learning approach to uncover the complex physical mechanisms underlying the physical 
parameters. After the compilation environment was set up and the data was prepared, the specific model 340 
application process (Fig. 3) is as follows: 
 
1）Data Collection and Pre-processing. Collect and pre-process the necessary input data for CBLH 
prediction. Based on the content of Section 2.1 and 2.2, we prepare the data for each timestamp of the 
day, including C_SHF, C_LHF, I_SHF, I_LHF, LTS, TIME, SUNRISE, SUNSET, SUNPERCENT, and 345 
CBLH. The SUNRISE and SUNSET represent the sunrise and sunset times calculated based on the 
latitude and longitude coordinates of the site. To simplify the dataset, we aggregate the data from 06:00 
to 21:00 (UTC-6), covering a 15-hour period, as a single daily dataset. The CBLH for the entire day is 
designated as the target variable for output, while the other parameters serve as input variables. We 
randomly split all the data into 70% for training and 30% for testing by date. The subfigure in Fig. 3 that 350 
depicts the ARM site, included in the Data Collection section, is adapted from Wulfmeyer et al. (2018). 
 
2）Use AutoML to find the Best Train Model. Using the training dataset, we employ TPOT and 
AutoKeras to derive their respective optimal algorithms or hyperparameters. By comparing the R² and 
Mean MAE metrics, we select the model that performs best in both MAE and R² as the optimal model, 355 
which is then designated as the candidate best model for further evaluation and application.  
 
3）Use the Best Model with training Data for Training. The best model is trained on the training 
dataset and saved for later use, ensuring optimal performance for future applications. 
 360 
4）One-Day CBLH Prediction. Use the trained model to predict CBLH for a single day. 
 
5）Check if All Days are Processed. If not all days in the test dataset have been processed, repeat step 
4 for the next day. 
 365 
6)  Save Data. When all days' data have been processed, save the predicted CBLH data for further 
analysis. 
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Figure 3. The Auto-ML workflow of Convective Boundary Layer Height (CBLH) 

Figure 3's flowchart outlines the algorithm proposed in this study (termed the Auto-ML algorithm). Its 370 
core principles are: (1) utilizing thermodynamical variables as input parameters with implicit physical 
constraints; (2) incorporating the complete CBL development cycle as unified input, with corresponding 
CBLH as output; and (3) employing TPOT and AutoKeras models to automatically select the optimal 
machine learning algorithm. This approach enables the model to capture the entire CBL development 
process, enhancing prediction accuracy and representation of CBL dynamics. 375 

3 Results  

To validate the effectiveness of the Auto-ML framework, we first conducted tests using data from the C1 
site spanning 2016 to 2019, presenting the results for ECOR and EBBR heat flux, respectively. 
Subsequently, the algorithm was applied to model data transfer from one site to other sites. Next, we 
compared the performance of the optimal TPOT and AutoKeras algorithms for summer (JJA) and further 380 
evaluated the advantages and limitations of different methods for computing SHAP (Shapley Additive 
exPlanations) values. Furthermore, we analyzed the variations in Auto-ML’s relative importance across 
seasons. Finally, we compared the performance of models trained on multi-site data and tested on site-
specific data. 
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3.1 Application of the Auto-ML to the ARM SGP C1 Site 385 

3.1.1 Results from ECOR flux 

The Auto-ML algorithm demonstrates robust performance in predicting CBLH when using ECOR flux 
dataset. The scatter predicted CBLH in Fig.4a demonstrates a strong linear correlation (R² = 0.845) 
between predicted and observed CBLH across the annual dataset, suggesting that the Auto ML model 
effectively captures the general trends of CBL evolution (Fig.4a). However, the MAE of 0.207 km 390 
highlights a non-negligible systematic bias, potentially linked to specific meteorological conditions or 
seasonal variations not fully resolved by the model. Notably, the density of points clusters around the 1:1 
line in the lower CBLH range (0–1.5 km), while deviations increase slightly at higher CBLH values (>2 
km), possibly indicating reduced model sensitivity to extreme events (e.g., intense convective days). 
 395 
The diurnal variability between predicted and observed CBLH also shows good agreement (Fig.4b). The 
predicted CBLH closely tracks observed values during the morning development phase (07:30–13:30 
UTC-6), with overlapping interquartile ranges (IQR error bars), reflecting reliable performance during 
periods of rapid boundary layer growth driven by surface heating and turbulent mixing. However, a 
significant divergence emerges in the afternoon (15:30–17:30 UTC-6), where the predicted mean CBLH 400 
underestimates observations by ~100 m. This discrepancy coincides with the typical peak phase of the 
CBL, characterized by weakening turbulence, entrainment processes at the CBL top, and increasing 
influence of subsidence or advection. 
 
The afternoon underestimation may stem from the algorithm’s limited ability to resolve complex 405 
interactions during the CBL peak phase. During midday, solar radiation maximizes surface heat flux, 
driving vigorous turbulent eddies that homogenize the CBL, making CBLH prediction relatively 
straightforward. By late afternoon, surface heating diminishes, turbulence decays, and the entrainment 
zone at the CBL top becomes dynamically significant. Entrainment of free-tropospheric air into the CBL 
can temporarily elevate the observed CBLH, a process that may not be easily captured in the Auto ML 410 
model. Additionally, the advection of air masses with different thermodynamic properties (e.g., moisture 
or temperature gradients) could introduce spatial heterogeneity, further challenging the algorithm’s 
generalizability during transitional periods. 
 
Moreover, the model’s training data might underrepresent late-afternoon scenarios, where PBL dynamics 415 
are influenced by mesoscale phenomena (e.g., cloud cover, or topographic effects). For instance, 
enhanced subsidence or cloud shading at 15:30–17:30 (UTC-6) could suppress turbulent mixing, leading 
to a shallower predicted CBLH compared to observations. 
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 420 
Figure 4. Results of Auto ML model with ECOR dataset for predicting CBLH: (a) Comparison of all test data, (b) Diurnal 
variation average with IQR (interquartile range) error bars. 

3.1.2 Results from EBBR flux 

The Auto-ML algorithm exhibits robust performance in predicting CBLH using the EBBR flux dataset. 
As shown in Fig. 5a, the scatter plot of predicted CBLH demonstrates a strong linear correlation (R² = 425 
0.834) between predicted and observed CBLH across the annual dataset, indicating that the Auto-ML 
model effectively captures the overall trends of CBL evolution. However, the MAE of 0.205 km, 
comparable to that obtained with the ECOR dataset, suggests that both flux datasets yield similar 
predictive accuracy. The diurnal variability between predicted and observed CBLH also shows good 
agreement (Fig.5b). During the morning development phase (07:30–11:30 UTC-6), the predicted CBLH 430 
closely aligns with observed values. However, a non-notable divergence emerges in the afternoon (around 
15:30 UTC-6), where the predicted CBLH is lower than the observed values, with the deviation reducing 
from 100 m (as seen with ECOR) to approximately 50 m. 
 
 435 

 
Figure 5. Results of Auto ML model with EBBR dataset for predicting CBLH: (a) Comparison of all test data, (b) Diurnal 
variation average with IQR (interquartile range) error bars. 

 
By comparing Fig.4 and Fig.5, it is evident that, with the same Auto-ML model, the CBLH predictions 440 
using ECOR flux data slightly outperform those using EBBR flux data, though the difference is minor 
(R²: 0.845 vs 0.834; MAE: 0.207 km vs 0.205 km). This suggests that heat flux measurements from 
different instruments exhibit discrepancies, but these discrepancies follow a systematic, inherent pattern. 
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The Auto-ML model effectively mitigates these inherent differences, achieving comparable CBLH 
predictions, thereby demonstrating its robustness and adaptability. 445 
 
A comparison of Fig.4 and Fig.5 reveals that the discrepancies between the predicted values and the DL 
observations are primarily evident at the PBL top (~15:30 UTC-6) and during the dissipation phase 
(~19:30 UTC-6). Specifically, at the CBL top (~15:30 UTC-6), the predicted values are generally lower 
than the DL observations, whereas during the dissipation phase (~19:30 UTC-6), the predicted values 450 
tend to exceed the observed values. 

3.2 Effectiveness of the Auto-ML Across Multiple Sites 

The Auto-ML algorithm demonstrates notable adaptability beyond the C1 site, highlighting its potential 
for broader application across multiple observation sites. To evaluate this, we tested an Auto-ML model 
trained on ECOR heat flux data at the C1 site (E14 site) for its performance at the E37 and E39 sites. 455 
Similarly, an Auto-ML model trained on EBBR heat flux data at the C1 site (E13 site) was assessed for 
its performance at the E32 and E39 sites. 
 

3.2.1 Apply C1 site ECOR model to E37 and E39 Sites 

The Auto-ML model trained at the C1 site with ECOR data exhibits strong performance at the E37 and 460 
E39 sites, achieving R² values of 0.787 and 0.806, and MAE values of 0.219 km and 0.208 km, 
respectively (Fig. 6a and 6c). However, as observed in Fig.6b and 6d, the model’s performance varies 
across different time periods at these sites. Specifically, Fig.6b shows that at the E37 site, the model 
predictions align well with observations during the CBLH dissipation phase (15:30–21:30 UTC-6). 
However, during the initial development phase (07:30–14:30 UTC-6), a significant discrepancy is 465 
observed, with predicted values consistently higher than the DL observations. Notably, no similar 
discrepancy is evident in Figure 4b, suggesting that the heat flux differences between the C1 and E37 
sites are more pronounced during the initial phase, while the differences diminish after reaching the 
boundary layer top. 
 470 
Similarly, Figure 6d indicates that at the E39 site, the model predictions closely match observations during 
the CBLH dissipation phase (15:30–21:30 UTC-6). However, discrepancies are observed during the 
initial phase (09:30–11:30 UTC-6) and the top phase (14:30–16:30 UTC-6). During the initial phase, the 
predicted values are higher than the DL observations, while at the top phase, the predicted values are 
lower. In comparison, Figure 4b shows a similar discrepancy at the top phase but not during the initial 475 
phase. This suggests that the heat flux differences between the C1 and E39 sites are more significant 
during the initial phase, with the differences decreasing after reaching the boundary layer top. 
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Figure 6. C1 ECOR model for E37 and E39 sites; (a) and (c) represent the R2 and MAE for E37 and E39 respectively; (b) and (d) 
show the MEAN CBLH with IQR error bars for E37 and E39 respectively. 480 

The above analysis indicates that while the Auto-ML model trained at the C1 site performs well at the 
E37 and E39 sites, its performance varies across different time periods, reflecting both similarities and 
differences in behavior at these sites. This highlights the spatial variability between sites. Furthermore, 
the differences between the C1 and E39 sites are smaller than those between the C1 and E37 sites, which 
aligns with their relative distances (41 km vs. 77 km). 485 

3.2.2 Apply C1 site EBBR model to E32 and E39 Sites 

The Auto-ML model trained at the C1 site using EBBR data performs well at the E39 site, achieving an 
R² of 0.795 and an MAE of 0.211 km (Fig. 7a), but shows a slight decline in performance at the E32 site, 
with an R² of 0.719 and an MAE of 0.269 km (Fig. 7c). However, Figure 7d reveals discrepancies in the 
predicted values near the CBL top, which closely resemble the performance of the C1 site with EBBR 490 
data (Fig. 5b). In contrast, Figure 6b indicates significant deviations at the E32 site during both the initial 
and top phases of CBLH (07:30–17:30 UTC-6), where the predicted values exceed the DL observations 
by up to ~200 m. Notably, no such pronounced discrepancies are observed in Fig. 5b, suggesting that the 
heat flux differences between the C1 and E32 sites are substantial during the initial phase and persist even 
after reaching the boundary layer top. 495 
 
The above discussion highlights that while the Auto-ML model trained at the C1 site performs effectively 
at the E37 and E39 sites, it exhibits more pronounced differences at the E32 site. The variability between 
the C1 and E39 sites is smaller than that between the C1 and E32 sites, despite their comparable distances 
(41 km vs. 40 km). 500 
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Figure 7. C1 EBBR model for E32 and E39 sites; (a) and (c) represent the R2 and MAE for E32 and E39 respectively; (b) and (d) 
show the MEAN CBLH with IQR error bars for E32 and E39 respectively. 

The Auto-ML algorithm demonstrates significant adaptability beyond the C1 site, underscoring its 
potential for wider application across multiple observational stations (Figs. 6–7). The Auto-ML model 505 
trained at the C1 site performs effectively at the E37 and E39 sites, while models trained at the E37 and 
E39 sites also exhibit robust performance at the C1 site, achieving R² values of approximately 0.80–0.85 
and MAE values ranging from 0.19 to 0.23 km (figures not shown in this study). 

3.3 The relationship between Auto-ML performance and the spatial separation between sites 

Section 3.2 demonstrates the cross-site applicability of the Auto-ML algorithm. To further investigate the 510 
relationship between Auto-ML performance and the spatial separation between sites, we selected data 
from the C1 site (E14 and E13 sites with ECOR and EBBR data, respectively) and the E39 site, training 
separate models using both datasets. These models were then applied to other sites with similar heat flux 
characteristics to assess the correlation between performance and inter-site distance. 
The predictive performance of the Auto-ML algorithm exhibits a clear negative correlation with the 515 
spatial separation between observational sites (Fig. 8). For instance, as shown by the solid red and dashed 
lines in Fig.8, the model trained on ECOR data from the C1 site performs robustly at its primary site (R² 
= 0.847, MAE = 0.203 km), but its accuracy decreases at the E39 site 41 km away (R² = 0.809, MAE = 
0.206 km) and further declines at the E37 site 77 km away (R² = 0.801, MAE = 0.213 km). Similarly, as 
depicted by the solid blue and dashed lines in Fig. 8, the model trained on ECOR data from the E39 site 520 
achieves strong performance at its primary site (R² = 0.810, MAE = 0.216 km), but its accuracy higher at 
the C1 site 41 km away (R² = 0.836, MAE = 0.208 km) and decreases further at the E37 site 77 km away 
(R² = 0.747, MAE = 0.238 km). 
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Despite this overall trend of performance decline with distance, notable irregularities are observed. For 525 
example, the model trained on EBBR data from the C1 site performs best at its primary site (R² = 0.834, 
MAE = 0.205 km), with a slight decrease in accuracy at the E39 site 41 km to the southeast (R² = 0.795, 
MAE = 0.2011 km), but a more significant decline at the E32 site 40 km to the northwest (R² = 0.719, 
MAE = 0.269 km). Likewise, the model trained on EBBR data from the E39 site excels at its primary site 
(R² = 0.800, MAE = 0.221 km), maintains comparable performance at the C1 site 41 km to the southeast 530 
(R² = 0.805, MAE = 0.229 km), but shows a substantial drop at the E32 site 67 km to the northwest (R² 
= 0.758, MAE = 0.257 km). 
 

 
Figure 8: Relationship between Auto-ML effectiveness and distance. 535 

It is noteworthy that the model trained on C1 EBBR data exhibits a sharp decline in R² to 0.71 at the E32 
site, located 40 km away, while maintaining a robust R² of approximately 0.8 at the E39 site, 41 km from 
C1. One potential reason is that ARM’s ECOR systems are typically surrounded by winter wheat fields 
or farmland, whereas EBBR systems are primarily deployed in pastures. The performance drop at E32 
may stem from vegetation differences and measurement principles. E32’s pasture dominated EBBR data, 540 
prone to overestimating latent heat flux, contrasts with the winter wheat fields around C1 and E39, likely 
measured by ECOR, which directly captures turbulent fluxes. These discrepancies in surface heat flux 
inputs challenge the model’s generalization, particularly at E32, where site-specific factors like soil 
moisture or EBBR measurement errors near sunrise/sunset may further degrade performance. 
 545 
This analysis reveals that the predictive performance of the Auto-ML algorithm exhibits a clear negative 
correlation with spatial separation between sites, accompanied by spatial heterogeneity. These 
irregularities align with theoretical expectations: local factors such as terrain variations (e.g., changes in 
elevation or surface roughness), land use differences (e.g., urban vs. rural settings), and microclimate 
effects (e.g., humidity or temperature gradients) disrupt the coherence of CBL dynamics with increasing 550 
distance. These site-specific perturbations limit the algorithm’s generalizability across diverse regions. 
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3.4 Comparison of Performances of two ML methods for summer at the C1 site. 

To compare algorithmic performance, this study evaluates two high-performing machine learning models: 
an ExtraTreesRegressor from TPOT and a neural network from AutoKeras. Both models are trained on 555 
the same dataset. The ExtraTreesRegressor is selected in this section because of its inherent resistance to 
overfitting. This robustness is achieved through randomized feature selection and split point selection. As 
a result, the model performs well on high-dimensional data and noisy datasets and shows strong resilience 
to outliers. However, it is not suitable for small-sample datasets.  The best-performing model selected by 
AutoKeras is a neural network with 10,836 parameters, implemented using the Functional API. It 560 
comprises an input layer for 9-dimensional features, preprocessing layers for multi-category encoding 
and normalization (19 non-trainable parameters), two dense hidden layers with 256 and 32 units 
respectively (ReLU activation, 10,817 trainable parameters), and a regression output layer. The 
architecture leverages AutoKeras’s automated feature engineering through integrated preprocessing, 
while its two-layer structure maintains moderate complexity. The parameter distribution (256 to 32 units) 565 
indicates a progressive reduction in feature dimensionality, supporting effective feature extraction for the 
regression task. 

3.4.1 SHAP Computation Methods: Tree-Based vs. Gradient Approaches. 

To compare the relative importance of features between the two methods, SHAP values for the 
ExtraTreesRegressor are computed directly using the TreeExplainer, which leverages the tree structure 570 
(split paths and leaf node values). In contrast, the AutoKeras neural network employs the 
GradientExplainer, a gradient-based method, to estimate SHAP values. Their summer (JJA) performance, 
shown in Fig. 9, reveals similar R² and MAE values: ExtraTreesRegressor (0.855, 0.221 km) versus neural 
networks (0.840, 0.245 km), as depicted in Fig. 9a (ExtraTreesRegressor) and Fig.9e (neural networks). 
These consistent metrics highlight the robustness of both approaches in capturing CBLH. However, 575 
despite their similarity in overall performance, the two models diverge significantly (SHAP method) in 
their assessment of feature importance. In Fig.9c, ExtraTreesRegressor assigns a notably higher 
importance to LTS (~0.23); attributes nearly equal importance to I_SHF, I_LHF, TIME, and 
SUNPERCENT each hovering around 0.15, indicating a clear prioritization of LTS in its decision-making 
process. In contrast, the neural network, as shown in Fig.9g, assigns a notably higher importance to I-580 
LHF (~0.28); attributes nearly equal importance to C_SHF, and I_SHF, each hovering around 0.2. The 
different machine learning models can achieve comparable accuracy by using varied nonlinear 
combinations of predictors. In such scenarios, the physical interpretation of these models becomes 
challenging or may lack sufficient reliability.  
 585 
Figures 9b and 9d show that the diurnal variations predicted by the AutoKeras neural network and the 
TPOT ExtraTreesRegressor are generally comparable. However, Figure 9f reveals that the neural network 
predicts lower CBLH values than the ExtraTreesRegressor (Figure 9b) between 07:30–11:30 and around 
19:30. Despite this, the neural network exhibits inferior performance, with lower R² and higher MAE 
compared to the ExtraTreesRegressor. 590 
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A comparison of Figures 9g–h (neural network) with Figures 9c–d (ExtraTreesRegressor) highlights 
distinct differences in feature contributions. For the neural network, the SHAP values and relative 
importance of TIME, SUNRISE, and SUNSET are zero, whereas SUNPERCENT retains a non-zero 
SHAP value. This suggests that the neural network effectively captures the information encoded in 595 
Equation 5, prioritizing SUNPERCENT as the primary contributor to CBLH predictions. In contrast, the 
ExtraTreesRegressor assigns reduced but non-zero relative importance to SUNRISE and SUNSET, 
indicating a broader distribution of feature contributions. 
 
These differences likely stem from the distinct SHAP explainers used for each model. The 600 
ExtraTreesRegressor employs the TreeExplainer, which leverages the tree structure (split paths and leaf 
node values) to compute SHAP values directly, without requiring a background dataset. Conversely, the 
neural network uses the GradientExplainer, a local explanation method that relies on a background dataset 
(100 samples in this study) and computes SHAP values based on gradients near specific input points. 
When the local gradient for features such as TIME, SUNRISE, and SUNSET approaches zero, this 605 
reflects their negligible impact on the model’s local decision boundary, resulting in corresponding SHAP 
values of zero. This explains the neural network’s tendency to assign zero importance to these features, 
while the ExtraTreesRegressor’s global approach captures their residual contributions. 
 

 610 
Figure 9. Performance comparison of two machine learning frameworks during summer (JJA) (a-d) ExtraTreesRegressor: (a) R² 
and MAE, (b) diurnal variations, (c) relative influence of input variables and (d) SHAP values of input variables.  (e-h) Neural 
network: (e) R² and MAE, (f) diurnal variations, (g) relative influence of input variables and (h) SHAP values of input variables.   

3.4.2 Comparative Analysis of SHAP Value Estimation Methods for AutoKeras Neural Networks 

To validate the reliability of SHAP values and assess differences across computation methods, we 615 
compare the results of alternative SHAP explainers with those shown in Fig. 9g–h. The GradientExplainer, 
used for the AutoKeras neural network, approximates SHAP values by computing gradients of input 
features relative to model outputs, relying on a background dataset (100 samples in this study) to estimate 
feature contributions. The choice of background dataset can influence results, as GradientExplainer 
assumes local differentiability and quantifies feature importance based on gradient information. 620 
Consequently, features with near-zero gradients (e.g., those with minimal local influence near the 
background dataset) may yield zero SHAP values. 
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To mitigate this limitation, two additional explainers were employed: (1) KernelExplainer, a model-
agnostic method that estimates SHAP values through sampling and weighted regression, suitable for any 625 
model. By sampling the global feature space, it captures non-local or nonlinear contributions, potentially 
yielding non-zero SHAP values even when local gradients are zero. However, KernelExplainer still 
requires a background dataset. (2) ExactExplainer, which does not require an explicit background dataset 
but uses a masking strategy, typically shap.maskers.Independent, to implicitly define the background 
distribution based on the data itself. By precisely computing Shapley values for all feature combinations, 630 
ExactExplainer provides the theoretically most accurate SHAP estimates, though it is computationally 
intensive.  
 

Table 3. Performance Comparison of Various SHAP Value Calculation Methods. 
 SHAP Values 

GradientExplainer KernelExplainer ExactExplainer 
C_LHF 0.12 0.09 0.09 
C_SHF 0.21 0.22 0.21 
I_LHF 0.28 0.18 0.18 
I_SHF 0.2 0.13 0.13 
LTS 0.11 0.15 0.16 

TIME 0 0.13 0.13 
SUNRISE 0 0.02 0.02 
SUNSET 0 0.01 0.01 

SUNPERCENT 0.08 0.07 0.07 

 635 
 
Table 3 summarizes the performance of different SHAP explainers. The GradientExplainer assigns zero 
SHAP values to input features with low influence, resulting in larger errors, but it offers high 
computational efficiency and requires fewer resources. In contrast, the ExactExplainer provides more 
reliable results but incurs high computational complexity, making it resource-intensive. For scenarios 640 
with limited computational resources and a need for high-accuracy SHAP values, the KernelExplainer is 
recommended as a balanced alternative. Notably, for features with lower relative importance, such as 
TIME, SUNRISE, and SUNSET, the ExactExplainer and KernelExplainer yield nearly identical results, 
with minor differences (approximately 0.01) observed for C_SHF and LTS. 
 645 
Based on these findings, the SHAP value computation strategy in this study is as follows: For the TPOT-
selected model (ExtraTreesRegressor), the TreeExplainer is used, leveraging its efficiency for tree-based 
models. For the AutoKeras neural network, the ExactExplainer is employed to compute SHAP values, as 
real-time computation is not required, prioritizing accuracy over speed. 
 650 

3.5 Seasonal comparative analysis of Auto-ML's performance 

3.5.1 Seasonal comparative analysis of Auto-ML's comprehensive performance 

The performance of Auto-ML varies across different sites and seasons. As shown in Figure 10, after 
training with multi-year ECOR data at C1 sites, the model’s performance is evaluated across four seasons. 
Figures 10a1–8a4 illustrate that autumn (SON) achieves the highest overall R² (0.860) but ranks second 655 
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in MAE (0.178 km). Winter (DJF) exhibits the lowest MAE (0.173 km) but the poorest R² (0.736). 
Summer (JJA) records the highest overall CBLH with strong performance (R²: 0.855, MAE: 0.221 km). 
Spring (MAM) yields an R² of 0.768 and an MAE of 0.239 km. Given the higher CBLH in summer and 
lower CBLH in winter, Auto-ML performs best overall in autumn. 

3.5.2 Season-wise comparison of hourly averaged AutoML performance 660 

However, when considering diurnal variations across seasons, summer (JJA) appears to perform best. As 
shown in Figures 10b1–9b4, predictions for spring (MAM) and autumn (SON) near the CBL top phase 
are approximately 0.1 km lower than DL observations. In winter (DJF), due to lower overall CBLH, 
predictions are about 0.05 km below observations. In contrast, summer (JJA) shows no significant 
discrepancy near the CBL top (12:30–14:30), with predictions only slightly lower (~0.05 km) around 665 
11:30. Potential reasons include: (1) a larger number of summer data points, leading Auto-ML to prioritize 
summer performance, and (2) distinct entrainment processes in summer compared to other seasons. 
 
The entrainment process at the top of the atmospheric boundary layer exhibits a dual influence on 
boundary layer development. When warm, dry air is entrained into the boundary layer, it enhances 670 
turbulent mixing and promotes vertical growth (Angevine et al., 1998). Conversely, if a strong inversion 
layer exists aloft, entrainment can suppress convection by dissipating turbulent kinetic energy and 
reducing upward heat flux (Lenschow et al., 2012). The entrainment rate 𝜔4, defined as the volume flux 
of air drawn from the free atmosphere into the mixing layer per unit time at the boundary layer top, follows 
a modified form of the classical entrainment parameterization (Lilly, 1968; Deardorff, 1979; Stull, 1988; 675 
Sullivan et al., 1998): 

𝜔4 = A 5∗)

6∆3*
         (6) 

where, the entrainment efficiency coefficient A is around 0.2 (Beare et al., 2006; Cuxart et al., 2006); 
𝛽 ≈ 0.5	 is an empirical coefficient representing stratification suppression (Pino et al., 2003); h is CBLH,	
𝜔∗	 	is convective velocity scale(Deardorff, 1979); ∆𝜃9 is virtual potential temperature jump (virtual 680 
potential temperature at the bottom of the inversion layer - average virtual potential temperature of the 
mixing layer); 𝜃92 is the surface virtual potential temperature. Equate 6 indicates that deeper boundary 
layers (larger h) exhibit weaker entrainment due to diminished turbulent energy (Beare et al., 2008). 
Additionally, when cloud fraction exceeds ~60%, the boundary layer growth rate declines by over 50%, 
as cloud shading suppresses surface-driven turbulence (Zhang et al., 2020). 685 
 
In humid summer conditions, high specific humidity (>18–20 g/kg) further inhibits boundary layer growth 
through multiple pathways: (a) increased cloudiness reduces surface solar heating (Luo et al., 2024), (b) 
precipitation depletes convective available potential energy (Hohenegger et al., 2013), and (c) evaporative 
cooling enhances stability (Zhang et al., 2003). Observational studies confirm that tropical moist 690 
boundary layers are 30–40% shallower than their arid counterparts (von Engeln & Teixeira, 2013), 
highlighting moisture’s threshold-like suppression effect. 
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Figure 10. Seasonal performance of the C1 ECOR model. The four columns represent the four seasons: spring (MAM), summer 
(JJA), autumn (SON), and winter (DJF); (a) R² and MAE metrics;(b) Diurnal evolution of mean CBLH; (c) Beeswarm (SHAP 695 
values); (d)SHAP-derived feature importance. 

Further analysis of Fig. 10b1–10b4 reveals that the interquartile range (IQR) error bars for predicted 
CBLH are consistently narrower than those for DL-derived CBLH. This is particularly evident in summer 
(JJA, Fig. 10b2), where, for instance, at 11:30, the IQR of DL CBLH is approximately four times that of 
the predicted values. This indicates that, despite the mean values of DL CBLH and predicted CBLH being 700 
similar (nearly overlapping at 11:30 with an error <0.01 km), the boundary layer development phase is 
governed by heat flux and LTS, which determine the attainable CBLH height. However, DL CBLH 
exhibits greater variability due to influences from additional meteorological factors, such as wind and 
low-level jets (LLJ). In contrast, the predicted CBLH, derived solely from thermodynamic parameters, 
lacks information on these factors, resulting in a more constrained range. A similar trend is observed in 705 
winter (DJF) with pronounced consistency. In spring and autumn, while a comparable pattern exists, the 
differences between predicted and observed values are smaller, suggesting lower variability (or 
complexity) in meteorological conditions compared to summer. 

3.5.3 SHAP dependence between Auto-ML input parameters and CBLH 

Analysis of Fig. 10c1–c4 reveals the relationships between various variables and CBLH. Initially, heat 710 
flux components (C_SHF, C_LHF, I_SHF, I_LHF) exhibit a predominantly positive correlation with 
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CBLH, indicating that stronger heat flux corresponds to greater CBLH. Conversely, LTS shows a negative 
correlation with CBLH, suggesting that higher LTS values are associated with reduced CBLH. Time and 
SUNPERCENT display a biphasic relationship with CBLH: a positive correlation is observed during the 
pre-peak phase, where CBLH increases with time, while a negative correlation emerges post-peak as 715 
CBLH decreases with time. This behavior is consistent with CBL dynamics. Additionally, SUNRISE 
exhibits a weak negative correlation with CBLH, implying that later sunrise times correspond to lower 
CBLH, whereas earlier sunrise times are linked to higher CBLH. Similarly, later sunset times are 
associated with higher CBLH, and earlier sunset times with lower CBLH. These patterns align well with 
the established development processes of the atmospheric boundary layer. Since SUNPERCENT 720 
integrates the effects of time, sunrise, and sunset, its relationship with CBLH closely mirrors that of time. 
 
While the general relationships between input parameters and CBLH are outlined above, seasonal 
variations are notable. For instance, LTS consistently exhibits a negative correlation with CBLH in spring 
(MAM), autumn (SON), and winter (DJF). However, in summer, certain data points show a positive 725 
correlation, suggesting that under specific complex meteorological conditions in summer, factors beyond 
LTS dominate CBLH development, further highlighting the complexity of summer CBL dynamics. 
Additionally, I_LHF displays a positive correlation with CBLH across spring, summer, and autumn, but 
a negative correlation in winter, despite most corresponding SHAP values exceeding -0.1, creating a stark 
contrast with the other seasons. A similar, though less pronounced, trend is observed with C_SHF in 730 
winter. This phenomenon may be attributed to the dominance of northerly monsoon winds in winter, 
exacerbating cold, dry conditions. An increase in I_LHF could reduce I_SHF, potentially suppressing 
turbulence generation. In winter, both SUNRISE and SUNSET exhibit a negative correlation with CBLH, 
indicating that the overall CBLH remains low during this season. The specific mechanisms underlying 
these phenomena require further investigation. 735 

3.5.4 Relative importance of input parameters in Auto-ML 

The relative importance of different parameters across the four seasons exhibits a consistent pattern. LTS 
ranks highest (0.2–0.25), as it determines the energy required for CBLH growth. Next are the 
instantaneous heat flux components (I_SHF: 0.15–0.18 and I_LHF: 0.15–0.18), indicating that current 
heat flux plays a critical role in sustaining CBLH. Following these are TIME (0.12–0.15) and 740 
SUNPERCENT (0.12–0.15), which collectively govern the diurnal variation in boundary layer 
development; a positive correlation is observed before CBLH peaks (typically when SUNPERCENT is 
around 0.5), transitioning to a negative correlation post-peak. Subsequently, C_SHF (0.06–0.09) exceeds 
C_LHF (~0.05) in influence. The least impactful factors are SUNRISE (~0.02) and SUNSET (0.01–0.02). 
These relative importance values are consistent with the discussion in Section 3.5.3. 745 
 
However, minor seasonal variations in the relative importance of these parameters are observed. For 
instance, in summer, LTS reaches a relative importance of 0.22, but its error bar extends to 0.3, suggesting 
that while LTS temporarily dominates CBLH development, its influence is significantly modulated by 
other conditions, underscoring the complexity of summer boundary layer dynamics. In contrast, during 750 
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winter, LTS maintains a relative importance of approximately 0.23 with an error bar of only 0.1, 
indicating its dominant and stable role in governing winter boundary layer development. 

3.6 Comparative analysis of multi-site training with site-specific testing 

Previous analyses employed Auto-ML models trained separately for individual sites. To investigate 
potential performance improvements, we conducted experiments using combined multi-site training 755 
followed by site-specific testing while controlling for cross-heat-flux interference. Two independent test 
groups were evaluated: the ECOR cluster (C1, E37, E39) and the EBBR cluster (C1, E32, E39), with 
comparative results presented in Table 4. Figure 10 further illustrates the CBLH diurnal variation patterns 
to enhance temporal resolution analysis. 
 760 

Table 4. The results of multi-site training with site-specific testing 
 ECOR EBBR 

 C1 E37 E39 C1 E32 E39 
R2 0.851 0.832 0.806 0.837 0.778 0.82 

MAE (km) 0.198 0.19 0.211 0.203 0.249 0.205 
C_LHF 0.04 0.03 0.03 0.07 0.06 0.07 
C_SHF 0.11 0.11 0.11 0.03 0.04 0.04 
I_LHF 0.09 0.09 0.09 0.15 0.14 0.15 
I_SHF 0.17 0.18 0.18 0.14 0.13 0.15 
LTS 0.2 0.19 0.18 0.2 0.24 0.18 

TIME 0.16 0.16 0.16 0.18 0.17 0.17 
SUNRISE 0.04 0.05 0.05 0.03 0.03 0.04 
SUNSET 0.03 0.03 0.03 0.03 0.03 0.03 

SUNPERCENT 0.16 0.16 0.17 0.17 0.16 0.17 

 
 
To evaluate the performance of the ECOR and EBBR models, we trained both using 70% of the data from 
three sites combined and tested them on the remaining 30% of site-specific data. The results show that 765 
ECOR outperforms EBBR overall, with an average R² of 0.830 and MAE of 0.200 across the three sites, 
compared to EBBR’s average R² of 0.812 and MAE of 0.219. However, at site E39, EBBR achieves a 
better R² (0.820) and MAE (0.205) than ECOR’s R² (0.806) and MAE (0.211).  The overall performance 
surpassed that of training and testing solely with C1 site data: ECOR (R²: 0.851 vs. 0.845; MAE: 0.198 
km vs. 0.207 km), EBBR (R²: 0.837 vs. 0.834; MAE: 0.203 km vs. 0.205 km). 770 
 
In terms of input parameter importance, ECOR exhibits minimal variation, with all parameters 
contributing approximately 0.01, except for LTS at 0.02. For EBBR, the LTS contribution at site E32 
(0.24) is 0.06 higher than at E39 (0.18). Despite E32’s lower overall performance (R²: 0.778, MAE: 0.249) 
compared to E39 (R²: 0.820, MAE: 0.205), E32’s predictions are more accurate near the convective 775 
boundary layer top (~15:30), closely aligning with observations (mean values nearly overlap). In contrast, 
E39’s predictions at the same time are approximately 0.1 km lower than observed. This suggests that 
E32’s emphasis on LTS enhances prediction accuracy near the CBL top (Fig.10), where LTS is a critical 
factor. 
 780 
The primary influencing factors for ECOR and EBBR were similar (in table 4), with the largest difference 
observed in LTS (E32: 0.24, E39: 0.18). Additionally, the allocation of SHF and LHF at E39 differed 
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significantly between ECOR and EBBR, with notable disparities in C_LHF (0.07 vs. 0.03) and C_SHF 
(0.03 vs. 0.04). However, other factors, such as LTS and SUNPERCENT, showed near-identical patterns. 
These findings highlight discrepancies in heat flux measurements between ECOR and EBBR. Such 785 
differences typically require data assimilation in traditional PBL schemes but can be mitigated through 
machine learning’s nonlinear combinations, yielding comparable CBLH estimates. This approach could 
also facilitate future heat flux data assimilation. 
 
The lower overall R² and MAE at E32, combined with its distinct LTS contribution, indicate that local 790 
meteorological conditions at E32 differ from those at the other sites. According to Tang (2019), E32 is 
surrounded primarily by pasture, unlike the seasonal crops and grasslands near C1 and E39, consistent 
with findings in Section 3.3. Including E32’s data in training improves its performance (R²: 0.778, MAE: 
0.249) compared to Section 3.3 (R²: 0.718, MAE: 0.271), highlighting the benefit of site-specific data in 
model training.  795 
 
As shown in the diurnal variations across different sites (Fig. 11), noticeable discrepancies remain among 
them. For the ECOR measurements, the predicted CBL top heights are lower than the observations at the 
C1 and E39 sites, whereas at the E37 site, the predicted values exceed the observed ones. This suggests 
that the entrainment process near the CBL top at E37 differs from that at C1 and E39. In contrast, the 800 
EBBR-based results show that predictions at C1 and E32 closely match the observations near the CBL 
top throughout the day, while at E39, the model tends to underestimate the CBL top height. Overall, the 
discrepancy in EBBR-based estimates is smaller than that of ECOR, particularly near the CBL top. One 
possible explanation is that the E39, C1, and E32 sites lie along a southeast wind trajectory, potentially 
leading to more consistent boundary layer characteristics across these locations (Chu et al., 2025a). 805 

 
Figure 11. Diurnal variation comparison of multi-site trained models evaluated through site-specific testing. Results are grouped 
by heat flux measurement system: (Top) ECOR sites (a) C1 (E14), (b) E37, (c) E39; (Bottom) EBBR sites (a) C1 (E13), (b) E32, (c) 
E39. 

 810 
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4 Summary and conclusions  

This study develops an Auto-ML framework for predicting CBLH, guided by thermodynamic physical 
constraints and the implicit diurnal cycle of CBLH. By leveraging TPOT and AutoKeras to automatically 
select optimal models, the approach bypasses manual comparisons of machine learning algorithms, 
enhancing efficiency and reproducibility. The resulting Auto-ML models, validated against Doppler lidar 815 
CBLH measurements, demonstrate robust performance with an overall R² of 0.84. Comparisons between 
ECOR and EBBR techniques for measuring surface heat and energy fluxes reveal consistent predictions, 
with an R² difference of approximately 0.011 and a MAE of 0.002 km. The models exhibit strong 
adaptability across multiple sites. When trained on ECOR data from the C1 site and applied to E37 and 
E39 sites within the ARM SGP network, the models achieve R² values of 0.787 and 0.806, respectively. 820 
Models trained on combined C1 and E39 data and tested on other sites show a gradual decline in R² and 
MAE with increasing distance yet maintain high predictive accuracy. These results underscore the 
transferability of the Auto-ML framework, highlighting its potential for integration with traditional 
numerical weather prediction models. 
 825 
To enhance model interpretability, we conducted a comprehensive analysis of SHAP values using 
different explainers. The ExactExplainer was selected for its high accuracy in computing SHAP values 
for the AutoKeras neural network, despite its computational cost, as real-time computation was not 
required. In contrast, the TreeExplainer was employed for the TPOT-selected ExtraTreesRegressor, 
leveraging its efficiency for tree-based models. Seasonal performance at the C1 site was further evaluated, 830 
with a targeted comparison of model predictions during summer (JJA), revealing consistent feature 
importance patterns (e.g., dominance of LTS). 
 
The study compared the performance of the C1 ECOR site across four seasons, revealing that autumn 
(SON) exhibited the best performance (R²: 0.860, MAE: 0.178 km). This may be attributed to fewer 835 
clouds in autumn, reducing the influence of CBL top entrainment on CBLH development. Subsequently, 
the model was trained using data from multiple sites and tested individually. The overall performance 
surpassed that of training and testing solely with C1 site data: ECOR (R²: 0.851 vs. 0.845; MAE: 0.198 
km vs. 0.207 km), EBBR (R²: 0.837 vs. 0.834; MAE: 0.203 km vs. 0.205 km). ECOR sites (C1, E32, E39) 
generally outperformed EBBR sites (C1, E37, E39) on average, though EBBR at E39 outperformed 840 
ECOR. The primary influencing factors for ECOR and EBBR were similar, with the largest difference 
observed in LTS (E32: 0.24, E39: 0.18). Additionally, the allocation of SHF and LHF at E39 differed 
significantly between ECOR and EBBR, with notable disparities in C_LHF (0.07 vs. 0.03) and C_SHF 
(0.03 vs. 0.04). However, other factors, such as LTS and SUNPERCENT, showed near-identical patterns. 
These findings highlight discrepancies in heat flux measurements between ECOR and EBBR. Such 845 
differences typically require data assimilation in traditional PBL schemes but can be mitigated through 
machine learning’s nonlinear combinations, yielding comparable CBLH estimates. This approach could 
also facilitate future heat flux data assimilation. This implicit physically constrained Auto-ML approach 
significantly improves the accuracy and generalizability of CBLH predictions across diverse sites and 
seasons. By providing a scalable framework for boundary layer parameterization, it offers valuable 850 
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insights for refining atmospheric models and advancing the integration of machine learning in operational 
weather forecasting. 
 
It should be noted that, although this study consistently refers to Auto-ML as "predicting" the CBLH, in 
the context of PBL schemes, it is more accurately described as "diagnosing" CBLH, given that the model 855 
uses a full day of data as both input and output. To enhance the model's applicability, it is critical to align 
it with the conventions of traditional PBL schemes by incorporating the CBLH output from the previous 
time step as an input for predicting the subsequent CBLH. Preliminary application of the model at the C1 
site produces results consistent with those reported in this study (R² = 0.822; MAE = 0.199 km). The next 
step involves further optimization to meet additional requirements: extracting parameters from the CCPP-860 
SCM PBL framework to predict the CBLH by Auto-ML, and then feeding this output back into the PBL 
framework to forecast the CBLH at the subsequent time step. 
 
The Auto-ML PBL model has broad applications due to its accuracy and efficiency. It can support air 
quality forecasting by better predicting pollutant dispersion within the PBL, which is crucial for urban 865 
and industrial areas (Garratt, 1992; Stensrud, 2007). Additionally, its lightweight design makes it ideal 
for integration into local data-driven weather forecasting systems, providing accurate CBLH inputs to 
support low-altitude economic activities (Ben et al., 2024). The Auto-ML driven scalability further 
enables its use in data assimilation, integrating diverse observations for improved model initialization 
(Arcucci et al., 2021; Arcomano et al., 2023). As observational networks like ARM expand, this model 870 
offers a versatile tool for global atmospheric research. 
 
The lightweight Auto-ML PBL model exhibits limitations in predicting peak MLH values near the PBL 
top, primarily due to two interrelated factors. First, its reliance on lidar-derived training data introduces 
uncertainties at higher altitudes, where a reduced SNR obscures sharp inversion layers. Second, Second, 875 
although the AutoML framework captures energy balance constraints to some extent, it does not fully 
represent critical physical processes such as entrainment dynamics and turbulence-driven mixing at the 
top of the CBL. These processes are especially important during the peak development phase of the 
boundary layer. At this stage, shear-driven turbulence and buoyancy fluxes play a dominant role in 
promoting vertical mixing and facilitating the entrainment of free-atmosphere air into the CBL. Without 880 
explicitly incorporating these mechanisms, the model may underrepresent key drivers of boundary layer 
growth, particularly under conditions of strong surface heating or elevated wind shear. This limitation 
highlights the need for physically informed hybrid models that can integrate data-driven approaches with 
boundary-layer process understanding. Unlike traditional schemes that parameterize these through TKE 
budgets or non-local mixing, the Auto-ML model lacks such dynamic constraints, reducing its sensitivity 885 
to abrupt inversion layer changes or synoptic-scale forcings (e.g., advective momentum fluxes) (Stevens, 
2002; Cuxart et al., 2006; Fernando, 2010; Shin et al., 2021;). The IQR error bars for predicted CBLH 
are consistently narrower than those for DL-derived CBLH across all seasons, reflecting lower variability 
in predicted CBLH (based on thermodynamic parameters) compared to DL-derived CBLH, which is 
influenced by additional factors such as wind and low-level jets. Despite these limitations, a follow-up 890 
work is underway to develop an AI/ML-based emulator for parameterizing PBL, which will be applied 
into real-case simulations to assess its performance against conventional PBL schemes. Furthermore, 
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future enhancements may incorporate high-resolution observational data (e.g., uncrewed aircraft systems 
or airborne LiDAR) to directly sample the entrainment zone, thereby improving physical consistency. 
Additionally, integrating other boundary-layer parameters (e.g., turbulent dissipation rate; Chu et al., 895 
2025b) could further refine the model, enabling predictions of additional PBL variables for a more 
comprehensive parameterization scheme. 
 

Code and Data Availability 

 ARM data are available at https://doi.org/10.2172/1253897 (ARM, 2016). The algorithm for 900 
convective boundary layer height determination is also accessible at https://doi.org/10.1364/OE.451728 
(Chu et al., 2022a). 
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